ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Бесколлекторные двигатели для аккумуляторного инструмента. Бесколлекторные двигатели


Бесколлекторные двигатели | Stepmotor

Бесколлекторные двигатели с редуктором:

Модель Напряжение питания, В Номинальная скорость, Об/мин Крутящий момент, Кг*см Мощность, Вт Максимальный ток, А
FL57BLS-JB 36 27 — 1333 6,6 — 50 92 11.5
FL86BLS-JB 48 20 — 1000 42,0 — 250 440 33
IG-80WGM 24 625 — 3,9 6 — 150 51 3,2 (номин)
IG-90WGM 24 625 — 3,9 11 — 180 103 6 (номин)

Бесколлекторные двигателиКонструкция бесколлекторного двигателя представляет собой ротор с магнитами (постоянными) и статор с обмотками. Ток в этом типе двигателей постоянный, а вместо коллектора используется электронное оборудование. Благодаря отсутствию в конструкции силовой установки коллектора двигатель не только имеет более компактные размеры и легкий вес, но и имеет значительно меньший нагрев — а вместе с этим уменьшаются и потери при работе. В конструкции бесколлекторногодвигателя используется мощный неодимовый магнит*, благодаря которому размеры силовой установки очень компактные.

*Неодимовые магниты выполнены из редкоземельных металлов и используются в различных областях промышленности. Они отличаются отличным показателем потери намагниченности: потеря намагниченности за 10 лет составляет всего 1-2%. Чем больше размеры магнита и площадь его соприкосновения с поверхностью, тем выше должно быть усилие для его отсоединения от поверхности.

Бесколлекторные двигатели обладают улучшенными показателями мощности на килограмм веса (собственного) и широким диапазоном скорости вращения; впечатляет и КПД этой силовой установки. Немаловажно, что от установки практически не излучаются радиопомехи. Это позволяет разместить рядом с ней чувствительное к помехам оборудование без опасений за корректность работы всей системы.

Расположить и использовать бесколлекторный двигатель можно в том числе и в воде, это не повлияет на него отрицательным образом. Также его конструкция предусматривает расположение и в агрессивных средах. Однако в этом случае следует заранее продумать месторасположение блока управления. Помните, что только при бережной аккуратной эксплуатации силовой установки она будет работать на вашем производстве эффективно и бесперебойно на протяжении долгих лет.

Характеристики БДДлительный и кратковременный режим работы — основные для БД. Например для эскалатора или конвейера подходит длительный режим работы, в котором электродвигатель работает статично в течение долгого количества часов. Для длительного режима работы предусмотрена повышенная внешняя теплоотдача: тепловыделения в окружающую среду должны превышать внутренние тепловыделения силовой установки.

В кратковременном режиме работы двигатель за время своей работы не должен успеть нагреться до максимального значения температуры, т.е. должен быть выключен до наступления этого момента. Во время перерывов между включениями и работой двигателя он должен успеть остыть. Именно так работают бесколлекторные двигатели в подъемных лифтовых механизмах, электробритвах, сушилках фенах и другом современном электрооборудовании.

Сопротивление обмотки двигателя связано с коэффициентом полезного действия силовой установки. Максимального КПД можно достигнуть при наименьшем сопротивлении обмотки.

Максимальное рабочее напряжение — это предельное значение напряжения, которое можно подавать на обмотку статора силовой установки. Максимальное рабочее напряжение напрямую связано с максимальными оборотами двигателя и и максимальным значением тока обмотки. Максимальное значение тока обмотки лимитировано возможностью перегрева обмотки. Именно по этой причине необязательным, но рекомендуемым условием эксплуатации электродвигателей является отрицательная температура окружающей среды. Она позволяет значительно компенсировать перегрев силовой установки и увеличить длительность ее работы.

Максимальная мощность двигателя — это предельная мощность, которой может достигнуть система за несколько секунд. Стоит учитывать, что длительная работа электродвигателя на максимальной мощности неизбежно приведет к перегреву системы и сбою в его работе.

Номинальная мощность — это та мощность которую может развивать силовая установка в течение периодичного заявленного производителем разрешенного периода работы (одно включение).

Угол опережения фазы предусмотрен в электродвигателе из-за необходимости компенсации на задержку переключения фаз.

Преимущества бесколлекторных двигателейВсе БД имеют высокий срок службы механических элементов. Достигнуть этого позволила ось, зафиксированная на шарикоподшипниках, исключившая из конструкции какие-либо трущийся друг об друга элементы.

Размагничивание магнитов в бесколлекторных двигателях происходит крайне медленно и составляет не более 1% в 10 лет. Таким образом вывести силовую остановку из строя можно только при перепаде напряжения в контроллере. Избежать данного развития событий позволяет защита по току в контроллере.

1. Долгий срок службыВысокий срок службы силовой установки данного типа обусловлен неизменным режимом работы на высокой скорости. Кроме того отсутствие какого-либо трения деталей, а следовательно и отсутствие стачивания и нарушения механизмов работы положительно влияют на работу силовой установки бесколлекторного типа.

2. Высокая надежностьСрок работы бесколлекторный двигателей различного типа составляет от 20,000 часов. Чем точнее будет первичная настройка и аккуратнее его использование, тем дольше двигатель будет использоваться. Единственными элементами, ограничивающим ресурс бесколлекторного электродвигателя, являются подшипники.

3. Повышенное быстродействие, динамичность4. Высокая точность позиционирования5. Низкие перегревы при перегрузках6. Пониженный уровень электромагнитных шумов7. Высокая перегрузочная способность по моменту8. Возможность изменения частоты вращения в широком диапазоне9. Линейные загрузочные характеристики

Недостатки: управление бесколлекторным двигателем Управление бесколлекторным двигателем обуществляет специальный электронный блок управления, который также называют регулятором. Он позволяет осуществлять управление оборотами двигателя, подавать напряжение и настроить вращение силовой установки.

Как правило, именно регулятор бесколлекторного двигателя «забирает» на себя основную стоимость силовой установки. Однако без электронного блока управления настроить и запустить двигатель, так же как и запрограммировать управление бесколлекторным двигателем невозможно. Именно электронное оборудование подает постоянное напряжение на определенные обмотки статора. Также значительно как электронный регулятор на стоимость БД влияют и неодимовые магниты, использующиеся в конструкции установки.

Бесколлекторные двигатели имеют достаточно сложную конструкцию, поэтому любой БД, в том числе трехфазовый (наиболее часто использующийся в производстве), имеет сложный процесс управления.

Устройство БДВ зависимости от месторасположения магнитов в силовой установке существует два типа электродвигателей: «Инраннер» — с магнитами, расположенными во внутренней части, и «Аутраннер» — с магнитами во внешней части, которые вращаются во внешней плоскости статора и обмотки.

В зависимости от требующихся характеристик в электродвигателе применяется одна или другая схема бесколлекторного двигателя. Если у двигателя малое количество полюсов и высокие обороты, то используют схему работы «Инраннер». В этом типе схемы электродвигатель одновременно выполняет функцию корпуса: поэтому непосредственно на него могут быть зафиксированы крепежные элементы.

В съеме бесколлекторного двигателя «Аутраннер» предполагаются невысокие обороты и высокий момент. Вращение в конструкции осуществляет внешняя часть. Закрепить данный тип электродвигателя можно при помощи деталей статора или за незадействованную во вращении осевую часть.

Фазы бесколлекторных двигателейФаза бесколлекторного двигателя обеспечивает плавность вращения магнитного поля, чем больше фаз — она же является обмоткой электродвигателя — тем более плавно осуществляется вращение. Как правило, используются трехфазовые бесколлекторные двигатели, однако существуют и одно- и двух- и четырехфазовые силовые установки. Чем больше обмотки — тем выше сложность, но и лучше показатель эффективности.

Распространенность трехфазовых электродвигателей обусловлена соотношением их эффективности к значению сложности. Обычные трехфазовые бесколлекторные двигатели имеют три провода, если же это электродвигатель с датчиками положения, то для них используется еще один комплект состоящий из пяти проводов.

Напряжение подается на две обмотки из трех, тем самым создается шесть путей подачи напряжения на обмотки. Шаг поворота составляет 60 градусов.

Бесколлекторные двигатели с датчиками положенияЕсли в конструкции используются нагрузки на валу установки, то следует использовать двигатель с датчиком положения. Все электродвигатели в области подъемных механизмов, а также в электротранспорте должны быть оснащены датчиками положения.

Стоит помнить, что если в конструкции при старте должны быть полностью исключены колебания оси двигателя (вращения), то обойтись без датчиков положения в силовой установке не удастся. Наиболее распространенными датчиками движения в электродвигателе являются датчики, работа которых основана на эффекте Холла. Расположение датчиков должно способствовать воздействию магнитов ротора, угол между датчиками составляет 120 градусов (электро).

