ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Принципы действия тепловых двигателей. Тепловые двигатели


Тепловые двигатели: принцип действия, устройство, схема

Рассмотрим тепловые двигатели, принцип действия этих механизмов. В земной коре и мировом океане запасы внутренней энергии можно считать неограниченными. Для того чтобы решать практические задачи, ее явно недостаточно. Устройство и принцип действия теплового двигателя необходимо знать для того, чтобы приводить в движение токарные станки, транспортные средства. Человек нуждается в таких устройствах, которые могут совершать полезную работу.

тепловые двигатели принцип действия

Тепловые двигатели, принцип действия которых мы рассмотрим, являются основными на нашей планете. Именно в них происходит превращение внутренней энергии в механический вид.

Особенности теплового двигателя

Каков принцип действия теплового двигателя? Кратко его можно представить на простом опыте. Если в пробирку налить воду, закрыть пробкой, довести до кипения, она вылетит. Причина выскакивания пробки заключается в совершении паром внутренней работы. Процесс сопровождается превращением внутренней энергии пара в кинетическую величину для пробки. Тепловые двигатели, принцип действия которых аналогичен описанному эксперименту, отличаются строением. Вместо пробирки используется металлический цилиндр. Пробка заменена поршнем, плотно прилегающим к стенкам, перемещающимся вдоль цилиндра.

Алгоритм действия

Каков принцип действия теплового двигателя? 10 класс рассматривает данный вопрос на уроках физики. Тепловыми машинами ребята называют механизмы, где наблюдается превращение внутренней энергии топлива в механический вид.

принцип действия теплового двигателя 10 класс

Для совершения двигателем полезной работы, должна быть создана разность давлений с обеих сторон поршня либо лопастей мощной турбины. Для достижения такой разности давлений происходит повышение температуры рабочего тела на тысячи градусов в сравнении с ее средним показателем в окружающей среде. Происходит подобное повышение температуры в процессе сгорания топлива.

Изменения температур

У всех современных тепловых машин выделяют рабочее тело. Им принято называть газ, совершающий в процессе расширения полезную работу. Начальную температуру, обозначаемую Т1, он приобретает в паровом котле машины или турбины. Называют этот показатель температурой нагревателя. В процессе совершения работы происходит постепенная потеря газом энергии. Это приводит к неизбежному охлаждению рабочего тела до некоторого показателя Т2. Значение температуры должно быть ниже показателя окружающей среды, иначе давление газа будет иметь меньший показатель, чем атмосферное давление, и работа двигателем не будет совершена.

устройство и принцип действия теплового двигателя

Показатель Т2 называют температурой холодильника. В его качестве выступает атмосфера либо специальное устройство, необходимое для конденсации и охлаждения отработанного пара.

Некоторые факты

Итак, тепловые двигатели, принцип действия которых основывается на расширении рабочего тела, не способны отдавать для совершения работы всю внутреннюю энергию. В любом случае часть тепла будет передаваться атмосфере (холодильнику) вместе с отработанным паром либо выхлопными газами турбин или двигателей внутреннего сгорания.

КПД тепловых машин

Каков принцип действия тепловой машины? КПД теплового двигателя зависит от величины полезной работы, совершаемой газом. С учетом того, что невозможно полностью превратить внутреннюю энергию в работу теплового двигателя, можно объяснить необратимость природных процессов и явлений. В том случае, если бы наблюдалось самопроизвольное возвращение теплоты к нагревателю от холодильника, внутренняя энергия в полном объеме превращалась бы в полезную работу посредством теплового двигателя.

принцип действия тепловой машины кпд теплового двигателя

Коэффициентом полезного действия называют отношение полезной работы, совершаемой тепловым двигателем, к тому количеству тепла, которое передано холодильнику. В физике принято выражать данную величину в процентах. Таков принцип действия теплового двигателя. Схема его понятна и проста, доступна даже ученикам средней школы. Законы термодинамики дают возможность проводить вычисления максимального значения коэффициента полезного действия.

