ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Принцип сгорания топлива в дизельном двигателе. Форкамерный двигатель


Форкамера: что это такое?

Форкамерный двигатель

Форкамера (предкамера) представляет собой специальную полость, которая расположена в головке цилиндров ДВС. Данная полость конструктивно сообщается с основной камерой сгорания в надпоршневом пространстве посредством одного и более каналов. Предкамерный (форкамерный) двигатель может быть как бензиновым, так и дизельным.

ДВС подобного типа представляет собой конструкцию, в которой смесеобразование и наполнение цилиндров происходит следующим образом:

Читайте в этой статье

Для чего нужна форкамера в двигателе

Предкамера

Предкамера является предварительной камерой сгорания, в которую подается часть от общего заряда топливно-воздушной смеси, где происходит воспламенение топлива. Объем форкамеры составляет около 30% от общего объема основной камеры сгорания.  Назначением данного решения выступает улучшение наполнения цилиндров, более эффективная организация газовых потоков в основной камере, а также повышение качества смесеобразования.

Данная схема позволяет реализовать более плавное и равномерное нарастание давления в основной камере сгорания, что снижает ударные нагрузки в цилиндрах ДВС.

Моторы с форкамерой работают мягче и полноценно сжигают топливно-воздушную смесь, уменьшается токсичность выхлопа, повышается КПД и снижается расход горючего.

Читайте также

Система форкамерно-факельного зажигания

Форкамерно-факельное зажигание

Наличие форкамеры означает, что рабочая камера сгорания в таком двигателе разделена на составные части: предкамеру и основную камеру.  Давайте рассмотрим принцип работы системы на примере карбюраторной модели ГАЗ «Волга» с предкамерным ДВС.

В предкамеру смесь поступает по специальному каналу, который выполнен во впускном коллекторе и ГБЦ. Смесь в форкамеру подается переобогащенной, для чего в карбюраторе присутствует отдельная секция. Предкамера также имеет отдельный впускной клапан. Далее происходит поджиг указанной смеси при помощи искры от свечи зажигания. В этот момент открывается впускной клапан основной камеры сгорания, который приводится в действие распредвалом ГРМ. В основную камеру поступает топливно-воздушная смесь. Порция этой смеси обедненная.

ГидротолкательРекомендуем также прочитать статью о том, что такое гидрокомпенсатор. Из этой статьи вы узнаете о назначении и функции гидротолкателей в устройстве ГРМ.

Предкамера соединяется с основной камерой специальными сопловыми каналами, через которые в основную камеру прорывается пламя, газы и пары горючего из форкамеры. От контакта с ними обедненная смесь в основной камере также воспламеняется. Получается, форкамера представляет собой своеобразный механический «подвпрыск», отдаленно напоминая принцип двухступенчатой работы современных дизельных инжекторных форсунок.

Плюсы и минусы предкамерных двигателей

Виды предкамер

Внедрение предкамеры в устройство бензинового ДВС не получило широкого распространения. Определенные сложности конструкции и недостаточная эффективность работы системы во время реальной эксплуатации привели к отказу от схемы форкамерно-факельного зажигания.

Одновременно с уменьшением расхода топлива и снижением токсичности отработавших газов предкамерные двигатели отличались меньшей надежностью и стабильностью работы в определенных режимах.

Что касается дизельных моторов, предкамерные дизели встречаются чаще. Форкамерные дизельные двигатели имеют низкое давление впрыска сравнительно с другими дизельными агрегатами. Использование форкамеры в дизеле позволило снизить дымность силовой установки на разных режимах работы агрегата. Еще одним плюсом предкамеры на дизельном моторе выступает меньшая требовательность таких двигателей к качеству дизтоплива.

Главным недостатком предкамерного дизеля считается затрудненный пуск холодного мотора. Дело в том, что для уверенного пуска необходим качественный прогрев форкамеры. Использование электрических калильных свечей для эффективного нагрева воздуха в полости предкамеры не всегда обеспечивает облегченный пуск двигателя.

 

Читайте также

krutimotor.ru

ФОРКАМЕРНЫЙ ДВИГАТЕЛЬ ГАЗ-52 - Декабрь 1961 года

Зарулем Зарулем ЗР 1961 №12 ФОРКАМЕРНЫЙ ДВИГАТЕЛЬ ГАЗ-52

www.zr.ru

Принцип сгорания топлива в дизельном двигателе

Системы с предкамерой

В системе с предкамерой (форкамерой), используемой для дизельных двигателей легковых автомобилей, топливо впрыскивается в горячую предкамеру (дополнительную камеру). Здесь начинается предварительное воспламенение, чтобы достичь образования качественной смеси и уменьшения задержки воспламенения для основного процесса сгорания.

Топливо впрыскивается с помощью игольчатой форсунки при относительно низком давлении (до 300 бар). Специально разработанная поверхность экрана в центре камеры распределяет струю топлива, которая разбивается на части и интенсивно перемешивается с воздухом. Сгорание начинается и продвигает частично воспламененную топливо-воздушную смесь через отверстия на нижнем конце предкамеры в основную камеру сгорания над поршнем и смесь нагревается в процессе еще больше. При этом имеет место интенсивное перемешивание топлива с воздухом в основной камере сгорания, сгорание продолжается и завершается. Малый период задержки воспламенения и контролируемое высвобождение энергии при общем низком уровне давления в основной камере сгорания приводит к «мягкому» сгоранию с небольшим шумом и уменьшением нагрузки на двигатель. Оптимизированная версия предкамеры обеспечивает сгорание с пониженным содержанием токсичных соединений в выхлопных газах и уменьшение выбросов в среднем на 40%. Модифицированная форма предкамеры с углублением для испарения и измененная форма и положение поверхности экрана (шаровой стержень) обеспечивают специфическое завихряюшее действие на воздух, после того как он поступает из цилиндра в предкамеру после сжатия. Топливо впрыскивается под углом в 5° относительно оси предкамеры.

Системы с предкамерой

Рис. Системы с предкамерой

Накальная свеча располагается ниже воздушного потока для предотвращения помех при сгорании. Управляемый последующий накал в течение времени до 1 минуты после запуска холодного двигателя (в зависимости от температуры охлаждающей жидкости) служит для уменьшения состава выхлопных газов и уменьшения шумов при прогреве двигателя.

Система с вихревой предкамерой

В этой системе, используемой в дизельных двигателях легковых автомобилей, сгорание также начинается в дополнительной камере. В процессе сгорания используется дополнительная камера сгорания в форме шара или диска (вихревая камера) с поверхностью горловины (выреза), расположенной тангенциально в основной камере сгорания.

