Почти на всех современных автомобилях в качестве силовой установки применяется двигатель внутреннего сгорания (ДВС) (рис. 2.1).
Рис. 2.1. Внешний вид двигателя внутреннего сгорания
В основе работы каждого ДВС лежит движение поршня в цилиндре под действием давления газов, которые образуются при сгорании топливной смеси, именуемой в дальнейшем рабочей.
При этом горит не само топливо. Горят только его пары, смешанные с воздухом, которые и являются рабочей смесью для ДВС. Если поджечь эту смесь, она мгновенно сгорает, многократно увеличиваясь в объеме. А если поместить смесь в замкнутый объем, а одну стенку сделать подвижной, то на эту стенку
будет воздействовать огромное давление, которое будет двигать стенку.
ПРИМЕЧАНИЕ
В ДВС из каждых 10 литров топлива только около 2 литров используется на полезную работу, остальные 8 литров сгорают впустую. То есть КПД ДВС составляет всего 20 %.
ДВС, используемые на легковых автомобилях, состоят из двух механизмов: кривошипно-шатунного и газораспределительного, а также из следующих систем:
Принцип работы ДВС проще всего рассматривать на примере одноцилиндрового бензинового двигателя. Такой двигатель состоит из цилиндра с внутренней зеркальной поверхностью, к которому прикручена съемная головка. В цилиндре находится поршень цилиндрической формы — стакан, состоящий из головки и юбки (рис. 2.3). На поршне есть канавки, в которых установлены поршневые кольца. Они обеспечивают герметичность пространства над поршнем, не давая возможности газам, образующимся при работе двигателя, проникать под поршень. Кроме того, поршневые кольца не допускают попадания масла в пространство над поршнем (масло предназначено для смазки внутренней поверхности цилиндра). Иными словами, эти кольца играют роль уплотнителей и делятся на два вида: компрессионные (те, которые не пропускают газы) и маслосъемные (препятствующие попаданию масла в камеру сгорания) (рис. 2.4).
Рис. 2.2. Схемы расположения цилиндров в двигателях различной компоновки:
а — четырехцилиндровые; б — шестицилиндровые; в — двенадцатицилиндровые (α — угол развала)
Рис. 2.3. Поршень
Смесь бензина с воздухом, приготовленная карбюратором или инжектором, попадает в цилиндр, где сжимается поршнем и поджигается искрой от свечи зажигания. Сгорая и расширяясь, она заставляет поршень двигаться вниз. Так тепловая энергия превращается в механическую.
Рис. 2.4. Поршень с шатуном:
1 — шатун в сборе; 2 — крышка шатуна;3 — вкладыш шатуна; 4 — гайка болта; 5 — болт крышки шатуна; 6 — шатун; 7 — втулка шатуна; 8 — стопорные кольца; 9 — палец поршня; 10 — поршень; 11 — маслосъемное кольцо; 12, 13 — компрессионные кольца
Далее следует преобразование хода поршня во вращение вала. Для этого поршень с помощью пальца и шатуна шарнирно соединен с кривошипом коленчатого вала, который вращается на подшипниках, установленных в картере двигателя (рис. 2.5).
Рис. 2.5. Коленчатый вал с маховиком:
1 — коленчатый вал; 2 — вкладыш шатунного подшипника; 3 — упорные полукольца; 4 — маховик; 5 — шайба болтов крепления маховика; 6 — вкладыши первого, второго, четвертого и пятого коренных подшипников; 7 — вкладыш центрального (третьего) подшипника
В результате перемещения поршня в цилиндре сверху вниз и обратно через шатун происходит вращение коленчатого вала.
Верхней мертвой точкой (ВМТ) называется самое верхнее положение поршня в цилиндре (то есть место, где поршень перестает двигаться вверх и готов начать движение вниз) (см. рис. 2.3). Самое нижнее положение поршня в цилиндре (то есть место, где поршень перестает двигаться вниз и готов начать движение вверх) называют нижней мертвой точкой (НМТ) (см. рис. 2.3). А расстояние между крайними положениями поршня (от ВМТ до НМТ) называется ходом поршня.
Когда поршень перемещается сверху вниз (от ВМТ до НМТ), объем над ним изменяется от минимального до максимального. Минимальный объем в цилиндре над поршнем при его положении в ВМТ — это камера сгорания.
А объем над цилиндром, когда он находится в НМТ, называют рабочим объемом цилиндра. В свою очередь, рабочий объем всех цилиндров двигателя в сумме, выраженный в литрах, называется рабочим объемом двигателя. Полным объемом цилиндра называется сумма его рабочего объема и объема камеры сгорания в момент нахождения поршня в НМТ.
Важной характеристикой ДВС является его степень сжатия, которая определяется как отношение полного объема цилиндра к объему камеры сгорания. Степень сжатия показывает, во сколько раз сжимается поступившая в цилиндр топливовоздушная смесь при перемещении поршня от НМТ к ВМТ. У бензиновых двигателей степень сжатия находится в пределах 6–14, у дизельных — 14–24. Степень сжатия во многом определяет мощность двигателя и его экономичность, а также существенно влияет на токсичность отработавших газов.
Мощность двигателя измеряется в киловаттах либо в лошадиных силах (используется чаще). При этом 1 л. с. равна примерно 0,735 кВт. Как мы уже говорили, работа двигателя внутреннего сгорания основана на использовании силы давления газов, образующихся при сгорании в цилиндре топливовоздушной смеси.
В бензиновых и газовых двигателях смесь воспламеняется от свечи зажигания (рис. 2.6), в дизельных — от сжатия.
Рис. 2.6. Свеча зажигания
При работе одноцилиндрового двигателя его коленчатый вал вращается неравномерно: в момент сгорания горючей смеси резко ускоряется, а все остальное время замедляется.
Для повышения равномерности вращения на коленчатом валу, выходящем наружу из корпуса двигателя, закрепляют массивный диск — маховик (см. рис. 2.5). Когда двигатель работает, вал с маховиком вращаются. А сейчас поговорим немного подробнее о работе одноцилиндрового двигателя.
Повторим, первое действие — попадание внутрь цилиндра (в пространство над поршнем) топливовоздушной смеси, которую приготовил карбюратор или инжектор.