Изобретение тепловой машины

Первым изобретателем машины, использующей тепло, стал Сади Карно. Он разработал идеальную машину, в которой рабочим телом выступал идеальный газ. Кроме того, ученому удалось определить показатель КПД для такого устройства, используя значения температуры холодильника и нагревателя.принцип действия теплового двигателя схема

Карно удалось определить зависимость между реальной тепловой машиной, функционирующей на основе нагревателя, и холодильником, в качестве которого выступает воздух или конденсатор. Благодаря математической формуле, предложенной Карно для его первой идеальной тепловой машины, определяется максимальное значение КПД. Между температурой нагревателя и холодильника существует прямая связь.

Для того чтобы машина полноценно функционировала, значение температуры не должно быть меньше ее показателя в окружающем воздухе. При желании можно повышать температуру нагревателя, не забывая о том, что у каждого твердого тела есть определенная жаропрочность. По мере нагревания оно теряет свою упругость, а при достижении температуры плавления просто плавится. принцип действия теплового двигателя кратко

Благодаря инновациям, которые достигнуты в современной инженерной промышленности, происходит постепенное повышение КПД теплового двигателя. Например, снижается трение между его отдельными частями, устраняются потери, возникающие из-за неполного сгорания топлива.

Двигатель внутреннего сгорания

Он представляет собой тепловую машину, где в виде рабочего тела применяют высокотемпературные газы, получаемые в процессе сгорания разного вида топлива внутри камеры. Выделяют четыре такта в работе автомобильного двигателя. Среди составных его частей назовем впускной и выпускной клапаны, камеру сгорания, поршень, цилиндр, свечу, шатун, а также маховик.

Заключение

В настоящее время используют различные виды автомобильных двигателей: дизельный, карбюраторный. Несмотря на отличия в применяемом топливе, они имеют сходный принцип действия. За счет тепловой энергии, вырабатываемой в процессе сгорания бензина, происходит превращение тепловой энергии в другой вид.

принцип действия теплового двигателя кратко

На первом этапе наблюдается плавное передвижение клапана вниз, процесс происходит благодаря заполнению камеры рабочей смесью. В конце первого такта впускной клапан закрывается. Далее поршень передвигается вверх, при этом происходит сжатие рабочей смеси. Появление искры в свече приводит к воспламенению горючей смеси. Давление, которое оказывают пары воздуха и бензина на поршень, приводят к его самопроизвольному движению вниз, поэтому такт называют «рабочим ходом». В движение приводится коленчатый вал. На четвертом этапе открывается выпускной клапан, происходит выталкивание в атмосферу отработанных газов.

fb.ru

Принципы действия тепловых двигателей

Чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя или лопастей турбины. Во всех тепловых двигателях эта разность давлений достигается за счет повышения температуры рабочего тела на сотни градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива.

Рабочим телом у всех тепловых двигателей является газ (см. § 3.11), который совершает работу при расширении. Обозначим начальную температуру рабочего тела (газа) через Т1. Эту температуру в паровых турбинах или машинах приобретает пар в паровом котле. В двигателях внутреннего сгорания и газовых турбинах повышение температуры происходит при сгорании топлива внутри самого двигателя. Температуру Т1 называют температурой нагревателя.

Роль холодильника

По мере совершения работы газ теряет энергию и неизбежно охлаждается до некоторой температуры Т2. Эта температура не может быть ниже температуры окружающей среды, так как в противном случае давление газа станет меньше атмосферного и двигатель не сможет работать. Обычно температура Т2 несколько больше температуры окружающей среды. Ее называют температурой холодильника. Холодильником являются атмосфера или специальные устройства для охлаждения и конденсации отработанного пара — конденсаторы. В последнем случае температура холодильника может быть несколько ниже температуры атмосферы.

Таким образом, в двигателе рабочее тело при расширении не может отдать всю свою внутреннюю энергию на совершение работы. Часть энергии неизбежно передается атмосфере (холодильнику) вместе с отработанным паром или выхлопными газами двигателей внутреннего сгорания и газовых турбин. Эта часть внутренней энергии безвозвратно теряется. Именно об этом и говорит второй закон термодинамики в формулировке Кельвина.

Принципиальная схема теплового двигателя изображена на рисунке 5.15. Рабочее тело двигателя получает при сгорании топлива количество теплоты Q1, совершает работу А' и передает холодильнику количество теплоты |Q2| <|Q1|.