Датчики положения могут быть расположены как внутри так и снаружи силовой установки. Это позволяет в некоторых случаях самостоятельно дооснастить бесколлекторные электродвигатели без встроенных датчиков положения дополнительно этими внешними датчиками.

В некоторых случаях требуется чтобы датчики работали в режиме реверса, т.е. вращались в обратном направлении, для этого следует использовать дополнительный комплект датчиков перемещения. Чтобы они заработали в режиме реверса следует настроить их на обратный ход.

Применение бесколлекторных электродвигателейОсновным преимуществом БД является отсутствие нагрева и шума во время работы и это при высокой производительности. В первую очередь бесколлекторные двигателя используются в медицинском оборудовании. Большинство современного стоматологического оборудования работает именно с помощью бесколлекторный электродвигателей, поскольку в этой области возможно использовать только тихие высокопроизводительные электромоторы без нагрева.

Наружная реклама: рекламные щиты, витрины, банеры-жалюзи с изменяющимися изображениями используют в своей конструкции бесколлекторные двигатели. В этом случае БД применяются для автоматической работы банеров и вращения конструкций.

Электронное автомобильное оборудование также не обходится без бесколлекторных двигателей. Электростеклоподъемники, «дворники» или электростеклоочистители, омыватели фар и электрорегуляторы кресел также работают при помощи БД.

Отдельно отметим нефтегазовую промышленность, в которой силовые элементы в запорном оборудовании не могут обойтись без БД, поскольку только они гарантированно не имеют искрообразующие части, использовать которые категорически запрещено в данном типе производства.

Купить бесколлектроные двигателиМы делаем производство простым в управлении и надежным! Бесколлекторные двигатели подходят как для автоматизации крупных производств, так и любителей электроуправляемых моделей, собрать которые можно в домашних условиях.

Наш Торговый Дом занимается розничными и оптовыми продажами мотор редукторов, шаговых двигателей, линейных двигателей, цилиндрических мотор редукторов, а также бесколлекторных двигателей. Мы осуществляем полный цикл продажи от первичной консультации по требующемуся оборудованию до ее внедрения и установки на вашем производстве.

Мы всегда готовы предоставить вам бесплатную подробную консультацию по новинкам, появившимся на рынках мира, и подобрать для вас подходящий вариант силовой установки или другого оборудования. Мы работаем с самыми крупными поставщиками из Азии, Европы и СНГ, поэтому предлагаем для вас самые доступные цены на силовое оборудование.

Если вы хотите купить бесколлекторный двигатель для робототехники или автоматического управления, то можете оставить запрос на сайте Торгового Дома «Степмотор» или связаться с нами по бесплатному номеру телефона по России: 8 800 5555 068.

stepmotor.ru

Бесколлекторные двигатели — Паркфлаер

Немного из истории:

Главная проблема всех двигателей – это перегревание. Ротор вращался внутри какого-нибудь статора, и поэтому тепло от перегрева никуда не уходило. Людям пришла в голову гениальная идея: вращать не ротор, а статор, который при вращении охлаждался бы воздухом. Когда создали такой двигатель, он стал широко использоваться в авиации и судостроении, и поэтому его прозвали Вентильным двигателем. 

Вскоре был создан электрический аналог вентильного двигателя. Назвали его бесколлекторным мотором, потому что у него не было коллекторов (щеток). 

 Бесколлекторный двигатель.Бесколлекторные (brushless англ.) электродвигатели пришли к нам сравнительно недавно, в последние 10-15 лет. В отличие от коллекторных моторов они питаются трехфазным переменным током. Бесколлекторные двигатели эффективно работают в более широком диапазоне оборотов и имеют более высокий КПД. Конструкция двигателя при этом относительно проще, в ней нет щеточного узла, который постоянно трется с ротором и создает искры. Можно сказать, что бесколлекторные моторы практически не изнашиваются. Стоимость бесколлекторных двигателей несколько выше, чем коллекторных. Это вызвано тем, что все бесколлекторные моторы снабжены подшипникам и, как правило, изготовлены более качественно.

По конструкции бесколлекторные моторы делятся на две группы: inrunner (произносится как "инраннер") и outrunner (произносится как "аутраннер"). Двигатели первой группы имеют расположенные по внутренней поверхности корпуса обмотки, и вращающийся внутри магнитный ротор. Двигатели второй группы - "аутраннеры", имеют неподвижные обмотки, внутри двигателя, вокруг которых вращается корпус с помещенными на его внутреннюю стенку постоянными магнитами. Количество полюсов магнитов, используемых в бесколлекторных двигателях, может быть разным. По количеству полюсов можно судить о крутящем моменте и оборотах и двигателя. Моторы с двухполюсными роторами имеют наибольшую скорость вращения при наименьшем крутящем моменте.

Принцип работы.

В отличие от щёточного электродвигателя постоянного тока, коммутация в бесколлекторном двигателе (БД) осуществляется и контролируется с помощью электроники. Принцип работы БД основан на том, что контроллер БД коммутирует обмотки статора так, чтобы вектор магнитного поля статора всегда был под углом 120 градусов к вектору магнитного поля ротора.  (на катринке статор перепутан с ротором) Электрическая машина состоит из неподвижной части — статора и подвижной части — ротора.

Применение.

Данный тип двигателя создан с целью улучшения свойств электродвигателей постоянного тока. Высокие требования к исполнительным механизмам (в частности, высокооборотных микроприводов точного позиционирования) обусловили применение специфических двигателей постоянного тока: бесконтактных трехфазных двигателей постоянного тока.  

 

 

Достоинства и недостатки бесколлекторных двигателей:

Достоинства:-Частота вращения изменяется в широком диапазоне-Возможность использования во взрывоопасной и агрессивной среде-Большая перегрузочная способность по моменту-Высокие энергетические показатели (КПД более 90 %)-Большой срок службы, высокая надёжность и повышенный ресурс работы за счёт отсутствия скользящих электрических контактов

Недостатки:-Относительно сложная система управления двигателем-Высокая стоимость двигателя, обусловленная использованием дорогостоящих материалов в конструкции ротора (магниты, подшипники, валы)

Создание бесколлекторного двигателя (1):

Однажды я уже писал про создание бесколлекторного двигателя из старого колекторного двигателя: http://www.parkflyer.ru/blogs/view_entry/598/

Испытания показали:Тяга с винтом 8х6 = 533 грамма,Частота вращения = 5433 об/мин,Потребляемая мощность = 120 ватт (это только при холостом ходу!), а с винтом вообще 330 ватт. Это очень плохие показатели, и поэтому было решено создать новый с улучшенными характеристиками бесколлекторный двигатель. (его КПД = 23%)

Создание бесколлекторного двигателя (2):

На самом деле нельзя утверждать, что новый двигатель полностью создан мною, т.к. сделан он из старого, сломанного и сгоревшего бесколлекторного двигателя, можно сказать, что он восстановлен (починен и перемотан системой треугольника). Отличается он от первого тем, что у него вместо 3 зубьев 12, другая система обмотки и более правильная конструкция с использованием подшипников. О том как перематывать двигатели я вам рассказывать не буду, а просто дам ссылку об этом: http://rc-aviation.ru/mtech/735-remont/1176-peremotka-dvigatelya, а также дам вам совет перематывайте не одной проволкой, а косичкой из нескольких, более тонких проволок.

 

 

Испытания показали:Тяга с винтом 8х6 = 754 грамма,Частота вращения = 11550 об/мин,Потребляемая мощность = 9 ватт (без винта), 101 ватт (с винтом), 

Мощность и КПД 

Мощность можно вычислить вот таким способом:1) Мощность в механике вычисляется по такой формуле: N= F*v, где F - сила, а v - скорость. Но так как, винт находится в статическом состояние, то движения нет, кроме вращательного. Если этот мотор установить на авиамодель, то можно было бы замерить скорость (она равна 12 м/с) и посчитать полезную мощность:N полез= 7.54*12= 90.48 ватт2) КПД электрического двигателя находится по такой формуле: КПД= N полезной/N затраченной *100%, где N затрат= 101 ваттКПД= 90.48/101 *100%= 90%В среднем КПД бесколлекторных двигателей реально и колеблется около 90% (самый большой КПД достигнутый данным видом моторов равен 99.68%) 

Характеристики двигателя:

Напряжение: 11.1 вольтОбороты: 11550 об/минМаксимальная сила тока: 15АМощность: 200 ваттТяга: 754 грамм (винт 8х6) 

 

Заключение:

Цена любой вещи зависит от масштабов ее производства. Производители бесколлекторных моторов множатся, как грибы после дождя. Поэтому хочется верить, что в скором будущем цена на контроллеры и бесколлекторные двигатели упадет, как упала она на аппаратуру радиоуправления... Возможности микроэлектроники с каждым днем все расширяются, размеры и вес контроллеров постепенно уменьшаются. Можно предположить, что в скором будущем контроллеры начнут встраивать прямо в двигатели! Может, мы доживем до этого дня...  

www.parkflyer.ru

Бесколлекторные двигатели с датчиками Холла (Sensored brushless motors)

Мы уже ознакомились с устройством бесколлекторного двигателя и теперь разберемся, как ним управлять.

