Комплекс взаимосвязанных процессов дозирования топлива и воздуха, распыливания и испарения топлива, а также перемешивания топлива с воздухом называется смесеобразованием. От состава и качества топливовоздушной смеси, полученной при смесеобразовании, зависит эффективность процесса сгорания.
В четырехтактных двигателях обычно организуют внешнее смесеобразование, которое начинается дозированием топлива и воздуха в форсунке, карбюраторе или в смесителе (газовый двигатель), продолжается во впускном тракте и завершается в цилиндре двигателя.
Различают два типа впрыскивания топлива: центральное — впрыскивание топлива во впускной трубопровод и распределенное — впрыскивание во впускные каналы головки цилиндров.
Распыливание топлива при центральном впрыскивании и в карбюраторах начинается в период, когда струя топлива после ее выхода из отверстия форсунки или распылителя под воздействием сил аэродинамического сопротивления и за счет высокой кинетической энергии воздуха распадается на пленки и капли различных диаметров. По мере движения капли дробятся на более мелкие. С повышением мелкости распыливания растет суммарная поверхность капель, что приводит к более быстрому превращению топлива в пар.
С увеличением скорости воздуха мелкость и однородность распыливания улучшаются, а при большой вязкости и поверхностном натяжении топлива — ухудшаются. Так, при пуске карбюраторного двигателя распыливания топлива практически нет.
При впрыскивании бензина качество распыливания зависит от давления впрыскивания, формы распыливающих отверстий форсунки и скорости течения топлива в них.
В системах впрыскивания наибольшее применение получили электромагнитные форсунки, к которым топливо подводится под давлением 0,15...0,4 МПа для получения капель требуемого размера.
Распыливание пленки и капель топлива продолжается при движении топливовоздушной смеси через сечения между впускным клапаном и его седлом, а на частичных нагрузках — в щели, образуемой прикрытой дроссельной заслонкой.
Образование и движение пленки топлива возникает в каналах и трубопроводах впускной системы. При движении топлива из-за взаимодействия с потоком воздуха и гравитации оно частично оседает на стенках впускного трубопровода и образует топливную пленку. Из-за действия сил поверхностного натяжения, сцепления со стенкой, тяжести и других сил скорость движения пленки топлива в несколько десятков раз меньше скорости потока смеси. С пленки потоком воздуха могут срываться капельки топлива (вторичное распыливание).
При впрыскивании бензина обычно в пленку попадает 60...80 % топлива. Ее количество зависит от места установки форсунки, дальнобойности струи, мелкости распыливания, а в случае распределенного впрыскивания в каждый цилиндр — и от момента его начала.
В карбюраторных двигателях на режимах полных нагрузок и малой частоты вращения до 25% от общего расхода топлива попадает в пленку на выходе из впускного трубопровода. Это связано с небольшой скоростью потока воздуха и недостаточной мелкостью распыливания топлива. При прикрытии дроссельной заслонки количество пленки во впускном трубопроводе меньше из-за вторичного распыливания топлива около заслонки.
Испарение топлива необходимо для получения однородной смеси топлива с воздухом и организации эффективного процесса сгорания. Во впускном канале, до поступления в цилиндр, смесь является двухфазной. Топливо в смеси находится в газовой и жидкой фазах.
При центральном впрыскивании и карбюрации для испарения пленки впускной трубопровод специально подогревают жидкостью из системы охлаждения или отработавшими газами. В зависимости от конструкции впускного тракта и режима работы на выходе из впускного трубопровода в горючей смеси топливо на 60...95 % находится в виде паров.
Процесс испарения топлива продолжается и в цилиндре во время тактов впуска и сжатия, а к началу сгорания топливо испаряется практически полностью.
При распределенном впрыскивании топлива на тарелку впускного клапана и работе двигателя на полной нагрузке испаряется 30...50 % цикловой дозы топлива до поступления в цилиндр. При впрыскивании топлива на стенки впускного канала доля испарившегося топлива возрастает до 50...70 % благодаря увеличению времени на его испарение. Подогрев впускного трубопровода в этом случае не нужен.
Условия для испарения бензина на режимах холодного пуска ухудшаются, а доля испарившегося топлива перед поступлением в цилиндр при этом составляет лишь 5... 10%.