Этот процесс называется тактом впуска (первый такт). Заполнение цилиндра двигателя топливовоздушной смесью происходит, когда поршень из верхнего положения движется в нижнее. При этом к цилиндру двигателя подведены два канала: впускной и выпускной. Горючая смесь впускается через первый канал, а продукты ее сгорания выходят через второй. Непосредственно перед входом в цилиндр в этих каналах установлены клапаны. Их принцип действия очень прост: клапан — это подобие гвоздя с большой круглой шляпкой, перевернутый шляпкой вниз, которой закрывается вход из канала в цилиндр.
При этом шляпка прижимается к кромке канала мощной пружиной и закупоривает его. Если нажать на клапан (тот самый гвоздь), преодолев сопротивление пружины, то вход в цилиндр из канала откроется (рис. 2.7).
Во время этого такта поршень перемещается из ВМТ в НМТ. При этом впускной клапан открыт, а выпускной закрыт. Через впускной клапан цилиндр заполняется горючей смесью до тех пор, пока поршень не окажется в НМТ, то есть его дальнейшее движение вниз станет невозможным. Из ранее сказанного мы с вами уже знаем, что перемещение поршня в цилиндре влечет за собой перемещение кривошипа, а следовательно, вращение коленчатого вала и наоборот. Так вот, за первый такт работы двигателя (при перемещении поршня из ВМТ в НМТ) коленвал проворачивается на полоборота.
После того как топливовоздушная смесь, приготовленная карбюратором или инжектором, попала в цилиндр, смешалась с остатками отработавших газов и за ней закрылся впускной клапан, она становится рабочей.
Теперь наступил момент, когда рабочая смесь заполнила цилиндр и деваться ей стало некуда: впускной и выпускной клапаны надежно закрыты. В этот момент поршень начинает движение снизу вверх (от НМТ к ВМТ) и пытается прижать рабочую смесь к головке цилиндра (см. рис. 2.7). Однако, как говорится, стереть в порошок эту смесь ему не удастся, поскольку преступить черту ВМТ поршень не может, а внутреннее пространство цилиндра проектируют так (и соответственно располагают коленчатый вал и подбирают размеры кривошипа), чтобы над поршнем, находящимся в ВМТ, всегда оставалось пусть не очень большое, но свободное простран ство — камера сгорания. К концу такта сжатия давление в цилиндре возрастает до 0,8–1,2 МПа, а температура достигает 450–500 °С.
note2auto.ru
Почти на всех современных автомобилях в качестве силовой установки применяется двигатель нутреннего сгорания (ДВС) (рис. 2.1).
Существуют еще электромобили, но их мы рассматривать не будем.
В основе работы каждого ДВС лежит движение поршня в цилиндре под действием давления газов, которые образуются при сгорании топливной смеси, именуемой в дальнейшем рабочей.
При этом горит не само топливо. Горят только его пары, смешанные с воздухом, которые и являются рабочей смесью для ДВС. Если поджечь эту смесь, она мгновенно сгорает, многократно увеличиваясь в объеме. А если поместить смесь в замкнутый объем, а одну стенку сделать подвижной, то на эту стенку
будет воздействовать огромное давление, которое будет двигать стенку.
ПРИМЕЧАНИЕ
В ДВС из каждых 10 литров топлива только около 2 литров используется на полезную работу, остальные 8 литров сгорают впустую. То есть КПД ДВС составляет всего 20 %.
ДВС, используемые на легковых автомобилях, состоят из двух механизмов: кривошипно-шатунного и газораспределительного, а также из следующих систем:
Питания ;выпуска отработавших газов; зажигания; охлаждения; смазки.
Основные детали ДВС: головка блока цилиндров; цилиндры; поршни; поршневые кольца; поршневые пальцы; шатуны; коленчатый вал; маховик; распределительный вал с кулачками; клапаны; свечи зажигания.
Большинство современных автомобилей малого и среднего класса оснащены четырехцилиндровыми двигателями. Существуют моторы и большего объема — с восьмью и даже двенадцатью цилиндрами (рис. 2.2). Чем больше объем двигателя, тем он мощнее и тем выше потребление топлива.
Принцип работы ДВС проще всего рассматривать на примере одноцилиндрового бензинового двигателя. Такой двигатель состоит из цилиндра с внутренней зеркальной поверхностью, к которому прикручена съемная головка. В цилиндре находится поршень цилиндрической формы — стакан, состоящий из головки и юбки (рис. 2.3). На поршне есть канавки, в которых установлены поршневые кольца. Они обеспечивают герметичность пространства над поршнем, не давая возможности газам, образующимся при работе двигателя, проникать под поршень. Кроме того, поршневые кольца не допускают попадания масла в пространство над поршнем (масло предназначено для смазки внутренней поверхности цилиндра). Иными словами, эти кольца играют роль уплотнителей и делятся на два вида: компрессионные (те, которые не пропускают газы) и маслосъемные (препятствующие попаданию масла в камеру сгорания) (рис. 2.4).
Рис. 2.2. Схемы расположения цилиндров в двигателях различной компоновки:
а — четырехцилиндровые; б — шестицилиндровые; в — двенадцатицилиндровые (α — угол развала)
Рис. 2.3. Поршень
Смесь бензина с воздухом, приготовленная карбюратором или инжектором, попадает в цилиндр, где сжимается поршнем и поджигается искрой от свечи зажигания. Сгорая и расширяясь, она заставляет поршень двигаться вниз. Так тепловая энергия превращается в механическую.
Рис. 2.4. Поршень с шатуном:
1 — шатун в сборе; 2 — крышка шатуна;3 — вкладыш шатуна; 4 — гайка болта; 5 — болт крышки шатуна; 6 — шатун; 7 — втулка шатуна; 8 — стопорные кольца; 9 — палец поршня; 10 — поршень; 11 — маслосъемное кольцо; 12, 13 — компрессионные кольца
Далее следует преобразование хода поршня во вращение вала. Для этого поршень с помощью пальца и шатуна шарнирно соединен с кривошипом коленчатого вала, который вращается на подшипниках, установленных в картере двигателя (рис. 2.5).