Мостовая схема ключей

Двигатель имеет три вывода (три фазы) на которые нам придется подавать в разные моменты времени “+” или “-” питания. Это реализуется с помощью электронных ключей, включенных по  мостовой схеме:brushless3_1Замыкая ключ SW1 подаем “+” на фазу А, а замыкая SW6 подаем “-” на фазу С. Таким образом, ток потечет от “+” батареи через фазы А и С. Для обеспечения обратного направления, открываем SW5 и SW2. В этом случае ток потечет от “+” батареи через фазы С и А в обратном направлении. При работе двигателя одновременно должен быть открыт только один верхний ключ и один нижний ключ. При смене состояния нужно сразу выключить пару ключей, выждать время, необходимое для закрытия ключей, и только после этого включить другую пару ключей.

Диаграмма включения ключей

Напряжение на обмотки нужно подавать в зависимости от положения двигателя. Рассмотрим управление двигателем, где в качестве датчиков положения используются датчики Холла. Всего используют 3 датчика с дискретными выходами. Ниже приведена схема, согласно которой нужно подавать напряжение на обмотки в зависимости от сигналов с датчиков.brushless3_3Временная диаграмма:brushless3_4

Таблица включения ключей в зависимости от сигналов датчиков Холла:

brushless3_2

Анимированная демонстрация работы 4 полюсного двигателя:

4-pole-bldc

ШИМ (PWM), частота, переходные процессы

При включении ключей, как показано выше, на двигатель подается полное напряжение питания. При этом двигатель развивает максимальные обороты (мощность). Чтобы обеспечить управление двигателем нужно регулировать напряжение питания двигателя. Изменение действующего напряжения осуществляется с помощью широтно-импульсной модуляции (ШИМ). Т.е. ключи открыты не все время, а открываются, и закрываются с фиксированной частой, но изменяемой скважностью: brushless3_6Таким образом, изменяется действующее напряжение от нулевого до напряжения питания. Чтобы добиться управления оборотами двигателя нужно наложить сигнал ШИМ на сигналы, подаваемые на ключи. Это можно реализовать, например, такой схемой:

brushless3_5Некоторые микроконтроллеры могут аппаратно формировать ШИМ сигнал на нескольких своих выводах. Можно формировать ШИМ для каждого из ключей программно. В этом случае схему можно упростить, и не использовать логических элементов. Частота ШИМ сигнала обычно бывает от 4 до 80 килогерц.

Во время включения и выключения ключей происходят переходные процессы, вследствие чего на ключах выделяется дополнительное тепло. Чем выше частота ШИМ сигнала, тем больше количество переходных процессов за единицу времени, и тем выше потери на ключах. Слишком малая частота может быть не эффективной или не обеспечивать необходимой плавности регулирования.

В случае с двигателями без датчиков, которые будут рассматриваться в следующих статьях, выбор частоты ШИМ сигнала играет очень важную роль.

Потери на ключах

Для уменьшения потерь вследствие переходных процессов на ключах ШИМ сигнал можно подавать только на нижние или только на верхние ключи. Прямые потери на ключах (без учета переходных процессов) можно рассчитать по формуле:

P=R*I2

где:

P – теряемая мощность, которая выделяется в виде теплаR – прямое сопротивление открытого ключаI – ток, протекаемый через ключ.

Очевидно, что чем меньше сопротивление ключей, тем меньше потери на ключах. Уменьшение сопротивления ключей ведет к повышению общего КПД и уменьшению тепловыделения на ключах.

Уровень потерь на ключах имеет квадратичную зависимость от тока.  Уменьшить ток, сохранив при этом общую мощность, можно повысив напряжение питания двигателя.  В качестве примера рассмотрим два варианта:

1. Питание: 50В, ток: 100А, сопротивление ключей: 0,001 Ом. Потери на ключах = 0,001 * 1002 = 10 Вт

2. Питание: 100В, ток: 50А, сопротивление ключей: 0,001 Ом. Потери на ключах = 0,001 * 502 = 2,5 Вт

Т.е. снизив ток вдвое потери на ключах падают в 4 раза.

Угол опережения фаз (timing)

При приложении напряжения к обмотке двигателя, ток в обмотке не может вырасти мгновенно, поскольку обмотка двигателя представляет собой индуктивность. От момента подачи напряжения до достижения тока максимального значения пройдет некоторое время. Аналогично при снятии напряжения понадобится некоторое время пока ток будет уменьшаться до нуля. Это время зависит от индуктивности обмотки двигателя и других конструктивных особенностей двигателя. Таким образом, действие обмотки двигателя несколько запаздывает за управляющим сигналом.

Чтобы компенсировать эту задержку управляющий сигнал на ключи подают с опережением. Опережение управляющего сигнала выражают в угле опережения. Угол опережения может быть от 0 до 30 градусов. Речь идет об электрических градусах (см. Бесколлекторные двигатели постоянного тока. Устройство бесколлекторного двигателя). Угол опережения может отличаться для каждой модели двигателя. Точность установки угла опережения сильно влияет на работу высоко-оборотистых двигателей. На малых скоростях точность установки угла опережения не столь критична.

Настройка угла опережения (timing) выполняется либо перемещением датчиков (некоторые двигатели оборудованы специальным приспособлением) либо корректируется программно средствами регулятора. Если двигатель имеет реверсивный режим (должен обеспечивать вращение в обе стороны), разумнее прибегнуть к программному методу.

Для лучшего понимания смысла угла опережения можно провести аналогию с двигателем внутреннего сгорания, где после подачи искры проходит некоторое время до воспламенения топлива. За это время вал двигателя успевает провернуться на некоторый угол. Для компенсации такой задержки устанавливают угол опережения зажигания.

Статьи по бесколлекторным двигателям:

www.avislab.com

Бесколлекторные двигатели для аккумуляторного инструмента

Бесколлекторные (бесщеточные) двигатели постоянного тока (BLDC – brushless direct current) были изобретены уже давно, но широкое применение они получили всего несколько лет назад – на волне стремительного развития аккумуляторной техники. Электроинструмент с двигателем такого типа обладает целым рядом преимуществ по сравнению с техникой, имеющей традиционные коллекторные двигатели. Как устроены бесщеточные моторы и чем они принципиально лучше щеточных? Слово специалисту – тренеру по продукции компании «Метабо Евразия» Роману Харламову.

Коллекторный двигатель

Напомним, что работа электродвигателя основана на принципе электромагнитной индукции, в результате которой в его неподвижной части (статоре) при подаче напряжения возникает вращающееся магнитное поле, создающее в витках обмотки подвижной части (роторе) ток индукции. По закону Ампера, в проводнике с током, находящемся в магнитном поле, возникает отклоняющая сила, поэтому ротор начинает вращаться. Частота его вращения зависит от частоты питающего напряжения и от числа пар магнитных полюсов, создаваемых с помощью витков обмотки. Поскольку нас сегодня интересует аккумуляторный инструмент, то далее будем рассматривать двигатель постоянного тока. В качестве статора (индуктора) в маломощных двигателях такого типа обычно используют магниты – постоянные или электрические. А переменное магнитное поле создается с помощью либо щеточно-коллекторного узла (коллектора), либо электронного вентильного преобразователя (вентиля). Соответственно, двигатели бывают коллекторные (щеточные) и вентильные (бесколлекторные, бесщеточные). Первые являются электромеханическими контактными коммутаторами, а вторые – электронными бесконтактными. Коллектор объединяет выводы всех обмоток и обычно представляет собой кольцо из изолированных друг от друга пластин – контактов (ламелей), расположенных вдоль оси ротора. Справедливости ради отметим, что существуют и другие конструкции коллектора. Он выполняет одновременно две функции: является датчиком углового положения ротора и механическим преобразователем постоянного тока в переменный. Щеточный узел необходим для подвода электроэнергии к катушкам на вращающемся роторе и переключения тока в обмотках ротора. Щетки – это неподвижные контакты (обычно графитовые или медно-графитовые), которые с определенной частотой (обычно – большой) размыкают и замыкают пластины – контакты коллектора. Как следствие, работа сопровождается переходными процессами в обмотках ротора, вызывающими искрение на коллекторе и постепенное выгорание щеток, что приводит к выделению тепла и визуально проявляется в виде светящегося кольца около коллектора. Эти процессы значительно снижают ресурс электродвигателя.