Рис. 5.15

Кпд теплового двигателя

Согласно закону сохранения энергии работа, совершаемая двигателем, равна

(5.11.1)

где Q1 — количество теплоты, полученное от нагревателя, a Q2 — количество теплоты, отданное холодильнику.

Коэффициентом полезного действия теплового двигателя называют отношение работы А', совершаемой двигателем, к количеству теплоты, полученному от нагревателя:

(5.11.2)

У паровой турбины нагревателем является паровой котел, а у двигателей внутреннего сгорания — сами продукты сгорания топлива.

Так как у всех двигателей некоторое количество теплоты передается холодильнику, то η < 1.

Применение тепловых двигателей

Наибольшее значение имеет использование тепловых двигателей (в основном мощных паровых турбин) на тепловых электростанциях, где они приводят в движение роторы генераторов электрического тока. Около 80% всей электроэнергии в нашей стране вырабатывается на тепловых электростанциях.

Тепловые двигатели (паровые турбины) устанавливают также на атомных электростанциях. На этих станциях для получения пара высокой температуры используется энергия атомных ядер.

На всех основных видах современного транспорта преимущественно используются тепловые двигатели. На автомобилях применяют поршневые двигатели внутреннего сгорания с внешним образованием горючей смеси (карбюраторные двигатели) и двигатели с образованием горючей смеси непосредственно внутри цилиндров (дизели). Эти же двигатели устанавливаются на тракторах.

На железнодорожном транспорте до середины XX в. основным двигателем была паровая машина. Теперь же главным образом используют тепловозы с дизельными установками и электровозы. Но и электровозы получают энергию от тепловых двигателей электростанций.

На водном транспорте используются как двигатели внутреннего сгорания, так и мощные турбины для крупных судов.

В авиации на легких самолетах устанавливают поршневые двигатели, а на огромных лайнерах — турбовинтовые и реактивные двигатели, которые также относятся к тепловым двигателям. Реактивные двигатели применяются и на космических ракетах.

Без тепловых двигателей современная цивилизация немыслима. Мы не имели бы дешевую электроэнергию и были бы лишены всех видов современного скоростного транспорта.

studfiles.net

Какие бывают тепловые двигатели? :: SYL.ru

Тепловые двигатели – это машины, которые производят механическую работу благодаря обмену тепла с другими внешними телами. Нагревание происходит обычно благодаря тому, что сгорает топливо, в результате чего получается достаточная температура на нагревательном элементе. В данном случае работа осуществляется благодаря использованию энергии смеси кислорода и топлива. Есть различные виды тепловых двигателей, работа которых основана на нагреве с помощью Солнца, разницы в температурах воды. Однако такие машины не получили достаточного распространения и значения. В эксплуатации сейчас часто можно обнаружить двигатели, использующие выделяющуюся тепловую энергию расщепления атомных ядер в реакторе.тепловые двигатели

Паросиловые станции

Поршневые паровые (тепловые) двигатели были созданы в конце девятнадцатого века. Через сто лет появились и первые паровые турбины. Как говорит само название, принцип работы основан на паре, обычно водяном, но есть возможность применять даже пары ртути. Турбины на пару устанавливаются на мощных электростанциях и крупных кораблях. Поршневой двигатель же нашел применение разве что в водном транспорте (пароходы и паровозы) и на железной дороге. Для успешной работы самого двигателя на пару необходимы некоторые вспомогательные устройства и машины, что в совокупности составляет паросиловую станцию, в которой циркулируют всегда одни и те же водные потоки. Они трансформируются в специальных котлах в пар, а затем уже пар производит необходимую работу в поршневой машине (или в турбине). Следующим этапом является превращение пара в охлаждаемом барабане в воду (конденсатор). Из него образовавшаяся вода через насос и сборный бак направляется опять в котел, замыкая круговорот водного потока. Обычно котел именуют термином «нагреватель», а конденсатор называют холодильником. Благодаря тому, что внутри установки циркулирует один и тот же поток воды, накипь практически не образуется.тепловые двигатели

