ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Шаговые двигатели . Мощный шаговый двигатель


Шаговые двигатели / Статьи и обзоры / Элек.ру

Опубликовано: 25 августа 2008 г. в 05:00, 2814

Шаговые двигатели широко используются в принтерах, автоматических инструментах, приводах дисководов, автомобильных приборных панелях и других приложениях, требующих высокой точности позиционирования.

Производители шаговых двигателей: Autonics, Motionking, Fulling motor и другие.

Шаговые двигатели: принцип действия и отличия от двигателей постоянного тока

Двигатели постоянного тока (ДПТ) с постоянными магнитами Lenze начинают работать сразу, как только к якорной обмотке будет приложено постоянное напряжение. Переключение направления тока через обмотки ротора осуществляется механическим коммутатором — коллектором. Постоянные магниты при этом расположены на статоре.

Шаговый двигатель (ШД) может быть рассмотрен как ДПТ без коллекторного узла. Обмотки ШД являются частью статора. На роторе расположен постоянный магнит или, для случаев с переменным магнитным сопротивлением, зубчатый блок из магнитомягкого материала. Все коммутации производятся внешними схемами. Обычно система мотор — контроллер разрабатывается так, чтобы была возможность вывода ротора в любую, фиксированную позицию, то есть система управляется по положению. Цикличность позиционирования ротора зависит от его геометрии.

Принято различать шаговые двигатели (Autonics, Motionking, Fulling motor) и серводвигатели (Lenze). Принцип их действия во многом похож, и многие контроллеры могут работать с обоими типами. Основное отличие заключается в шаговом (дискретном) режиме работы шагового двигателя (n шагов на один оборот ротора) и плавности вращения синхронного двигателя. Серводвигатели требуют наличия в системе управления датчика обратной связи по скорости и/или положению, в качестве которого обычно используется резольвер или sin/cos энкодер. Шаговые двигатели преимущественно используются в системах без обратных связей, требующих небольших ускорений при движении. В то время как синхронные сервомоторы обычно используются в скоростных высокодинамичных системах.

Шаговые двигатели (ШД) делятся на две разновидности: двигатели с постоянными магнитами и двигатели с переменным магнитным сопротивлением (гибридные двигатели). С точки зрения контроллера отличие между ними отсутствует. Двигатели с постоянными магнитами обычно имеют две независимые обмотки, у которых может присутствовать или отсутствовать срединный отвод (см. рис. 1).

Униполярный шаговый двигатель с постоянными магнитами

Биполярные шаговые двигатели с постоянными магнитами и гибридные двигатели сконструированы более просто, чем униполярные двигатели, обмотки в них не имеют центрального отвода (см. рис. 2).

Биополярный и гибридный шаговый двигатель

За это упрощение приходится платить более сложным реверсированием полярности каждой пары полюсов мотора.

Шаговые двигатели имеют широкий диапазон угловых разрешений. Более грубые моторы обычно вращаются на 90° за шаг, в то время как прецизионные двигатели могут иметь разрешение 1,8° или 0,72° на шаг. Если контроллер позволяет, то возможно использование полушагового режима или режима с более мелким дроблением шага (микрошаговый режим), при этом на обмотки подаются дробные значения напряжений, зачастую формируемые при помощи ШИМ-модуляции.

Если в процессе управления используется возбуждение только одной обмотки в любой момент времени, то ротор будет поворачиваться на фиксированный угол, который будет удерживаться пока внешний момент не превысит момента удержания двигателя в точке равновесия.

Для правильного управления биполярным шаговым двигателем необходима электрическая схема, которая должна выполнять функции старта, стопа, реверса и изменения скорости. Шаговый двигатель транслирует последовательность цифровых переключений в движение. «Вращающееся» магнитное поле обеспечивается соответствующими переключениями напряжений на обмотках. Вслед за этим полем будет вращаться ротор, соединенный посредством редуктора с выходным валом двигателя.

Каждая серия содержит высокопроизводительные компоненты, отвечающие все возрастающим требованиям к характеристикам современных электронных применений.