Бесколлекторные двигатели для аккумуляторного инструмента

Бесколлекторный двигатель

В вентильном двигателе переменное магнитное поле создается бесконтактным полупроводниковым коммутатором, управляемым датчиком положения ротора. Такой двигатель представляет собой замкнутую систему с обратной связью при наличии трех составляющих: датчика, определяющего положение ротора, преобразователя координат (системы управления) и инвертора (силового полупроводникового преобразователя) для переключения фаз. Статор такого двигателя состоит из корпуса, сердечника из электротехнической стали и медной обмотки, выполненной из нескольких частей (фаз), уложенных в пазы по периметру сердечника и сдвинутых в пространстве друг относительно друга в соответствии с их количеством. Обычно используют трехфазные синхронные машины, однако встречаются четырех- и шести-фазные обмотки. В ротор ставят постоянные магниты, при этом число пар полюсов составляет обычно от 2 до 16 с чередованием северного и южного полюсов. Сплавы редкоземельных элементов, в частности неодима, обладающего высокой коэрцитивной силой и достаточным уровнем магнитного насыщения, обеспечивают этим магнитам по сравнению с традиционными ферритовыми материалами значительную магнитную индукцию при относительно малых размерах ротора. Бесколлекторные двигатели получили широкое распространение благодаря развитию электроники и появлению недорогих силовых транзисторных ключей. Также немаловажную роль сыграло изобретение мощных неодимовых магнитов. Хотя идея создания бесколлекторного двигателя витала в воздухе еще на заре электричества, но из-за отсутствия технологий его первый коммерческий образец появился лишь в 1962 году, и с тех его конструкция успешно развивается. Управление таким двигателем осуществляет электронный регулятор, называемый в зарубежной литературе сокращенно ESC (Electronic speed control). Все двигатели постоянного тока являются синхронными с самосинхронизацией, но их принцип действия отличается от синхронных двигателей переменного тока, у которых самосинхронизация отсутствует. При отсутствии же обратной связи принцип функционирования двигателя вообще схож с асинхронным двигателем. Система коммутации в BLDC-двигателях – трапециевидная. В этом случае для трехфазного двигателя отказываются от сложного метода ШИМ, от сложной векторной структуры и начинают просто включать фазы двигателя по датчику положения на элементах Холла, даже иногда без всякого ограничения тока. Ток в фазах получается не синусоидальный, а трапецеидальный, прямоугольный или с еще большими искажениями. Но стараются сделать так, чтобы средний вектор тока был все равно под углом 90° к магниту ротора за счет выбора момента включения фаз. Вместе с тем, включая фазу под напряжение, неизвестно, когда же в ней у двигателя нарастет ток. На низкой частоте вращения это происходит быстрее, а на высокой, где мешает ЭДС машины, медленнее, притом темп нарастания тока зависит еще от индуктивности двигателя и т.п. Поэтому, даже включая фазы точно в нужный момент времени, совсем не факт, что средний вектор тока окажется в нужном месте и с нужной фазой – он может как опережать, так и запаздывать относительно оптимальных 90°, в связи с чем в таких системах вводят настройку опережения коммутации – по сути, это просто время опережения подачи напряжения на фазу двигателя, чтобы в итоге фаза вектора тока получилась максимально близкой к 90°. Коротко данную процедуру называют «настройка таймингов». Поскольку ток в электродвигателе при автокоммутации не синусоидальный, то, если взять рассмотренную выше синусоидальную машину и управлять ею по такому принципу, момент на валу будет пульсировать. И потому в двигателях, предназначенных для автокоммутации, часто специальным образом меняют магнитную геометрию ротора и статора, чтобы они стали более подходящими к данному типу управления: изменение ЭДС в таких машинах делают трапецеидальным, благодаря чему в режиме автокоммутации они работают лучше. Синхронные машины, оптимизированные для автокоммутации, получили название бесколлекторных двигателей постоянного тока (БДПТ) или, по-английски, BLDC. Режим автокоммутации часто называют вентильным режимом, а двигатели, работающие с ним, – вентильными.

Бесколлекторные двигатели для аккумуляторного инструмента

Датчики положения ротора

Итак, подавать напряжение на обмотки двигателя нужно в зависимости от положения ротора, которое определяется электроникой. Для этого предусматривают датчики положения ротора (ДПР), которые могут быть оптическими, магнитными, на основе эффекта Холла и проч. Например, в трехфазном бесколлекторном двигателе достаточно трех датчиков, чтобы электронный блок управления идентифицировал в каждый момент времени, в каком положении находится ротор и на какие обмотки подавать напряжение. При отсутствии возможности разместить ДПР в корпусе двигателя их функцию можно передать электронному блоку, но он должен соответствовать характеристикам конкретной модели двигателя. Поэтому существуют бесколлекторные двигатели и без датчиков: у них положение ротора определяется измерением напряжения на не задействованной в данный момент времени обмотке, например, с помощью показаний токовых датчиков. Но такие двигатели должны запускаться без нагрузки, причем в первый момент возможны вращательные колебания оси двигателя в разные стороны. Управление двигателем с датчиками положения значительно проще и точнее, однако при выходе из строя хотя бы одного из них двигатель прекращает работу. Замена неисправного датчика, как правило, требует разборки всего двигателя. У компании Metabo электродвигатель BLDC имеет конструкцию, отличную от общепринятой. Три датчика положения на основе эффекта Холла расположены на плате внутри герметичной камеры ротора. Подобное размещение позволяет точно управлять частотой вращения ротора и оградить электронную плату от воздействия внешней среды, что автоматически продлевает срок службы всей системы.

Бесколлекторные двигатели для аккумуляторного инструмента

Самый простой BLDC

Наибольшее распространение получил трехфазный бесколлекторный двигатель за счет оптимального соотношения эффективности управления и сложности схемы. Чем больше фаз, тем более плавное вращение получает магнитное поле, но и тем сложнее схема управления двигателем. Фазы – это обмотки двигателя, при этом трехфазный BLDC имеет три провода – выводы обмоток, которые соединяются в зависимости от его назначения «звездой» или «треугольником». В высокомоментных двигателях с длительным режимом включения применяют соединение «звездой», а в двигателях, работающих в кратковременном режиме и требующих более высоких оборотов, применяют соединение «треугольником». Например, во всех BLDC дрелей-шуруповертов Metabo используют соединение «треугольником». Датчики положения добавляют еще пять проводов (два – питание датчиков и три – поступающие сигналы от датчиков). В каждый момент времени напряжение питает две из трех обмоток, поэтому получается шесть вариантов подачи постоянного напряжения на обмотки двигателя, что создает эффект вращения магнитного поля, хоть и прерывистого (через 60° при каждом переключении).

Две разновидности компоновки

По расположению ротора BLDC делятся на внутрироторные (англ. inrunner) и внешнероторные (англ. outrunner). Конструктивно inrunner проще из-за того, что неподвижный статор может служить корпусом, и компоновка BLDC получается традиционной, что позволяет использовать хорошо известные наработки конечного продукта без существенных изменений. В варианте BLDC оutrunner вращается вся внешняя часть, то есть ротор, при этом крепление электродвигателя к корпусу происходит за неподвижную часть статора. Использование компоновки outrunner позволяет увеличить крутящий момент электродвигателя за счет увеличения наружного диаметра ротора, но в целом в связи со значительным увеличением диаметра электродвигателя ограничивается сфера его применения. Так, обычно компоновку BLDC outrunner не используют в ручном электроинструменте, но применяют в аккумуляторных дистанционно управляемых моделях автомобилей, судов, самолетов, квадрокоптеров, в крупной бытовой технике, а также в аккумуляторной садовой технике.