Рис. 2.5. Коленчатый вал с маховиком:
1 — коленчатый вал; 2 — вкладыш шатунного подшипника; 3 — упорные полукольца; 4 — маховик; 5 — шайба болтов крепления маховика; 6 — вкладыши первого, второго, четвертого и пятого коренных подшипников; 7 — вкладыш центрального (третьего) подшипника
В результате перемещения поршня в цилиндре сверху вниз и обратно через шатун происходит вращение коленчатого вала.
Верхней мертвой точкой (ВМТ) называется самое верхнее положение поршня в цилиндре (то есть место, где поршень перестает двигаться вверх и готов начать движение вниз) (см. рис. 2.3). Самое нижнее положение поршня в цилиндре (то есть место, где поршень перестает двигаться вниз и готов начать движение вверх) называют нижней мертвой точкой (НМТ) (см. рис. 2.3). А расстояние между крайними положениями поршня (от ВМТ до НМТ) называется ходом поршня.
Когда поршень перемещается сверху вниз (от ВМТ до НМТ), объем над ним изменяется от минимального до максимального. Минимальный объем в цилиндре над поршнем при его положении в ВМТ — это камера сгорания.
А объем над цилиндром, когда он находится в НМТ, называют рабочим объемом цилиндра. В свою очередь, рабочий объем всех цилиндров двигателя в сумме, выраженный в литрах, называется рабочим объемом двигателя. Полным объемом цилиндра называется сумма его рабочего объема и объема камеры сгорания в момент нахождения поршня в НМТ.
Важной характеристикой ДВС является его степень сжатия, которая определяется как отношение полного объема цилиндра к объему камеры сгорания. Степень сжатия показывает, во сколько раз сжимается поступившая в цилиндр топливовоздушная смесь при перемещении поршня от НМТ к ВМТ. У бензиновых двигателей степень сжатия находится в пределах 6–14, у дизельных — 14–24. Степень сжатия во многом определяет мощность двигателя и его экономичность, а также существенно влияет на токсичность отработавших газов.
Мощность двигателя измеряется в киловаттах либо в лошадиных силах (используется чаще). При этом 1 л. с. равна примерно 0,735 кВт. Как мы уже говорили, работа двигателя внутреннего сгорания основана на использовании силы давления газов, образующихся при сгорании в цилиндре топливовоздушной смеси.
В бензиновых и газовых двигателях смесь воспламеняется от свечи зажигания (рис. 2.6), в дизельных — от сжатия.
Рис. 2.6. Свеча зажигания
При работе одноцилиндрового двигателя его коленчатый вал вращается неравномерно: в момент сгорания горючей смеси резко ускоряется, а все остальное время замедляется.
Для повышения равномерности вращения на коленчатом валу, выходящем наружу из корпуса двигателя, закрепляют массивный диск — маховик (см. рис. 2.5). Когда двигатель работает, вал с маховиком вращаются. А сейчас поговорим немного подробнее о работе одноцилиндрового двигателя.
Повторим, первое действие — попадание внутрь цилиндра (в пространство над поршнем) топливовоздушной смеси, которую приготовил карбюратор или инжектор.
Этот процесс называется тактом впуска (первый такт). Заполнение цилиндра двигателя топливовоздушной смесью происходит, когда поршень из верхнего положения движется в нижнее. При этом к цилиндру двигателя подведены два канала: впускной и выпускной. Горючая смесь впускается через первый канал, а продукты ее сгорания выходят через второй. Непосредственно перед входом в цилиндр в этих каналах установлены клапаны. Их принцип действия очень прост: клапан — это подобие гвоздя с большой круглой шляпкой, перевернутый шляпкой вниз, которой закрывается вход из канала в цилиндр.
При этом шляпка прижимается к кромке канала мощной пружиной и закупоривает его. Если нажать на клапан (тот самый гвоздь), преодолев сопротивление пружины, то вход в цилиндр из канала откроется (рис. 2.7).
Первый такт — впуск
Во время этого такта поршень перемещается из ВМТ в НМТ. При этом впускной клапан открыт, а выпускной закрыт. Через впускной клапан цилиндр заполняется горючей смесью до тех пор, пока поршень не окажется в НМТ, то есть его дальнейшее движение вниз станет невозможным. Из ранее сказанного мы с вами уже знаем, что перемещение поршня в цилиндре влечет за собой перемещение кривошипа, а следовательно, вращение коленчатого вала и наоборот. Так вот, за первый такт работы двигателя (при перемещении поршня из ВМТ в НМТ) коленвал проворачивается на полоборота.
Второй такт — сжатие
После того как топливовоздушная смесь, приготовленная карбюратором или инжектором, попала в цилиндр, смешалась с остатками отработавших газов и за ней закрылся впускной клапан, она становится рабочей.
Теперь наступил момент, когда рабочая смесь заполнила цилиндр и деваться ей стало некуда: впускной и выпускной клапаны надежно закрыты. В этот момент поршень начинает движение снизу вверх (от НМТ к ВМТ) и пытается прижать рабочую смесь к головке цилиндра (см. рис. 2.7). Однако, как говорится, стереть в порошок эту смесь ему не удастся, поскольку преступить черту ВМТ поршень
не может, а внутреннее пространство цилиндра проектируют так (и соответственно располагают коленчатый вал и подбирают размеры кривошипа), чтобы над поршнем, находящимся в ВМТ, всегда оставалось пусть не очень большое, но свободное простран ство — камера сгорания. К концу такта сжатия давление в цилиндре возрастает до 0,8–1,2 МПа, а температура достигает 450–500 °С.
Третий такт — рабочий ход
Третий такт — самый ответственный момент, когда тепловая энергия превращается в механическую. В начале третьего такта (а на самом деле в конце такта сжатия) горючая смесь воспламеняется с помощью искры свечи зажигания (рис. 2.8).
а — такт впуска; б — такт сжатия; в — такт рабочего хода; г — такт выпуска
Давление от расширяющихся газов передается на поршень, и он начинает двигаться вниз (от ВМТ к НМТ). При этом оба клапана (впускной и выпускной) закрыты. Рабочая смесь сгорает с выделением большого количества тепла, давление в цилиндре резко возрастает, и поршень с большой силой перемещается вниз, приводя во вращение через шатун коленчатый вал. В момент сгорания температура в цилиндре повышается до 1800–2000 °С, а давление — до 2,5–3,0 МПа.