Система с вихревой предкамерой

Рис. Система с вихревой предкамерой

Сильное завихрение воздуха образуется при такте сжатия, а топливо впрыскивается в этот завихренный воздух. Форсунка расположена так, что струя топлива поступает в завихрение воздуха перпендикулярно к его оси и ударяется в противоположную сторону камеры в зоне с горячей стенкой.

В начале процесса сгорания топливо-воздушная смесь выдавливается в основную камеру сгорания через поверхность горловины (выреза) и смешивается с остальным воздухом. По сравнению с процессом в предкамере потери потока между основной камерой сгорания и дополнительной (вихревой камерой) более низкие для вихревой камеры из-за того, что поперечное сечение потока больше. Это приводит к пониженной работе цикла наполнения с соответствующими преимуществами для внутренней эффективности и расхода топлива. Конструкция вихревой камеры, расположение и форма распылителя форсунки, а также расположение накальной свечи должны быть тщательно подобраны для обеспечения качественного смесеобразования во всем диапазоне оборотов и нагрузок двигателя. Дополнительным требованием является быстрый разогрев вихревой камеры после запуска холодного двигателя. Это уменьшает время задержки воспламенения и препятствует образованию несгоревших углеводородов (голубой дым) в выхлопных газах при прогреве.

Системы с непосредственным впрыском (VI)

В системах с непосредственным впрыском, используемых главным образом в грузовых автомобилях и в стационарных дизельных двигателях всех размеров, образование смеси обходится без дополнительной вихревой камеры. Топливо впрыскивается непосредственно в камеру сгорания над поршнем.

Системы с непосредственным впрыском

Рис. Системы с непосредственным впрыском

Процессы, описанные выше (распыление топлива, разогрев, испарение и смешивание с воздухом) должны в связи с этим, происходить в очень быстрой последовательности. Высокие требования предъявляются к впрыску топлива и к подаче воздуха. Как в системе с вихревой камерой, завихрение воздуха образуется при тактах впуска и сжатия. Этот вихрь вызывается с помощью специальной формы впускного канала в головке цилиндров. Конструкция верхней части поршня с встроенной камерой сгорания способствует движению воздуха в конце такта сжатия, т.е. в начале впрыска.

Формы камеры сгорания, использованные в процессе разразвития дизельных двигателей и широко используемые в настоящее время, соответствуют цилиндрической выемке в поршне, т.к. это предлагает компромисс между экономией при производстве и соответствующим контролем воздуха.

В дополнение к хорошему завихрению (турбулентности) воздуха, топливо также должно равномерно распределено для облегчения быстрого перемешивания. В отличие от двигателя с предкамерой с одноструйной игольчатой форсункой, в системах с непосредственным впрыском используется многоструйная форсунка. Расположение ее струй должно быть опрегулировано в соответствии с конструкцией камеры сгорания.

На практике для непосредственного впрыска используются два метода:

Во втором случае завихрение воздуха не включается в работу. Эго становится заметным в форме уменьшения потерь в цикле подачи топлива и улучшения наполнения цилиндра. В тоже время к оборудованию для впрыска топлива предъявляются более высокие требования относительно расположения и количества отверстий форсунки, качест ва распыления путем малых диаметров отверстий для распыления и очень высокого давления впрыска, необходимого для достижения требуемой краткой продолжительности впрыска.

В методе непосредственного впрыска, описанном выше, образование смеси достигается с помощью смешивания и испарения частичек топлива с частичками воздуха, окружающими их (метод распределения воздуха). В методе с распределением по стенкам, с другой стороны, топливо направляется к стенкам камеры сгорания, где оно испаряется и смешивается с воздухом.

Система непосредственного смешивания топлива с распределением по стенкам (М — система)

В этой системе впрыска для стационарных и коммерческих дизельных двигателей теплосодержание (теплоемкость) стенок углубления в поршне используется для испарения топлива, и топливо-воздушная смесь образуется с помощью соответствующего управления воздухом для сжатия.

Система непосредственного смешивания топлива с распределением по стенкам

Рис. Система непосредственного смешивания топлива с распределением по стенкам

Система работает с помощью одноструйной форсунки (т.е. форсунки с одним отверстием) при относительно низком давлении впрыска. Если движение воздуха в камере сгорания правильно отрегулировано, то может быть получена очень однородная топливо-воздушная смесь с длительной продолжительностью сгорания, низким ростом давления и, таким образом, более мягкое сгорание. Однако это увеличивает расход топлива по сравнению с системами с распределением воздуха.

Сравнение различных систем

Недостатки двигателей с предкамерой, касающиеся шума, более заметны при работе холодного двигателя. Недостаточное смесеобразование, вызванное не только рассеянием тепла стенками камеры сгорания, приводит к относительно длительному периоду задержки воспламенения и к детонационным шумам при сгорании. При прогреве двигателя двиг атель с вихревой камерой также имеет тенденцию к повышенному шуму в диапазоне низких нагрузок и низких оборотов. Метод с предкамерой, с другой стороны, имеет преимущества, касающиеся температуры камеры и задержки воспламенения.

Главное преимущество системы непосредственного впрыска состоит в уменьшении расхода топлива до 20% по сравнению с двигателями с разделенной камерой сгорания. Недостатками систем непосредственного впрыска являются, однако, повышенный шум при работе (в частности, при разгоне) и ограниченные максимальные обороты. Система с непосредственным впрыском всегда требует повышенных давлений впрыска и, таким образом, более сложной системы впрыска топлива.