Неравномерность состава смеси, поступающей в разные цилиндры двигателя, при центральном впрыскивании и карбюрации определяется разной геометрией и длиной каналов (неодинаковым сопротивлением ветвей впускного тракта), разницей скоростей движения воздуха и паров, капель и, главным образом, пленки топлива.
При неудачной конструкции впускного тракта степень равномерности состава смеси может достигать ±20%, что существенно снижает экономичность и мощность двигателя.
Неравномерность состава смеси зависит также от режима работы двигателя. При центральном впрыскивании и в карбюраторном двигателе с ростом частоты вращения улучшаются распыливание и испарение топлива, поэтому неравномерность состава смеси снижается. Смесеобразование улучшается при уменьшении нагрузки двигателя.
При распределенном впрыскивании неравномерность состава смеси по цилиндрам зависит от идентичности работы форсунок. Наибольшая неравномерность возможна на режиме холостого хода при малых цикловых дозах.
Организация внешнего смесеобразования газовых автомобильных двигателей подобна карбюраторным двигателям. Топливо в воздушный поток вводится в газообразном состоянии. Качество топливовоздушной смеси при внешнем смесеобразовании зависит от температуры кипения и коэффициента диффузии газа. При этом обеспечивается формирование практически однородной смеси, а ее распределение по цилиндрам равномернее, чем в карбюраторных двигателях.
studfiles.net
11.1. Основные требования к процессам смесеобразования в бензиновых двигателях. Организация смесеобразования при карбюрации, центральном и распределенном впрыскивании бензина.
Под смесеобразованием в ДсИЗ понимают комплекс взаимосвязанных процессов, имеющих место при дозировании топлива и воздуха, распыливании, испарении и перемешивании топлива с воздухом. Основными требованиями являются: мелкость и однородность распыливания, равномерность распределения ТВС по цилиндрам и внутри цилиндров. У четырехтактных двигателей смесеобразование начинается в карбюраторе, форсунке или смесителе, продолжается во впускном тракте и заканчивается в цилиндре. Впрыскивание осуществляется во впускной трубопровод (центральное) или впускные каналы в головке цилиндров (распределенное).
11.2. Распыливание топлива в карбюраторе, образование топливной пленки, испарение с поверхности капель и пленки. От каких факторов зависят эти процессы? Фракционирование топлива и его возможные последствия.
Сразу же после выхода струи ТВС из распылителя карбюратора начинается ее распад вследствие воздействия сил аэродинамического сопротивления и наличия воздуха в ТВС. За отверстием струя распадается на пленки и капли различного диаметра, распыливание улучшается при увеличении скорости воздуха в диффузоре. Направление движения топлива , взаимодействие капель с потоком воздуха и гравитационные силы обуславливают оседание частиц на стенках главного воздушного канала карбюратора и впускного трубопровода; растекаясь на стенках, капли образуют топливную пленку. При большом потоке с нее могут срываться капли топлива. Для обеспечения качественного смесеобразования необходимо прежде всего испарить топливо, т.к. только при одинаковом агрегатном состоянии диффузия протекает с большей полнотой. С поверхности капель и пленки топливо испаряется при сравнительно небольших температурах. На мелкость испарения влияют мелкость распыливания и начальная температура топлива, влияние температуры потока невелико.
11.3. Количественная и качественная неравномерность распределения смеси по цилиндрам. Чем оценивают количественную неравномерность и как она зависит от скоростного и нагрузочного режимов в карбюраторном двигателе? Как надо организовать подогрев смеси для улучшения ее распределения по цилиндрам?
Из-за неодинакового сопротивления ветвей впускного тракта наполнение отдельных цилиндров может отличаться (рис. 4.6). Количественная неравномерность - неравномерность состава смеси оценивается степенью неравномерности состава Di=(i-)/*100%, где i – коэффициент избытка воздуха в i-м цилиндре; - коэффициент избытка воздуха смеси, приготовляемой карбюратором. Качественная – из-за различной температуры испарения разных фракций фракционный состав топлива (а => октановое число) м.б. неодинаковым. Для более равномерного распределения состава смеси по цилиндрам важно обеспечить возможно более полное испарение топлива из зон разветвления впускного трубопровода.
11.4. Какие преимущества обеспечивает распределенное впрыскивание топлива в бензиновых двигателях?