Схема управления для биполярного шагового двигателя требует наличия мостовой схемы для каждой обмотки. Эта схема позволит независимо менять полярность напряжения на каждой обмотке.

На рисунке 3 показана последовательность управления для режима с единичным шагом.

Управляющая последовательность для режима с единичным шагом

На рисунке 4 показана последовательность для полушагового управления.

Управляющая последовательность для режима с половинным шагом

Максимальная скорость движения определяется исходя из физических возможностей шагового двигателя. При этом скорость регулируется путем изменения размера шага. Более крупные шаги соответствуют большей скорости движения.

В системах управления электроприводами для отработки заданного угла или перемещения используют датчики обратной связи по углу или положению выходного вала исполнительного двигателя.

Если в качестве исполнительного двигателя использовать синхронный шаговый двигатель, то можно обойтись без датчика обратной связи (Дт) и упростить систему управления двигателем (СУ), так как отпадает необходимость использования в ней цифро%аналоговых (ЦАП) и аналого-цифровых (АЦП) преобразователей.

Шаговыми двигателями называются синхронные двигатели, преобразующие команду, заданную в виде импульсов, в фиксированный угол поворота двигателя или в фиксированное положение подвижной части двигателя без датчиков обратной связи.

Мощность шаговых двигателей лежит в диапазоне от единиц ватт до одного киловатта.Шаговый двигатель имеет не менее двух положений устойчивого равновесия ротора в пределах одного оборота. Напряжение питания обмоток управления шагового двигателя представляет собой последовательность однополярных или двуполярных прямоугольных импульсов, поступающих от электронного коммутатора (К). Результирующий угол соответствует числу переключений коммутатора, а частота вращения двигателя соответствует частоте переключений электронного коммутатора.

Шаговые двигатели различаются по конструктивным группам: активного типа (с постоянными магнитами), реактивного типа и индукторные.

Система отработки угла выходного вала двигателя с использованием датчика обратной связи

Шаговые синхронные двигатели активного типа

В отличие от синхронных машин непрерывного вращения шаговые двигатели имеют на статоре явно выраженные полюса, на которых расположены катушки обмоток управления.Принцип действия шагового двигателя активного типа рассмотрим на примере двухфазного двигателя.

Различают два вида коммутации обмотки шагового двигателя: симметричная и несимметричная.

При симметричной системе коммутации на всех четырех тактах возбуждается одинаковое число обмоток управления.

Принципиальная схема управления шаговым двигателем

При несимметричной системе коммутации четным и нечетным тактам соответствует различное число возбужденных обмоток управления.

Симметричная схема коммутации

Ротор у шагового двигателя активного типа представляет собой постоянный магнит, при числе пар полюсов больше 1, выполненный в виде «звездочки».

Несимметричная система коммутации

Число тактов KT системы управления называют количеством состояний коммутатора на периоде его работы T. Как видно из рисунков для симметричной системы управления KT=4, а для несимметричной KT=8.

В общем случае число тактов KT зависит от числа обмоток управления (фаз статора) mу и может быть посчитано по формуле:

KT = mуn1n2,

где: n1=1 — при симметричной системе коммутации;

n1=2 — при несимметричной системе коммутации;

n2=1 — при однополярной коммутации;

n2=2 — при двуполярной коммутации.

Схемы, иллюстрирующие положения ротора шагового двигателя с постоянными магнитами при подключении к источнику питания одной и двух обмоток

При однополярной коммутации ток в обмотках управления протекает в одном направлении, а при двуполярной — в обеих. Синхронизирующий (электромагнитный) момент машины является результатом взаимодействия потока ротора с дискретно вращающимся магнитным полем статора. Под действием этого момента ротор стремится занять такое положение в пространстве машины, при котором оси потоков ротора и статора совпадают. Мы рассмотрели шаговые синхронные машины с одной парой полюсов (р=1). Реальные шаговые микродвигатели являются многополюсными (р>1). Для примера приведем двуполюсный трехфазный шаговый двигатель.