Преимуществами системы непосредственного впрыска являются преобладающими для таких условий работы, где решающими являются расход топлива и экономия, а вопросы комфорта играют второстпенную роль. Интенсивные исследования работы в области смесеобразования, которые включают усовершенствование систем впрыска, в скором времени приведут к возможности использования систем с непосредст венным впрыском топлива в двигателях легковых автомобилей.

ustroistvo-avtomobilya.ru

форкамерный роторный двигатель внутреннего сгорания

Изобретение относится к двигателестроению. Форкамерный роторный двигатель внутреннего сгорания содержит неподвижный цилиндрический статор, ротор с рабочей зоной и торцевые крышки. Процесс создания и сгорания рабочей смеси происходит в форкамере. Двигатель имеет воздушный ресивер, воздушный компрессор, форсунку, встроенные в статор газораспределительный клапан, впускной воздушный канал и каналы выхода рабочих и отработавших газов. Сжатие воздуха производится воздушным компрессором. Воздушный компрессор выполнен с приводом от вала ротора через шестерни для создания необходимого давления воздуха в форкамере (для приготовления рабочей смеси). Форкамера (пространство приготовления и сгорания рабочей смеси) встроена в статор. Торцевые крышки выполнены с уплотнением. Двигатель имеет воздушный компрессор с электроприводом (для создания в воздушном ресивере необходимого давления воздуха перед запуском двигателя). Двигатель включает инжектор, обеспечивающий подачу через форсунку горючего в форкамеру, и шестерни привода вала газораспределительного клапана от вала ротора. Из воздушного ресивера воздух подается через газораспределительный клапан в форкамеру, уплотненную газораспределительным клапаном, выполненным с возможностью открытия канала выхода рабочих газов из форкамеры. Техническим результатом является повышение надежности, мощности, КПД и ресурса при снижении веса и габаритов, а также упрощение конструкции двигателя. 2 з.п.ф-лы, 13 ил. форкамерный роторный двигатель внутреннего сгорания, патент № 2387851

Изобретение относится к двигателестроению, в частности к двигателям роторным внутреннего сгорания, и может быть использовано в качестве привода в различных машинах, энергетических установках, автомобилях, летательных аппаратах, судостроении и других отраслях, связанных с использованием силовых установок. Изобретение позволяет повысить эффективность работы, упростить конструкцию и усовершенствовать работу роторных двигателей.

Известен роторный двигатель внутреннего сгорания по патенту RU 2203430 С2, F02B 53/02, 2003, 7 стр., состоящий из корпуса статора с внутренней цилиндрической поверхностью и с камерой сгорания, ротора с профилированной внешней поверхностью и одним выступом сопряжения с рабочей поверхностью статора, трех компрессионных заслонок (в т.ч. двух на входе и выходе камеры сгорания и третьей диаметрально противоположной между выхлопным и всасывающими коллекторами), установленных в пазах статора с возможностью контакта с профилированной внешней поверхностью ротора для образования полостей всаса и сжатия.

Недостатками данного двигателя являются

- процесс всасывания топливной смеси происходит на целый оборот ротора раньше ее подачи в камеру сгорания, что сопряжено с ее оседанием на стенки камеры всасывания и, как результат, снижение эффективности работы двигателя;

- в описании не указано, что удерживает заслонку на входе в камеру сгорания в открытом положении в период нагнетания горючей смеси в нее и что удерживает заслонку на выходе из камеры сгорания в открытом положении в период рабочего хода ротора;

- наличие двух из трех заслонок без указания метода их работы подразумевает необходимость исполнения систем, управляющих ими, что сопряжено с организацией сложных кинематических или газовых систем. Если попытаться определить коэффициент использования общей рабочей поверхности двигателя к поверхности рабочего хода за один полный оборот вала, то в данном случае он близок к величине 0,5. При этом показателем эффективности также может быть соотношение поверхности рабочего хода к компрессионному ходу приготовления горючей смеси, который равен 1,0.

Задачей изобретения является уход от уплотнения зазора между ротором и статором, повышение надежности, мощности, КПД, ресурса при снижении веса и габаритов двигателя.

Задачи достигаются тем, что в форкамерном роторном двигателе внутреннего сгорания (ДВС), содержащем ротор с рабочей зоной, неподвижный статор с форкамерой, газораспределительным клапаном, впускными, выпускными каналами и окнами, воздушный компрессор для создания в форкамере через воздушный ресивер необходимой степени сжатия воздуха (для различных видов моторных топлив), инжекторы для подачи через форсунку в форкамеру топлива, отсутствует необходимость в уплотнении зазора между ротором и статором, так как сжатие воздуха производится воздушным компрессором, процесс создания и сгорания рабочей смеси происходит в форкамере, отделенной от рабочей зоны ротора газораспределительным клапаном.

Таким образом, согласно изобретению форкамерный роторный двигатель внутреннего сгорания, содержащий неподвижный цилиндрический статор, ротор с рабочей зоной, торцевые крышки, при этом процесс создания и сгорания рабочей смеси происходит в форкамере, а сжатие воздуха производится воздушным компрессором, для чего двигатель имеет воздушный ресивер, воздушный компрессор с приводом от вала ротора через шестерни для создания необходимого давления воздуха в форкамере (для приготовления рабочей смеси), форсунку, встроенные в статор газораспределительный клапан, впускной воздушный канал и каналы выхода рабочих и отработавших газов, при этом форкамера (пространство приготовления и сгорания рабочей смеси) встроена в статор, отличается тем, что торцевые крышки выполнены с уплотнением, двигатель имеет воздушный компрессор с электроприводом (для создания в воздушном ресивере необходимого давления воздуха перед запуском двигателя), инжектор, обеспечивающий подачу через форсунку горючего в форкамеру, шестерни привода вала газораспределительного клапана от вала ротора, при этом из воздушного ресивера воздух подается через газораспределительный клапан в форкамеру, уплотненную газораспределительным клапаном, выполненным с возможностью открытия канала выхода рабочих газов из форкамеры.

Ротор может быть выполнен с одной или более рабочими зонами. В статоре могут быть встроены одна и более форкамеры.

Ротор может быть выполнен с лопатками. В статоре могут быть встроены одна и более форкамеры. При оснащении статора двумя и более форкамерами (на один ротор) допускается отключать дополнительные форкамеры, для чего дополнительные форкамеры оснащаются электромагнитными клапанами, расположенными на каналах подачи сжатого воздуха перед газораспределительными клапанами, а прекращение подачи топлива производится инжектором.

Сущность изобретения поясняется чертежами с указанием основных частей, из которых состоит форкамерный роторный ДВС, где

на фигурах 1 и 2 показан общий вид форкамерного роторного ДВС,

на фигурах 3, 4 и 5 показаны разрезы форкамерного роторного ДВС, на фиг.3 показан разрез в масштабе 1,5:1,

на фигурах 6, 7 и 8 показан продольный разрез форкамерного роторного ДВС с рабочим колесом с лопатками в качестве ротора, показана работа газораспределительного клапана, на фиг.6 показана фаза впуска, на фиг.7 показана фаза воспламенения, на фиг.8 показана фаза выпуска,

на фигурах 9 и 10 показан общий вид форкамерного турбинного ДВС, на фигурах 11, 12 и 13 показаны разрезы форкамерного турбинного ДВС.