Паровые котлы

Тепловые двигатели на пару (котлы) состоят из непосредственно котла и топки, в которой на колосниковых решеточках сжигается уголь (или, в некоторых, случаях дрова). Применять жидкое топливо можно с помощью его распыления паром в форсунках. Сжатый воздух, который вырывается из узкой трубки, всасывает жидкое топливо, а затем разбрызгивает его в необходимом направлении. Котел состоит из трубок и барабана. Через стены труб передается теплота от топочного газа воде. Изредка вода может находиться снаружи по отношению к трубам, а под ним – одни топочные газы, иногда – наоборот, то есть вода – внутри трубок, а горячий газ их омывает. В таких тепловых двигателях, как паровые котлы, пар перегревается в так называемых змеевиках, при этом он трансформируется в ненасыщенный из насыщенного. Таким образом, уменьшается конденсация паров на стенках турбины и паропроводов, а значит, повышается коэффициент полезного действия самой станции. На котел устанавливают манометр, с помощью которого осуществляется наблюдение за уровнем давления пара. Необходим и специальный клапан, который выпустит нужный объем пара в том случае, когда давление превысит предельную величину. На дне барабана есть приспособления для диагностики уровня воды.тепловые двигатели

Паровые турбины

Турбины состоят из стальных цилиндров, внутри них расположен вал, а на нем закреплены рабочие колеса, между которыми помещены направляющие лопаты или сопла. Пар, который вырывается между этими лопатками, попадает на лопатки у рабочего колеса, которое вращается и выполняет работу. Причина вращения самого колеса – реакция струи пара. В турбине потоки пара расширяются и охлаждаются, так как входят в нее по очень узким пароходам, а выходят – в широких трубах.тепловые двигатели

Двигатели внутреннего сгорания

Крайне распространенные тепловые двигатели работают на системе внутреннего сгорания и устанавливаются в танках, самолетах, автомобилях, тракторах и так далее. Работать они могут на разном топливе: керосин, бензин, сжатый горючий газ. Основная часть двигателя такого типа – это набор цилиндров. Внутри них и происходит сжигание какого-либо топлива. В цилиндре двигается поршень, который являет собой полый и закрытый только с одной стороны цилиндр. Поршень опоясан пружинами в виде колец. Их назначение – не пропустить газ, образованный во время сгорания топлива, в промежутки между самим поршнем и стенами цилиндра. Верхние части цилиндров связаны с закрытыми через клапаны каналы. Через них впускаются горячие смеси, а также выбрасываются отходы сгорания. Кроме этих клапанов сверху помещена свеча. Она является приспособлением, с помощью которого производится зажигание горючей смеси через полученную от электрических приборов (бобины или магнето) искры. виды тепловых двигателей

Карбюратор

Важная часть тепловых двигателей, которые работают на принципе внутреннего сгорания, – это карбюратор. Если впускной клапан в цилиндре открыт, то поршень двигается к валу, и воздух входит через отверстие. Воздушные массы проходят мимо трубки, соединенной с камерой, в которой находится бензин. Воздух с большой скоростью проходит возле конца трубки, всасывает бензин, а затем его распыляет. То есть образовывается горючая смесь, которая состоит из паров бензина и воздуха. Приток этой смеси в цилиндр ограничен дроссельными заслонками.

Такты работы двигателя

Есть всего четыре основных такта работы машины внутреннего сгорания:

  1. Всасывание. Во время первого такта открывается клапан, поршень засасывает горючую смесь в цилиндр из карбюратора.
  2. Сжатие. Во втором такте клапан впускной закрывается, а поршень двигается вверх и сжимает смесь, нагревая ее таким образом.
  3. Сгорание. После того как поршень достигнет положения вверху, смесь зажигается при помощи получаемой от свечи электрической искры. Сила давления раскаленного газа выталкивает поршень вниз. Это движение передается валу, и совершается работа.
  4. Выпуск (он же выхлоп). Открывается клапан выпускной, и все отработанные продукты сгорания выбрасывается в атмосферу через глушитель.