У двигателей с распределенном впрыскиванием неравномерность состава смеси по цилиндрам зависит от качества (идентичности) форсунок и дозы впрыскиваемого топлива. В целом неравномерность невелика, наибольшее ее значение - на режимах холостого хода 4%; а при полных нагрузках - 1,5%. Также высока испаряемость и мелкость распыливания.
studfiles.net
[1], с.118...128
Смесеобразование в двигателях с воспламенением от искры.
Основные требования к процессам смесеобразования с воспламенением от искры (дозирование топлива, гомогенизация смеси). Распыливание топлива при карбюрации и при впрыскивании бензина. Образование топливной пленки. Сложный характер движения смеси по впускному тракту. Количественная и качественная неравномерность распределения смеси по цилиндрам.
Особенности гомогенизации смеси при работе на газообразных топливах.
Влияние режима работы двигателя и его технического состояния на гомогенизацию смеси и распределение ее по цилиндрам. Смесеобразование в процессе запуска и прогрева.
Непосредственный впрыск бензина и форкамерно-факельное зажигание; их достоинства и недостатки.
Процессы смесеобразования в дизелях и газодизелях.
Требования к смесеобразованию в дизелях. Распад струи топлива и образование мелких капель. Средние диаметры капель и кривые распыливания. Геометрические параметры струи распыленного топлива. Основные факторы, влияющие на мелкость распыливания и развитие топливных струй.
Влияние движения воздушного заряда на распределение топлива в камере сгорания. Испарение топлива. Смешение паров топлива с воздухом. Особенности объемного, объемно – пленочного и пленочного смесеобразования. Смесеобразование в разделенных камерах сгорания. Особенности смесеобразования при наддуве и при использовании альтернативных топлив. Смесеобразование в газодизелях.
Влияние режима работы дизеля и его технического состояния на процессы смесеобразования.
Сгорание смеси в бензиновых и газовых двигателях.
Основные требования, предъявляемые к сгоранию топлива и тепловыделению в поршневых ДВС.
Воспламенение гомогенной смеси от электрической искры. Нормальная скорость распределения пламени; факторы, на нее влияющие. Турбулентное горение. Влияние масштаба турбулентных пульсаций на скорость распространения пламени и скорость сгорания.
Фазы процесса сгорания и их анализ по развернутой индикаторной диаграмме. Влияние конструктивных, эксплуатационных и режимных факторов на процесс сгорания в бензиновых и газовых двигателях: установка угла опережения зажигания, состав смеси, тепловое состояние двигателя, нагарообразование на поверхностях камеры сгорания, снижение компрессии цилиндров, параметры окружающей среды, скоростной и нагрузочный режимы.
Детонационное сгорание. Внешние признаки детонации. Причины, вызывающие появление детонационного сгорания. Отрицательные последствия эксплуатации двигателя с детонацией и методы ее устранения в условиях эксплуатации автомобилей.
Преждевременное воспламенение и факторы, его вызывающие. Отрицательные последствия эксплуатации двигателя с преждевременным воспламенением.
Воспламенение и сгорание топлива в дизелях и газодизелях.
Объемное воспламенение. Задержка воспламенения распыленных жидких топлив. Понятие о диффузионном горении.
Фазы процесса сгорания и их анализ по развернутой индикаторной диаграмме дизеля. Период задержки воспламенения и его зависимость от сорта топлива, термодинамических параметров заряда в момент начала впрыскивания, скоростного и нагрузочного режимов и т.д.
Скорость нарастания давления в процессе сгорания; мероприятия по ее снижению.
Влияние конструктивных, эксплуатационных и режимных факторов на процесс сгорания и на эксплуатационную топливную экономичность дизеля и газодизеля.
Термодинамические соотношения в процессе сгорания.
Внутренний тепловой баланс двигателя. Уравнение сгорания и методы его решения. Коэффициент использования теплоты и теплотворная способность рабочей смеси. Термодинамический расчет параметров состояния рабочего тела в конце сгорания. Понятие о расчете процесса сгорания с использованием ЭВМ. Значения параметров процесса сгорания.
studfiles.net
Под смесеобразованием в двигателях с искровым зажиганием подразумевают комплекс взаимосвязанных процессов, сопровождающих дозирование топлива и воздуха, распыливание и испарение топлива и перемешивание его с воздухом. Качественное смесеобразование является необходимым условием получения высоких мощностных, экономических и экологических показателей двигателя.