Форкамерный роторный ДВС содержит: неподвижный статор 1, содержащий газораспределительный клапан 5, канал 6 подачи в форкамеру сжатого воздуха, канал 7 направленного действия выхода рабочих газов из форкамеры 2, канал 9 выхода отработанных газов в выхлопную трубу 18, форкамеру 2 с расположенными в ней свечами 3 накаливания и форсунками 4 инжектора. Двигатель имеет ротор 8 с рабочей зоной, шестерни 13 привода вала 12 газораспределительного клапана от вала 17 ротора, торцевые крышки 14 с уплотнением, инжектор 15, обеспечивающий подачу через форсунку 4 горючего в форкамеру 2, воздушный компрессор 10 с приводом шестерней от вала ротора для создания необходимого давления воздуха в форкаме (для приготовления рабочей смеси), воздушный компрессор 16 с электроприводом (для создания в воздушном ресивере необходимого давления воздуха перед запуском двигателя), воздушный ресивер 11 со встроенным предохранительным (регулирующим давлении воздуха в ресивере) клапаном.

Форкамерный роторный ДВС работает следующим образом: воздух сжимаемый компрессором 10, поступает в воздушный ресивер 11. В воздушном ресивере создается давление воздуха для создания необходимой степени сжатия рабочей смеси (различное для различных видов моторных топлив) в форкамере. Воздушный ресивер оснащен предохранительным клапаном. Из воздушного ресивера воздух подается по каналу 6 через газораспределительный клапан 5 в форкамеру 2. После наполнения форкамеры воздухом с необходимой степенью сжатия и закрытия впускного окна газораспределительным клапаном через форсунку 4 в форкамеру инжектором 15 подается необходимое количество топлива. При начале открытия газораспределительным клапаном 5 канала 7 направленного действия выхода рабочих газов из форкамеры на свечу 3 подается искра. В форкамере происходит воспламенение рабочей смеси. Образовавшиеся рабочие газы, выходя из форкамеры через канал 7 направленного действия, отдают свою энергию рабочему колесу (ротору) 8, приводя его во вращение. Отработавшие газы выводятся через выпускной канал 9 в выхлопную трубу 18.

Экономический эффект достигается высоким КПД, меньшим расходом топлива из-за снижения сил инерции и трения, простотой конструкции и изготовления форкамерного ДВС.

Клапан-газораспределитель работает следующим образом: цилиндрический вал 12, имеющий проходной канал 19, вкладыши 22, вращается внутри неподвижной цилиндрической втулки 20, имеющей впускное окно 21 форкамеры и выпускное окно канала направленного действии. Зазор между втулкой 20 и валом 12 уплотняется сальниковым уплотнением 23. Преимуществами использования этого клапана являются:

1. Простота конструкции

2. Низкая себестоимость

3. Долговечность, достигающаяся вдвое меньшими оборотами относительно рабочего колеса и охлаждением его поверхности со всех сторон воздухом (находящемся под давлением во впускном канале) и рабочей смесью (находящейся в форкамере).

4. Простота ремонта или замены.

5. Независание при больших оборотах.

6. Данная конструкция газораспределительного клапана может применяться и в поршневых ДВС.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Форкамерный роторный двигатель внутреннего сгорания, содержащий неподвижный цилиндрический статор, ротор с рабочей зоной, торцевые крышки, при этом процесс создания и сгорания рабочей смеси происходит в форкамере, а сжатие воздуха производится воздушным компрессором, для чего двигатель имеет воздушный ресивер, воздушный компрессор с приводом от вала ротора через шестерни для создания необходимого давления воздуха в форкамере (для приготовления рабочей смеси), форсунку, встроенные в статор: газораспределительный клапан, впускной воздушный канал и каналы выхода рабочих и отработавших газов, при этом форкамера (пространство приготовления и сгорания рабочей смеси) встроена в статор, отличающийся тем, что торцевые крышки выполнены с уплотнением, двигатель имеет воздушный компрессор с электроприводом (для создания в воздушном ресивере необходимого давления воздуха перед запуском двигателя), инжектор, обеспечивающий подачу через форсунку горючего в форкамеру, шестерни привода вала газораспределительного клапана от вала ротора, при этом из воздушного ресивера воздух подается через газораспределительный клапан в форкамеру, уплотненную газораспределительным клапаном, выполненным с возможностью открытия канала выхода рабочих газов из форкамеры.

2. Двигатель по п.1, отличающийся тем, что ротор выполнен с одной или более рабочими зонами, в статоре встроены одна и более форкамеры.

3. Двигатель по п.2, отличающийся тем, что ротор выполнен с лопатками, в статоре встроены одна и более форкамеры, при оснащении статора двумя и более форкамерами (на один ротор) допускается отключать дополнительные форкамеры, для чего дополнительные форкамеры оснащаются электромагнитными клапанами, расположенными на каналах подачи сжатого воздуха перед газораспределительными клапанами, а прекращение подачи топлива производится инжектором.

www.freepatent.ru

Форкамера двигателя внутреннего сгорания

Изобретение относится к двигателестроению, преимущественно к двигателям внутреннего сгорания с воспламенением от сжатия. Форкамера содержит полость, сообщенную с основной камерой сгорания перепускным каналом, смонтирован на наружной части головки блока цилиндров, имеет полость со встроенной распиливающей форсункой, а перепускной канал выполнен в виде профилированного сопла Лаваля, причем входной участок перепускного канала имеет образующую в виде гладкой кривой, форма которой определяется по соотношению Витошинского, а сопряжение входного и выходного участков выполнено по дуге эллипса. Изобретение обеспечивает работу ДВС на бедных жидкотопливно-воздушных и газовоздушных смесях, экономию дизельного топлива, малую токсичность отработавших газов, простоту технического обслуживания и низкую себестоимость. 1 ил.

 

Изобретение относится к двигателестроению, преимущественно к двигателям внутреннего сгорания с воспламенением от сжатия, и предназначено для улучшения их технико-экономических и экологических показателей.

Известны форкамеры двигателей внутреннего сгорания, выполненные в головке блока цилиндров, сообщенные с основной камерой сгорания соединительными каналами (см., например, патент США №4442807 кл. F 02 В 19/18, 1984 г., патент РФ №2099550 F 02 В 19/18, 1995 г.)

