ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

6.2.10. ВЕНТИЛЬНЫЕ ЭЛЕКТРОДВИГАТЕЛИ. Вентильные двигатели


5.4. Вентильные двигатели

Машины постоянного тока имеют более высокие технические показатели (линейность характеристики, высокий КПД, малые габариты), чем машины переменного тока. Существенный недостаток - наличие электромеханического коллектора, который снижает надежность, создает радиопомехи, взрывоопасность и т.д.

Этих недостатков лишен бесконтактный двигатель постоянного тока, называемый вентильным двигателем. В этом двигателе щеточный аппарат заменен полупроводниковым коммутатором, якорь находится на статоре, а ротор представляет собой двухполюсный (реже четырехполюсный) постоянный магнит. Для упрощения коммутатора число секции обмотки якоря выбирается малым - три, четыре.

Рис. 5-11а. Трехфазный вентильный двигатель.

Схема трехфазного вентильного двигателя с двухполюсным ротором представлена на

. Существенным элементом двигателя является датчик положения - ДПР. Он может основан на разных принципах - фотоэлектрические, индуктивные, емкостные, на эффекте Холла, и т.д. В рассматриваемом двигателе применяется фотоэлектрический датчик, содержащий три неподвижных фотоприемникаmlk, которые закрываются поочередно вращающейся шторкой. Двоичный код, получаемый с ДПР, фиксирует шесть различных положений ротора (шесть фаз), это соответствие кодов и фаз приведено в верхней части.

Фаза

1

2

3

4

5

6

K

1

0

0

0

1

1

L

1

1

0

0

0

1

M

1

1

1

0

0

0

U1

1

0

0

0

0

1

U2

0

1

1

0

0

0

U3

0

0

0

1

1

0

U4

0

0

1

1

0

0

U5

0

0

0

0

1

1

U6

1

1

0

0

0

0

В этой таблице единице соответствует наличие сигнала на выходе датчика, т.е. когда фотоприемник открыт, а нулю - отсутствие сигнала, когда соответствующий фотоэлемент закрыт шторкой.

Рис. 5-11б. Трехфазный вентильный двигатель.

Сигналы датчиков преобразуются управляющим устройством УУ () в комбинацию управляющих напряженийU1-U6, которые управляют транзисторными ключамиK1-K6согласно нижней части, так, что в каждый такт (фазу) работы двигателя включены два ключа - верхний и нижний и к сети подключены последовательно две из трех обмоток якоря. Обмотки якоряa,b,cрасположены на статоре со сдвигом на 120·град (см.) и их начала и концы соединены так, что при переключении ключей создается вращающееся магнитное поле. Одному циклу работы коммутатора соответствует один оборот ротора. Цикл делится на шесть тактов (временных фаз), которым соответствует пространственный угол α=60·град. Коммутация производится так, что поток возбуждения Ф0отстает на угол α от потока якоря. На

токи в обмотках и положение ротора показаны для фазы 1. В результате взаимодействия потока якоря и возбуждения создается вращающий моментM, который стремится развернуть ротор так, чтобы потоки якоря и возбуждения совпали, но при повороте ротора под действием ДПР происходит переключение обмоток и поток якоря поворачивается на следующий шаг.

Рис. 5-12б. Временная диаграмма трехфазного вентильного двигателя.

Временная диаграмма работы вентильного двигателя приведена на . Как видно из диаграммы, вентильный двигатель работает как в данном случае трехфазный синхронный двигатель, частота вращения его ротора пропорциональна частоте вращения поля. Основным отличием от синхронного является его самосинхронизация с помощью ДПР, в результате чего у этого двигателя, наоборот, частота вращения поля пропорциональна (в данном случае при двухполюсном якоре равна) частоте вращения ротора, а частота вращения ротора зависит от напряжения питания, т.е. двигатель работает как двигатель постоянного тока.

В отличие от двигателя постоянного тока, так как вентильный двигатель имеет мало секций в обмотке якоря, момент имеет пульсации, и среднее значение момента зависит от периода включения ключа β, показанного на .

В получена формула для среднего значения электромагнитного момента вентильного двигателя

где M*и ω*- относительные момент и частота вращения по отношению к базовым:

;;;,

где m- число обмоток (секций),R- сопротивление секции.

Учитывая эти соотношения, из можно получить выражение для механической характеристики вентильного двигателя

,

где AиB- коэффициенты, зависящие от β.

;

Эти коэффициенты зависят от способа коммутации обмоток и приведены в .

Способ коммутации

β

A

B

m

Парная

Π

1.27

4

4

Поочередная(полушаги)

1.24

4.1

4

Трехфазная

 

1.17

4.17

3

Одинарная

 

1.02

8.4

4

В рассматриваемом примере применена трехфазная коммутация, другие перечисленные в способы коммутации соответствуют коммутации обмоток в шаговых двигателях, так как вентильный двигатель можно через датчик положения ротора. Механические характеристики показаны на.

Рис. 5-13а. Механические характеристики вентильного двигателя.

При рассмотрении динамики вентильного двигателя надо дополнить уравнение

уравнением движения вида

Рис. 5-13б. Структурная схема вентильного двигателя.

На основании иможет быть построена структурная схема (), по которой получена передаточная функция

,

где - коэффициент передачи двигателя,- электромеханическая постоянная времени.

Таким образом, вентильный двигатель по своим статическим и динамическим характеристикам подобен двигателю постоянного тока.

studfiles.net

Вентильный двигатель — википедия фото

Рис. 1. Принцип работы трёхфазного вентильного двигателя

Вентильный электродвигатель (ВД)  — это разновидность электродвигателя переменного тока, у которого коллекторно-щеточный узел заменен бесконтактным полупроводниковым коммутатором, управляемым датчиком положения ротора[1].

Механическая и регулировочная характеристики вентильного двигателя линейны и идентичны механической и регулировочной характеристикам электродвигателя постоянного тока. Как и электродвигатели постоянного тока, вентильные двигатели работают от сети постоянного тока. ВД можно рассматривать как двигатель постоянного тока, в котором щёточно-коллекторный узел заменён электроникой, что подчёркивается словом «вентильный», то есть «управляемый силовыми ключами» (вентилями). Фазные токи вентильного двигателя имеют синусоидальную форму. Как правило, в качестве усилителя мощности применяется автономный инвертор напряжения с широтно-импульсной модуляцией.

Вентильный двигатель следует отличать от бесколлекторного двигателя постоянного тока (БДПТ), который имеет трапецеидальное распределение магнитного поля в зазоре и характеризуется прямоугольной формой фазных напряжений. Структура БДПТ проще чем структура ВД (отсутствует преобразователь координат, вместо ШИМ используется 120- или 180-градусная коммутация, реализация которой проще ШИМ).

В русскоязычной литературе двигатель называют вентильным, если противо-ЭДС управляемой синхронной машины синусоидальная, а бесконтактным двигателем постоянного тока, если противо-ЭДС трапецеидальная.

В англоязычной литературе такие двигатели обычно не рассматриваются отдельно от электропривода и упоминаются под аббревиатурами PMSM (Permanent Magnet Synchronous Motor) или BLDC (Brushless Direct Current Motor). Стоит отметить, что аббревиатура PMSM в англоязычной литературе чаще используется для обозначения самих синхронных машин с постоянными магнитами и с синусоидальной формой фазных противо-ЭДС, в то время как аббревиатура BLDC аналогична русской аббревиатуре БДПТ и относится к двигателям с трапецеидальной формой противо-ЭДС (если иная форма не оговорена специально).

Вообще говоря, вентильный двигатель не является электрической машиной в традиционном понимании, поскольку его проблематика затрагивает ряд вопросов, связанных с теорией электропривода и систем автоматического управления: структурная организация, использование датчиков и электронных компонентов, а также программное обеспечение.

Вентильные двигатели, сочетающие в себе надёжность машин переменного тока с хорошей управляемостью машин постоянного тока, являются альтернативой двигателям постоянного тока (ДПТ), которые характеризуются рядом изъянов, связанных со щёточно-коллекторным узлом (ЩКУ), таких как искрение, помехи, износ щёток, плохой теплоотвод якоря и проч. Отсутствие ЩКУ позволяет применять ВД в тех приложениях, где использование ДПТ затруднено или невозможно.