Двигатель с р парами полюсов имеет зубчатый ротор в виде звездочки с равномерно расположенными вдоль окружности 2р постоянными магнитами. Для многополюсной машины величина углового шага ротора равна:

αш=360/Ктр

Чем меньше шаг машины, тем точнее (по абсолютной величине) будет отрабатываться угол. Увеличение числа пар полюсов связано с технологическими возможностями и увеличением потока рассеяния. Поэтому р=4…6. Обычно величина шага ротора активных шаговых двигателей составляет десятки градусов.

Реактивные шаговые двигатели

У активных шаговых двигателей есть один существенный недостаток: у них крупный шаг, который может достигать десятков градусов.

Реактивные шаговые двигатели позволяют редуцировать частоту вращения ротора. В результате можно получить шаговые двигатели с угловым шагом, составляющим доли градуса.

Отличительной особенностью реактивного редукторного двигателя является расположение зубцов на полюсах статора.

Принцип действия реактивного редукторного двигателя

При большом числе зубцов ротора Zр его угол поворота значительно меньше угла поворота поля статора.

Величина углового шага редукторного реактивного шагового двигателя определится выражением:

αш=360/КтZр

В выражении для KT величину n2 следует брать равной 1, т.к. изменение направления поля не влияет на положение ротора.

Электромагнитный синхронизирующий момент реактивного двигателя обусловлен, как и в случае обычного синхронного двигателя, разной величиной магнитных сопротивлений по продольной и поперечной осям двигателя.

Основным недостатком шагового реактивного двигателя является отсутствие синхронизирующего момента при обесточенных обмотках статора.

Повышение степени редукции шаговых двигателей, как активного типа, так и реактивного, можно достичь применением двух, трех и многопакетных конструкций. Зубцы статора каждого пакета сдвинуты относительно друг друга на часть зубцового деления. Если число пакетов два, то этот сдвиг равен 1/2 зубцового деления, если три, то — 1/3, и т.д. В то же время роторы-звездочки каждого из пакетов не имеют пространственного сдвига, т.е. оси их полюсов полностью совпадают. Такая конструкция сложнее в изготовлении и дороже однопакетной, и, кроме того, требует сложного коммутатора.

Индукторные (гибридные) шаговые двигатели. Стремление совместить преимущества активного шагового двигателя (большой удельный синхронизирующий момент на единицу объема, наличие фиксирующего момента) и реактивного шагового двигателя (малая величина шага) привело к созданию гибридных индукторных шаговых двигателей.

В настоящее время имеется большое число различных конструкций индукторных двигателей, различающихся числом фаз, размещением обмоток, способом фиксации ротора при обесточенном статоре и т.д. Во всех конструкциях индукторных шаговых двигателей вращающий момент создается за счет взаимодействия магнитного поля, создаваемого обмотками статора и постоянного магнита в зубчатой структуре воздушного зазора. При этом синхронизирующий момент шагового индукторного двигателя по природе является реактивным и создается намагничивающей силой обмоток статора, а постоянный магнит, расположенный либо на статоре, либо на роторе, создает фиксирующий момент, удерживающий ротор двигателя в заданном положении при отсутствии тока в обмотках статора.

По сравнению с шаговым двигателем реактивного типа у индукторного шагового двигателя при одинаковой величине шага больше синхронизирующий момент, лучшие энергетические и динамические характеристики

Линейные шаговые синхронные двигатели

При автоматизации производственных процессов весьма часто необходимо перемещать объекты в плоскости (например, в графопостроителях современных ЭВМ и т.д.). В этом случае приходится применять преобразователь вращательного движения в поступательное с помощью кинематического механизма.

Линейные шаговые двигатели преобразуют импульсную команду непосредственно в линейное перемещение. Это позволяет упростить кинематическую схему различных электроприводов.

Статор линейного шагового двигателя представляет собой плиту из магнитомягкого материала. Подмагничивание магнитопроводов производится постоянным магнитом.