Недостатками таких форкамер являются высокая трудоемкость производства и технического обслуживания, а также невозможность использования на действующем и производимом парке автотехники, так как неизбежные изменения в конструкции двигателя потребуют вложения капитальных затрат на разработку конструкций его новых деталей и узлов, изменение технологии производства и дополнительное оборудование и техоснастку. Размещение известных форкамер в нижней части головки блока цилиндров существенно затрудняет их технологическое обслуживание и, при необходимости, демонтаж, так как потребует разборку двигателя автомобиля. Указанные недостатки затрудняют внедрение известных форкамер на действующем автопарке и выпускающихся автомобилях и решение в реальном времени задач повышения топливной экономичности автомобилей и экологических проблем в крупных городах и на автотрассах.

Эти недостатки устранены в форкамерах по патентам Великобритании №1261176, Кл. F 02 В 19/12, 1972 г. и РФ №2210677, F 02 В 19/18, 2001 г., смонтированными на внешней (наружной) части головки блока цилиндров и содержащими полость, сообщенную с основной камерой сгорания двигателя при помощи перепускного криволинейного канала. Известные форкамеры просты по конструкции, легко и быстро монтируемы и чрезвычайно дешевы в производстве и эксплуатации, а форкамера по патенту РФ №2210677 на испытаниях показала высокие результаты топливной экономичности и экологичности автомобильных двигателей.

Однако эти форкамеры применимы на двигателях с принудительным (искровым) зажиганием и не могут быть использованы на двигателях с воспламенением от сжатия горючей смеси (дизельных ДВС).

Известны топливные насосы дизельных двигателей с повышенным давлением впрыска топлива 70-100 МПа (70-100 атм), например ЯМЗ ТА 423, ТА 444, ТА 861. Такое увеличение давления впрыска топлива необходимо для лучшего его распыления в камерах сгорания новых двигателей, чтобы сжигать дизтопливо по критериям, удовлетворяющим требованиям экологических стандартов EURO-1, EURO-2 и EURO-3.

Однако такое повышение давления впрыска вызывает повышение мощности топливного насоса и его привода, что составляет 10-15% мощности ДВС, развиваемой автомобилем на крейсерской скорости движения (˜80 км/час). Такая высокая мощность привода топливного насоса обуславливает значительный дополнительный расход топлива, что ухудшает топливную экономичность ДВС, а экологические характеристики автомобиля остаются в существенной степени зависимы от надежности и эффективности работы форсунок и качества смесеобразования в цилиндре ДВС, которые в настоящее время еще очень низкие.

Целью настоящего изобретения является существенное улучшение топливной экономичности и экологичности ДВС с воспламенением от сжатия горючей смеси на основе простого и надежного технического решения.

Для этого известный двигатель с воспламенением от сжатия горючей смеси (например, ЯМЗ-238, КамАЗ-740 дизельные) согласно изобретению оснащается форкамерой, смонтированной на внешней (наружной) части головки блока цилиндров и содержащей полость, сообщенную с основной камерой сгорания при помощи перепускного криволинейного канала, выполненного в виде профилированного сопла Лаваля, выходной участок которого выходит в основную камеру сгорания, а полость форкамеры содержит распыливающую форсунку для впрыска топлива.

Установка форкамеры дизельного ДВС на внешней (наружной) части головки блока цилиндров обуславливает простоту ее конструкции и технического обслуживания, а также высокую доступность и оперативность реализации предложенного технического решения в реальном времени на действующих и новых автодвигателях. Установка в полости форкамеры распыливающей форсунки устраняет необходимость увеличения давления впрыска топливного насоса высокого давления (ТНВД) и оставить его на уровне 300-350 атм, т.к. после впрыска давление в полости форкамеры, после предварительного сгорания топливной смеси, может достигать более 1000 атм, что обусловлено геометрическими и конструктивно-прочностными характеристиками головки блока цилиндров и форкамеры. Выполнение перепускного канала в виде профилированного сопла Лаваля обеспечит наивысшую (сверхзвуковую) скорость истечения топливно-воздушной смеси в цилиндр двигателя и ее наилучшие дисперсность и распыление, что приведет к оптимальным параметрам смесеобразования и сгорания топлива и, как следствие, к снижению расхода топлива, токсичности выхлопных газов и высокому КПД двигателя автомобиля.

Компактная, легко и быстро монтируемая и демонтируемая конструкция форкамеры обеспечит простоту ее производства, эксплуатации и технического обслуживания, низкую себестоимость и доступность широкому потребителю, решение актуальных экологических проблем автотранспорта.

Предложенное техническое решение не известно из доступных источников информации уровня техники, из которого явным образом не следует для специалиста-двигателестроителя и промышленно легко осуществимо для производства форкамерно-факельных систем ДВС, то есть соответствует критериям патентоспособности.

Сущность изобретения поясняется чертежом (фиг.1), который имеет чисто иллюстративное значение и не ограничивает объема прав совокупности существенных признаков формулы изобретения, где изображены: форкамера 1, смонтированная на наружной части головки 2 блока цилиндров 3, содержащая полость 4 с установленной распыливающей форсункой 5, перепускной канал 6, выполненный в виде профилированного сопла Лаваля с контуром, образованным плавной кривой и состоящим из входного 7 и выходного 8 участков.

По совокупности конструктивных признаков форкамера представляет собой импульсный реактивый двигатель, работающий в заторможенном (обращенном) режиме, в котором окислитель (воздух) подается через реактивное сопло.

Входной участок 7 перепускного канала 6 имеет образующую в виде гладкой кривой, форма которой может быть определена, например, по известному соотношению Витошинского, а контур выходного участка 8 может быть построен известным методом характеристик. Сопряжение образующих этих участков можно выполнить по дуге эллипса.

Устройство функционирует следующим образом. На такте сжатия ДВС сжатый воздух при Т˜700-900°С из основной камеры сгорания через перепускной канал 6 поступает в полость 4 форкамеры и заполняет ее. В момент впрыска из распылителя форсунки 5 в полость 4 впрыскивается распыленное топливо, где воспламеняется и частично сгорает, температура в полости форкамеры повышается до 1500-2000°С, а давление поднимается до величины более 1000 атм. Раскаленные продукты предварительного сгорания за счет сильного перепада давлений на входе и выходе перепускного канала 6 истекают со сверхзвуковой скоростью в основную камеру сгорания, где интенсивно перемешиваются со сжатым воздушным зарядом и эффективно догорают при наивысшей скорости сгорания топлива и максимальной полноте окисления топлива, обеспечивая повышенное давление на поршень и минимальную токсичность продуктов сгорания в цилиндре ДВС.