Протекание процессов смесеобразования в значительной степени зависит от физико-химических свойств топлива и способа его подачи. В двигателях с внешним смесеобразованием процесс смесеобразования начинается в карбюраторе (форсунке, смесителе), продолжается во впускном коллекторе и заканчивается в цилиндре.
После выхода струи топлива из распылителя карбюратора или форсунки начинается распад струи под воздействием сил аэродинамического сопротивления (вследствие разности скоростей движения воздуха и топлива). Мелкость и однородность распыливания зависят от скорости воздуха в диффузоре, вязкости и поверхностного натяжения топлива. При пуске карбюраторного двигателя при его относительно низкой температуре распыливания топлива практически нет, и в цилиндры поступает до 90 и более процентов топлива в жидком состоянии. Вследствие этого для обеспечения надежного пуска необходимо существенно увеличивать цикловую подачу топлива (доводить α до значений ≈ 0,1-0,2). При испарении топлива протекает процесс его фракционирования. В первую очередь испаряются легкие фракции, а более тяжелые попадают в цилиндр в жидкой фазе. В результате неравномерного распределения жидкой фазы в цилиндрах может оказаться не только смесь с разным соотношением топливо – воздух, но и топливо различного фракционного состава. Следовательно, и октановые числа топлива, находящегося в разных цилиндрах, будут неодинаковыми.
Качество смесеобразования улучшается с ростом частоты вращения n. Особенно заметно негативное влияние пленки на показатели работы двигателя на переходных режимах.
Неравномерность состава смеси в двигателях с распределенным впрыскиванием определяется, главным образом, идентичностью работы форсунок. Степень неравномерности состава смеси составляет ±1,5 % при работе по внешней скоростной характеристике и ±4 % на холостом ходу с минимальной частотой вращения nх.х.min.
При впрыскивании топлива непосредственно в цилиндр возможны два способа смесеобразования:
− с получением гомогенной смеси;
− с расслоением заряда.
Реализация последнего способа смесеобразования сопряжена с немалыми трудностями.
Смесеобразование в дизельных двигателях
Время, отводимое на процесс смесеобразования в дизелях, очень мало. Да и топливо, поступающее в нагретый сжатый воздух, воспламеняется не сразу. Между началом его подачи и моментном воспламенения проходит некоторый промежуток времени, называемый периодом задержки воспламенения. В течение этого периода топливо перемешивается с воздухом, испаряется и нагревается до самовоспламенения. Период задержки воспламенения зависит от сорта топлива, его физических свойств и от конструктивных особенностей двигателя. Чем значительнее период задержки воспламенения, тем больше количество топлива накапливается в камере сгорания. После воспламенения оно быстро сгорает, что приводит к резкому увеличению давления газов на поршневую группу. Двигатель работает жестко, его стуками, а его детали подвергаются интенсивному изнашиванию. Мелкое распушивание топлива в завихренный воздух приводит к уменьшению периода задержки воспламенения. С увеличением частоты вращения коленчатого вала повышаются давление и температура в конце, что уменьшает период задержки воспламенения топлива. Следовательно, для быстроходных дизелей необходимо использовать топливо с повышенным метановым числом, так как такое топливо скорее воспламеняется и быстрее сгорает. Особенностью системы питания дизеля является раздельная подача воздуха и топлива в цилиндры. Смесеобразование в дизелях происходит непосредственно в камере сгорания. В сжатый горячий воздух впрыскивается определенная порция топлива. Задача смесеобразовательного процесса заключается в том, чтобы мелко распылить и хорошо перемешать определенную дозу топлива с воздухом. Смесеобразование происходит почти одновременно с процессом сгорания. Если в цилиндр подавать на одну часть топлива теоретически необходимое количество воздуха, достаточное для полного сгорания топлива, то двигатель будет работать с дымлением. Объясняется это тем, что равномерно распределить мелкие частицы топлива в воздухе по всей камере сгорания дизеля очень трудно. Чтобы топливо полностью сгорело, воздуха приходится подавать в цилиндры значительно больше, чем теоретически необходимо. Однако увеличение коэффициента избытка воздуха ухудшает экономические показатели дизеля. Лучше, если сгорание топлива происходит при меньшем значении коэффициента избытка воздуха, так как в этом случае полнее будет использована теплота сгоревшего топлива.