Схема — работа линейного шагового двигателя

Зубцовые деления статора и подвижной части двигателя равны. Зубцовые деления в пределах одного магнито-провода ротора сдвинуты на половину зубцового деления t/2. Зубцовые деления второго магнитопровода сдвинуты относительно зубцовых делений первого магнитопровода на четверть зубцового деления t/4. Магнитное сопротивление потоку подмагничивания не зависит от положения подвижной части.

Принцип действия линейного шагового двигателя не отличается от принципа действия индукторного шагового двигателя. Разница лишь в том, что при взаимодействии потока обмоток управления с переменной составляющей потока подмагничивания создается не момент, а сила FС, которая перемещает подвижную часть таким образом, чтобы против зубцов данного магнитопровода находились зубцы статора, т.е. на четверть зубцового деления t/4.

ΔXш=tz/Кt

где Kt — число тактов схемы управления.

Для перемещения объекта в плоскости по двум координатам применяются двухкоординатные линейные шаговые двигатели.

В линейных шаговых двигателях применяют магнито-воздушную подвеску. Ротор притягивается к статору силами магнитного притяжения полюсов ротора. Через специальные форсунки под ротор нагнетается сжатый воздух, что создает силу отталкивания ротора от статора. Таким образом, между статором и ротором создается воздушная подушка, и ротор подвешивается над статором с минимальным воздушным зазором. При этом обеспечивается минимальное сопротивление движению ротора и высокая точность позиционирования.

Режимы работы синхронного шагового двигателя

Шаговый двигатель работает устойчиво, если в процессе отработки угла при подаче на его обмотки управления серии импульсов не происходит потери ни одного шага. Это значит, что в процессе отработки каждого из шагов ротор двигателя занимает устойчивое равновесие по отношению к вектору результирующей магнитной индукции дискретно вращающегося магнитного поля статора.

Режим отработки единичных шагов соответствует частоте импульсов управления, подаваемых на обмотки шагового двигателя, при котором шаговый двигатель отрабатывает до прихода xследующего импульса заданный угол вращения. Это значит, что в начале каждого шага угловая скорость вращения двигателя равна 0.

При этом возможны колебания углового вала двигателя относительно установившегося значения. Эти колебания обусловлены запасом кинетической энергии, которая была накоплена валом двигателя при отработке угла. Кинетическая энергия преобразуется в потери: механические, магнитные и электрические. Чем больше величина перечисленных потерь, тем быстрее заканчивается переходный процесс отработки единичного шага двигателем.

Процесс отработки шагов шаговым двигателем

В процессе пуска ротор может отставать от потока статора на шаг и более; в результате может быть расхождение между числом шагов ротора и потока статора.

Основными характеристиками шагового двигателя являются: шаг, предельная механическая характеристика и приемистость.

Предельная механическая характеристика — это зависимость максимального синхронизирующего момента от частоты управляющих импульсов.

Предельная механическая характеристика шагового двигателя

Приемистость — это наибольшая частота управляющих импульсов, при которой не происходит потери или добавления шага при их отработке. Она является основным показателем переходного режима шагового двигателя. Приемистость растет с увеличением синхронизирующего момента, а также с уменьшением шага, момента инерции вращающихся (или линейно перемещаемых) частей и статического момента сопротивления.

Предельная динамическая характеристика шагового двигателя

Приемлемость падает с увеличением нагрузки.

В. П. Колодийчик.

www.elec.ru

Шаговые двигатели

Шаговые  двигатели относятся  к  классу  бесколлекторных  двигателей  постоянного  тока.  Как  и любые бесколлекторные двигатели, они имеют высокую надежность и большой срок службы, что позволяет использовать их в критичных, например, индустриальных применениях.

 По сравнению с обычными  двигателями  постоянного  тока,  шаговые  двигатели  требуют  значительно  более сложных  схем  управления,  которые  должны  выполнять  все  коммутации  обмоток  при  работе двигателя. Выбор контроллера для управления шаговым двигателем описан в статье Контроллеры ШД.  Кроме  того,  сам  шаговый  двигатель – дорогостоящее  устройство,  поэтому  там,  где точное  позиционирование  не  требуется,  обычные  коллекторные  двигатели  имеют  заметное преимущество. Справедливости ради следует отметить, что в последнее время для управления коллекторными  двигателями  все  чаще  применяют  контроллеры,  которые  по  сложности практически не уступают контроллерам шаговых двигателей. 