Описание и принцип работы[2]

  Рис. 2. Структура двухфазного вентильного двигателя с синхронной машиной с постоянными магнитами на роторе. ПК — преобразователь координат, УМ — усилитель мощности, СЭМП — синхронный электромеханический преобразователь (синхронная машина), ДПР — датчик положения ротора.

Двигатель состоит из постоянного магнита-ротора, вращающегося в магнитном поле катушек статора, по которым проходит ток, управляемый микроконтроллером. Микроконтроллер переключает катушки таким образом, чтобы взаимодействие их поля с полем ротора создавало крутящий момент при любом его положении.

На входы преобразователя координат (ПК) поступают напряжения постоянного тока uq{\displaystyle u_{q}} , действие которого аналогично напряжению якоря двигателя постоянного тока, и ud{\displaystyle u_{d}} , аналогичное напряжению возбуждения двигателя постоянного тока (аналогия действует при рассмотрении схемы независимого возбуждения двигателя постоянного тока).

Сигналы ud,uq{\displaystyle u_{d},u_{q}} , представляют собой проекции вектора напряжения управления Uy→={ud,uq}{\displaystyle {\vec {U_{y}}}=\{u_{d},u_{q}\}}  на оси вращающейся системы координат {d,q}{\displaystyle \{d,q\}} , связанной с ротором ВД (а точнее — с вектором потока ротора). Преобразователь координат осуществляет преобразование проекций ud,uq{\displaystyle u_{d},u_{q}}  в проекции uα,uβ{\displaystyle u_{\alpha },u_{\beta }}  неподвижной системы координат {α,β}{\displaystyle \{\alpha ,\beta \}} , связанной со статором.

Как правило, в системах управления электропривода задаётся ud=0{\displaystyle u_{d}=0} [3], при этом уравнения преобразования координат принимают вид[4]:

uα=−uq⋅sin⁡θ,{\displaystyle u_{\alpha }=-u_{q}\cdot \sin {\theta },} 

uβ={\displaystyle u_{\beta }=}  uq⋅cos⁡θ,{\displaystyle u_{q}\cdot \cos {\theta },} 

где θ{\displaystyle \theta }  — угол поворота ротора (и системы вращающихся координат) относительно оси α{\displaystyle \alpha }  неподвижной системы координат. Для измерения мгновенного значения угла θ{\displaystyle \theta }  на валу ВД устанавливается датчик положения ротора (ДПР).

По сути, uq{\displaystyle u_{q}}  является в этом случае заданием значения амплитуды фазных напряжений. А ПК, осуществляя позиционную модуляцию сигнала uq{\displaystyle u_{q}} , формирует гармонические сигналы uα,uβ{\displaystyle u_{\alpha },u_{\beta }} , которые усилитель мощности (УМ) преобразует в фазные напряжения uA,uB{\displaystyle u_{A},u_{B}} . Синхронный двигатель в составе вентильного двигателя часто называют синхронным электромеханическим преобразователем (СЭМП).

Как правило, электронная часть ВД коммутирует фазы статора синхронной машины так, чтобы вектор магнитного потока статора был ортогонален вектору магнитного потока ротора (т. н. векторное управление). При соблюдении ортогональности потоков статора и ротора обеспечивается поддержание максимального вращающего момента ВД в условиях изменения частоты вращения, что предотвращает выпадение ротора из синхронизма и обеспечивает работу синхронной машины с максимально возможным для неё КПД. Для определения текущего положения потока ротора вместо датчика положения ротора могут использоваться токовые датчики (косвенное измерение положения).

Электронная часть современного ВД содержит микроконтроллер и транзисторный мост, а для формирования фазных токов используется принцип широтно-импульсной модуляции (ШИМ). Микроконтроллер отслеживает соблюдение заданных законов управления, а также производит диагностику системы и её программную защиту от аварийных ситуаций.

Иногда датчик положения ротора отсутствует, а положение оценивается системой управления по измерениям токовых датчиков с помощью наблюдателей (т. н. «бездатчиковое» управление ВД). В таких случаях за счёт удаления дорогостоящего и зачастую громоздкого датчика положения уменьшается цена и массо-габаритные показатели электропривода с ВД, однако усложняется управление, снижается точность определения положения и скорости.

В приложениях средней и большой мощности в систему могут дополнительно включаться электрические фильтры для смягчения негативных эффектов ШИМ: перенапряжений на обмотках, подшипниковых токов и снижения КПД. Впрочем, это характерно для всех типов двигателей.

Применение

Благодаря высокой надёжности и хорошей управляемости, вентильные двигатели применяются в широком спектре приложений: от компьютерных вентиляторов и CD/DVD-приводов до роботов и космических ракет. Также этот тип двигателей часто используется в квадрокоптерах. Широкое применение ВД нашли в промышленности, особенно в системах регулирования скорости с большим диапазоном и высоким темпом пусков, остановок и реверса; авиационной технике, автомобильном машиностроении, биомедицинской аппаратуре, бытовой технике и проч.

Достоинства и недостатки

Вентильные двигатели призваны объединить в себе лучшие качества двигателей переменного тока и двигателей постоянного тока. Это обусловливает их достоинства.

Достоинства:

Вентильные двигатели характеризуются и некоторыми недостатками, главный из которых — высокая стоимость. Однако, говоря о высокой стоимости, следует учитывать и тот факт, что вентильные двигатели обычно используются в дорогостоящих системах с повышенными требованиями по точности и надёжности.

Недостатки:

Конструкция

Конструктивно современные вентильные привода состоят из электромеханической части (синхронной машины и датчика положения ротора) и из управляющей части (микроконтроллер и силовой мост).

Упоминая о конструкции ВД, полезно иметь в виду и неконструктивный элемент системы — программу (логику) управления.

Синхронная машина, используемая в ВД, состоит из шихтованного (собранного из отдельных электрически изолированных листов электротехнической стали — для снижения вихревых токов) статора, в котором расположена многофазная (обычно двух- или трёхфазная) обмотка, и ротора (обычно на постоянных магнитах).

В качестве датчиков положения ротора в БДПТ применяются датчики Холла, а в ВД — вращающиеся трансформаторы и накапливающие датчики. В т. н. «бездатчиковых» системах информация о положении определяется системой управления по мгновенным значениям фазных токов.

Информация о положении ротора обрабатывается микропроцессором, который, согласно программе управления, вырабатывает управляющие ШИМ-сигналы. Низковольтные ШИМ-сигналы микроконтроллера затем преобразуются усилителем мощности (обычно транзисторным мостом) в силовые напряжения, подаваемые на двигатель.

Совокупность датчика положения ротора и электронного узла в ВД и БДПТ можно с определённой долей достоверности сравнить с щёточно-коллекторным узлом ДПТ. Однако следует помнить, что двигатели редко применяются вне электропривода. Таким образом, электронная аппаратура характерна для ВД почти в той же степени, что и для ДПТ.

Статор

Статор имеет традиционную конструкцию. Он состоит из корпуса, сердечника из электротехнической стали и медной обмотки, уложенной в пазы по периметру сердечника. Обмотка разбита на фазы, которые уложены в пазы таким образом, что пространственно сдвинуты друг относительно друга на угол, определяемый числом фаз. Известно, что для равномерного вращения вала двигателя машины переменного тока достаточно двух фаз. Обычно синхронные машины, применяемые в ВД, трёхфазные, однако встречаются также и ВД с четырёх- и шестифазными обмотками.

Ротор

По расположению ротора вентильные двигатели делятся на внутрироторные (англ. inrunner) и внешнероторные (англ. outrunner).

Ротор изготавливается с использованием постоянных магнитов и имеет обычно от двух до шестнадцати пар полюсов с чередованием северного и южного полюсов.

Для изготовления ротора раньше использовались ферритовые магниты, что определялось их распространённостью и дешевизной. Однако такие магниты характеризуются низким уровнем магнитной индукции. В настоящее время интенсивно используются магниты из сплавов редкоземельных элементов, поскольку они позволяют получить более высокий уровень магнитной индукции и уменьшить размер ротора.