Ограниченное сообщение полости форкамеры 4 с объемом цилиндра ДВС за счет малого сечения перепускного канала 6 существенно снижает возможность коррозийного запирания отверстий распылителя форсунки 5 вследствие образования пускового конденсата или их закоксовывания от пригарания масляных брызг, что повышает надежность работы топливной аппаратуры ДВС.

Использование настоящего изобретения обеспечивает надежный пуск дизельного ДВС, устойчивость и мощность его работы на бедных топливно-воздушных смесях при снижении выхлопных газов в десятки раз и снижение скорости разрушения озонового слоя Земли, так как дизельные ДВС составляют более 50% единиц автотранспортной техники всех стран мира.

Форкамера двигателя внутреннего сгорания с воспламенением от сжатия, содержащая полость, сообщенную с основной камерой сгорания перепускным каналом, отличающаяся тем, что она смонтирована на наружней части головки блока цилиндров, содержит установленную в полости распыливающую форсунку и сообщена с основной камерой сгорания двигателя при помощи перепускного канала, выполненного в виде профилированного сопла Лаваля, причем входной участок перепускного канала имеет образующую в виде гладкой кривой, форма которой определяется по соотношению Витошинского, а сопряжение входного и выходного участков выполнено по дуге эллипса.

www.findpatent.ru

Форкамера двигателя внутреннего сгорания

Изобретение относится к производству двигателей внутреннего сгорания, конкретно - к системам топливоподачи и воспламенения топлива в цилиндрах. Форкамера двигателя внутреннего сгорания, содержащая полость, боковые факельные каналы, выполненные под углом к продольной оси и тангенциально к поверхности его стенки, и осевой факельный канал, отличается тем, что внутри боковых факельных каналов установлены кольцевые постоянные магниты. Боковые факельные каналы выполнены под углом от 5 до 30° к оси. Боковые факельные каналы выполнены по часовой стрелке. Количество боковых факельных каналов находится в диапазоне от 4 до 7. Диаметр осевого факельного канала выполнен равным или больше диаметра боковых факельных каналов. Изобретение обеспечивает использование низкооктановых бензинов, повышение эффективности зажигания, особенно при низких температурах и в сырую погоду. 4 з.п. ф-лы, 3 ил., 2 табл.

 

Изобретение относится к машиностроению, конкретнее к двигателям внутреннего сгорания, к способам и устройствам интенсификации сгорания топлива в двигателях внутреннего сгорания (ДВС). Проблема снижения токсичности выхлопных газов напрямую связана с эффективностью сгорания топливовоздушной смеси (ТВС) в камерах сгорания ДВС. Улучшение степени сгорания ТВС путем интенсификации работы двигателя приведет к снижению токсичности отходящих выхлопных газов и улучшит чистоту атмосферного воздуха.

Известны различные способы интенсификации работы ДВС, сущность которых сводится к регулировкам рабочего процесса: состава смеси, опережения зажигания, степени сжатия, перекрытия клапанов, количества свечей и т.д. Проблема заключается в том, что при проектировании современного ДВС учитываются одновременно все эти способы и тем самым дальнейшее совершенствование ДВС по повышению полноты сгорания и снижению эмиссии токсичных веществ практически исчерпано (книга В.А.Звонова. Токсичность двигателя внутреннего сгорания, М.: Машиностроение, 1981, с.80...91). Применение катализаторов в системе выхлопа может значительно уменьшить эмиссию токсичных веществ, но приводит к ухудшению его экономичности. Практически все способы по интенсификации перемешивания топливо-воздушной смеси одновременно ухудшают экономические показатели ДВС.

Наиболее распространены способы и устройства улучшения подготовки ТВС путем впрыскивания топлива через форсунку с электромагнитным клапаном в поток воздуха и смешивания определенных пропорций топлива и воздуха в форкамере перед впускным клапаном двигателя с последующим впрыском ТВС через впускной клапан в камеры двигателя (книга А.Р.Спинова "Системы впрыска бензиновых двигателей", М, 1994 г.). Благодаря наличию бортового компьютера, датчиков токсичности, расхода топлива и воздуха, температуры способ позволяет интенсифицировать работу ДВС и снизить расход топлива и токсичность отходящих выхлопных газов ДВС. Недостаток аналога состоит в несовершенстве технологии смешивания ТВС и ее воспламенения существующим электроискровым способом в камерах сгорания двигателя.

Известны способы и устройства интенсификации работы ДВС путем модернизации способов и устройств электроискрового зажигания ТВС в камерах (Статья "Из искры возгорится пламя", авторы - Ю.Соловьев, Л.Голованов, "Авторевю", N 17, 1996 г.). Сущность предложений сводится к модернизации электросвечей зажигания путем изменения их конструкций, технологии напыления на них износостойких покрытий. Достоинства новой электросвечи с одним центральным электродом, предложенной шведской фирмой SAAB, состоят в повышении срока службы таких электросвечей, улучшении процесса воспламенения ТВС в камерах сгорания двигателя. Их недостатки состоят в недостаточной интенсификации процесса воспламенения и горения ТВС в камерах при реализации известных способов электроискрового воспламенения смеси от существующих систем электрозажигания, основанных на получении высоковольтных импульсов напряжения малой длительности с использованием эффекта самоиндукции при коммутации тока в индуктивной катушке зажигания, ввиду малого времени существования искры, ограниченного электромагнитной постоянной времени существующей индуктивной катушки зажигания, и ввиду отсутствия операций по предварительному приготовлению ТВС к наилучшему сгоранию в камерах двигателя (отсутствуют операции озонирования воздуха, электростатического распыления топлива в камеры сгорания, электрополевого дожига несгоревших компонент ТВС на такте выпуска выхлопных газов).

Известны способ и устройство интенсификации работы бензинового ДВС путем впрыска топлива через специальные форсунки непосредственно в камеры сгорания ДВС в момент наивысшего сжатия воздуха в соответствующей камере сгорания с последующим электроискровым зажиганием ТВС от обычных электросвечей зажигания (Статья М. Кадакова "Новый двигатель Mitsubishi в "Авторевю" № 2, 1996 г.). Интенсификация работы ДВС достигается благодаря улучшению распыления и перемешивания топлива с воздухом, повышению степени сжатия смеси до 12:1 в связи с охлаждением воздуха при впрыскивании топлива, устранением эффекта детонации. Фактически разработан и испытан бензиновый квазидизель. Экспериментально подтверждено повышение мощности такого двигателя на 10%, снижение токсичности выхлопных газов на 30-90% по отдельным составляющим, возможность работы на обедненных ТВС, что дополнительно улучшит экологию двигателя при движении автотранспорта в городе.