Обратите внимание, что главная цель создания самого двигателя — это как раз и есть третий такт (рабочий ход). Поэтому остальные такты называют вспомогательными.
Четвертый такт — выпуск
Во время этого процесса впускной клапан закрыт, а выпускной открыт. Поршень, перемещаясь снизу вверх (от НМТ к ВМТ), выталкивает оставшиеся в цилиндре после сгорания и расширения отработавшие газы через открытый выпускной клапан в выпускной канал (трубопровод). Далее через систему выпуска отработавших газов, наиболее известная часть которой — глушитель, отработавшие газы уходят в атмосферу
Все четыре такта периодически повторяются в цилиндре двигателя, тем самым обеспечивая его непрерывную работу, и называются рабочим циклом. Рабочий цикл дизельного двигателя имеет некоторые отличия от рабочего цикла бензинового. В нем во время такта впуска в цилиндр поступает не горючая смесь, а чистый воздух.
Во время такта сжатия он сжимается и нагревается. В конце первого такта, когда поршень приближается к ВМТ, в цилиндр через специальное устройство — форсунку, ввернутую в верхнюю часть головки цилиндра, — под большим давлением впрыскивается дизельное топливо. Соприкасаясь с раскаленным воздухом, частицы топлива быстро сгорают.
При этом выделяется большое количество тепла и температура в цилиндре повышается до 1700–2000 °С, а давление — до 7–8 МПа.
Под действием давления газов поршень перемещается вниз, и происходит рабочий ход. Такт выпуска дизельного двигателя аналогичен такту выпуска бензинового двигателя.
Вспомогательные такты (первый, второй и четвертый) совершаются за счет кинетической энергии тщательно сбалансированного массивного чугунного диска, закрепленного на валу двигателя — маховика, о котором также шла речь выше. Кроме обеспечения равно- мерного вращения коленчатого вала, маховик способствует преодолению сопротивления сжатия в цилиндрах двигателя при его пуске, а также позволяет ему преодолевать кратковременные перегрузки, например, при трогании автомобиля с места. На ободе маховика закреплен зубчатый венец для пуска двигателя стартером. Во время третьего
такта (рабочего хода) поршень через шатун, кривошип и коленчатый вал передает запас инерции маховику. Инерция помогает ему осуществлять вспомогательные такты рабочего цикла двигателя. Из этого следует, что при тактах впуска, сжатия и выпуска поршень ходит в цилиндре именно за счет энергии, отдаваемой маховиком. В многоцилиндровом двигателе порядок работы цилиндров устанавливается таким образом, чтобы рабочий ход хотя бы одного поршня помогал осуществлять вспомогательные такты и плюс ко всему вращал маховик.
А теперь подведем итоги: совокупность последовательных процессов, периодически повторяющихся в каждом цилиндре двигателя и обеспечивающих его непрерывную работу, называется рабочим циклом. Рабочий цикл четырехтактного двигателя состоит из четырех тактов, каждый из которых происходит за
один ход поршня или за пол-оборота коленчатого вала. Полный рабочий цикл осуществляется за два оборота коленчатого вала.
Порядок работы цилиндров четырехцилиндрового двигателя: 1-3-4-2. Пятицилиндрового, как правило, — 1-2-4-3-5.
ТИПАЖ 5.Рабочие циклы бензинового и дизельного двигателей.Рабочий цикл 2-хтактного бензинового и дизельного двигателей
Рабочий цикл 2-хтактного бензинового двигателя.
Конструктивные особенности 2-хтактного двигателя отсутствие клапанного ГРМ, газораспределение через окно в цилиндре, перекрываемые в нужный момент поршнем.
1-й такт – движение поршня от НМТ к ВМТ.
Окно 1 перекрывается и идет сжатие, в картере 4 создается разряжение, открывается впускное окно 2. Горючая смесь из карбюратора заполняет картер, сжатая смесь зажигается при подходе поршня к ВМТ, таким образом при движении поршня вверх осуществляется сжатие и впуск.
2-й такт – движение поршня от ВМТ к НМТ.
Осуществляется зажигание, газы расширяются, поршень движется вниз перекрывая окно 2, а в картере идет предварительное сжатие горючей смеси. Рабочий ход происходит до момента открытия окна 1, через которое отработанные газы выходят в атмосферу. После открытия окна 3 (продувочного) начинается поступление горючей смеси из картера 4 по каналу 5 в пространство над поршнем. Поступающая смесь «продувает» цилиндр от отработавших газов и частично выходит с ними наружу. Следовательно, в этом такте идет расширение (рабочий ход), выпуск и продувка, а под поршнем в это время осуществляется сжатие горючей смеси.
Преимущество 2-хтактных ДВС.
- более плавная работа;
- простота устройства;
- высокая удельная мощность;
Недостатки:
- низкая экономичность;
- плохая очитка цилиндров от отработавших газов;
- низкий коэффициент наполнения цилиндра;
- «сухой» (без масла) картер.
Рабочий цикл 2-хтактного дизеля.
1-й такт – движение поршня от ВМТ к НМТ.
Когда поршень немного не доходит до продувочных окон открывается выпускной клапан 1 и отработавшие газы под избыточным давлением выходят наружу, т.е. начинается процесс выпуска. При дальнейшем движении поршня вниз открываются продувочные окна, через которые воздух поступает в цилиндр от специального нагнетателя.
2-й такт – движение поршня от НМТ к ВМТ.
Поршень движется вверх. До тех пор, пока окна не закрыты и открыт клапан осуществляется процесс впуска, затем поршень перекрывает окна, клапан закрывается и осуществляется сжатие.
Величины давления и температуры аналогичны 4-хтактному дизелю (см. ниже),лишь предельные значения температуры немного выше.
Преимущества 2-хтактного дизеля:
- высокая плавность работы;
- большая удельная мощность;
- большая экономичность в сравнении с 2-хтактным карбюраторным ДВС.