Датчик положения ротора

Датчик положения ротора (ДПР) реализует обратную связь по положению ротора. Его работа может быть основана на разных принципах — фотоэлектрическом, индуктивном, трансформаторном, на эффекте Холла и проч. Наибольшую популярность приобрели датчики Холла и фотоэлектрические датчики, обладающие низкой инерционностью и обеспечивающие малые запаздывания в канале обратной связи по положению ротора.

Обычно фотоэлектрический датчик содержит три неподвижных фотоприёмника, между которыми находится вращающаяся маска с рисками, жёстко закреплённая на валу ротора ВД. Упрощённо датчик показан на рис. 1, где маска изображена серым цветом, а светодиоды — жёлтым. Таким образом, ДПР обеспечивает информацию о текущем положении ротора ВД для системы управления.

Система управления

Система управления содержит микроконтроллер, контролирующий силовой инвертор согласно заданной программе управления. В качестве силовых ключей инвертора обычно применяют транзисторы MOSFET (ВД малых и средних мощностей) или IGBT (ВД средних и больших мощностей), реже тиристоры.

Основываясь на информации, полученной от ДПР, микроконтроллер формирует ШИМ-сигналы, которые усиливаются инвертором и подаются на обмотку синхронной машины.

См. также

Примечания

  1. ↑ Герман-Галкин С. Г. Глава 9. Модельное проектирование синхронных мехатронных систем // Matlab & Simulink. Проектирование мехатронных систем на ПК.. — СПб.: КОРОНА-Век, 2008. — 368 с. — ISBN 978-5-903383-39-9.
  2. ↑ Борцов Ю.А., Соколовский Г.Г. Глава 8. Адаптивно-модальное управление в следящих системах с бесконтактными моментными двигателями // Автоматизированный электропривод с упругими связями. — 2-ое изд., перераб. и доп.. — СПб: Энергоатомиздат, 1992. — 288 с. — ISBN 5-283-04544-7.
  3. ↑ Соколовский Г. Г. Электроприводы переменного тока с частотным регулированием. — М.: "Академия", 2006. — 272 с. — ISBN 5-7695-2306-9.
  4. ↑ Микеров А.Г. Управляемые вентильные двигатели малой мощности: Учебное пособие.. — СПб: СПбГЭТУ, 1997. — 64 с.

Ссылки

Литература

org-wikipediya.ru

Вентильный двигатель — википедия орг

Рис. 1. Принцип работы трёхфазного вентильного двигателя

Вентильный электродвигатель (ВД)  — это разновидность электродвигателя переменного тока, у которого коллекторно-щеточный узел заменен бесконтактным полупроводниковым коммутатором, управляемым датчиком положения ротора[1].

Механическая и регулировочная характеристики вентильного двигателя линейны и идентичны механической и регулировочной характеристикам электродвигателя постоянного тока. Как и электродвигатели постоянного тока, вентильные двигатели работают от сети постоянного тока. ВД можно рассматривать как двигатель постоянного тока, в котором щёточно-коллекторный узел заменён электроникой, что подчёркивается словом «вентильный», то есть «управляемый силовыми ключами» (вентилями). Фазные токи вентильного двигателя имеют синусоидальную форму. Как правило, в качестве усилителя мощности применяется автономный инвертор напряжения с широтно-импульсной модуляцией.

Вентильный двигатель следует отличать от бесколлекторного двигателя постоянного тока (БДПТ), который имеет трапецеидальное распределение магнитного поля в зазоре и характеризуется прямоугольной формой фазных напряжений. Структура БДПТ проще чем структура ВД (отсутствует преобразователь координат, вместо ШИМ используется 120- или 180-градусная коммутация, реализация которой проще ШИМ).

В русскоязычной литературе двигатель называют вентильным, если противо-ЭДС управляемой синхронной машины синусоидальная, а бесконтактным двигателем постоянного тока, если противо-ЭДС трапецеидальная.

В англоязычной литературе такие двигатели обычно не рассматриваются отдельно от электропривода и упоминаются под аббревиатурами PMSM (Permanent Magnet Synchronous Motor) или BLDC (Brushless Direct Current Motor). Стоит отметить, что аббревиатура PMSM в англоязычной литературе чаще используется для обозначения самих синхронных машин с постоянными магнитами и с синусоидальной формой фазных противо-ЭДС, в то время как аббревиатура BLDC аналогична русской аббревиатуре БДПТ и относится к двигателям с трапецеидальной формой противо-ЭДС (если иная форма не оговорена специально).

Вообще говоря, вентильный двигатель не является электрической машиной в традиционном понимании, поскольку его проблематика затрагивает ряд вопросов, связанных с теорией электропривода и систем автоматического управления: структурная организация, использование датчиков и электронных компонентов, а также программное обеспечение.

Вентильные двигатели, сочетающие в себе надёжность машин переменного тока с хорошей управляемостью машин постоянного тока, являются альтернативой двигателям постоянного тока (ДПТ), которые характеризуются рядом изъянов, связанных со щёточно-коллекторным узлом (ЩКУ), таких как искрение, помехи, износ щёток, плохой теплоотвод якоря и проч. Отсутствие ЩКУ позволяет применять ВД в тех приложениях, где использование ДПТ затруднено или невозможно.

Описание и принцип работы[2]

  Рис. 2. Структура двухфазного вентильного двигателя с синхронной машиной с постоянными магнитами на роторе. ПК — преобразователь координат, УМ — усилитель мощности, СЭМП — синхронный электромеханический преобразователь (синхронная машина), ДПР — датчик положения ротора.

Двигатель состоит из постоянного магнита-ротора, вращающегося в магнитном поле катушек статора, по которым проходит ток, управляемый микроконтроллером. Микроконтроллер переключает катушки таким образом, чтобы взаимодействие их поля с полем ротора создавало крутящий момент при любом его положении.

На входы преобразователя координат (ПК) поступают напряжения постоянного тока uq{\displaystyle u_{q}} , действие которого аналогично напряжению якоря двигателя постоянного тока, и ud{\displaystyle u_{d}} , аналогичное напряжению возбуждения двигателя постоянного тока (аналогия действует при рассмотрении схемы независимого возбуждения двигателя постоянного тока).

Сигналы ud,uq{\displaystyle u_{d},u_{q}} , представляют собой проекции вектора напряжения управления Uy→={ud,uq}{\displaystyle {\vec {U_{y}}}=\{u_{d},u_{q}\}}  на оси вращающейся системы координат {d,q}{\displaystyle \{d,q\}} , связанной с ротором ВД (а точнее — с вектором потока ротора). Преобразователь координат осуществляет преобразование проекций ud,uq{\displaystyle u_{d},u_{q}}  в проекции uα,uβ{\displaystyle u_{\alpha },u_{\beta }}  неподвижной системы координат {α,β}{\displaystyle \{\alpha ,\beta \}} , связанной со статором.

Как правило, в системах управления электропривода задаётся ud=0{\displaystyle u_{d}=0} [3], при этом уравнения преобразования координат принимают вид[4]:

uα=−uq⋅sin⁡θ,{\displaystyle u_{\alpha }=-u_{q}\cdot \sin {\theta },} 

uβ={\displaystyle u_{\beta }=}  uq⋅cos⁡θ,{\displaystyle u_{q}\cdot \cos {\theta },} 

где θ{\displaystyle \theta }  — угол поворота ротора (и системы вращающихся координат) относительно оси α{\displaystyle \alpha }  неподвижной системы координат. Для измерения мгновенного значения угла θ{\displaystyle \theta }  на валу ВД устанавливается датчик положения ротора (ДПР).

По сути, uq{\displaystyle u_{q}}  является в этом случае заданием значения амплитуды фазных напряжений. А ПК, осуществляя позиционную модуляцию сигнала uq{\displaystyle u_{q}} , формирует гармонические сигналы uα,uβ{\displaystyle u_{\alpha },u_{\beta }} , которые усилитель мощности (УМ) преобразует в фазные напряжения uA,uB{\displaystyle u_{A},u_{B}} . Синхронный двигатель в составе вентильного двигателя часто называют синхронным электромеханическим преобразователем (СЭМП).