Из всех четырех тактов (во время которых происходит только два оборота вала) лишь третий – рабочий. Именно поэтому одноцилиндровый тепловой двигатель снабжают маховиком, который раскручивается и вращается во время всех других таков. Одноцилиндровый двигатель устанавливают разве что на мотоциклы. На автомобилях ставят более четырех цилиндров. При этом их устанавливают таким образом, чтобы хотя бы один из цилиндров был в работе на каждый такт. Для старта двигателя используют электромотор, который питается от стартера (аккумулятора).тепловой двигатель

Дизельные двигатели

В дизельной машине сжимается не смесь, а просто воздух, причем сжатие происходит многократное, а воздух нагревается до сотен градусов Цельсия. После завершения процесса сжатия в цилиндр вбрызгивают уже и жидкое топливо с помощью форсунки, которая работает от нагнетаемого компрессорами сжатого воздуха. Разбрызганная нефть зажигается благодаря высоким температурам. В это время происходит полезная работа, а затем – выброс отработанного газа. Дизели применяют в тепловозах, грузовиках, тракторах.

Реактивный двигатель

Такие тепловые машины по существу являются двигателями внутреннего сгорания, однако в них применяют так называемую реактивную струю. Сам двигатель находится в цилиндрическом корпусе. В переднее его отверстие входит воздух. Затем в компрессоре воздушный поток проходит вдоль оси самого двигателя. После компрессии поток попадает в камеру с горючим, где и образовывается горючая смесь, которая загорается. Таким образом, получаются высокотемпературные газы, которые движутся затем к выходным соплам, приводя в движение газовую турбину. Данные газы имеют невероятную скорость.

www.syl.ru

Тепловой двигатель — WiKi

Теплово́й дви́гатель — тепловая машина, превращающая тепло в механическую энергию, использует зависимость теплового расширения вещества от температуры. Обычно работа совершается за счет изменения объёма вещества, но иногда используется изменение формы рабочего тела (в твёрдотельных двигателях). Действие теплового двигателя подчиняется законам термодинамики. Для работы необходимо создать разность давлений по обе стороны поршня двигателя или лопастей турбины. Для работы двигателя обязательно наличие разницы температур, производится нагревание рабочего тела (газа), который совершает работу за счёт изменения своей внутренней энергии. Повышение и понижение температуры осуществляется, соответственно, нагревателем (например, при сжигании топлива) и охладителем, в роли которой используется окружающая среда.

Первой известной нам тепловой машиной была паровая турбина внешнего сгорания, изобретённая во ΙΙ (или в Ι ?) веке н. эры в римской империи. Это изобретение не получило своего развития предположительно из-за низкого уровня техники того времени (например, тогда ещё не был изобретён подшипник).

Работа, совершаемая двигателем, равна:

A=|QH|−|QX|{\displaystyle A=\left|Q_{H}\right|-\left|Q_{X}\right|} , где:

Коэффициент полезного действия (КПД) теплового двигателя рассчитывается как отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя: η=|QH|−|QX||QH|=1−|QX||QH|{\displaystyle \eta ={\frac {\left|Q_{H}\right|-\left|Q_{X}\right|}{\left|Q_{H}\right|}}=1-{\frac {\left|Q_{X}\right|}{\left|Q_{H}\right|}}} 

Часть теплоты при передаче неизбежно теряется, поэтому КПД двигателя менее 1. Максимально возможным КПД обладает двигатель Карно. КПД двигателя Карно зависит только от абсолютных температур нагревателя(TH{\displaystyle T_{H}} ) и холодильника(TX{\displaystyle T_{X}} ):

ηK=TH−TXTH=1−TXTH{\displaystyle \eta _{K}={T_{H}-T_{X} \over T_{H}}=1-{T_{X} \over T_{H}}} 

Двигатель Стирлинга

Поршневой двигатель внешнего сгорания

Поршневой двигатель внутреннего сгорания

Роторный (турбинный) двигатель внешнего сгорания

Примером такого устройства является тепловая электрическая станция в базовом режиме. Таким образом колёса локомотива (электровоза) также, как и в 19 веке, вращает энергия пара. Но тут есть два существенных отличия.