Недостатки:
- высокие температуры нагрева деталей двигателя, что снижает их ресурс на 25-30%;
- необходимость специального нагнетателя воздуха.
Рабочий цикл 4-хтактного дизельного ДВС.
Рабочий цикл – аналогичен 4-хтактному карбюраторному двигателю. Принципиальное отличие – сжатию подвергается чистый воздух, а топливо вводится в камеру сгорания в конце такта сжатия, самовоспламеняясь при этом от горячего воздуха.
Параметры тактов:
Впуск – аналогично карбюраторному.
Сжатие – давление 30-50 кг/см2, температура воздуха – 650-750 С, в конце сжатия происходит воспламенение топлива, впрыснутого через форсунку, давление возрастает до 150-400 кг/см2, температура – 1600-1900 С, давление газов на поршень – 60-90 кг/см2.
Рабочий ход (расширение) – давление падает до 3-4 кг/см2, температура 800-1000 С.
Выпуск – параметры аналогичны карбюраторному ДВС.
ТИПАЖ 6.Основные понятия работы поршневых ДВС.
Поршневые двигатели внутреннего сгорания классифицируются по количеству тактов в рабочем цикле на двухтактные и четырёхтактные.
Рабочий цикл в поршневых двигателях внутреннего сгорания состоит из пяти процессов: впуска, сжатия, сгорания, расширения и выпуска. В двигателе рабочий цикл может быть осуществлен по следующей широко применяемой схеме:
1. В процессе впуска поршень перемещается от верхней мертвой точки (в.м.т.) к нижней мертвой точке (н.м.т.), а освобождающееся надпоршневое пространство цилиндра заполняется смесью воздуха с топливом. Из-за разности давлений во впускном коллекторе и внутри цилиндра двигателя при открытии впускного клапана смесь поступает (всасывается) в цилиндр в момент времени, называемый углом открытия впускного клапана φа.
Воздушно-топливная смесь и продукты сгорания (всегда остающиеся в объеме пространства сжатия от предыдущего цикла), смешиваясь между собой, образуют рабочую смесь. Тщательно приготовленная рабочая смесь повышает эффективность сгорания топлива, поэтому ее подготовке уделяется большое внимание во всех типах поршневых двигателей.
Количество воздушно-топливной смеси, поступающее в цилиндр за один рабочий цикл, называется свежим зарядом, а продукты сгорания, остающиеся в цилиндре к моменту поступления в него свежего заряда — остаточными газами.
Чтобы повысить эффективность работы двигателя, стремятся увеличить абсолютную величину свежего заряда и его весовую долю в рабочей смеси.
2. В процессе сжатия оба клапана закрыты и поршень, перемещаясь от н.м.т. к в.м.т. и уменьшая объем надпоршневой полости, сжимает рабочую смесь (в общем случае рабочее тело). Сжатие рабочего тела ускоряет процесс сгорания и этим предопределяет возможную полноту использования тепла, выделяющегося при сжигании топлива в цилиндре.
Двигатели внутреннего сгорания строятся с возможно большей степенью сжатия, которая в случаях принудительного зажигания смеси достигает значения 10—12, а при использовании принципа самовоспламенения топлива выбирается в пределах 14—22.
3. В процессе сгорания происходит окисление топлива кислородом воздуха, входящего в состав рабочей смеси, вследствие чего давление в надпоршневой полости резко возрастает.
В рассматриваемой схеме рабочая смесь в нужный момент вблизи в.м.т. поджигается от постороннего источника с помощью электрической искры высокого напряжения (порядка 15 кв). Для подачи искры в цилиндр служит свеча зажигания, которая ввертывается в головку цилиндра.
Для двигателей с воспламенением топлива от тепла, выделяющегося от предварительно сжатого воздуха, запальная свеча не нужна. Такие двигатели снабжаются специальной форсункой, через которую в нужный момент в цилиндр впрыскивается топливо под давлением в 100 ÷ 300 кГ/см² (≈ 10—30 Мн/м²) и более.
4. В процессе расширения раскаленные газы, стремясь расшириться, перемещают поршень от в.м.т. к н.м.т. Совершается рабочий ход поршня, который через шатун передает давление на шатунную шейку коленчатого вала и проворачивает его.
5. В процессе выпуска поршень перемещается от н.м.т. к в.м.т. и через второй открывающийся к этому времени клапан, выталкивает отработавшие газы из цилиндра. Продукты сгорания остаются только в объеме камеры сгорания, откуда их нельзя вытеснить поршнем. Непрерывность работы двигателя обеспечивается последующим повторением рабочих циклов.
Процессы, связанные с подготовкой рабочей смеси к сжиганию ее в цилиндре, а также освобождением цилиндра от продуктов сгорания, в одноцилиндровых двигателях осуществляются движением поршня за счет энергии маховика, которую он накапливает в процессе рабочего хода.
В многоцилиндровых двигателях вспомогательные ходы каждого из цилиндров выполняются за счет работы других (соседних) цилиндров. Поэтому эти двигатели в принципе могут работать без маховика.
Для удобства изучения рабочий цикл различных двигателей расчленяют на процессы или, наоборот, группируют процессы рабочего цикла с учетом положения поршня относительно мертвых точек в цилиндре. Это позволяет все процессы в поршневых двигателях рассматривать в зависимости от перемещения поршня, что более удобно.
Часть рабочего цикла, осуществляемая в интервале перемещения поршня между двумя смежными мертвыми точками, называется тактом.
Такту, а следовательно, и соответствующему ходу поршня присваивается название процесса, который является основным при данном перемещении поршня между двумя его мертвыми точками (положениями).
В двигателе каждому такту (ходу поршня) соответствуют, например, вполне определенные основные для них процессы: впуск, сжатие, расширение, выпуск. Поэтому в таких двигателях различают такты: впуска, сжатия, расширения и выпуска. Каждое из этих четырех названий соответственно присваивается ходам поршня.
В любых поршневых двигателях внутреннего сгорания рабочий цикл складывается из рассмотренных выше пяти процессов по разобранной выше схеме за четыре хода поршня или всего за два хода поршня. В соответствии с этим поршневые двигатели подразделяют на двух- и четырехтактные.[1]
poznayka.org
Почти на всех современных автомобилях в качестве силовой установки применяется двигатель внутреннего сгорания (ДВС) (рис. 1).