Как правило, электронная часть ВД коммутирует фазы статора синхронной машины так, чтобы вектор магнитного потока статора был ортогонален вектору магнитного потока ротора (т. н. векторное управление). При соблюдении ортогональности потоков статора и ротора обеспечивается поддержание максимального вращающего момента ВД в условиях изменения частоты вращения, что предотвращает выпадение ротора из синхронизма и обеспечивает работу синхронной машины с максимально возможным для неё КПД. Для определения текущего положения потока ротора вместо датчика положения ротора могут использоваться токовые датчики (косвенное измерение положения).

Электронная часть современного ВД содержит микроконтроллер и транзисторный мост, а для формирования фазных токов используется принцип широтно-импульсной модуляции (ШИМ). Микроконтроллер отслеживает соблюдение заданных законов управления, а также производит диагностику системы и её программную защиту от аварийных ситуаций.

Иногда датчик положения ротора отсутствует, а положение оценивается системой управления по измерениям токовых датчиков с помощью наблюдателей (т. н. «бездатчиковое» управление ВД). В таких случаях за счёт удаления дорогостоящего и зачастую громоздкого датчика положения уменьшается цена и массо-габаритные показатели электропривода с ВД, однако усложняется управление, снижается точность определения положения и скорости.

В приложениях средней и большой мощности в систему могут дополнительно включаться электрические фильтры для смягчения негативных эффектов ШИМ: перенапряжений на обмотках, подшипниковых токов и снижения КПД. Впрочем, это характерно для всех типов двигателей.

Применение

Благодаря высокой надёжности и хорошей управляемости, вентильные двигатели применяются в широком спектре приложений: от компьютерных вентиляторов и CD/DVD-приводов до роботов и космических ракет. Также этот тип двигателей часто используется в квадрокоптерах. Широкое применение ВД нашли в промышленности, особенно в системах регулирования скорости с большим диапазоном и высоким темпом пусков, остановок и реверса; авиационной технике, автомобильном машиностроении, биомедицинской аппаратуре, бытовой технике и проч.

Достоинства и недостатки

Вентильные двигатели призваны объединить в себе лучшие качества двигателей переменного тока и двигателей постоянного тока. Это обусловливает их достоинства.

Достоинства:

Вентильные двигатели характеризуются и некоторыми недостатками, главный из которых — высокая стоимость. Однако, говоря о высокой стоимости, следует учитывать и тот факт, что вентильные двигатели обычно используются в дорогостоящих системах с повышенными требованиями по точности и надёжности.

Недостатки:

Конструкция

Конструктивно современные вентильные привода состоят из электромеханической части (синхронной машины и датчика положения ротора) и из управляющей части (микроконтроллер и силовой мост).

Упоминая о конструкции ВД, полезно иметь в виду и неконструктивный элемент системы — программу (логику) управления.

Синхронная машина, используемая в ВД, состоит из шихтованного (собранного из отдельных электрически изолированных листов электротехнической стали — для снижения вихревых токов) статора, в котором расположена многофазная (обычно двух- или трёхфазная) обмотка, и ротора (обычно на постоянных магнитах).

В качестве датчиков положения ротора в БДПТ применяются датчики Холла, а в ВД — вращающиеся трансформаторы и накапливающие датчики. В т. н. «бездатчиковых» системах информация о положении определяется системой управления по мгновенным значениям фазных токов.

Информация о положении ротора обрабатывается микропроцессором, который, согласно программе управления, вырабатывает управляющие ШИМ-сигналы. Низковольтные ШИМ-сигналы микроконтроллера затем преобразуются усилителем мощности (обычно транзисторным мостом) в силовые напряжения, подаваемые на двигатель.

Совокупность датчика положения ротора и электронного узла в ВД и БДПТ можно с определённой долей достоверности сравнить с щёточно-коллекторным узлом ДПТ. Однако следует помнить, что двигатели редко применяются вне электропривода. Таким образом, электронная аппаратура характерна для ВД почти в той же степени, что и для ДПТ.

Статор

Статор имеет традиционную конструкцию. Он состоит из корпуса, сердечника из электротехнической стали и медной обмотки, уложенной в пазы по периметру сердечника. Обмотка разбита на фазы, которые уложены в пазы таким образом, что пространственно сдвинуты друг относительно друга на угол, определяемый числом фаз. Известно, что для равномерного вращения вала двигателя машины переменного тока достаточно двух фаз. Обычно синхронные машины, применяемые в ВД, трёхфазные, однако встречаются также и ВД с четырёх- и шестифазными обмотками.

Ротор

По расположению ротора вентильные двигатели делятся на внутрироторные (англ. inrunner) и внешнероторные (англ. outrunner).

Ротор изготавливается с использованием постоянных магнитов и имеет обычно от двух до шестнадцати пар полюсов с чередованием северного и южного полюсов.

Для изготовления ротора раньше использовались ферритовые магниты, что определялось их распространённостью и дешевизной. Однако такие магниты характеризуются низким уровнем магнитной индукции. В настоящее время интенсивно используются магниты из сплавов редкоземельных элементов, поскольку они позволяют получить более высокий уровень магнитной индукции и уменьшить размер ротора.

Датчик положения ротора

Датчик положения ротора (ДПР) реализует обратную связь по положению ротора. Его работа может быть основана на разных принципах — фотоэлектрическом, индуктивном, трансформаторном, на эффекте Холла и проч. Наибольшую популярность приобрели датчики Холла и фотоэлектрические датчики, обладающие низкой инерционностью и обеспечивающие малые запаздывания в канале обратной связи по положению ротора.

Обычно фотоэлектрический датчик содержит три неподвижных фотоприёмника, между которыми находится вращающаяся маска с рисками, жёстко закреплённая на валу ротора ВД. Упрощённо датчик показан на рис. 1, где маска изображена серым цветом, а светодиоды — жёлтым. Таким образом, ДПР обеспечивает информацию о текущем положении ротора ВД для системы управления.

Система управления

Система управления содержит микроконтроллер, контролирующий силовой инвертор согласно заданной программе управления. В качестве силовых ключей инвертора обычно применяют транзисторы MOSFET (ВД малых и средних мощностей) или IGBT (ВД средних и больших мощностей), реже тиристоры.

Основываясь на информации, полученной от ДПР, микроконтроллер формирует ШИМ-сигналы, которые усиливаются инвертором и подаются на обмотку синхронной машины.

См. также

Примечания

  1. ↑ Герман-Галкин С. Г. Глава 9. Модельное проектирование синхронных мехатронных систем // Matlab & Simulink. Проектирование мехатронных систем на ПК.. — СПб.: КОРОНА-Век, 2008. — 368 с. — ISBN 978-5-903383-39-9.
  2. ↑ Борцов Ю.А., Соколовский Г.Г. Глава 8. Адаптивно-модальное управление в следящих системах с бесконтактными моментными двигателями // Автоматизированный электропривод с упругими связями. — 2-ое изд., перераб. и доп.. — СПб: Энергоатомиздат, 1992. — 288 с. — ISBN 5-283-04544-7.
  3. ↑ Соколовский Г. Г. Электроприводы переменного тока с частотным регулированием. — М.: "Академия", 2006. — 272 с. — ISBN 5-7695-2306-9.
  4. ↑ Микеров А.Г. Управляемые вентильные двигатели малой мощности: Учебное пособие.. — СПб: СПбГЭТУ, 1997. — 64 с.

Ссылки

Литература

www-wikipediya.ru

Вентильный двигатель Википедия

Рис. 1. Принцип работы трёхфазного вентильного двигателя

Вентильный электродвигатель (ВД)  — это разновидность электродвигателя постоянного тока, у которого щеточно-коллекторный узел (ЩКУ) заменен полупроводниковым коммутатором, управляемым датчиком положения ротора[1].

Механическая и регулировочная характеристики вентильного двигателя линейны и идентичны механической и регулировочной характеристикам электродвигателя постоянного тока. Как и электродвигатели постоянного тока, вентильные двигатели работают от сети постоянного тока. ВД можно рассматривать как двигатель постоянного тока, в котором щёточно-коллекторный узел заменён электроникой, что подчёркивается словом «вентильный», то есть «управляемый силовыми ключами» (вентилями). Фазные токи вентильного двигателя имеют синусоидальную форму. Как правило, в качестве усилителя мощности применяется автономный инвертор напряжения с широтно-импульсной модуляцией (ШИМ).