Одним из главных преимуществ шаговых двигателей является возможность осуществлять точное позиционирование и регулировку скорости без датчика обратной связи. Это очень важно, так как такие датчики могут стоить намного больше самого двигателя. Однако это подходит только для систем, которые работают при малом ускорении и с относительно постоянной нагрузкой. В то же время  системы  с  обратной  связью  способны  работать  с  большими  ускорениями  и  даже  при переменном  характере  нагрузки.  Если  нагрузка  шагового  двигателя  превысит  его  момент,  то информация о положении ротора теряется и система требует базирования с помощью, например, концевого  выключателя  или  другого  датчика.  Системы  с  обратной  связью  не  имеют  подобного недостатка.

При  проектировании  конкретных  систем  приходится  делать  выбор  между  сервомотором  и шаговым  двигателем.  Когда  требуется  прецизионное  позиционирование  и  точное  управление скоростью,  а  требуемый  момент  и  скорость  не  выходят  за  допустимые  пределы,  то  шаговый двигатель  является  наиболее  экономичным  решением.  Как  и  для  обычных  двигателей,  для повышения  момента  может  быть  использован  понижающий  редуктор.  Однако  для  шаговых двигателей редуктор не всегда подходит.

В отличие от коллекторных двигателей, у которых момент растет с увеличением скорости, шаговый двигатель имеет больший момент на низких скоростях. К тому  же,  шаговые  двигатели  имеют  гораздо  меньшую  максимальную  скорость  по  сравнению  с коллекторными  двигателями,  что  ограничивает  максимальное  передаточное  число  и, соответственно,  увеличение  момента  с  помощью  редуктора.  Готовые  шаговые  двигатели  с редукторами хотя и существуют, однако являются экзотикой. Еще одним фактом, ограничивающим применение редуктора, является присущий ему люфт.  Возможность  получения  низкой  частоты  вращения  часто  является  причиной  того,  что разработчики,  будучи  не  в  состоянии  спроектировать  редуктор,  применяют  шаговые  двигатели неоправданно  часто.  В  то  же  время  коллекторный  двигатель  имеет  более  высокую  удельную мощность, низкую стоимость, простую схему управления, и вместе с одноступенчатым червячным редуктором он способен обеспечить тот же диапазон скоростей, что и шаговый двигатель. К тому же,  при  этом  обеспечивается  значительно  больший  момент.  Приводы  на  основе  коллекторных двигателей  очень  часто  применяются  в  технике  военного  назначения,  а  это  косвенно  говорит  о хороших параметрах и высокой надежности таких приводов. Да и в современной бытовой технике, автомобилях, промышленном оборудовании коллекторные двигатели распространены достаточно сильно.  Тем  не  менее,  для  шаговых  двигателей  имеется  своя,  хотя  и  довольно  узкая,  сфера применения, где они незаменимы. 

 

Виды шаговых двигателей: 

·  двигатели с переменным магнитным сопротивлением

·  двигатели с постоянными магнитами

·  гибридные двигатели

Определить тип двигателя можно даже на ощупь: при вращении вала обесточенного двигателя с постоянными  магнитами (или  гибридного)  чувствуется  переменное  сопротивление  вращению, двигатель вращается как бы щелчками. В то же время вал обесточенного двигателя с переменным магнитным  сопротивлением  вращается  свободно.  Гибридные  двигатели  являются  дальнейшим усовершенствованием двигателей с постоянными магнитами и по способу управления ничем от них не отличаются.