Рис. 1. Внешний вид двигателя внутреннего сгорания
В основе работы каждого ДВС лежит движение поршня в цилиндре под действием давления газов, которые образуются при сгорании топливной смеси, именуемой в дальнейшем рабочей.
При этом горит не само топливо. Горят только его пары, смешанные с воздухом, которые и являются рабочей смесью для ДВС. Если поджечь эту смесь, она мгновенно сгорает, многократно увеличиваясь в объеме. А если поместить смесь в замкнутый объем, а одну стенку сделать подвижной, то на эту стенку будет воздействовать огромное давление, которое будет двигать стенку.
ПРИМЕЧАНИЕ
В ДВС из каждых 10 литров топлива только около 2 литров используется на полезную работу, остальные 8 литров сгорают впустую. То есть КПД ДВС составляет всего 20 %.
ДВС, используемые на легковых автомобилях, состоят из двух механизмов: кривошипно-шатунного и газораспределительного, а также из следующих систем:
¾ питания;
¾ выпуска отработавших газов;
¾ зажигания;
¾ охлаждения;
¾ смазки.
Основные детали ДВС:
¾ головка блока цилиндров;
¾ цилиндры;
¾ поршни;
¾ поршневые кольца;
¾ поршневые пальцы;
¾ шатуны;
¾ коленчатый вал;
¾ маховик;
¾ распределительный вал с кулачками;
¾ клапаны;
¾ свечи зажигания.
Большинство современных автомобилей малого и среднего класса оснащены четырехцилиндровыми двигателями. Существуют моторы и большего объема — с восьмью и даже двенадцатью цилиндрами (рис. 2). Чем больше объем двигателя, тем он мощнее и тем выше потребление топлива.
Рис. 2. Схемы расположения цилиндров в двигателях различной компоновки:
а — четырехцилиндровые; б — шестицилиндровые; в — двенадцатицилиндровые (α — угол развала)
Принцип работы ДВС проще всего рассматривать на примере одноцилиндрового бензинового двигателя. Такой двигатель состоит из цилиндра с внутренней зеркальной поверхностью, к которому прикручена съемная головка. В цилиндре находится поршень цилиндрической формы — стакан, состоящий из головки и юбки (рис. 3).
Рис. 3. Поршень
На поршне есть канавки, в которых установлены поршневые кольца. Они обеспечивают герметичность пространства над поршнем, не давая возможности газам, образующимся при работе двигателя, проникать под поршень. Кроме того, поршневые кольца не допускают попадания масла в пространство над поршнем (масло предназначено для смазки внутренней поверхности цилиндра). Иными словами, эти кольца играют роль уплотнителей и делятся на два вида: компрессионные (те, которые не пропускают газы) и маслосъемные (препятствующие попаданию масла в камеру сгорания) (рис. 4).
Смесь бензина с воздухом, приготовленная карбюратором или инжектором, попадает в цилиндр, где сжимается поршнем и поджигается искрой от свечи зажигания. Сгорая и расширяясь, она заставляет поршень двигаться вниз. Так тепловая энергия превращается в механическую.
Рис. 4. Поршень с шатуном:
1 — шатун в сборе; 2 — крышка шатуна;3 — вкладыш шатуна; 4 — гайка болта; 5 — болт крышки шатуна; 6 — шатун; 7 — втулка шатуна; 8 — стопорные кольца; 9 — палец поршня; 10 — поршень; 11 — маслосъемное кольцо; 12, 13 — компрессионные кольца
Далее следует преобразование хода поршня во вращение вала. Для этого поршень с помощью пальца и шатуна шарнирно соединен с кривошипом коленчатого вала, который вращается на подшипниках, установленных в картере двигателя (рис. 5).
Рис. 5. Коленчатый вал с маховиком:
1 — коленчатый вал; 2 — вкладыш шатунного подшипника; 3 — упорные полукольца; 4 — маховик; 5 — шайба болтов крепления маховика; 6 — вкладыши первого, второго, четвертого и пятого коренных подшипников; 7 — вкладыш центрального (третьего) подшипника
В результате перемещения поршня в цилиндре сверху вниз и обратно через шатун происходит вращение коленчатого вала.
Верхней мертвой точкой (ВМТ) называется самое верхнее положение поршня в цилиндре (то есть место, где поршень перестает двигаться вверх и готов начать движение вниз) (см. рис. 3). Самое нижнее положение поршня в цилиндре (то есть место, где поршень перестает двигаться вниз и готов начать движение вверх) называют нижней мертвой точкой (НМТ) (см. рис. 3). А расстояние между крайними положениями поршня (от ВМТ до НМТ) называется ходом поршня.
Когда поршень перемещается сверху вниз (от ВМТ до НМТ), объем над ним изменяется от минимального до максимального. Минимальный объем в цилиндре над поршнем при его положении в ВМТ — это камера сгорания.
А объем над цилиндром, когда он находится в НМТ, называют рабочим объемом цилиндра. В свою очередь, рабочий объем всех цилиндров двигателя в сумме, выраженный в литрах, называется рабочим объемом двигателя. Полным объемом цилиндра называется сумма его рабочего объема и объема камеры сгорания в момент нахождения поршня в НМТ.
Важной характеристикой ДВС является его степень сжатия, которая определяется как отношение полного объема цилиндра к объему камеры сгорания. Степень сжатия показывает, во сколько раз сжимается поступившая в цилиндр топливовоздушная смесь при перемещении поршня от НМТ к ВМТ. У бензиновых двигателей степень сжатия находится в пределах 6–14, у дизельных — 14–24. Степень сжатия во многом определяет мощность двигателя и его экономичность, а также существенно влияет на токсичность отработавших газов.
Мощность двигателя измеряется в киловаттах либо в лошадиных силах (используется чаще). При этом 1 л. с. равна примерно 0,735 кВт. Как мы уже говорили, работа двигателя внутреннего сгорания основана на использовании силы давления газов, образующихся при сгорании в цилиндре топливовоздушной смеси.