Недостатки предложенного способа и устройства состоят в усложнении конструкции ДВС (трудности конструктивного размещения форсунок высокого давления в камерах ДВС, что требует изменения конструкции двигателя) и в несовершенстве способа воспламенения ТВС обычным электроискровым способом, который не обеспечивает полное сгорание смеси в камерах, особенно на высоких оборотах двигателя.

Известна система подачи топлива с электронным устройством управления для ДВС, содержащая двигатель внутреннего сгорания с камерами сгорания, поршнями, впускными и выпускными клапанами, включающий систему подготовки топливовоздушной смеси и впрыска топлива в камеры сгорания с регуляторами подачи топлива и окислителя, систему электроискрового воспламенения топливовоздушной смеси, состоящую из высоковольтного преобразователя напряжения, распределителя высоковольтных импульсов с соответствующими регулятором угла опережения электрозажигания и электросвечами по числу камер сгорания, датчики расхода топлива и окислителя, их температуры, оборотов двигателя, токсичности выхлопных газов, а также логически функциональный оптимизатор режимов, присоединенный по выходу к регуляторам подачи топлива и окислителя, их температуры, оборотов двигателя, токсичности выхлопных газов, а также логически функциональный оптимизатор режимов, присоединенный по выходу к регуляторам подачи топлива и окислителя, регулятору угла опережения зажигания смеси, а по входу - к выходам указанных датчиков по патенту США N 4596220, F02D 43/00, 1986. Из данного источника информации известен также способ интенсификации работы ДВС путем подготовки топливовоздушной смеси, впрыска топлива, воспламенения и сжигания.

Известны способ и устройство для интенсификации и управления процессом горения в ДВС по патенту РФ № 2153814, прототип, путем воздействия сильным электрическим полем на топливо-воздушную смесь в камерах сгорания цилиндров ДВС.

Недостатком этого устройства и способа является недостаточная эффективность воздействия электрического поля на горение, полноту сгорания и эмиссию токсичных веществ в продуктах сгорания. Кроме того, создание мощных полей потребует мощных источников энергии мощностью более 5 кВт и является небезопасным в эксплуатации.

Значительный интерес для потребителя представляет применение форкамер, свинчиваемых с электрическими свечами. Это позволяет использовать их в ранее выпущенных в эксплуатацию ДВС без изменения конструкции поршневой группы. При этом стоимость форкамер очень невелика.

Известна форкамера двигателя внутреннего сгорания по патенту СССР № 691102, МПК F02 В 19/18, заявитель иностранная фирма "Тойота" (Япония). Форкамера выполнена в виде местного расширения, сообщенного посредством канала с основной камерой сгорания, в этом канале установлена свеча зажигания. Недостаток: сложность конструкции двигателя и невозможность переоборудования серийного двигателя для улучшения его работы.

Известна форкамера по А.С. СССР № 259553, которая выполнена из трех деталей, образующих полость предварительного воспламенения топливо-воздушной смеси. Недостатком этой форкамеры является сложность конструкции, необходимость герметизации деталей форкамеры между собой и большие габариты устройства.

Известна форкамера двигателя внутреннего сгорания по А.С. СССР № 1370269, содержащая устанавливаемую на свечи зажигания цилиндрическую деталь, образующую между торцом свечи и торцом детали полость форкамеры. На торце детали выполнен осевой факельный канал. Недостаток этой форкамеры, его низкая эффективность, обусловлен наличием только одного осевого канала и отсутствием закрутки потока топливо-воздушной смеси.

Этот недостаток устранен в форкамере двигателя внутреннего сгорания по патенту РФ на полезную модель № 23918, 2002 г. (прототип). Форкамера содержит полость, переходный канал, сообщенный с полостью соединительным участком, поверхность которого выполнена в форме тела вращения и сопряжена с поверхностями стенок полости и переходного канала, и боковые факельные каналы, выполненные в стенке переходного канала под углом к его продольной оси и тангенциально к поверхности его стенки, при этом соединительный участок выполнен радиусным.

Недостатки этой форкамеры:

1. Низкая эффективность воспламенения основного заряда топлива, которая объясняется тем, что факельные струи выходят из тангенциальных отверстий и распространяются в стороны, а распространение струй в осевом направлении ограничено из-за отсутствия осевого факельного канала. Следствием этого является низкая экономичность двигателя, оборудованного таким устройством, его перегрев, детонация и плохой запуск в зимнее время и в сырую погоду.

2. Сложность конструкции и ее нетехнологичность, обусловленные наличием переходного канала и соединительного участка сложной конфигурации.

Задачи создания изобретения: повышение полноты сгорания, снижение эмиссии вредных веществ, использование низкооктановых бензинов и повышение эффективности воспламенения, особенно при низких температурах и в сырую погоду без дополнительных затрат энергии и усложнения конструкции ДВС.

Решение указанных задач достигнуто за счет того, что форкамера двигателя внутреннего сгорания, содержащая полость, боковые факельные каналы, выполненные под углом к продольной оси и тангенциально к поверхности его стенки, и осевой факельный канал, отличается тем, что внутри боковых факельных каналов установлены кольцевые постоянные магниты. Боковые факельные каналы выполнены под углом от 5 до 30° к оси. Боковые факельные каналы выполнены по часовой стрелке. Количество боковых факельных каналов находится в диапазоне от 4 до 7. Диаметр осевого факельного канала выполнен равным или больше диаметра боковых факельных каналов.

Проведенные патентные исследования показали, что предложенное техническое решение обладает новизной, изобретательским уровнем и промышленной применимостью, т.е. удовлетворяет критериям изобретения.

Для реализации предложенного изобретения требуется серийное оборудование и недифицитные материалы. Возможность достижения заявленного результата подтверждена проведенными экспериментами.

Сущность изобретения поясняется на чертежах фиг.1...3, где:

на фиг.1 приведен ДВС с форкамерой,

на фиг.2 приведена схема форкамеры,

на фиг.3 приведен разрез по А-А.

На простейшем примере одноцилиндрового ДВС показана схема установки форкамеры.

ДВС (двигатель внутреннего сгорания) содержит по меньшей мере один цилиндр 1 с поршнем 2, который установлен на шатуне 3 и имеет поршневые кольца 4. В верхней части цилиндра установлены впускной клапан 5 и свеча зажигания 6. Свеча зажигания 6 ввернута в форкамеру ДВС 7. Форкамера ДВС 7 установлена по резьбе в головке цилиндров ДВС 8. ДВС также содержит систему подвода топливо-воздушной смеси 9. Внутри цилиндра 1 образуются вихри ТВС около впускного клапана и под форкамерой соответственно 10 и 11.