Система питания дизельного двигателя. Общие сведения
При работе дизельного двигателя в его цилиндры всасывается наружный воздух, который сжимается до высокого давления. При этом температура воздуха в результате адиабатического нагрева поднимается до уровня 700-900˚С, превышающего точку воспламенения дизельного топлива. Топливо впрыскивается в цилиндр с некоторым опережением и воспламеняется. Таким образом, необходимость в использовании свечей зажигания отпадает.
Как и на бензиновых моделях система питания состоит из двух трактов: подачи топлива и подачи воздуха; управление функционированием системы осуществляет специальный электронный модуль (ECM). Более подробно принцип функционирования системы управления дизельным двигателем/снижения токсичности отработавших газов изложен в Разделе Система самодиагностики дизельных моделей .
stydopedya.ru
Важнейшей особенностью карбюраторных двигателей является приготовление горючей смеси. Это двигатели низкого сжатия с внешним смесеобразованием с принудительным зажиганием горючей смеси. Они выполняются преимущественно четырехтактными. Карбюраторные двигатели работают на легком жидком топливе. Процесс сгорания в этих двигателях обычно длится 1/300—1/400 сек. Для того чтобы в столь короткое время обеспечить полное сгорание, смесь должна быть соответствующим образом приготовлена. Процесс приготовления горючей смеси называется карбюрацией, а прибор, в котором осуществляется карбюрация, называется карбюратором Карбюратор должен выполнять следующие операции: а) приготовлять горючую смесь нужного качества, т. е. при различных режимах работы смешивать нужное количество топлива с определенным количеством воздуха; б) обеспечивать хороший распыл, с тем чтобы все топливо испарилось до начала сгорания; в) осуществлять поступление в цилиндр однородной по составу смеси. Рассмотрим способ образования горючей смеси в простейшем карбюраторе (фиг. 71). Топливо из бачка под напором поступает по каналу, перекрытому игольчатым клапаном 4, в поплавковую камеру 2. Поплавком 3 уровень топлива в поплавковой камере, а следовательно, и напор топлива поддерживается почти постоянным, с тем чтобы этот уровень был несколько ниже отверстия форсунки 7; таким образом, при неработающем двигателе утечка топлива не происходит. При всасывающем ходе поршня 10, т. е. при движении его вниз воздух через патрубок 8 проходит диффузор 6, в котором его скорость значительно повышается, а следовательно, давление понижается. Благодаря разрежению топливо из поплавковой камеры через калиброванное проходное отверстие 1, называемое жиклером, и форсунку 7 фонтанирует в диффузор, распадаясь при этом на мелкие капли, испаряющиеся в воздушном потоке. Количество смеси, всасываемой через впускной клапан 9, регулируется дроссельной заслонкой 5. Воспламенение сжатой рабочей смеси производится электрической искрой. Угол опережения зажигания обычно берется 25—30° до в. м. т. Сгорание смеси происходит с мгновенным повышением давления при почти неизменном объеме. Горючая смесь топлива и воздуха, составленная так, что топливо в двигателе сгорает полностью, называется нормальной. При нормальной горючей смеси двигатель работает наиболее экономично. Если количество воздуха, приходящееся на единицу веса топлива в смеси, будет больше нормальной, то такая смесь называется бедной. Сгорание бедной смеси происходит медленнее с догоранием в период расширения и выпуска, в связи с чем двигатель не развивает полной мощности. Если количество воздуха, приходящееся на единицу, веса топлива, меньше, чем у нормальной горючей смеси, то такая смесь называется богатой. При богатой смеси, вследствие недостатка воздуха, происходит неполное сгорание, что вызывает падение мощности двигателя при большом расходе топлива. Рассмотренный выше карбюратор может обслуживать двигатель, работающий с постоянным числом оборотов. При увеличении числа оборотов двигателя в таком карбюраторе смесь обогащается. Поэтому для обслуживания двигателей, работающих при переменном режиме, применяются карбюраторы, снабженные рядом добавочных приспособлений. |
vdvizhke.ru
Содержание
1. Смесеобразование в бензиновых двигателях
1.1 Смесеобразование при карбюрации
1.2 Смесеобразование при центральном и распределенном впрыске топлива
1.3 Особенности смесеобразования в газовых двигателях
2. Смесеобразование в дизелях
2.1 Особенности смесеобразования
2.2 Способы смесеобразования. Типы камер сгорания
Библиографический список
1. Смесеобразование в бензиновых двигателях
Под смесеобразованием в двигателях с искровым зажиганием подразумевают комплекс взаимосвязанных процессов, сопровождающих дозирование топлива и воздуха, распыливание и испарение топлива и перемешивание его с воздухом. Качественное смесеобразование является необходимым условием получения высоких мощностных, экономических и экологических показателей двигателя.