Бесколлекторные двигатели для аккумуляторного инструмента

Повышающий редуктор

При одинаковой компоновке inrunner, но при разных геометрических размерах BLDC более компактный по длине двигатель будет иметь меньший на 20–30% крутящий момент при большей частоте вращения ротора по сравнению с одинаковым по диаметру коллекторным двигателем постоянного тока. На это оказывает прямое влияние меньшая величина потребляемых токов у большинства BLDC за счет более тонкой проволоки катушек статора, а также отсутствие потерь в щеточно-коллекторном узле. В случае недостаточной величины крутящего момента, при прочих равных, производителю изделия ничего не остается, как только механически увеличить передаточное отношение на выходе двигателя путем использования повышающего редуктора. Это правило действует для большинства электроинструментов, где используется BLDC. Однако на примере дрелей-шуруповертов Metabo мы можем увидеть обратное, так как планетарный редуктор, применяемый в моделях серии LTX с BLDC, конструктивно не отличается от моделей серии LTX с коллекторным двигателем постоянного тока. Эта особенность объясняется конструкцией электродвигателя BLDC от Metabo, базирующейся на планетарном редукторе прежнего размера. Такой размер стал возможным благодаря получению более высокого крутящего момента с использованием герметичной конструкции ротора, большого сечения проволоки для катушек статора (2,0 мм) и более мощной силовой электроники. В зависимости от сферы применения изделия с BLDC инженеры Metabo рассчитывают конструкцию планетарного или другого редуктора исходя из суммы мощности аккумуляторной батареи, потребляемой и отдаваемой мощности электромотора и общей геометрии конечного продукта. В частности, все зубчатые пары используемых Metabo планетарных редукторов для дрелей-шуруповертов изготавливаются только из металла, а корпус редуктора, в зависимости от максимальной величины жесткого крутящего момента, может быть выполнен из армированного полиамида или из алюминиевого сплава литьем под давлением. Такой выбор материалов редуктора гарантирует его длительный срок службы и достаточную жесткость конструкции.

Бесколлекторные двигатели для аккумуляторного инструмента

Система охлаждения

Хотя тепловыделение BLDC в процессе работы невелико, однако при продолжительной непрерывной работе, особенно с превышением нагрузки, двигатель начинает греться, что нежелательно для обмоток статора и для неодимовых магнитов ротора. По этой причине у всех типов двигателей постоянного тока inrunner используется крыльчатка из армированного нейлона, снабженная лопастями специальной формы, которые обеспечивают достаточный воздушный поток для охлаждения обмоток ротора и постоянных магнитов статора (в коллекторном электродвигателе) или для охлаждения обмоток статора и постоянных магнитов ротора (в двигателе BLDC). В зависимости от производителя электродвигателя аэродинамическое сопротивление, влияющее на КПД, может быть разным. Как правило, это сопротивление рассчитывается исходя из конкретной применимости электромотора. В большинстве конструкций BLDC-двигателей для аккумуляторного электроинструмента система охлаждения имеет аналогичную компоновку с коллекторным двигателем постоянного тока. Воздушный поток, создаваемый крыльчаткой, проходит через ротор внутри статора. Из-за этой особенности подобные BLDC-двигатели имеют разборную конструкцию для удобства периодического обслуживания – ввиду отсутствия изоляции электроники и постоянных магнитов ротора от воздействия внешней среды. В то же время корпус BLDC-электродвигателей Metabo полностью герметичен, а обмотки статора имеют полуоткрытую конструкцию, где около 50% проволоки обмоток открыты, чтобы при вращении ротора крыльчатка создавала поток воздуха, проходящий снаружи корпуса статора, охлаждая именно те части конструкции, которые нагреваются во время работы, без необходимости разбирать двигатель для периодического обслуживания. В BLDC outrunner роль крыльчатки выполняет специальная форма ротора, имеющая ребра жесткости в форме лопастей. При вращении ротора без нагрузки создается мощный поток воздуха, охлаждающий обмотки статора. Под нагрузкой скорость охлаждения может существенно снижаться, поэтому BLDC с компоновкой outrunner применяются в тех изделиях, при использовании которых нагрузка на двигатель и соответственно потеря частоты вращения и эффективности охлаждения невысоки.

Подведем итоги

Чем же лучше BLDC по сравнению с коллекторным двигателем постоянного тока? Во-первых, у BLDC нет имеющего высокие потери и ограниченный ресурс коллекторно-щеточного узла: его функцию полностью выполняет электроника. И потому такой двигатель значительно надежнее. Во-вторых, BLDC-двигатель легче и компактнее, в том числе за счет использования мощных неодимовых магнитов, которые позволяют сделать длину ротора меньше. В-третьих, существенно снижены потери энергии на коммутацию, поскольку ламели коллектора и щетки заменены электронными ключами, при этом в целом электродвигатель значительно меньше греется, а в отдельных случаях даже допускает перегрузки по моменту. В-четвертых, отсутствие коллекторно-щеточного узла позволило снизить потребляемые токи во время выполнения работ под нагрузкой и значительно увеличило производительность инструмента, в котором установлен этот двигатель. В итоге BLDC-электродвигатель имеет более высокие значения КПД, показателя мощности (в Вт на кг собственного веса) и диапазона изменения скорости вращения. КПД бесколлекторного двигателя постоянного тока достигает 80–92% против 60–75% у коллекторных двигателей постоянного тока. К его недостаткам можно отнести наличие в конструкции сложного и дорогостоящего электронного регулятора. На отечественный рынок инструменты с бесколлекторными двигателями постоянного тока поставляют такие бренды, как Metabo, Makita, DeWALT, Stanley, Bosch, Hitachi, Fein, AEG, Milwaukee, STIHL, Husqvarna, Greenworks и др. Двигатели разных производителей отличаются друг от друга размерными рядами, мощностью, компоновкой, системой охлаждения, диапазоном частот вращения. В подавляющем большинстве конструкция всех моделей является разборной.

privatdom.info

Высокомоментные бесколлекторные двигатели с постоянными магнитами

Мощные и экономичные синхронные двигатели с постоянными магнитами работают без дополнительных передаточных элементов и обеспечивают очень высокий крутящий момент за счет более совершенной конструкции.

Многообразие конфигураций поставляемых электродвигателей позволяет решать самые разные задачи. Один из специальных типов двигателей, известный как высокомоментный безредукторный электродвигатель с постоянными магнитами (PM), характеризуется высоким отношением диаметра к длине и большим числом магнитных полюсов, что оптимизирует создание крутящего момента. Эти относительно низкоскоростные электродвигатели, обычно работающие с частотой ниже 1000 об/мин, предлагаются на рынке как в корпусном, так и в бескорпусном варианте.

Бесколлекторные (синхронные) безредукторные роторные двигатели (DDR) имеют ряд конструктивных особенностей, обеспечивающих выполнение заданных функций. Прямой (безредукторный) привод означает отсутствие элементов передачи мощности между двигателем и приводимой во вращение нагрузкой, что, в свою очередь, дает преимущества перемещения с высокой динамикой практически без люфта и превосходную жесткость при статических/динамических нагрузках. Все это обеспечивает прецизионное управление движением. Использование в роторе большого числа магнитных полюсов способствует созданию высоких крутящих моментов. Наблюдается тенденция к увеличению размеров двигателей с DDR (диаметр некоторых моделей уже превышает 1 метр), вместе с тем на рынке также предлагаются двигатели c меньшими габаритами. Пиковый крутящий момент на выходе, превышающий 20000 Нм, не является чем-то необычным.

Большой диаметр, большое число полюсов

В компании Bosch Rexroth Corp. отмечают другие преимущества высокомоментных двигателей DDR, такие как лучшее согласование с инерцией нагрузки, лёгкость управления, низкий уровень шума и рациональную конструкцию (см. диаграмму "Прямой привод упрощает конструкцию средств автоматизации"). Карл Рапп, руководитель отделения станкостроения Electric Drives & Controls Div. компании, подтверждает, что увеличение числа полюсных пар и диаметра ротора создаёт более высокий крутящий момент на выходе. Кроме того, оптимизация ориентации магнита, усовершенствование конфигурации пазов статора и технологии наматывания обмотки, а также конструкции воздушного зазора способны свести пульсации крутящего момента к минимуму. "Низкий уровень пульсаций крутящего момента требуется для обеспечения высокого качества операций шлифования/ хонингования, это качество также необходимо и в других областях применения", — говорит Рапп.

Технология, лежащая в основе высокомоментных двигателей прямого привода, позволяет упростить конструкцию станка и повысить точность перемещения. Это показано выше на примере делительно-поворотного стола. При этом исключается люфт в редукторе и приводном ремне.

Технология, лежащая в основе высокомоментных двигателей прямого привода, позволяет упростить конструкцию станка и повысить точность перемещения. Это показано выше на примере делительно-поворотного стола. При этом исключается люфт в редукторе и приводном ремне.

В компании Danaher Motion также считают, что большой диаметр и повышенное число полюсов являются отличительными признаками высокомоментных электродвигателей прямого привода. "Крутящий момент квадратично зависит от диаметра и прямо пропорционально от длины ротора" — поясняет Том Инглэнд, директор по управлению производством компании. "Повышенное число полюсов, которое обеспечивает более высокое удельное содержание меди в обмотках, создающих крутящий момент, приводит к повышению эффективности магнитного поля", — констатирует Инглэнд.