Вентильный двигатель следует отличать от бесколлекторного двигателя постоянного тока (БДПТ), который имеет трапецеидальное распределение магнитного поля в зазоре и характеризуется прямоугольной формой фазных напряжений. Структура БДПТ проще чем структура ВД (отсутствует преобразователь координат, вместо ШИМ используется 120- или 180-градусная коммутация, реализация которой проще ШИМ).

В русскоязычной литературе двигатель называют вентильным, если противо-ЭДС управляемой синхронной машины синусоидальная, а бесконтактным двигателем постоянного тока, если противо-ЭДС (англ.) трапецеидальная.

В англоязычной литературе такие двигатели обычно не рассматриваются отдельно от электропривода и упоминаются под аббревиатурами PMSM (Permanent Magnet Synchronous Motor) или BLDC (Brushless Direct Current Motor). Стоит отметить, что аббревиатура PMSM в англоязычной литературе чаще используется для обозначения самих синхронных машин с постоянными магнитами и с синусоидальной формой фазных противо-ЭДС, в то время как аббревиатура BLDC аналогична русской аббревиатуре БДПТ и относится к двигателям с трапецеидальной формой противо-ЭДС (если иная форма не оговорена специально).

Вообще говоря, вентильный двигатель не является электрической машиной в традиционном понимании, поскольку его проблематика затрагивает ряд вопросов, связанных с теорией электропривода и систем автоматического управления: структурная организация, использование датчиков и электронных компонентов, а также программное обеспечение.

Вентильные двигатели, сочетающие в себе надёжность машин переменного тока с хорошей управляемостью машин постоянного тока, являются альтернативой двигателям постоянного тока, которые характеризуются рядом изъянов, связанных со ЩКУ, таких как искрение, помехи, износ щёток, плохой теплоотвод якоря и пр. Отсутствие ЩКУ позволяет применять ВД в тех приложениях, где использование ДПТ затруднено или невозможно.

Рис. 2. Структура двухфазного вентильного двигателя с синхронной машиной с постоянными магнитами на роторе. ПК — преобразователь координат, УМ — усилитель мощности, СЭМП — синхронный электромеханический преобразователь (синхронная машина), ДПР — датчик положения ротора.

Двигатель состоит из постоянного магнита-ротора, вращающегося в магнитном поле катушек статора, по которым проходит ток, коммутируемый ключами (вентилями), управляемыми микроконтроллером. Микроконтроллер переключает катушки таким образом, чтобы взаимодействие их поля с полем ротора создавало крутящий момент при любом его положении.

На входы преобразователя координат (ПК) поступают напряжения постоянного тока uq{\displaystyle u_{q}}, действие которого аналогично напряжению якоря двигателя постоянного тока, и ud{\displaystyle u_{d}}

ruwikiorg.ru

6.2.10. ВЕНТИЛЬНЫЕ ЭЛЕКТРОДВИГАТЕЛИ. История электротехники

6.2.10. ВЕНТИЛЬНЫЕ ЭЛЕКТРОДВИГАТЕЛИ

Вентильные электродвигатели представляют собой синтез электрической машины (двигателя) и полупроводникового преобразователя. Они позволяют регулировать частоту вращения в широких пределах. По конструкции вентильный электродвигатель подобен синхронной машине. На его валу имеется датчик положения, выходные сигналы которого воздействуют на устройства управления полупроводниковыми приборами преобразователя постоянного тока в переменный (инвертора) или переменного тока одной частоты в переменный ток другой частоты (преобразователя с непосредственной связью). Преобразователь подключается к обмотке статора. Ротор двигателя может быть выполнен в виде двухполюсного электромагнита или постоянного магнита. В результате двигатель с полупроводниковым коммутатором имеет характеристики коллекторного двигателя постоянного тока. Если источник питания имеет переменное напряжение и в качестве коммутатора используется инвертор, то система дополняется выпрямителем.

Идея создания вентильного двигателя, который должен был стать бесколлекторным аналогом электрической машины, снабженной механическим коллектором и щетками, возникла в 30-е годы XX в. в СССР. Эта идея связана с именем Д.А. Завалишина. В те же годы работы велись М.М. Губановым, О.Г. Вегнером и Б.Н. Тихменевым, исследовавшими вопросы теории и принципы функционирования вентильных двигателей и предложившими ряд новых схем. Несколько позже Ф.И. Бугаев и Е.Л. Эттингер занимались вопросами электропривода с вентильными двигателями и регулированием частоты вращения вентильных двигателей.

Работы этих лет ориентировались на применение громоздких ионных приборов, входивших в состав коммутаторов вентильных двигателей, что ограничивало их практическое применение.

Толчком к развитию работ по бесконтактным двигателям постоянного тока послужило появление транзисторов, обладающих хорошими переключающими свойствами и компактностью, а также острая потребность космонавтики и авиационной техники в двигателях, способных надежно работать длительное время в сложных условиях без обслуживания.

Во ВНИИэлектромаше (г. Ленинград) под руководством И.Е. Овчинникова и Н.И. Лебедева в начале 60-х годов были начаты интенсивные работы в области теории, методов расчета схем и конструкций бесконтактных двигателей постоянного тока, их компонентов, а также полупроводниковых коммутаторов [6.41]. Были опубликованы первые научные статьи и получены первые авторские свидетельства. В течение 60-х и начала 70-х годов создается работоспособный коллектив специалистов, внесших заметный вклад в развитие вентильных двигателей. Здесь следует упомянуть таких специалистов, как Н.П. Адволоткин (вопросы конструкции и прочности роторов с постоянными магнитами высокоскоростных вентильных двигателей), В.Т. Гращенков (вентильные двигатели для приборной автоматики), В.Н. Ганжу (электромагнитные расчеты вентильных двигателей малой и средней мощности), Я.Н. Явдошак (вентильные двигатели для бытовой электротехники).

Рис. 6.7. Вентильный электродвигатель с ротором из редкоземельных постоянных магнитов 

Параллельно и приблизительно в это же время развивалась и московская школа по бесконтактным двигателям постоянного тока. Бесспорным ее лидером стал И.А. Вевюрко (ВНИИЭМ). Его работы были направлены на внедрение бесщеточных двигателей в различные области специальной техники. Эти задачи успешно решались.

Следует упомянуть и заметную роль вузовских ученых, внесших серьезный вклад в развитие вентильных двигателей. Это А.А. Дубенский (Московский авиационный институт), Л.Я. Зиннер, А.И. Скороспешкин (Куйбышевский, ныне Самарский, политехнический институт), В.А. Балагуров и В.К. Лозенко (Московский энергетический институт), которые опубликовали ряд книг и учебных пособий по вентильным двигателям, а также принимали участие в разработках некоторых типов этих двигателей.

Внедрение в массовое производство бесконтактных двигателей постоянного тока на электротехнических заводах было осуществлено в начале 70-х годов ВНИИэлектромашем. Это были двигатели серий БДС-1 и БДС-02 для аппаратуры звукозаписи. В свою очередь, ВНИИЭМ внедряет в конце 60-х и начале 70-х годов отдельные исполнения, а затем и серию вентильных двигателей для специальной техники.

Впоследствии с ростом мощности выпускаемых силовых транзисторов и появлением современных постоянных магнитов И.Е. Овчинниковым с Н.П. Адволоткиным и А.Г. Вдовиковым были разработаны более мощные вентильные двигатели (до 20 кВт) для станкостроения и роботехники (рис. 6.7) серий ДВУ, 2ДВУ (цилиндрические), ЗДВУ (дисковые), освоенные промышленностью (Днепропетровский электромеханический завод).

Большой вклад в создание вентильных двигателей внес Всесоюзный научно-исследовательский институт релестроения (ВНИИР, г. Чебоксары) во главе с А.Д. Поздеевым, под руководством которого были разработаны и внедрены в промышленность транзисторные коммутаторы (преобразователи) серии ЭПБ и системы управления.