Протекание процессов смесеобразования в значительной степени зависит от физико-химических свойств топлива и способа его подачи. В двигателях с внешним смесеобразованием процесс смесеобразования начинается в карбюраторе (форсунке, смесителе), продолжается во впускном коллекторе и заканчивается в цилиндре.
После выхода струи топлива из распылителя карбюратора или форсунки начинается распад струи под воздействием сил аэродинамического сопротивления (вследствие разности скоростей движения воздуха и топлива). Мелкость и однородность распыливания зависят от скорости воздуха в диффузоре, вязкости и поверхностного натяжения топлива. При пуске карбюраторного двигателя при его относительно низкой температуре распыливания топлива практически нет, и в цилиндры поступает до 90 и более процентов топлива в жидком состоянии. Вследствие этого для обеспечения надежного пуска необходимо существенно увеличивать цикловую подачу топлива (доводить α до значений ≈ 0,1-0,2).
Процесс распыливания жидкой фазы топлива протекает также в проходном сечении впускного клапана, а при не полностью открытой дроссельной заслонке – в образуемой ею щели.
Часть капель топлива, увлекаемая потоком воздуха и паров топлива, продолжает испаряться, а часть – оседает в виде пленки не стенках смесительной камеры, впускного коллектора и канала в головке блока. Под действием касательного усилия от взаимодействия с потоком воздуха пленка движется в сторону цилиндра. Так как скорости движения топливовоздушной смеси и капель топлива отличаются незначительно (на 2–6 м/c), то интенсивность испарения капель низка. Испарение с поверхности пленки протекает более интенсивно. Для ускорения процесса испарения пленки впускной коллектор в двигателях карбюраторных и с центральным впрыскиванием подогревают.
Разное сопротивление ветвей впускного коллектора и неравномерное распределение пленки в этих ветвях приводят к неравномерности состава смеси по цилиндрам. Степень неравномерности состава смеси может достигать 15–17 %.
При испарении топлива протекает процесс его фракционирования. В первую очередь испаряются легкие фракции, а более тяжелые попадают в цилиндр в жидкой фазе. В результате неравномерного распределения жидкой фазы в цилиндрах может оказаться не только смесь с разным соотношением топливо – воздух, но и топливо различного фракционного состава. Следовательно, и октановые числа топлива, находящегося в разных цилиндрах, будут неодинаковыми.
Качество смесеобразования улучшается с ростом частоты вращения n. Особенно заметно негативное влияние пленки на показатели работы двигателя на переходных режимах.
Неравномерность состава смеси в двигателях с распределенным впрыскиванием определяется, главным образом, идентичностью работы форсунок. Степень неравномерности состава смеси составляет ±1,5 % при работе по внешней скоростной характеристике и ±4 % на холостом ходу с минимальной частотой вращения nх.х.min .
При впрыскивании топлива непосредственно в цилиндр возможны два способа смесеобразования:
− с получением гомогенной смеси;
− с расслоением заряда.
Реализация последнего способа смесеобразования сопряжена с немалыми трудностями.
В газовых двигателях с внешним смесеобразованием топливо вводится в воздушный поток в газообразном состоянии. Низкое значение температуры кипения, высокое значение коэффициента диффузии и существенно меньшее значение теоретически необходимого для сгорания количества воздуха (например для бензина − 58,6, метана – 9,52 (м3 возд)/(м3 топл) обеспечивают получение практически гомогенной горючей смеси. Распределение смеси по цилиндрам более равномерное.
1.1 Смесеобразование при карбюрации
Распыливание топлива. После выхода струи топлива из распылителя карбюратора начинается ее распад. Под действием сил аэродинамического сопротивления (скорость воздуха существенно выше скорости топлива) струя распадается на пленки и капли различных диаметров. Средний диаметр капель на выходе из карбюратора ориентировочно можно считать равным 100 мкм. Улучшение распыливания увеличивает суммарную поверхность капель и способствует более быстрому их испарению. Увеличивая скорость воздуха в диффузоре и уменьшая вязкость и коэффициент поверхностного натяжения топлива, улучшают мелкость и однородность распыливания. При запуске карбюраторного двигателя распыливания топлива практически нет.