Высокомоментные двигатели DDR предлагаются на рынке в двух классических вариантах. Вариант "бескорпусного" двигателя состоит из кольцеобразного ротора и набора элементов статора, которые заказчик должен встроить в конструкцию станка. По мнению Инглэнда должны быть также предусмотрены средства обратной связи и охлаждения, а также соединительные кабели, что требует выполнения существенного объема конструкторских и сборочно-монтажных работ. Тонкая кольцеобразная конструкция "бескорпусного" двигателя отличается применением полого входного вала большого размера. "Смонтированный в корпусе" двигатель DDR имеет корпус, подшипники, а также стандартный или полый вал. "Однако если станок уже оснащён подшипниками, смонтированный в корпусе двигатель не будет работать, поскольку непосредственное соединение трех (и более) подшипников на одной оси вызовет их повреждение", — продолжает он.

Недавно компания Danaher Motion реализовала другой подход, разработав третий, усовершенствованный вариант двигателя DDR, в основу которого, как сообщается, заложены преимущества предшествующих вариантов при одновременном исключении их недостатков. Под названием "кассетный DDR" (или CDDR) эти высокомоментные электродвигатели сохранили повышенное число полюсов и большой диметр, но не имеют подшипников. "Ротор устанавливается на подшипниках оборудования заказчика, что обеспечивает упрощенный монтаж при минимальном объеме конструкторской работы, а также возможность демонтажа двигателя без разборки станка,"- комментирует Инглэнд.

По мнению представителя компании Danaher, так сложилось исторически, что недостатком двигателей прямого привода всегда оставалась сложность их применения и стоимость. "Ситуация изменилась с внедрением технологии двигателей CDDR. Эта технология сделала доступными преимущества прямого привода как для простых механизмов, так и для классических, высокопроизводительных приложений сервоприводов", — заключает Инглэнд. Сегодня двигатели по технологии CDDR находят применение в упаковочном оборудовании, механизмах подачи прессов, в механизмах и оборудовании, используемых в перерабатывающей промышленности, в типографском и медицинском оборудовании.

Плотность крутящего момента, мощные магниты

В компании Siemens рассматривают конструкцию с высокой плотностью крутящего момента как неотъемлемую часть выпускаемых компанией высокомоментных двигателей. По словам Ральфа Бэрана, начальника производства серводвигателей и мехатронных устройств в подразделении Siemens Energy & Automation (E&A), плотность крутящего момента во многом зависит от силы постоянных магнитов. Компания Siemens использует магниты из сплава неодима, железа и бора (Nd-Fe-B) (которые считаются самыми мощными и доступными среди магнитов, изготовленных из редкоземельных металлов) в своих вмонтированных в корпус и бескорпусных (встраиваемых) высокомоментных двигателях.

Другим показателем высокой плотности крутящего момента является количество магнитных полюсов, предусмотренных конструктивным исполнением. Увеличение числа полюсов трансформируется в высокий крутящий момент на выходе, однако такая закономерность более действенна при малом числе полюсов. Например, существенное повышение крутящего момент может быть достигнуто при увеличении количества полюсов от четырех до восьми при сохранении постоянного объема двигателя, однако, по словам Бэрана, прирост крутящего момента будет гораздо меньше при изменении количества полюсов, скажем, от 32 до 46. "На основании практического опыта увеличение количества полюсов до 30 является хорошим способом повышения плотности крутящего момента",- констатирует он. (Тем не менее, на рынке предлагаются бескорпусные высокомоментные двигатели с количеством полюсов, значительно превышающим 100.)

Компания Baumuller Nurnberg GmbH также уделяет большое внимание установлению оптимального соотношения между диаметром и длиной в конструкции своих многополюсных, синхронных, высокомоментных двигателей с постоянным магнитом серии DST. "В результате этого был достигнут устойчиво высокий крутящий момент в широком диапазоне скоростей", — говорит Марцел Мёллер, начальник производства электродвигателей.

В швейцарской компании ETEL S.A. отмечают, что наличие всё более эффективных средств моделирования и анализа упрощает разработку и оптимизацию двигателей. "Оптимизация конструкции двигателя приведет к максимальному повышению плотности потока за счет использования продуманной пластинчатой конструкции зубца и выбора материала пластин при одновременном сохранении возможности монтажа максимального количества материала обмоток, что необходимо для создания крутящего момента, перпендикулярного направлению магнитного потока",- говорит Кевин Дерабас, президент ETEL S.A. в США. При этом он ссылается на конструкцию, запатентованную компанией ETEL S.A., с целью повышения "коэффициента заполнения" пластинчатых структур медными обмоточными проводами. Тем самым достигается коэффициент заполнения, равный 60% по сравнению с 30% для предыдущих конструкций. Компания ETEL S.A. изготавливает широкий спектр бескорпусных высокомоментных электродвигателей.

Особенности управления

По мнению компании Bosch Rexroth управление высокомоментными двигателями DDR осуществляется практически аналогично управлению другими бесколлекторными двигателями, однако требует определенных, специальных мер. Время срабатывания контуров управления (по току, скорости и положению) должно быть минимальным для достижения высокого уровня статической/динамической жёсткости. Интеллектуальные сервоприводы обеспечивают высокую скорость работы всех внутренних контуров (как правило, через каждые 0,25 мс). "Так как связка "привод + высокомоментный двигатель" обеспечивает подачу крутящего момента на обрабатываемую деталь, от нее непосредственно зависят точность и плавность обработки этой детали", — говорит Рапп. Как отмечалось выше, для точной механической обработки особо важное значение имеет снижение пульсации крутящего момента.

Для получения высокой степени жёсткости необходима более широкая полоса пропускания усилителя привода. "Высокая динамика способна возбудить механические гармоники, которые должны быть отфильтрованы усилителем за счет настроек фильтров, которые не должны вносить ограничения в характеристики", — предупреждает Рапп. Выбор стредств обратной связи также имеет принципиальное значение. Рекомендуется обратная связь с синусоидальным сигналом, поскольку интеллектуальные приводы извлекают из этого сигнала информацию об изменении скорости. "Следует избегать обратной связи последовательного типа, а также обратной связи с прямоугольным сигналом, поскольку это приводит к ограничению характеристик", — говорит Рапп.

Для работы бесколлекторных двигателей, оснащенных постоянными магнитами, требуется электронная коммутация (или переключение полюсов). Для высо-комоментных двигателей с DDR электронная коммутация не является простой процедурой, поскольку системы обратной связи полого вала являются чаще всего инкрементными, а не абсолютными, что требует от усилителя привода выполнения автоматической коррекции коммутации после каждого включения устройства управления. "Эта процедура ещё более усложняется при использовании двигателей с повышенным числом полюсов, так как расстояние между полюсами становится очень малым", — отмечает Рапп. Интеллектуальные приводы, например, привод IndraDrive компании Bosch Rexroth, предусматривают различные функции коммутации. Предпочтение отдается методу насыщения, поскольку его можно применять без механических перемещений в двигателе, объясняет он.

Бэран, представитель Siemens E&A, утверждает: "Физически высокомоментные двигатели имеют те же самые характеристики управления, что и другие бесколлекторные двигатели с постоянным магнитом. Тем не менее, исключение механических элементов из трансмиссии обеспечило избавление от люфта ["мертвого" хода] и от проблемы отсутствия механической жёсткости". Результатом этого явилось впечатляющее повышение механической жесткости трансмиссии.

Применительно к контроллеру это означает, что он может работать с большей скоростью без выхода за установленные пределы, что дает возможность его применения при повышенном уровне ускорения/торможения с более точным позиционированием и управлением траекторией, поясняет Бэран. "Опыт показал, что в отличие от традиционной комбинации "мотор-муфта-редуктор ",для станков, конструкция которых предусматривает использование прямого привода, можно добиться приблизительно десятикратного улучшения их динамики",- говорит он.

Как сообщается, ввиду отсутствия редукторов и других механических элементов трансмиссии, двигатели DST с прямым приводом производства компании Baumuller имеют нулевой люфт, что обеспечивает высокую эффективность управления. Эта характерная особенность позволяет делать выводы о качестве соответствующего технологического процесса путем контроля крутящего момента и скорости двигателя, объясняет Мёллер. Изменения в эксплуатационных параметрах, например, изменения вязкости смазки, сопоставляются в контроллере с помощью компьютерных программ, в результате чего повышается эффективность управления системой и качество продукции. "Как правило, прямые приводы также повышают КПД всей системы и приводят к экономии энергии", — добавляет Мёллер.