Определить тип двигателя можно также по конфигурации обмоток. Двигатели с переменным  магнитным  сопротивлением  обычно  имеют  три (реже  четыре)  обмотки  с  одним общим  выводом.  Двигатели  с  постоянными  магнитами  чаще  всего  имеют  две  независимые обмотки.  Эти  обмотки  могут  иметь  отводы  от  середины.  Иногда  двигатели  с  постоянными магнитами имеют 4 раздельных обмотки.  В  шаговом  двигателе  вращающий  момент  создается  магнитными  потоками  статора  и  ротора, которые соответствующим образом ориентированы друг относительно друга.

Статор изготовлен из материала  с  высокой  магнитной  проницаемостью  и  имеет  несколько  полюсов.  Полюс  можно определить как некоторую область намагниченного тела, где магнитное поле сконцентрировано. Полюса имеют как статор, так и ротор. Для уменьшения потерь на вихревые токи магнитопроводы собраны  из  отдельных  пластин,  подобно  сердечнику  трансформатора.  Вращающий  момент пропорционален величине магнитного поля, которая пропорциональна току в обмотке и количеству витков.  Таким  образом,  момент  зависит  от  параметров  обмоток.  Если  хотя  бы  одна  обмотка шагового двигателя запитана, ротор принимает определенное положение. Он будет находится в этом положении до тех пор, пока внешний приложенный момент не превысит некоторого значения, называемого моментом удержания. После этого ротор повернется и будет стараться принять одно из следующих положений равновесия.

Биполярные и униполярные шаговые двигатели В  зависимости  от  конфигурации  обмоток  двигатели  делятся  на  биполярные  и  униполярные. Биполярный двигатель имеет одну обмотку в каждой фазе, которая для изменения направления магнитного поля  должна  переполюсовывается драйвером. Для  такого  типа  двигателя  требуется мостовой  драйвер,  или  полумостовой  с  двухполярным  питанием.  Всего  биполярный  двигатель имеет две обмотки и, соответственно, четыре вывода.Униполярный двигатель также имеет одну обмотку в каждой фазе, но от середины обмотки сделан отвод. Это позволяет изменять направление магнитного поля, создаваемого обмоткой, простым переключением половинок обмотки. При этом существенно упрощается схема драйвера. Драйвер должен  иметь  только 4 простых  ключа.  Таким  образом,  в  униполярном  двигателе  используется другой  способ  изменения  направления  магнитного  поля. 

Средние  выводы  обмоток  могут  быть объединены внутри двигателя, поэтому такой двигатель может иметь 5 или 6 выводов Иногда  униполярные  двигатели  имеют  раздельные 4 обмотки,  по  этой  причине  их  ошибочно называют 4-х  фазными  двигателями.  Каждая  обмотка  имеет  отдельные  выводы,  поэтому  всего выводов 8.  При  соответствующем  соединении  обмоток  такой  двигатель  можно использовать как униполярный или как биполярный. Униполярный двигатель с двумя обмоткими и отводами  тоже  можно  использовать  в  биполярном  режиме,  если  отводы  оставить неподключенными.  В  любом  случае  ток  обмоток  следует  выбирать  так,  чтобы  не  превысить максимальной рассеиваемой мощности.  Если сравнивать между собой биполярный и униполярный двигатели, то биполярный имеет более высокую удельную мощность. При одних и тех же размерах биполярные двигатели обеспечивают больший момент.

 

6-ти выводные шаговые двигатели

Для подключения 6-ти выводного шагового двигателя к классическому биполярному драйверу может быть выбран один из двух способов - униполярное либо биполярное подключение обмоток двигателя.

 

Униполярное подключение

Если требуется вращать двигатель на средних и высоких скоростях (из диапазона рабочих скоростей), лучший тип подключения - использовать центральный отвод. Электрические характеристики двигателя - ток обмотки, сопротивление обмотки, статический крутящий момент, индуктивность обмоток и др. - в этом случае равны данным, приведенным в каталоге.