Параллельно развивалась и техника мощных вентильных двигателей с коммутаторами на тиристорах. В Москве Центральный научно-исследовательский институт Министерства путей сообщения (ЦНИИ МПС) (Б.Н. Тихменев, Н.Н. Горин, В.А. Кучумов, В.А. Сенаторов) разрабатывает и пускает в опытную эксплуатацию вентильный двигатель с электромагнитным возбуждением мощностью 900 кВт для электровозов. Во ВНИИэлектромаше (И.Е. Овчинников, В.Н. Рябов) совместно с Лысьвенским турбогенераторным заводом разрабатываются мощные быстроходные вентильные двигатели (6–20 МВт) для нефте- и газоперекачивающих агрегатов; выполнены мощные (100–500 кВт) тихоходные вентильные двигатели (Н.И. Лебедев), созданы пусковые тиристорные устройства по схеме вентильного двигателя (В.И. Левин, В.И. Климов, Е.А. Крутяков).

В объединении «Электросила» были выполнены интересные проекты по гребным вентильным двигателям и тихоходным вентильным двигателям для мельниц.

Интересные работы по теории вентильных двигателей с электромагнитным возбуждением и коммутацией на тиристорах были опубликованы в 70–80-х годах А.К. Аракеляном, А.А. Афанасьевым, И.Е. Овчинниковым, Б.Н. Тихменевым [6.42–6.45].

Развитие вентильных двигателей происходит в настоящее время настолько интенсивно, что многие специалисты прогнозируют в некоторых областях почти полное вытеснение ими в будущем традиционных машин постоянного тока.

Поделитесь на страничке

Следующая глава >

tech.wikireading.ru

Основные технические особенности вентильных двигателей 

Опубликовано: 3 октября 2014 г. в 16:02, 1510

Для решения задач контролируемого движения в современных прецизионных системах все чаще применяются вентильные (бесколлекторные) двигатели. Такая тенденция обусловлена преимуществами вентильных двигателей и бурным развитием вычислительных возможностей микроэлектроники. Как известно, вентильные (синхронные) двигатели обеспечивают наиболее высокие плотность длительного момента (момент в единице объема) и энергетическую эффективность по сравнению с любым другим типом двигателя.

Современный вентильный привод объединяет электрическую, механическую и электронную подсистемы в единое цельное мехатронное устройство. В рамках такого подхода удается значительно сократить габариты, избавиться от лишних преобразователей и промежуточных элементов, а значит, повысить надежность всего привода в целом.

В рамках данной статьи рассматривается принцип работы и устройство современных вентильных машин, описываются принципы управления вентильным преобразователем для коммутации с применением датчиков положения ротора, а также перечисляются особенности интегрированного исполнения вентильных двигателей.

1. Основные технические особенности вентильных двигателей

Под вентильным двигателем понимают синхронный двигатель, содержащий многофазную обмотку статора, ротор с постоянными магнитами и встроенным датчиком положения. Коммутация такого двигателя осуществляется при помощи вентильного преобразователя. Поэтому его принято называть «вентильным».

По сути, вентильный двигатель с точки зрения метода коммутации представляет собой «инвертированный» вариант коллекторной машины постоянного тока. В вентильном двигателе индуктор находится на роторе, якорная обмотка на статоре. Коммутация осуществляется путем подачи управляющего согласованного воздействия на обмотки статора в зависимости от положения ротора, определяемого с помощью интегрированных в двигатель датчиков обратной связи.

Рис. 1. Структура вентильного двигателя:1 – задняя крышка, 2 – печатная плата датчиков, 3 – датчики Холла,4 – втулка подшипника, 5 – подшипник, 6 – вал,7 – магниты ротора, 8 – изолирующее кольцо, 9 – обмотка,10 – тарельчатая пружина, 11 – промежуточная втулка, 12 – изоляция,13 – корпус, 14 – провода.

Рассмотрим структуру вентильного двигателя на примере семейства двигателей Faulhaber (рис. 1). В данном случае в основе ротора лежит двухполюсный магнит, статора трехфазная обмотка, положение ротора определяется с помощью интегрированных в двигатель датчиков Холла. В общем случае ротор может содержать другое количество пар полюсов, а статор иметь более традиционную конструкцию, внешне сходную со статором асинхронной машины. Наиболее распространен статор с тремя обмотками, соединенными «звездой» (реже в «треугольник») без вывода средней точки. Как известно, именно трехфазная структура является наиболее эффективной при минимуме числа обмоток.

При соединении обмоток «звездой» вентильный двигатель имеет большие постоянные момента и меньшие постоянные противо­ЭДС (при соотношении ?3) по сравнению с соединением «треугольником». Поэтому соединение «звездой» используется для управления осями, требующими больших моментов, а соединение «треугольником» – для больших скоростей.

В большинстве случаев обмотки статора выполняются без насыщения, т.е. противо­ЭДС обмоток имеет синусоидальную форму. Такие двигатели зачастую называют AC brushless motor в отличие от DC brushless motor, обмотки статора которого выполняются с насыщением. Такое насыщение в DC brushless motor предназначено для снижения пульсаций тока (и соответственно момента) при применении трапецеидальной коммутации.

Но иногда термин DC brushless motor используют для двигателей с питанием через инвертор от сети постоянного тока, что не совсем корректно.

Обычно количество пар полюсов, определяемое количеством пар магнитов ротора и определяющее соотношение механического и электрического оборотов, равно 4…8. Статор может быть выполнен с железным (iron core) или безжелезным (ironless) сердечником. Конструкция статора с безжелезным сердечником обеспечивает отсутствие силы притяжения магнитов ротора и железа статорной обмотки (magnetic attraction) и зубцового эффекта (cogging), но снижает незначительно (на 10…20%) эффективность двигателя изза меньших значений постоянной момента.

Одно из самых очевидных преимуществ ротора с постоянными магнитами состоит в уменьшении диаметра ротора и, как следствие, в уменьшении момента инерции ротора. Технологически магниты могут быть встроены в ротор или расположены на его поверхности. Но пониженный момент инерции зачастую приводит к малым значениям соотношения момента инерции двигателя и приведенного к его валу момента инерции нагрузки (mismatch ratio), усложняющему настройку привода. Поэтому ряд производителей предлагает наряду со стандартным и повышенный – в 2…4 раза – момент инерции ротора.

2. Датчики положения и дополнительные устройства

В качестве датчика положения, необходимого для коммутации вентильного двигателя, могут быть использованы датчики Холла (цифровые или аналоговые), энкодер (цифровой, аналоговый или абсолютный) или резольвер.

Цифровые датчики Холла используются для наиболее распространенной – трапецеидальной коммутации вентильного двигателя. Цифровые датчики Холла могут быть выполнены также и на оптической шкале энкодера.Аналоговые датчики Холла используются для синусоидальной коммутации вентильного двигателя.

Энкодер имеет три дифференциальных канала – два канала А, В прямоугольных импульсов, сдвинутых на 90 электрических градусов, и нулевой импульс I (индекс). Резольвер представляет собой вращающийся трансформатор с обмоткой возбуждения и двумя выходными обмотками со сдвигом 90 электрических градусов.

Аналоговый энкодер имеет аналоговые sin/cos (1В между пиками peaktopeak) дифференциальные выходы.

Внешний интерполятор позволяет повысить исходное разрешение с коэффициентом умножения до 4096 .Абсолютный энкодер передает информацию по положению по синхронному последовательному интерфейсу (SSI или BiSS), протокол которого задается производителем энкодера. Одними из наиболее популярных протоколов являются Heidenhain EnDat, Tamagawa Smart Abs и Stegman Hiperface протоколы.

Кроме датчика положения дополнительно могут быть встроены: тахогенератор, термодатчик, тормоз или редуктор.

Тахогенератор применяется в случае использования вентильного двигателя в режиме регулирования/стабилизации скорости с высокой точностью.

Термодатчик для защиты обмоток от перегрева представляет собой несколько последовательно соединенных позисторов, т.е. терморезисторов с положительным температурным коэффициентом (positive temperature coefficient РТС).

3. Способы коммутации с применением датчика положения ротора

Способы коммутации вентильного двигателя различаются по типу датчика положения ротора и особенностям регулирования тока в фазах обмоток статора.