Компания ETEL высказывает мнение о крайней необходимости хорошо демпфированного замкнутого сервоконтура для управления крутящим моментом двигателя, равно как и необходимости привода, способного справляться с энергией рекуперации во время быстрых торможений. Только благодаря конструкции прямого привода стало возможным "видеть" полный резонанс нагрузки и непосредственно отраженную инерцию. В случае аварийного останова электродвигатель быстро превращается в генератор, вырабатывающий большое количество рекуперированной энергии, которая должна при соответствующем управлении рассяться в приводе или поступить снова к источнику энергии, объясняет Дерабас.

Важность охлаждения

Большой крутящий момент вызывает выделение тепла в обмотках электродвигателя, которое должно отводиться во избежание его повреждения. "Охлаждение также сводит к минимуму температурное расширение статора, — констатирует Рапп. — Такое расширение может оказывать влияние на точность технологического процесса (вследствие увеличения размеров деталей), а также способно вызвать напряжённое состояние и повреждение элементов крепления двигателя". Поскольку двигатель встраивается в конструкцию станка, изготовители оборудования должны принимать во внимание различия в температурном расширении разнородных материалов с тем, чтобы предотвратить повреждение статора при его установке на станке. В компании Bosch Rexroth приводят пример одной из конструкций оборудования, которая допускала лишь частичную установку статора в посадочное отверстие станка. При отсутствии охлаждающей жидкости температурное расширение, возникшее на стороне статора за пределами станка, со временем вызвало растрескивание обмоток.

"Метод охлаждения и объем, выбор жидкости, сжатого воздуха или конвекции — всё это зависит в основном от потребляемой мощности или от средней загруженности, а также от анализа температурного расширения",- добавляет Рапп.

Бескорпусные, высокомоментные двигатели IndraDyn T производства компании Bosch Rexroth состоят из кольцеобразного статора с трехфазными обмотками и ротора с постоянными магнитами. При скорости вращения 60 об/мин двигатель создает постоянный крутящий момент, равный 6300 Нм. На более низкой скорости пиковый крутящий момент равен 13800 Нм.

Бескорпусные, высокомоментные двигатели IndraDyn T производства компании Bosch Rexroth состоят из кольцеобразного статора с трехфазными обмотками и ротора с постоянными магнитами. При скорости вращения 60 об/мин двигатель создает постоянный крутящий момент, равный 6300 Нм. На более низкой скорости пиковый крутящий момент равен 13800 Нм.

В компании Siemens также отмечают принципиальную роль охлаждения для повышения плотности крутящего момента. Самые большие тепловые потери происходят в обмотках статора бесколлекторных электродвигателей с PM, так как в роторе из-за отсутствия намагничивающих токов таких потерь нет. Одним из эффективных способов отвода тепла, вырабатываемого этими двигателями, является пропускание охлаждающей воды по трубам на минимальном расстоянии от обмоток статора, поясняет Бэран. "Испытания показали, что крутящий момент на выходе двигателя, спроектированного с расчетом на естественное воздушное охлаждение, может быть увеличен на 30% при условии его оптимизации под водяное охлаждение",- отмечает он.

По данным компании ETEL реальная выходная мощность высокомоментных двигателей ограничена способностью удаления из обмоток тепла, вызванного их сопротивлением, а также тепловыми потерями на вихревые токи в пластинчатой структуре статора. (Потери на вихревые токи увеличиваются с ростом числа полюсов.) При невозможности отвода всего тепла увеличение температуры в обмотках в итоге приведет к разрушению изоляции, что повлечет за собой поступление тепла в ротор. Это тепло, в свою очередь, вызвать размагничивание высокомощных магнитов ротора, поясняет Дерабас. "Циркуляция воды на минимальном расстоянии от обмоток статора является эффективным средством с точки зрения экономии и теплоизоляции для максимального отвода тепла" — добавляет он. Вот почему на внешнем диаметре статора часто обнаруживаются кольцевые каналы, которые обеспечивают плотное расположение трубок охлаждения.

Вмонтированный в корпус высокомоментный двигатель прямого привода 1FW3 производства компании Siemens обеспечивает постоянный крутящий момент до 7000 Нм при скорости вращения 200 об/мин.

Вмонтированный в корпус высокомоментный двигатель прямого привода 1FW3 производства компании Siemens обеспечивает постоянный крутящий момент до 7000 Нм при скорости вращения 200 об/мин.

Высокомоментные двигатели серии DST производства компании Baumuller создают постоянный крутящий момент в диапазоне до 6130 Нм, обеспечивают степень защиты IP54 и включают в себя модели с полым валом (не показаны). Пиковый крутящий момент равен 13500 Нм. Варианты выбора обратной связи включают резольвер и синусно-косинусный преобразователь (дополнительная поставка).

Высокомоментные двигатели серии DST производства компании Baumuller создают постоянный крутящий момент в диапазоне до 6130 Нм, обеспечивают степень защиты IP54 и включают в себя модели с полым валом (не показаны). Пиковый крутящий момент равен 13500 Нм. Варианты выбора обратной связи включают резольвер и синусно-косинусный преобразователь (дополнительная поставка).

Компания Baumuller встраивает водяное охлаждение в свои высокомоментные двигатели DST в качестве необходимой меры для достижения самого высокого крутящего момента. "Только так возможно достичь высокой плотности крутящего момента и одновременно высокой перегрузочной способности, — констатирует Мёллер. — Более того, встроенное водяное охлаждение обеспечивает более высокий класс защиты (IP54), что способствует соответствию двигателей DST жестким условиям промышленного применения". Кроме повышенной охлаждающей способности, другим неочевидным преимуществом водяного охлаждения является пониженный уровень шума. Компания Baumuller (и другие производители) отмечают, что высокомоментные двигатели DDR с водяным охлаждением работают тише, чем их аналоги, охлаждаемые вентиляторами.

Представитель компания Danaher Motion утверждает, что её кассетные двигатели CDDR имеют высокий КПД и способны заменить устройства с водяным охлаждением за счет внедрения герметичных, невентилируемых двигателей при существенном сокращении затрат. Тем не менее, для дальнейшего увеличения выходного крутящего момента этих двигателей в них можно добавить водяное или воздушное охлаждение.

Обзор областей применения

Несмотря на то, что высокомоментные электродвигатели DDR не относятся к изделиям крупносерийного производства, они имеют широкий диапазон применения. Станки, обрабатывающие центры, оборудование для обработки металлов давлением, агрегатные станки с делительно-поворотным столом, печатные линии, а также оборудование для обработки пластмасс — вот основные рынки этих двигателей. По данным компании Bosch Rexroth более экзотические сферы применения этих двигателей включают ветроэнергетику и использование энергии морских волн. Компания ETEL приводит пример использования этих двигателей в новом поколении подъемников, где замена гидравлических элементов позволяет снизить затраты на техническое обслуживание и упростить установку.

В компании Siemens отмечают использование высокомоментного двигателя 1FW3 (установленного в корпусе) и двигателя 1FW6 (встроенного типа) в составе многочисленных станков, а также для других производственных применений. Последние из упомянутых бескорпусных двигателей предназначены для встраивания в механизм пользователя, который обеспечивает установку двигателя на подшипники. Станки, оснащенные двигателями 1FW6, должны иметь энкодеры. Двигатели 1FW3, вмонтированные в корпус, содержат подшипники и энкодер. Они применяются в производстве изделий из пластмасс (в экструдерах, намоточных станках, в машинах для литья под давлением и т.д.), а также в бумажной и текстильной промышленности.

Компания Baumuller делает акцент на широком применении двигателей DST в частности в червячных и финишных приводах прессов для выдавливания пластмасс/машин для литья под давлением, а также в приводах цилиндров с печатной формой и офсетных цилиндров в полиграфической промышленности.

Одним словом, высокомоментные двигатели находят свою нишу там, где раньше применялись зубчатые передачи, цепи или приводные ремни, высказывается представитель компании ETEL.

Изготовители бесколлекторных высо-комоментных электродвигателей с прямым приводом и постоянными магнитами твердо убеждены в том, что производители оборудования могут добиться серьезных преимуществ в повышении производительности и качества при условии оптимизации их станочного оборудования под эти двигатели. Опыт, накопленный в Siemens E&A, показал реалистичность таких преимуществ. "В некоторых случаях производительность станков возросла на 50%, а их точность увеличилась примерно на 30%"- говорит Бэран.

Высокомоментный двигатель кассетного типа (CDDR) производства компании Danaher Motion (показан в разрезе) отличается обратной связью по положению и зажимной муфтой, которая крепится к валу станка пользователя. Двигатель имеет 46 магнитных полюсов и создает на выходе постоянный крутящий момент, равный 500 Нм при объёме 0,23 дм3.