 

Биполярное подключение

Если требуется вращать двигатель на низких скоростях (из диапазона рабочих скоростей), лучший тип подключения - биполярное. Электрические характеристики двигателя - ток обмотки, сопротивление обмотки, статический крутящий момент, индуктивность обмоток и др. - в этом случае равны данным, приведенным в каталоге. При таком типе подключения нужно уменьшить ток, подаваемый на обмотки двигателя в  √2 раз. Например, если номинальный рабочий ток двигателя составляет 2 А, то при последовательном включении обмоток требуемый ток - 1.4 А, то есть в 1.4 раза меньше. Это можно легко понять из следующих рассуждений. Номинальный рабочий ток, указанный в каталоге, рассчитан на сопротивление одной обмотки (R - именно оно приведено в каталоге). При последовательном включении обмоток сопротивление объединенной обмотки возрастает в два раза (2R).

Потребляемая мощность при униполярном включении - Iуниполяр.2 * R

При последовательном включении обмоток потребляемая мощность становится Iбиполяр.2 * 2 * R

Потребляемая мощность не зависит от типа подключения, поэтому Iуниполяр.2 * R = Iбиполяр.2 * 2* R, откуда

Iбиполяр.=  Iуниполяр. / √2, т.е.

Iбиполяр.= 0.707 * Iуниполяр.

Так как крутящий момент двигателя прямо пропорционален величине магнитного поля, создаваемого обмотками статора, то он возрастает с увеличением числа витков обмотки и убывает с уменьшением ток, пропускаемого через обмотки. Но так как ток уменьшился в √2 раз, а число витков обмотки увеличилось в 2 раза, то крутящий момент возрастет в √2 раз.

Tбиполяр. = 1.4 * Tуниполяр.

8-ми выводные шаговые двигатели

Для подключения 8-ми выводного шагового двигателя (то есть двигателя с четырьмя обмотками) к классическому биполярному драйверу может быть выбран один из трех способов - униполярное, последовательное либо параллельное подключение обмоток двигателя.

Если требуется вращать двигатель на средних скоростях (из диапазона рабочих скоростей), лучший тип подключения - использовать лишь две из четырех обмоток.

Наиболее эффективно для низкоскоростного диапазона рабочих скоростей двигателя.

При таком типе подключения нужно уменьшить ток, подаваемый на обмотки двигателя в  √2 раз. Например, если номинальный рабочий ток двигателя составляет 2 А, то при последовательном включении обмоток требуемый ток - 1.4 А, то есть в 1.4 раза меньше.

Это можно легко понять из следующих рассуждений.

Номинальный рабочий ток, указанный в каталоге, рассчитан на сопротивление одной обмотки (R - именно оно приведено в каталоге). При последовательном включении обмоток сопротивление объединенной обмотки возрастает в два раза (2R).

Потребляемая мощность при униполярном включении - Iуниполяр.2 * R

При последовательном включении обмоток потребляемая мощность становится Iпослед.2 * 2 * R

Потребляемая мощность не зависит от типа подключения, поэтому Iуниполяр.2 * R = Iпослед.2 * 2* R, откуда

Iпослед.=  Iуниполяр. / √2, т.е.

Iпослед.= 0.707 * Iуниполяр.

Так как крутящий момент двигателя прямо пропорционален величине магнитного поля, создаваемого обмотками статора, то он возрастает с увеличением числа витков обмотки и убывает с уменьшением ток, пропускаемого через обмотки. Но так как ток уменьшился в √2 раз, а число витков обмотки увеличилось в 2 раза, то крутящий момент возрастет в √2 раз.

Tпослед. = 1.4 * Tуниполяр.

Наиболее эффективно использование параллельного включения обмоток для высоких скоростей.

При таком типе подключения нужно увеличить ток, подаваемый на обмотки двигателя в  √2 раз. Например, если номинальный рабочий ток двигателя составляет 2 А, то при параллельном включении обмоток требуемый ток - 2.8 А, то есть в 1.4 раза больше.

Это можно легко понять из следующих рассуждений.

Номинальный рабочий ток, указанный в каталоге, рассчитан на сопротивление одной обмотки (R - именно оно приведено в каталоге). При параллельном включении обмоток сопротивление объединенной обмотки уменьшаетсяв два раза (0.5 R).