3.1. Трапецеидальная или шестишаговая (sixstep) коммутация вентильного двигателя осуществляется по цифровым датчикам Холла. Для 3х датчиков Холла, являющихся «грубым» датчиком положения ротора, возможных состояний на полный электрический оборот будет шесть, каждое из которых соответствует 60 электрическим градусам. При каждом постоянном состоянии датчиков Холла подключаются только две обмотки двигателя, а третья отключена от источника напряжения. Постоянство вектора тока в пределах ±30 электрических градусов от оптимального (создающего максимальный момент) приводит к 17% пульсациям тока.

Преимущества:

Недостатки:

Область применения: регулирование скорости при невысоких требованиях к эффективности и равномерности перемещения на низких скоростях.

3.2. Синусоидальная коммутация лишена недостатков трапецеидальной коммутации за счет непрерывной и плавной коммутации вектора тока. Это достигается благодаря более высокому разрешению датчика положения ротора (обычно инкрементального энкодера) по сравнению с цифровыми датчиками Холла, имеющими разрешение только 60 электрических градусов. Для стандартного двигателя с соединением фаз в «звезду» достаточно контролировать ток в двух обмотках с помощью двух регуляторов на базе ПИрегуляторов. Такой способ коммутации очень эффективен на малых и средних скоростях, но имеет ошибки на высоких скоростях. В этом случае изза ограниченного усиления ПИрегулятора при заданном напряжении постоянного напряжения (DC bus) мах скорость ограничена. Несколько повысить скорость позволяет метод сдвиг фазы (phase advance).

Преимущества:

Недостатки:

ограничение мах скорости при заданном напряжении постоянного напряжения;

управление током (моментом/силой) при помощи двух аналоговых сигналов ±10В.

Область применения: прецизионные механизмы.

3.3. Непосредственно векторный контроль тока в координатах DQ использует преобразования между статическими DQ и вращающими UVW координатами вектора тока, известными как преобразования ПаркаКларка. В отличие от синусоидальной такой способ коммутации предполагает работу ПИрегулятора с напряжениями постоянного тока, а не синусоидальными напряжениями. Это и обеспечивает качество управления током, независимое от скорости вращения двигателя.

Векторный контроль предполагает регулирование квадратичной (D) и прямой (Q) составляющих тока. Т.к. только прямая (Q) составляющая тока, перпендикулярная к полю ротора, создает момент двигателя, то задание тока подается на вход прямой (Q) составляющей тока. На вход квадратичной (D) составляющей тока подается «0» сигнал.

Преобразования между статическими DQ и вращающими UVW координатами вектора тока производятся с учетом токов фаз и положения ротора.

Векторный контроль при наличии преимуществ синусоидальной коммутации позволяет расширить диапазон скоростей вентильного двигателя за счет более полного использования напряжения постоянного тока.

Следует отметить, что для синусоидальной или векторной коммутации тока при использовании инкрементального (относительного) датчика положения ротора необходимо первоначально (т.е. при каждом включении питания) сфазировать положение ротора относительно фаз статора. Алгоритм такой начальной фазировки обычно является «встроенным».

Трапецеидальная коммутация вентильного двигателя не требует начальной фазировки благодаря использованию датчиков Холла, являющихся абсолютными датчиками положения ротора. Поэтому их иногда применяют вместе с инкрементальным датчиком положения для реализации синусоидальной или векторной коммутации тока без необходимости производить начальную фазировку. Такая конфигурация рекомендуется для механизмов, где реализация процедуры начальной фазировки затруднена, например, механизмов вертикального перемещения.

4. Интегрированное исполнение вентильных двигателей

Одной из основных перспективных тенденций в развитии современных вентильных двигателей является тяготение производителя к интеграции в единый корпус с двигателем управляющей электроники. Такое решение позволяет предлагать не разрозненный набор комплектующих приводной системы, а законченный привод в сборе. Таким образом решаются возможные проблемы совместимости различных компонент привода, а также проблема различных интерфейсов компонент приводной системы.

Рис. 2 Векторный контроль тока вентильного двигателя

Примером интегрированного привода является серия двигателей BG, предлагаемая компанией Dunkermotoren (рис. 3).

В рамках данной серии двигателей производитель предоставляет возможность заказать одну и ту же модель в различных исполнениях:

5. Преимущества использования вентильных двигателей

При разработке нового изделия разработчик часто сталкивается с проблемой выбора двигателя для решения конкретной задачи движения. Когда речь идет о построении привода средней либо малой мощности, как правило, выбор сводится к сборкам на базе коллекторных, вентильных, а также шаговых двигателей.

Рис. 3 Двигатели Dunkermotoren серии BG

К несомненным достоинствам вентильных двигателей следует отнести:

Высокий запасаемый момент:

Высокий диапазон скоростей

Высокую равномерность движения

Высокую точность позиционирования благодаря возможности использования энкодеров и других датчиков обратной связи по скорости/положению.

Двигатели для специальных применений: в среде высокого вакуума, автоклавируемые, погружные с высоким классом IP защиты.

М. Сонных, Л. ГаннельСтатья опубликована в журнале «РИТМ» №10, 2010

www.elec.ru

Вентильные двигатели

Вентильные двигатели – электрические машины, функционально объединенные с управляемым полупроводниковым коммутатором. Они близки по конструктивным признакам и характеристикам к коллекторным двигателям. Вентильные двигатели имеют частоту вращения вала, не зависящую от частоты сети, регулирование частоты вращения осуществляется путем изменения потока возбуждения и тока в якоре. Вентильные двигатели обладают высоким пусковым моментом и хорошими энергетическими показателями. Благодаря отсутствию коллекторно-щеточного узла вентильные двигатели имеют большую надежность и долговечность.

Вентильные двигатели, как и коллекторные, имеют широкое разнообразие конструкций и схем включения обмоток.

На рис. 1 представлена схема вентильного двигателя, который имеет такую же обмотку якоря, как и машина постоянного тока. На роторе вентильного двигателя 1 расположена обмотка возбуждения или постоянные магниты. В пазах статора располагается многофазная обмотка якоря 2, секции или группа секций которой присоединены через полупроводниковые блоки 3 к распределительным шинам 4 и сети.

В положении, показанном на рис. 1, открыты тиристоры 1' и 5". Ток якоря Iя в обмотке статора проходит по двум параллельным ветвям и создается вращающий момент. При движении ротора происходит переключение тиристоров датчиками положения ротора.

При повороте ротора по часовой стрелке на угол 360/m, где m — число отпаек (фаз) обмотки якоря (в рассматриваемой машине m = 8) происходит переключение тиристоров. Включаются тиристоры 2' и 6", а 1' и 5" — отключаются и т.д.

Таким образом, при вращении ротора вращается и поле якоря. При этом происходит электромеханическое преобразование энергии.

При реверсе работают пары тиристоров: 1" и 5', 2" и 6' и т.д. Включение и отключение тиристоров осуществляется путем подачи импульсов напряжения со специальных датчиков, реагирующих на положение ротора.

+ U- Коммутатор по схеме рис. 1 по­лучается громоздким и вентильные дви­гатели по этой схеме практически не применяются. Чтобы упростить комму­татор, надо уменьшить число фаз машины.

Простейшей схемой вентильного двигателя является двухфазная схема, но наибольшее применение нашла трех­фазная схема (рис. 2). В этой схеме вентильная коммутация осуществляется трехфазным инвертором.

Система вентильной коммутации обычно состоит из датчика синхронизи­рующих сигналов, системы формирова­ния сигналов управления и управляемо­го коммутатора.

Датчик синхронизирующих сигналов задает порядок и частоту пере­ключения элементов коммутатора. При позиционном управлении — это датчик положения ротора, а при фазовом — датчик фазы напряжения якорной обмотки. Датчик положения ротора представляет собой встроен­ный в машину узел, состоящий из чувствительных элементов, закреплен­ных на статоре, и сигнальных элементов, закрепленных на роторе. Обыч­но используются фотоэлектрические или магнитомодуляционные датчики.

Система формирования сигналов управления обеспечивает усиление и формирование синхронизирующих сигналов.

Управляемый коммутатор осуществляет бесконтактные переключе­ния в силовых цепях вентильного двигателя. Управляемый коммутатор выполняется на полупроводниковых приборах или других переключаю­щих элементах, например герконах.