Форкамера двигателя внутреннего сгорания 7 (фиг.2) содержит стенку 12, полость «Б», боковые факельные каналы 13 и осевой факельный канал 14. В форкамеру двигателя внутреннего сгорания 7 ввернута свеча зажигания 6. Форкамера двигателя внутреннего сгорания 7 имеет наружную резьбу 15 для вворачивания в корпус головки цилиндра 8 и внутреннее резьбовое отверстие 16 для вворачивания свечи зажигания 6. Внутри всех боковых факельных каналов 13 установлены кольцевые постоянные магниты 17.

Угол наклона боковых факельных каналов 13 по отношению к оси составляет от 5 до 30°. Число боковых факельных каналов от 4 до 7. Диаметр осевого факельного канала 14 D0 равен или больше диаметра боковых факельных каналов d1.

При эксплуатации форкамеру ДВС 7 вворачивают в корпус головки цилиндров 8, потом в нее вворачивают свечу зажигания 6.

Для подтверждения оптимальности выбранной конструкции и соотношений размеров и углов наклона боковых факельных каналов к оси авторами-заявителями были изготовлены и испытаны несколько вариантов форкамер на двигателе ВАЗ 2106.

Обоснование выбора угла наклона к оси боковых факельных каналов приведено в табл.1.

Таблица 1
Обоснование выбора угла наклона боковых факельных каналов к оси
п.п.Диапазон углов наклона боковых факельных каналов к осиСнижение расхода топлива в %Перегрев двигателяЗапуск двигателя
16ДаНеуд
25...30° (оптимальн)17НетХор
330...45°12ДаУд
445...85°0ДаУд.
590°0-Не запускается

Из табл.1 видно, что оптимальный угол наклона боковых факельных каналов к оси 5...30°. При этом обеспечивается оптимальное сочетание всех характеристик.

Диаметр осевого факельного канала должен быть выполнен или равным или больше диаметра боковых факельных отверстий. Это необходимо, чтобы площадь поперечного сечения осевого факельного канала 4 была соизмерима с площадью отверстий боковых факельных каналов 3. В противном случае наличие осевого факельного канала перестает влиять на работу форкамеры.

Обоснование выбора соотношения диаметров осевого и боковых факельных каналов приведено в табл.2.

Таблица 2
Обоснование выбора диаметра факельных каналов
№ п.п.Соотношение диаметров факельных каналовСнижение расхода топлива, %Перегрев двигателяЗапуск двигателя
1D0=06ДаНеудовлетворительный
2D0<d18ДаНеудовлетворительный
3D0≥d112НетХороший

Из табл.2 видно, что оптимальное соотношение диаметров факельных каналов D0≥d1 обеспечивает оптимальное сочетание основных характеристик двигателя.

Предложенная форкамера двигателя внутреннего сгорания работает следующим образом.

Предварительно из головки блока цилиндров выворачиваются все свечи 5. Свечи 5 вворачиваются во внутреннее фезьбовое отверстие 7 устройства. Устройство вворачивается посредством наружной резьбы 6 в головку цилиндра (на фиг.1...3 головка цилиндра не показана).

При работе, после впрыска топлива в цилиндр двигателя, его часть поступает в форкамеру и воспламеняется свечой зажигания 6. В первую очередь воспламеняется доза топливо-воздушной смеси в форкамере 7, вырабатывается мощный тепловой импульс, достаточный для воспламенения остального топливного заряда в цилиндре 1 двигателя внутреннего сгорания. Тангенциальное расположение боковых факельных каналов 13 создает вихревое движение продуктов сгорания в форкамере ДВС 7 топливо-воздушного заряда, обозначенное поз.11 на фиг.1. Наклон этих каналов под относительно небольшим углом к оси перемещает фронт факела вдоль оси цилиндра. Применение постоянных кольцевых магнитов 17 закручивает электрически заряженные частицы продуктов сгорания, тем самым дополнительно увеличивает турбулентность вихря 11. Столкнувшись, вихри 10 и 11 вызывают воспламенение всего топливного заряда, прошедшего через впускной клапан 6. Сочетание двух видов отверстий: осевого и тангенциальных создает условия эффективного осевого перемещения фронта горения в момент воспламенения, образует турбулентные зоны (микровихри), что повышает полноту сгорания. Применение постоянных магнитов в осевом факельном отверстии 14 и на свече зажигания 6 не дало результата. Кроме того, установка постоянного магнита на свече зажигания привела к потере его магнитных свойств и к эрозии магнита.

Применение изобретения позволило:

- использовать низкооктановые бензины,

- упростить конструкцию ДВС,

- повысить полноту сгорания топлива,

- снизить СО отработанных выхлопных газов,

- предотвратить перегрев двигателя в летнее время года,

- обеспечить надежный запуск двигателя в морозы и при сырой погоде,

- улучшить динамические характеристики автомобиля,

- уменьшить на 12...17% удельный расход топлива для ДВС, оборудованных предложенными форкамерами,

- применять устройство на серийно изготавливаемых ДВС без изменения их конструкции.

В результате потребитель получил возможность экономить время при запуске ДВС и затраты на эксплуатацию автомобилей и стационарных ДВС. Другие эксплуатационные характеристики ДВС не ухудшились.

1. Форкамера двигателя внутреннего сгорания, содержащая полость, боковые факельные каналы, выполненные под углом к продольной оси и тангенциально к поверхности его стенки, и осевой факельный канал, отличающаяся тем, что внутри боковых факельных каналов установлены кольцевые постоянные магниты.

2. Форкамера двигателя внутреннего сгорания по п.1, отличающаяся тем, что боковые факельные каналы выполнены под углом от 5 до 30° к оси.

3. Форкамера двигателя внутреннего сгорания по п.1 или 2, отличающаяся тем, что боковые факельные каналы выполнены по часовой стрелке.

4. Форкамера двигателя внутреннего сгорания по п.1 или 2, отличающаяся тем, что количество боковых факельных каналов находится в диапазоне от 4 до 7.

5. Форкамера двигателя внутреннего сгорания по п.1 или 2, отличающаяся тем, что диаметр осевого факельного канала выполнен равным или больше диаметра боковых факельных каналов.

www.findpatent.ru

форкамерный двигатель — с русского

См. также в других словарях:

translate.academic.ru


Смотрите также