Первое отличие заключается в том, что паровоз 19 века работал на качественном дорогом топливе, например на антраците. Современные же паротурбинные установки работают на дешевом топливе, например на канско-ачинском угле, который добывается открытым способом шагающими экскаваторами. Но в подобном топливе много пустого балласта, который транспорту приходится возить с собой вместо полезного груза. Электровозу не надо возить не только балласт, но и топливо вообще.

Второе отличие заключается в том, что тепловая электрическая станция работает по циклу Ренкина, который близок к циклу Карно. Цикл Карно состоит из двух адиабат и двух изотерм. Цикл Ренкина состоит из двух адиабат, изотермы и изобары с регенерацией тепла, которая приближает этот цикл к идеальному циклу Карно. На транспорте трудно сделать такой идеальный цикл, так как у транспортного средства есть ограничения по массе и габаритам, которые практически отсутствуют у стационарной установки.

Роторный (турбинный) двигатель внутреннего сгорания

Примером такого устройства является тепловая электрическая станция в пиковом режиме. Порой в качестве газотурбинной установки используют списанные по технике безопасности воздушно-реактивные двигатели.

Реактивные и ракетные двигатели

Реактивный двигатель представляет собой совмещенный тепловой двигатель и движетель, в нём внутренняя энергия топлива преобразуется в кинетическую энергию реактивной струи разогретого рабочего тела. Реактивные двигатели отбрасывают нагретое рабочее тело с большой скоростью, за счет его проистечения, в соответствии с законом сохранения импульса, образуется реактивная сила, толкающая двигатель в противоположном направлении. В тепловых реактивных двигателях обычно используется химическое топливо в газообразном, жидком или твёрдом состоянии, порождающее разогретый газ при сгорании. Воздушно-реактивные двигатели используют газообразный окислитель из окружающей среды, тогда как ракетные двигатели снабжаются запасами всех компонентов рабочего тела с носителя и способны работать в любой среде, в том числе и в безвоздушном пространстве.

Используются для приведения в движение самолётов, ракет и космических аппаратов.

Твёрдотельные двигатели

Такие двигатели используют твёрдый материал (вещество в твёрдой фазе) в качестве рабочего тела. Работа совершается при изменении формы рабочего тела. Позволяют использовать малые перепады температур.[1]

Примеры:

ru-wiki.org

Тепловой двигатель Википедия

Теплово́й дви́гатель — тепловая машина, превращающая тепло в механическую энергию, использует зависимость теплового расширения вещества от температуры. Обычно работа совершается за счет изменения объёма вещества, но иногда используется изменение формы рабочего тела (в твёрдотельных двигателях). Действие теплового двигателя подчиняется законам термодинамики. Для работы необходимо создать разность давлений по обе стороны поршня двигателя или лопастей турбины. Для работы двигателя обязательно наличие разницы температур, производится нагревание рабочего тела (газа), который совершает работу за счёт изменения своей внутренней энергии. Повышение и понижение температуры осуществляется, соответственно, нагревателем (например, при сжигании топлива) и охладителем, в роли которой используется окружающая среда.

История[ | код]

Первой известной нам тепловой машиной была паровая турбина внешнего сгорания, изобретённая во ΙΙ (или в Ι ?) веке н. эры в римской империи. Это изобретение не получило своего развития предположительно из-за низкого уровня техники того времени (например, тогда ещё не был изобретён подшипник).

Теория[ | код]

Работа, совершаемая двигателем, равна:

A=|QH|−|QX|{\displaystyle A=\left|Q_{H}\right|-\left|Q_{X}\right|}, где:

Коэффициент полезного действия (КПД) теплового двигателя рассчитывается как отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя: η=|QH|−|QX||QH|=1−|QX||QH|{\displaystyle \eta ={\frac {\left|Q_{H}\right|-\left|Q_{X}\right|}{\left|Q_{H}\right|}}=1-{\frac {\left|Q_{X}\right|}{\left|Q_{H}\right|}}}

Часть теплоты при передаче неизбежно теряется, поэтому КПД двигателя менее 1. Максимально возможным КПД обладает двигатель Карно. КПД двигателя Карно зависит только от абсолютных температур нагревателя(TH{\displaystyle T_{H}}) и холодильника(TX{\displaystyle T_{X}}):

ηK=TH−TXTH=1−TXTH{\displaystyle \eta _{K}={T_{H}-T_{X} \over T_{H}}=1-{T_{X} \over T_{H}}}

Типы тепловых двигателей[ | код]

Двигатель Стирлинга[

ru-wiki.ru

Тепловой двигатель - это... Что такое Тепловой двигатель?