В управляемых коммутаторах на полупроводниковых приборах ис­пользуются полностью управляемые приборы (транзисторы, двухоперационные тиристоры) и не полностью управляемые (тиристоры, семисторы).

По способу коммутации управляемые коммутаторы на не полностью управляемых полупроводниковых приборах можно разделить на три ви­да: с естественной, принудительной и смешанной коммутацией. При ес­тественной коммутации переключения происходят под действием ЭДС якорной обмотки. При принудительной коммутации управление тирис­торами осуществляется под действием коммутирующего напряжения от­дельного источника либо напряжения питающей сети. При смешанной коммутации имеет место комбинация первого и второго способов.

Вентильные двигатели могут питаться от сети как постоянного, так и переменного тока. Если управляемый коммутатор питается от сети посто­янного тока, то он представляет собой инвертор — преобразователь по­стоянного тока в переменный. Если управляемый коммутатор подключен к сети переменного тока, то он выполняет функции преобразователя частоты.

Электромеханическая часть вентильных двигателей постоянного то­ка, как правило, аналогична известным конструктивным модификациям синхронных машин. Для маломощных приводов используются двигатели с постоянными магнитами, а также гистерезисные, реактивные и индук­торные двигатели. В приводах средней и большой мощности используют­ся двигатели с электромагнитным возбуждением.

Характерной особенностью вентильных двигателей, отличающей их от двигателей постоянного тока, является наличие дополнительного кана­ла управления по углу синхронизации инвертора. Этот канал использует­ся для обеспечения необходимой жесткости механической характеристи­ки и достижения большей перегрузочной способности.

Вентильные двигатели применяются и в приводах небольшой мощ­ности, где нежелательно применение механического коммутатора (проиг­рыватели, приборы магнитной записи и др.).

Вентильные двигатели большой мощности нашли применение там, где ранее использовались нерегулируемые асинхронные или синхронные двигатели. Выполнены вентильные двигатели мощностью 1600 кВт с ре­гулированием частоты вращения для привода компрессоров холодильных машин и насосов циркуляционных систем.

Ротором выступает постоянный магнит.

Обозначение диодов VD1…VD6.

ДП – датчик положения.

 

Коммутатор всегда включает VT1…VT6 так, чтобы магнитный поток статора был перпендикулярен магнитному потоку ротора, подобно тому, как это делается в ДПТ с помощью механического коммутатора.

При включенных VT2, VT3, VT4 диаграмма потоков такая:

При Uип=0 двигатель не будет развивать момента, по мере увеличения напряжения будут увеличиваться и токи.

Механические характеристики такого двигателя такие же, как и у ДПТ.

w01>w02>w03>w04

Uип1>Uип2>Uип3>Uип4

 

Шаговые двигатели

Шаговые, или импульсные двигатели питаются импульсами электрической энергии, а ротор в зависимости от полярности импульсов перемещается по часовой стрелке или против часовой стрелки на определенный угол-шаг. Шаговые двигатели обычно маломощные индикаторные. Основная задача их отрабатывать электрические импульсы, преобразуя электрические сигналы в угловые перемещения.

Для управления шаговыми двигателями используются коммутаторы на полупроводниковых элементах, формирующие импульсы, которые подаются на фазы обмотки шагового двигателя. Число фаз выбирается равным четырем или шести. Шаг двигателя может быть от 180 до 1°. В специальных установках шаг может быть несколько минут.

Шаговые двигатели могут быть выполнены на основе конструкции любых синхронных двигателей. Так как основным требованием к шаговым двигателям является точность отработки сигналов и высокая частота импульсов, предпочтительны конструкции шагового двигателя, выпол­ненного на базе реактивных и индукторных синхронных машин.

Шаговые двигатели характеризуются предельной частотой импульсов, которые двигатель обрабатывает без пропуска шага. Пусковые свойства шаговых двигателей характеризуются частотой приемистости — максимальной частотой импульсов, при которой возможен пуск без потери шагов. В зависимости от типа шагового двигателя и нагрузки частота приемистости колеблется от 10 до 104 Гц.

Математическое описание процессов преобразования энергии при импульсном питании осуществляется по уравнениям электромеханического преобразования энергии и их видоизменениям, когда форма напряжения — импульсная.

 

Счетчик подсчитывает количество fп – прямых и fн – обратных "шагов".

 

 

Одновременно включена только одна обмотка.

p – число пар полюсов;

m – фазность двигателя.

Характеристики двигателя:

1. aМ – цена импульса; определяет угловой шаг, совершаемый двигателем при единичном переключении (угол поворота за шаг).

2. Угловая характеристика двигателя

Для активного ротора:

угол Q снят для однополюсной однофазной машины.

Q=90° - нулевой момент; при Q>90° момент меняет знак.

Двигатель выполняет свои функции только в этом диапазоне изменения углов.

Мст – максимальный момент удержания.

При большой внешней нагрузке возможна потеря шага.

 

3. Частота приемистости – максимальная частота, до которой разгоняется двигатель при скачкообразном приложении импульсов из состояния покоя. Разгон при этом происходит за период одного импульса (подразумевается пуск на холостом ходу, то есть без нагрузки и присоединенных маховых масс). Если подавать импульсы часто, то наступит такая частота, которую двигатель не обработает.

4. Предельная динамическая характеристика – характеристика, связывающая частоту приемистости и момент инерции присоединенного к двигателю механизма.

Характеристика входит в документацию.

М2>М1 Þ fп2<fп1

 

 

 

 

Число шагов двигателя на оборот.

Для двигателя с активным ротором:

Число шагов зависит от способа управления:

симметричный (поочередное включение каждой обмотки) и несимметричный (одновременно может включаться несколько обмоток)

С помощью несимметричного способа управления можно получить дополнительные положения ротора.

Например, достигнуть углового шага a/2.

однополярный и разнополярное (удвоение числа возможных положений)

При однополярном симметричном управлении число положений n=pm, где р – число пар полюсов; m – число фаз двигателя.

р = число параллельных ветвей в любой фазе.

При однополярном несимметричном управлении n=2pm

При разнополярном несимметричном управлении n=4pm

Для двигателя с пассивным (перемагничиваемым) ротором:

zротора=zстатора-1

 

Пусть ток подан в обмотку j Þ на роторе появляется магнитное поле, которое противоположно магнитному полю статора, и полюса притягиваются. При этом минимизируется энергия электромагнитного поля за счет поворота ротора. Она минимальна, когда картина магнитных силовых линий слева и справа от оси симметрична, что соответствует совпадению осей зубцов.

Выключим ток в обмотке j и включим в обмотке k. Число зубцов меньше Þ картина силовых линий несимметрична Þ появляется усилие, смещающее ротор до центра симметрии, двигатель шагает на , где zр – число зубцов ротора Þ число положений, которые может принять ротор .

Такой двигатель удобен для глубокого редуцирования ротора (получения большого числа шагов).

 

Низковольтные двигатели: серии ДШ, ДША, ДШБ отличаются числом пар полюсов.

Более подробно о двигателях можно узнать из следующей литературы:

Копылов, Клоков. Справочник, 1988 г.

Кенио. Управление ШД.

Волков, Миловзоров. Выбор ШД (брошюра), 1978 г.

 

Методика выбора ШД

Кинематическая схема ШД.

Представляет собой корпус суппота.

 

 

Исходные данные:

i – передаточное число редуктора;

L – дискретность перемещения (цена шага, точность позиции) [м/имп];

tхв – шаг ходового винта [м/об];

vmax – максимальная скорость инструмента [м/мин];

Мс – момент сопротивления (включая трение холостого хода и сопротивление, вызываемое силами резания) [Нм];

Jпр – момент инерции.

Выбор ШД:

1. определение частоты приемистости

Если система регулирования реализует линейное изменение частоты (плавный разгон), то fп выбирается по f0, то есть ,

2. определение углового шага

На этом шаге может наоборот выбираться , - передаточное число

3. определение момента двигателя М

, где Мс – момент сопротивления на ходовом винте

Мст – момент синхронизации

Рекомендуется

4. проверка двигателя по динамическим режимам

f0 – разгон на холостом ходу.

f1 – разгон под нагрузкой (рабочие подачи).

 

 

Выбор двигателя

Похожие статьи:

poznayka.org


Смотрите также