Образование и движение пленки топлива. Под действием потока воздуха и гравитационных сил некоторые капли оседают на стенках карбюратора и впускного трубопровода, образуя топливную пленку. На пленку топлива воздействуют силы сцепления со стенкой, касательное усилие со стороны потока воздуха, перепад статического давления по периметру сечения, а также силы тяжести и поверхностного натяжения. В результате действия этих сил пленка приобретает сложную траекторию движения. Скорость ее движения в несколько десятков раз меньше скорости потока смеси. Наибольшее количество пленки образуется на режимах полных нагрузок и малой частоты вращения, когда скорость воздуха и мелкость распыливания топлива невелики. В этом случае количество пленки на выходе из впускного трубопровода может доходить до 25 % от общего расхода топлива. Характер соотношения физических состояний горючей смеси существенно зависит от конструктивных особенностей системы топливоподачи (рис. 1).
Рис. 1. Подача топлива при карбюрации (а), центральном (б) и распределенном (в) впрыскивании: 1 – воздух; 2 – топливо; 3 – горючая смесь
Испарение топлива. Топливо испаряется с поверхности капель и пленки при сравнительно небольших температурах. Капли находятся во впускной системе двигателя примерно в течение 0,002–0,05 с. За это время успевают полностью испариться лишь самые мелкие из них. Низкие скорости испарения капель определяются главным образом молекулярным механизмом переноса теплоты и массы, поскольку большую часть времени капли движутся при незначительном обдуве воздухом. Поэтому на испарение капель заметно влияют мелкость распыливания и начальная температура топлива, влияние же температуры воздушного потока незначительно.
Пленка топлива интенсивно обдувается потоком. При этом большое значение для ее испарения имеет теплообмен со стенками впускного тракта, поэтому при центральном впрыскивании и карбюрации впускной трубопровод обычно обогревается охлаждающей двигатель жидкостью или ОГ. В зависимости от конструкции впускного тракта и режима работы карбюраторного двигателя и при центральном впрыскивании на выходе из впускного трубопровода содержание в горючей смеси паров топлива может составлять 60–95 %. Процесс испарения топлива продолжается в цилиндре во время тактов впуска и сжатия. К началу сгорания топливо практически испаряется полностью.
Таким образом, на режимах холодного пуска и прогрева, когда температуры топлива, поверхностей впускного тракта и воздуха малы, испарение бензина минимально, на режиме пуска к тому же почти отсутствует распыливание, условия смесеобразования крайне неблагоприятны.
Неравномерность состава смеси по цилиндрам. Ввиду неодинакового сопротивления ветвей впускного тракта наполнение отдельных цилиндров воздухом может отличаться (на 2–4 %). Распределение топлива по цилиндрам карбюраторного двигателя может характеризоваться значительно большей неравномерностью, главным образом, за счет неодинакового распределения пленки. Это означает, что состав смеси в цилиндрах неодинаков. Он характеризуется степенью неравномерности состава смеси:
где αi – коэффициент избытка воздуха в i-м цилиндре; α – среднее значение коэффициента избытка воздуха смеси, приготовляемой карбюратором или инжектором центрального впрыска.
Если, Di > 0, то это означает, что в данном цилиндре смесь более бедная, чем в целом по двигателю. Значение α проще всего определить по анализу состава ОГ, выходящих из i-го цилиндра. Степень неравномерности состава смеси при неудачной конструкции впускного тракта может достигать величины 20 %, что заметно ухудшает экономические, экологические, мощностные и другие показатели работы двигателя. Неравномерность состава смеси зависит также от режима работы двигателя. С ростом частоты n улучшаются распыливание и испарение топлива, поэтому неравномерность состава смеси снижается (рис. 2а). Смесеобразование улучшается и при уменьшении нагрузки, что, в частности, выражается в уменьшении степени неравномерности состава смеси (рис. 2б).