В бензиновых и газовых двигателях смесь воспламеняется от свечи зажигания (рис. 6), в дизельных — от сжатия.
Рис. 6. Свеча зажигания
При работе одноцилиндрового двигателя его коленчатый вал вращается неравномерно: в момент сгорания горючей смеси резко ускоряется, а все остальное время замедляется.
Для повышения равномерности вращения на коленчатом валу, выходящем наружу из корпуса двигателя, закрепляют массивный диск — маховик (см. рис. 5). Когда двигатель работает, вал с маховиком вращаются. А сейчас поговорим немного подробнее о работе одноцилиндрового двигателя.
Повторим, первое действие — попадание внутрь цилиндра (в пространство над поршнем) топливовоздушной смеси, которую приготовил карбюратор или инжектор.
Этот процесс называется тактом впуска (первый такт). Заполнение цилиндра двигателя топливовоздушной смесью происходит, когда поршень из верхнего положения движется в нижнее. При этом к цилиндру двигателя подведены два канала: впускной и выпускной. Горючая смесь впускается через первый канал, а продукты ее сгорания выходят через второй. Непосредственно перед входом в цилиндр в этих каналах установлены клапаны. Их принцип действия очень прост: клапан — это подобие гвоздя с большой круглой шляпкой, перевернутый шляпкой вниз, которой закрывается вход из канала в цилиндр.
При этом шляпка прижимается к кромке канала мощной пружиной и закупоривает его. Если нажать на клапан (тот самый гвоздь), преодолев сопротивление пружины, то вход в цилиндр из канала откроется (рис. 7).
Первый такт — впуск
Во время этого такта поршень перемещается из ВМТ в НМТ. При этом впускной клапан открыт, а выпускной закрыт. Через впускной клапан цилиндр заполняется горючей смесью до тех пор, пока поршень не окажется в НМТ, то есть его дальнейшее движение вниз станет невозможным. Из ранее сказанного мы с вами уже знаем, что перемещение поршня в цилиндре влечет за собой перемещение кривошипа, а следовательно, вращение коленчатого вала и наоборот. Так вот, за первый такт работы двигателя (при перемещении поршня из ВМТ в НМТ) коленвал проворачивается на полоборота.
Второй такт — сжатие
После того как топливовоздушная смесь, приготовленная карбюратором или инжектором, попала в цилиндр, смешалась с остатками отработавших газов и за ней закрылся впускной клапан, она становится рабочей.
Теперь наступил момент, когда рабочая смесь заполнила цилиндр и деваться ей стало некуда: впускной и выпускной клапаны надежно закрыты. В этот момент поршень начинает движение снизу вверх (от НМТ к ВМТ) и пытается прижать рабочую смесь к головке цилиндра (см. рис. 7). Однако, как говорится, стереть в порошок эту смесь ему не удастся, поскольку преступить черту ВМТ поршень не может, а внутреннее пространство цилиндра проектируют так (и соответственно располагают коленчатый вал и подбирают размеры кривошипа), чтобы над поршнем, находящимся в ВМТ, всегда оставалось пусть не очень большое, но свободное простран ство — камера сгорания. К концу такта сжатия давление в цилиндре возрастает до 0,8–1,2 МПа, а температура достигает 450–500 °С.
Третий такт — рабочий ход
Третий такт — самый ответственный момент, когда тепловая энергия превращается в механическую. В начале третьего такта (а на самом деле в конце такта сжатия) горючая смесь воспламеняется с помощью искры свечи зажигания (рис. 8).
Рис. 7. Процесс работы четырехтактного двигателя:
а — такт впуска; б — такт сжатия; в — такт рабочего хода; г — такт выпуска
Давление от расширяющихся газов передается на поршень, и он начинает двигаться вниз (от ВМТ к НМТ). При этом оба клапана (впускной и выпускной) закрыты. Рабочая смесь сгорает с выделением большого количества тепла, давление в цилиндре резко возрастает, и поршень с большой силой перемещается вниз, приводя во вращение через шатун коленчатый вал. В момент сгорания температура в цилиндре повышается до 1800–2000 °С, а давление — до 2,5–3,0 МПа.
Рис. 8. Искра между электродами свечи
Обратите внимание, что главная цель создания самого двигателя — это как раз и есть третий такт (рабочий ход). Поэтому остальные такты называют вспомогательными.
Четвертый такт — выпуск
Во время этого процесса впускной клапан закрыт, а выпускной открыт. Поршень, перемещаясь снизу вверх (от НМТ к ВМТ), выталкивает оставшиеся в цилиндре после сгорания и расширения отработавшие газы через открытый выпускной клапан в выпускной канал (трубопровод). Далее через систему выпуска отработавших газов, наиболее известная часть которой — глушитель, отработавшие газы уходят в атмосферу (рис. 9).
Рис. 9. Фрагмент глушителя
Все четыре такта периодически повторяются в цилиндре двигателя, тем самым обеспечивая его непрерывную работу, и называются рабочим циклом. Рабочий цикл дизельного двигателя имеет некоторые отличия от рабочего цикла бензинового. В нем во время такта впуска в цилиндр поступает не горючая смесь, а чистый воздух.
Во время такта сжатия он сжимается и нагревается. В конце первого такта, когда поршень приближается к ВМТ, в цилиндр через специальное устройство — форсунку, ввернутую в верхнюю часть головки цилиндра, — под большим давлением впрыскивается дизельное топливо. Соприкасаясь с раскаленным воздухом, частицы топлива быстро сгорают.
При этом выделяется большое количество тепла и температура в цилиндре повышается до 1700–2000 °С, а давление — до 7–8 МПа.
Под действием давления газов поршень перемещается вниз, и происходит рабочий ход. Такт выпуска дизельного двигателя аналогичен такту выпуска бензинового двигателя.