Высокомоментный двигатель кассетного типа (CDDR) производства компании Danaher Motion (показан в разрезе) отличается обратной связью по положению и зажимной муфтой, которая крепится к валу станка пользователя. Двигатель имеет 46 магнитных полюсов и создает на выходе постоянный крутящий момент, равный 500 Нм при объёме 0,23 дм3.

В Siemens E&A называют дополнительные причины, по которым производителям оборудования следует применять эти высокомоментные двигатели. Они включают сокращённый объем технического обслуживания и меньшее количество запасных частей в силу малого количества деталей, использованных в конструкции этих двигателей, экономию энергии за счет более эффективной силовой передачи, а также экономию пространства за счет использования малогабаритных и компактных станков вместо станков, оснащенных комбинацией из мотора и редуктора.

controleng.ru

Бесколлекторные двигатели. Литература (RU) | Avislab

Кроме статей о бесколлекторныех двигателях могу порекомендовать следующую литературу (к сожалению, на русском или украинском я почти ничего не нашел):

Brushless Permanent Magnet Motor Design Second EditionDr. Duane Hanselman

Design and Prototyping Methods for Brushless Motors and Motor ControlShane W. Colton

Direct Back EMF Detection Method for Sensorless Brushless DC (BLDC) Motor DrivesJianwen Shao

Design of Driver Brushless Direct Current Motor(BLDC)Hazrimi Bin Omar

Simplified Sensorless Control for BLDC Motor, Using DSP TechnologyJuan W. Dixon, Matías Rodríguez and Rodrigo Huerta

Sensorless Detection of Rotor Position of PMBL Motor at Stand StillRoustiam Chakirov, Yuriy Vagapov, and Andreas Gaede

A New Approach to Sensorless Control Method for Brushless DC MotorsTae-Sung Kim, Byoung-Gun Park, Dong-Myung Lee, Ji-Su Ryu, and Dong-Seok Hyun

Low-Cost Sensorless Control of Brushless dc Motors with Improved Speed RangeGui-Jia Su and John W. McKeever

Development of a Practical Low-Cost µC based Brushless DC Motor Controller using ProteusY. L. Karnavas, Ch. L. Liagkos

Managing Transients in Control IC Driven Power StagesChris Chey and John Parry

Ключ на плечо! – особенности применения высоКовольтных драйверов производства IRКирилл Автушенко (КОМПЭЛ), Андрей Булычев (г. Москва)

Советы по управлению затвором мощного полевого транзистораРэй РИДЛИ (Ray RIDLEY) Перевод: Дмитрий ИОФФЕ

Современные промышленные датчики токаАндрей Данилов

Brushless DC Motor Control using AT90PWM3Atmel

Sensorless control of 3-phase brushless DC motorsAtmel (ATmega48/88/168)

Brushless DC Motor Control Made EasyWard Brown Microchip Technology Inc (PIC16F877)

3-Phase BLDC Motor Control with Sensorless Back EMF Zero Crossing Detection Using 56F80xDesign of 3-Phase BLDC Motor Control Application Based on the Software Development KitLibor Prokop, Leos Chalupa

Brushless DC motor control using the LPC2141

Статьи по бесколлекторным двигателям:

www.avislab.com

Бесколлекторные двигатели постоянного тока. Определение положения ротора в остановленном состоянии двигателяЗапуск бездатчикового бесколекторного двигателя (Sensorless BLDC)

В предыдущей статье(Управление бездатчиковыми бесколлекторными двигателями (Sensorless BLDC) мы рассмотрели алгоритм коммутаций для бесколлекторного бездатчикового двигателя постоянного тока при вращающемся роторе. Сегодня рассмотрим простой способ запуска бесколлекторного бездатчикового двигателя.

Итак, когда ротор не вращается, мы не можем определить его положение. Мы помним, что в бездатчиковом двигателе положение ротора определяется исходя из ЭДС, наводимой в свободной обмотке во время вращения двигателя. Эта ЭДС возникает при перемещении магнитов ротора относительно обмоток статора. Поскольку вращения нет, нет наводимой ЭДС, узнать положение ротора этим методом не представляется возможным.

Самый простой способ – это установить ротор в заведомо известное положение, подав напряжение на две из обмоток двигателя. Выждать паузу, пока ротор займет положение, после чего начать коммутировать согласно таблице, приведенной в предыдущей статье. В зарубежной литературе такой метод называют “Align”. Этот метод применяется на большинстве мало инерционных, слаботочных двигателях. Рассмотрим его подробнее.

Первый этап

Первый этап – это установка ротора в начальное положение. Установим ротор в положение P1. Согласно таблице открываем ключи SW1, SW5. Однако, если просто открыть ключи, ток будет быстро расти и достигнет тока короткого замыкания к моменту когда ротор займет свое положение. Такой шок может вывести со строя обмотку двигателя или ключи регулятора, но скорее всего, сработает защита по току. Для того, чтобы этого не произошло, на SW1, SW5 следует подавать ШИМ сигнал. Скважностью ШИМ сигнала устанавливают уровень безопасного напряжения. Чем меньше напряжение, тем мягче и медленнее происходит позиционирование ротора. Чем выше напряжение, тем быстрее и с большими вибрациями происходит позиционирование. Слишком малое напряжение же может вовсе не провернуть ротор. А слишком большое – вызвать нежелательные колебания ротора и увеличить время позиционирования.

Время установки ротора в начальное положение зависит не только от напряжения, приложенного к обмоткам статора, но и от инертности двигателя и нагрузки на валу. Чем больше масса ротора и приводимого им устройства на валу, тем медленнее он будет устанавливаться в начальное положение. Важно правильно определить время, которое нужно выждать между подачей напряжения на обмотки и окончанием позиционирования ротора. Если вы продолжите запуск двигателя до того, как ротор установился в начальное положение, старт может оказаться неуспешным. Если позже – обмотки будут греться под воздействием тока. В большинстве случаев скважность ШИМ и время установки ротора в начальное положение определяют экспериментально. В особо ответственных случаях для этого используют специальные приборы, которые помогают анализировать колебательные вращения ротора при установке его в начальное положение и последующем старте.

Если изобразить временную диаграмму установки ротора в начальное положение, она будет иметь форму затухающих колебаний. Важно понимать, что ротор может находиться в одном их 6 положений и для того чтобы занять исходное положение ему придется провернуться на разный угол, соответственно это может занять разное время.

Brushless start Brushless start

Второй этап

Теперь, когда положение ротора известно, мы можем переключить ключи в состояние P2, ротор начнет вращаться к следующему положению. Казалось бы, задача сводится к ранее решенной в предыдущей статье. Но, скорость вращения ротора еще слишком мала чтобы по наводимой в статоре ЭДС можно было определить положение ротора. Поэтому, первые несколько переключений выполняют асинхронно. Т.е. не определяя положения ротора. Количество асинхронных переключений зависит от инертности двигателя. Чем более массивный, а значит:  инертный ротор, – тем длительнее разгон и необходимо будет выполнить большее число асинхронных переключений. При этом период между переключениями с каждым разом сокращают. Таким образом, разгоняя ротор двигателя. Разумеется, что разгон двигателя зависит от того, насколько чётко Вы угадаете момент следующего переключения. Ведь если переключение произойдет намного раньше или намного позже, ротор будет тормозиться.

Третий этап

В момент последнего асинхронного переключения переходим в режим управления двигателем, считая, что он вращается, а положение ротора соответствует текущему состоянию ключей. Т.е. пытаемся определить его положение, используя метод, описанный в предыдущей статье. Однако, не всегда получается запустить двигатель с первого раза. В алгоритме управления следует предусмотреть контроль вращения ротора двигателя. Если старт не удался, следует вовремя отключить питание. В противном случае при остановленном двигателе и открытых ключах могут выйти со строя, как двигатель, так и регулятор. Один из способов контроля вращения ротора – измерение времени прошедшего от момента предыдущего переключения ключей. Если прошло слишком много времени, а положение ротора не изменилось, значит, двигатель заклинило. Это позволит отключить двигатель при заклинивании или неудачном старте еще до момента достижения критического значения тока.

В случае неудачного старта попытку повторяют.

Такой способ старта будет однозначно сопровождаться колебаниями ротора. В момент старта возможно проворачивание ротора в противоположную сторону от необходимого направления. Частично устранить недостатки такого способа запуска бездатчикового бесколлекторного двигателя может определение положения ротора в остановленном состоянии. Один из методов определения положения ротора в остановленном состоянии будет рассмотрен в следующей статье.

Статьи по бесколлекторным двигателям:

www.avislab.com


Смотрите также