При смесеобразовании происходит фракционирование бензина. При этом в первую очередь испаряются легкие фракции (они имеют более низкое октановое число), а в каплях и пленке оказываются преимущественно средние и тяжелые. В результате неравномерного распределения жидкой фазы топлива в цилиндрах может оказаться не только смесь с разным α, но и фракционный состав топлива (а следовательно, и его октановое число) также может быть неодинаковым. Сказанное относится и к распределению по цилиндрам присадок к бензину, в частности антидетонационных. Вследствие указанных особенностей смесеобразования в цилиндры карбюраторных двигателей поступает смесь, в общем случае различающаяся по
, составу топлива и его октановому числу.mirznanii.com
Под смесеобразованием в двигателях с искровым зажиганием подразумевают комплекс взаимосвязанных процессов, сопровождающих дозирование топлива и воздуха, распыливание и испарение топлива и перемешивание его с воздухом. Качественное смесеобразование является необходимым условием получения высоких мощностных, экономических и экологических показателей двигателя.
Протекание процессов смесеобразования в значительной степени зависит от физико-химических свойств топлива и способа его подачи. В двигателях с внешним смесеобразованием процесс смесеобразования начинается в карбюраторе (форсунке, смесителе), продолжается во впускном коллекторе и заканчивается в цилиндре.
После выхода струи топлива из распылителя карбюратора или форсунки начинается распад струи под воздействием сил аэродинамического сопротивления (вследствие разности скоростей движения воздуха и топлива). Мелкость и однородность распыливания зависят от скорости воздуха в диффузоре, вязкости и поверхностного натяжения топлива. При пуске карбюраторного двигателя при его относительно низкой температуре распыливания топлива практически нет, и в цилиндры поступает до 90 и более процентов топлива в жидком состоянии. Вследствие этого для обеспечения надежного пуска необходимо существенно увеличивать цикловую подачу топлива (доводить б до значений ? 0,1-0,2).
Процесс распыливания жидкой фазы топлива протекает также в проходном сечении впускного клапана, а при не полностью открытой дроссельной заслонке - в образуемой ею щели.
Часть капель топлива, увлекаемая потоком воздуха и паров топлива, продолжает испаряться, а часть - оседает в виде пленки не стенках смесительной камеры, впускного коллектора и канала в головке блока. Под действием касательного усилия от взаимодействия с потоком воздуха пленка движется в сторону цилиндра. Так как скорости движения топливовоздушной смеси и капель топлива отличаются незначительно (на 2-6 м/c), то интенсивность испарения капель низка. Испарение с поверхности пленки протекает более интенсивно. Для ускорения процесса испарения пленки впускной коллектор в двигателях карбюраторных и с центральным впрыскиванием подогревают.
Разное сопротивление ветвей впускного коллектора и неравномерное распределение пленки в этих ветвях приводят к неравномерности состава смеси по цилиндрам. Степень неравномерности состава смеси может достигать 15-17 %.
При испарении топлива протекает процесс его фракционирования. В первую очередь испаряются легкие фракции, а более тяжелые попадают в цилиндр в жидкой фазе. В результате неравномерного распределения жидкой фазы в цилиндрах может оказаться не только смесь с разным соотношением топливо - воздух, но и топливо различного фракционного состава. Следовательно, и октановые числа топлива, находящегося в разных цилиндрах, будут неодинаковыми.
Качество смесеобразования улучшается с ростом частоты вращения n. Особенно заметно негативное влияние пленки на показатели работы двигателя на переходных режимах.
Неравномерность состава смеси в двигателях с распределенным впрыскиванием определяется, главным образом, идентичностью работы форсунок. Степень неравномерности состава смеси составляет ±1,5 % при работе по внешней скоростной характеристике и ±4 % на холостом ходу с минимальной частотой вращения nх.х.min.
При впрыскивании топлива непосредственно в цилиндр возможны два способа смесеобразования:
? с получением гомогенной смеси;
? с расслоением заряда.
Реализация последнего способа смесеобразования сопряжена с немалыми трудностями.
В газовых двигателях с внешним смесеобразованием топливо вводится в воздушный поток в газообразном состоянии. Низкое значение температуры кипения, высокое значение коэффициента диффузии и существенно меньшее значение теоретически необходимого для сгорания количества воздуха (например для бензина ? 58,6, метана - 9,52 (м3 возд)/(м3 топл) обеспечивают получение практически гомогенной горючей смеси. Распределение смеси по цилиндрам более равномерное.
tran.bobrodobro.ru