Вспомогательные такты (первый, второй и четвертый) совершаются за счет кинетической энергии тщательно сбалансированного массивного чугунного диска, закрепленного на валу двигателя — маховика, о котором также шла речь выше. Кроме обеспечения равномерного вращения коленчатого вала, маховик способствует преодолению сопротивления сжатия в цилиндрах двигателя при его пуске, а также позволяет ему преодолевать кратковременные перегрузки, например, при трогании автомобиля с места. На ободе маховика закреплен зубчатый венец для пуска двигателя стартером. Во время третьего такта (рабочего хода) поршень через шатун, кривошип и коленчатый вал передает запас инерции маховику. Инерция помогает ему осуществлять вспомогательные такты рабочего цикла двигателя. Из этого следует, что при тактах впуска, сжатия и выпуска поршень ходит в цилиндре именно за счет энергии, отдаваемой маховиком. В многоцилиндровом двигателе порядок работы цилиндров устанавливается таким образом, чтобы рабочий ход хотя бы одного поршня помогал осуществлять вспомогательные такты и плюс ко всему вращал маховик.
А теперь подведем итоги: совокупность последовательных процессов, периодически повторяющихся в каждом цилиндре двигателя и обеспечивающих его непрерывную работу, называется рабочим циклом. Рабочий цикл четырехтактного двигателя состоит из четырех тактов, каждый из которых происходит за один ход поршня или за пол-оборота коленчатого вала. Полный рабочий цикл осуществляется за два оборота коленчатого вала.
Порядок работы цилиндров четырехцилиндрового двигателя: 1-3-4-2. Пятицилиндрового, как правило, — 1-2-4-3-5.
megalektsii.ru
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника | Стр 1 из 17Следующая ⇒ ПРАКТИЧЕСКАЯ РАБОТА №1 Тема: «Устройство механизмов и систем двигателя» Цель работы:ознакомление с механизмами и системами двигателя. Студент должен: знать: - виды механизмов и систем двигателя, их назначение, их общее устройство. уметь: - определять механизмы и системы и их детали. Основные теоретические положения В автомобилях применяют поршневые двигатели, называемые двигателями внутреннего сгорания. В таких двигателях теплота, выделяемая при сгорании топлива, преобразуется в механическую работу. Общее устройство двигателя. Поршневые двигатели внутреннего сгорания имеют в своем составе два механизма: кривошипно-шатунный и газораспределительный, а также системы охлаждения, питания, зажигания и пуска и смазочную систему. Кривошипно-шатунный механизм предназначен для восприятия силы взрыва газов и преобразования прямолинейного возвратно-поступательного движения поршня во вращательное движение коленчатого вала. Основными деталями кривошипно-шатунного механизма являются блок цилиндров, головка блока цилиндров, картер, поддон картера, коленчатый вал, шатуны, поршни, поршневые кольца, поршневые пальцы и маховик. Газораспределительный механизм служит для своевременного впуска в цилиндры горючей смеси и для выпуска отработавших газов. К газораспределительному механизму относятся распределительный вал, толкатели, штанги, ось коромысел, коромысла, клапаны, пружины клапанов с деталями их крепления на стержнях клапанов. Система охлаждения двигателя предназначена для отвода излишней теплоты и поддержания температурного режима в пределах 80... 95 °С. Существуют системы охлаждения двигателей с жидкостным отводом теплоты в окружающую среду и воздушные, где излишняя теплота отводится от цилиндров двигателя путем обдува их воздухом. Жидкостная система охлаждения имеет радиатор, водяной насос, термостат, рубашку охлаждения цилиндров и жалюзи радиатора. Смазочная система двигателя предназначена для подачи масла к движущимся деталям, удаления продуктов трения с трущихся поверхностей и частичного охлаждения трущихся деталей. Основными приборами системы являются масляный насос с маслоприемником, фильтры очистки масла, масляные радиаторы, детали системы вентиляции картера двигателя, магистрали и трубопроводы. Система питания карбюраторных двигателей служит для приготовления горючей смеси вне цилиндров двигателя и подачи ее в цилиндры. Основными приборами системы являются топливный бак, фильтры грубой и тонкой очистки, топливный насос, карбюратор, воздушный фильтр, впускные и выпускные трубы, глушитель. К системе питания дизеля относятся топливный бак, фильтры топлива грубой и тонкой очистки, подкачивающий насос низкого давления, топливный насос высокого давления, форсунки, воздушный фильтр, выпускные трубы, труба глушителя и глушитель. Система зажигания предназначена для воспламенения рабочей смеси в цилиндрах двигателя. У дизелей система зажигания отсутствует, так как воспламенение горючей смеси происходит под действием высокой температуры воздуха в результате сильного сжатия. Система пуска включает приборы, облегчающие пуск двигателя. Карбюраторный двигатель (рис. 1, а) имеет кривошипно-шатунный механизм, газораспределительный механизм и системы охлаждения, смазки, питания и зажигания.
Верхнее крайнее положение поршня в цилиндре (рис. 1, б) называется верхней мертвой точкой (в.м.т.), нижнее положение — нижней мертвой точкой (н.м.т.). Расстояние, проходимое поршнем от одной до другой мертвой точки, называется ходом поршня S. Перемещение поршня от одной мертвой точки до другой вызывает поворот коленчатого вала на половину оборота. Объем Vс над поршнем, находящимся в в.м.т., называется объемом камеры сгорания, а объем Vп над поршнем, находящимся в н.м.т., — полным объемом цилиндра. Объем Vh, освобождаемый поршнем при его перемещении от в. м. т. до н. м. т., называется рабочим объемом цилиндра. Нетрудно убедиться в том, что Vс + Vh = Vп. Рабочий объем цилиндра легко подсчитать по формуле Vh = , где D —диаметр цилиндра; S—ход поршня. Если диаметр цилиндра и ход поршня выразить в дециметрах, то рабочий объем цилиндра получим в кубических дециметрах или литрах. Рабочий объем всех цилиндров многоцилиндрового двигателя называют литражом. Его подсчитывают умножением рабочего объема одного цилиндра Vh, на число цилиндров двигателя. Отношение полного объема цилиндра Vп к объему камеры сгорания Vc называется степенью сжатия. Степень сжатия показывает, во сколько раз уменьшается объем смеси или воздуха, находящихся в цилиндре, при перемещении поршня от н.м.т. к в.м.т. В карбюраторных двигателях степень сжатия изменяется от 6,5 до 9,5, в дизелях – от 14 до 21. |
mykonspekts.ru