 Тепловой двигатель         Двигатель, в котором тепловая энергия преобразуется в механическую работу. Т. д. составляют наибольшую группу среди первичных двигателей и используют природные энергетические ресурсы в виде химического или ядерного топлива. В основе работы Т. д. лежит замкнутый (или условно замкнутый) термодинамический цикл (см. Цикл двигателя). Эффективность работы идеального Т. д. определяется термодинамическим кпд (см. Круговой процесс). Работа реального Т. д., имеющего дополнительные потери, например на трение, вихреобразование, тепловые потери, оценивается так называемым эффективным кпд, то есть отношением механической работы на выходном валу Т. д. к подведённой тепловой энергии. Эффективный кпд Т. д. колеблется в пределах 0,1—0,6. По типу машин, осуществляющих рабочие термодинамические процессы, Т. д. подразделяются на поршневые двигатели (см. Поршневая машина), роторные двигатели (См. Роторный двигатель) и реактивные двигатели (См. Реактивный двигатель). Возможны комбинации этих типов Т. д., например Турбореактивный двигатель, Ванкеля двигатель. По способу подвода теплоты для нагрева рабочего тела Т. д. подразделяются на двигатели внутреннего сгорания (См. Двигатель внутреннего сгорания), в которых процессы сгорания топлива и преобразования теплоты в механическую работу происходят в одних и тех же рабочих полостях (цилиндрах) Т. д., и двигатели внешнего сгорания, в которых рабочее тело получается (или нагревается) вне самого Т. д. в специальных устройствах (см., например, Стирлинга двигатель, Паровая машина).

         О. Н. Емин.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Тепловой двигатель" в других словарях:

dic.academic.ru

Т. Тепловые двигатели — PhysBook

Тепловые двигатели. Принцип действия тепловых двигателей

Тепловым двигателем называется устройство, совершающее механическую работу за счет внутренней энергии топлива.

Тепловые двигатели весьма разнообразны как по конструкции, так и по назначению. Это и паровые турбины на тепловых электростанциях, и двигатели внутреннего сгорания на автомобилях, тракторах, и реактивные двигатели различных типов.

Все тепловые двигатели обладают общим свойством — периодичностью действия (цикличностью), в результате чего рабочее тело периодически возвращается в исходное состояние.

Принцип действия теплового двигателя рассмотрим на примере поршневого двигателя.

Любой тепловой двигатель состоит из трех основных частей: рабочего тела, нагревателя и холодильника (рис. 1).

Рис. 1

Рабочее тело (пар или газ) получает некоторое количество теплоты Q1 от нагревателя, у которого за счет сгорания топлива поддерживается постоянная высокая температура T1. Это количество теплоты идет на увеличение внутренней энергии газа и совершение им работы A1. В результате газ, расширяясь, переходит из состояния 1 в состояние 2 (линия 1а2), совершая работу A1, равную площади фигуры В1а2С (рис. 2).

Рис. 2

Чтобы процесс был циклическим, поршень необходимо вернуть в исходное положение. Если процесс сжатия провести в обратном порядке (линия 2а1), то работы газа и над газом будут одинаковы и суммарная работа будет равна нулю. Поэтому, чтобы работа сжатия A2 была по абсолютному значению меньше работы расширения, нужно, чтобы каждому значению объема при сжатии соответствовало меньшее давление, чем при расширении (линия 2b1). А это возможно осуществить, только если газ перед сжатием охладить. Для этого рабочее тело приводят в контакт с телом меньшей температуры T2 < T1 (холодильником). Рабочее тело при этом отдает холодильнику некоторое количество теплоты Q2, и при сжатии совершается работа A2, равная площади фигуры 1b2СВ. Полезная работа за цикл Α = A1 - A2 численно равна площади фигуры 1a2b1.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 162-163.

www.physbook.ru


Смотрите также