Потребляемая мощность при униполярном включении - Iуниполяр.2 * R

При параллельнном включении обмоток потребляемая мощность становится 0.5 * Iбиполяр.2 * R

Потребляемая мощность не зависит от типа подключения, поэтому Iуниполяр.2 * R = 0.5 * Iбиполяр. 2 * R, откуда Iбиполяр..=  Iуниполяр. /√2, т.е.

Iбиполяр.= 1.4 * Iуниполяр.

Так как крутящий момент двигателя прямо пропорционален величине магнитного поля, создаваемого обмотками статора, то он возрастает с увеличением числа витков обмотки и убывает с уменьшением величины тока, пропускаемого через обмотки. Но так как ток увеличился в √2 раз, а число витков обмотки увеличилось в 2 раза, то крутящий момент возрастет в √2 раз.

Tбиполяр. = 1.4 * Tуниполяр.

 

При выборе шагового двигателя одной из важнейших характеристик является его скоростные качества, то есть зависимость момента на валу от скорости вращения. Сравнить и оценить эту характеристику можно зная значения сопротивления и индуктивности обмоток выбираемого двигателя. Чем больше соотношение R/L тем быстрее нарастает ток в обмотках и тем большую скорость вращения можно достичь без существенного падения момента. Объясняется это тем, что эквивалентная схема представляет собой последовательно соединенные индуктивность и омическое сопротивление, возникающая в цепи ЭДС самоиндукции препятствует изменению тока в цепи, замедляя его возрастание, а также спад тока при размыкании цепи. Ток не может вырасти мгновенно до номинального значения, а следовательно, крутящий момент двигателя тоже нарастает не мгновенно, а по экспоненте. При увеличении скорости вращения не только увеличивается скорость коммутации обмоток, но также уменьшается время, на которое подается напряжение на обмотку. При критической скорости ток в обмотке двигателя еще не успевает вырасти до номинального значения, а напряжение с обмотки уже снимается. Происходит снижение крутящего момента, двигатель начинает пропускать шаги.

Интернет магазин чпу станков хобби класса и комплектации

cncmodelist.ru

ЧПУ на Ардуино | Модификация | Апгрейд | Лазерная гравировка | 3D-сканер

Дешёвый станок с ЧПУ на базе Ардуино претерпел множество модификаций, целью которых было ускорить работу, получить новый функционал.

Устанавливаем более мощные и быстрые шаговые двигатели 17HS3404N и драйверы ШД DM420A

На ШД 28BYJ-48-5V и драйверах шаговых двигателей на безе микросхемы ULN2003 станок с ЧПУ работает крайне медленно: на перемещение фрезы на 1мм уходит 5-6 секунд. Чтобы ускорить работу станка с числовым программным управлением я решил установить на него более мощные и быстрые шаговые двигатели 17HS3404N и драйверы шаговых двигателей DM420A. Результат впечатлил. Скорость увеличилась в десятки раз.Подробнее...

Делаем 3D-сканер из станка с ЧПУ на Arduino

Для превращения станка с ЧПУ на Ардуино в 3D-сканер нам понадобится пара гвоздей, две металлических полоски, рейка, резистор номиналом 1КОм-10КОм. Также потребуется установить новую прошивку на Ардуино и скачать последнюю версию ПО для работы с простым станком ЧПУ. Точность сканирования можно задать в программе. Сканер вкупе с алгоритмом бикубической интерполяции даёт вполне приемлемые результаты по созданию 3D-моделей сканируемых объектов. Подробнее...

Лазерный гравер с ЧПУ на Arduino

Для изготовления лазерного гравера помимо самого станка с ЧПУ на базе Ардуино потребуется комплект, состоящий из лазерного диода, радиатора, системы фокусировки и драйвера, по возможности с TTL-модуляцией, чтобы не подключать к Ардуино реле для управления лазером. Подробнее...

Ременная передача на станок с ЧПУ на Arduino

Для ускорения работы 3D-сканера, лазерного гравера и 3D-принтера я решил поставить ременную передачу вместо винтовой на станок с ЧПУ на Ардуино. Подробнее...

 

ecnc.ru


Смотрите также