ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

принцип работы двигателя внутреннего сгорания картинки. Такт работы двигателя


Что значит четырехтактный двигатель и почему четыре такта?

Дорогой друг, сегодня поговорим о том, что значит четырехтактный двигатель. О истории его изобретения, принципе работы, особенностях, технических характеристиках и сферах применения.

Конечно, если у вас есть водительское удостоверение, то вы по крайней мере слышали этот термин, когда учились в автошколе. Но вряд ли тогда стали вникать во все тонкости, поэтому сейчас самое время разобраться, что же там происходит под капотом вашего железного коня.

chet_dv

Как всё начиналось

В 19 веке уже были двигатели, но это были в основном большие механизмы, работающие на пару. Они конечно частично обеспечивали развивающуюся промышленность, но имели много недостатков.

Были тяжелые, имели низкий КПД, большие габариты, требовалось много времени на запуск и остановку, для эксплуатации нужны были квалифицированные рабочие.

Промышленникам нужен был новый агрегат без перечисленных недостатков они уже поняли что значит четырехтактный двигатель. И как при определенных условиях с его помощью можно повысить прибыль.

Его и разработал изобретатель Эжен-Альфонс Бо де Роша, а в 1867 году воплотил в металл Николаус Август Отто.

Эжен-Альфонс Бо де Роша и Николаус Август Отто

В то время это было чудо техники. Двигатель внутреннего сгорания отличался низкими эксплуатационными расходами, небольшими размерами и не требовал постоянного присутствия обслуживающего персонала.

Работало устройство по особому алгоритму, который и сейчас называют «цикл Отто». Спустя 8 лет, после запуска первого экземпляра, компания Отто выпускала уже более 600 силовых установок в год.

Очень быстро, из-за автономности и компактности, двигатели внутреннего сгорания получили широкое распространение.

Из чего состоит двигатель

Чтобы понять принцип работы, познакомимся с основными составляющими движка:

Что значит четырехтактный двигатель и почему четыре такта

  1. Теперь, когда вы более-менее представляете устройство четырехтактного двигателя, можно рассмотреть рабочий процесс.Он состоит из следующих этапов:впуск – поршень движется вниз, цилиндр заполняется горючей смесью из карбюратора через впускной клапан, который открываются кулачком распределительного вала.При движении поршня вниз, создается отрицательное давление в цилиндре, тем самым происходит всасывание рабочей смеси, а именно воздуха с парами топлива. Впуск продолжается пока поршень не достигнет НМТ (нижняя мертвая точка). В этот момент закрывается впускной клапан;
  2. сжатие или компрессия – после того как будет достигнута НМТ поршень начинает двигаться вверх к ВМТ (верхняя мертвая точка). При движении поршня вверх происходит сжатие, рабочая топливо-воздушная смесь сжимается, давление внутри цилиндра возрастает. Впускной и выпускной клапан закрыты;
  3. рабочий ход или расширение – в конце цикла сжатия (в ВМТ), рабочая смесь воспламеняется от искры в свече зажигания. Поршень от микровзрыва устремляется к НМТ.В процессе движения поршня от ВМТ к НМТ смесь сгорает, а увеличивающиеся в объеме газы толкают поршень, выполняя полезную работу. Именно по этой причине движение поршня в этом такте назвали рабочий ход. Впускной и выпускной клапан закрыты;
  4. выпуск выхлопных газов – в заключительном четвертом такте открывается выпускной клапан, поршень поднимается в верхнюю точку и выталкивает продукты сгорания из цилиндра в выхлопную систему, пройдя через глушитель, они попадают в атмосферу. После достижения поршнем ВМТ выпускной клапан закрывается, затем цикл повторяется. Эти четыре такта представляют собой рабочий цикл мотора. Тактом же именуется движение поршня вверх или вниз. Один оборот коленчатого вала соответствует двум тактам, а два оборота – 4 тактам. Отсюда пошло название четырёхтактного двигателя.

Работа четырехтактного двигателя

 

От чего зависит мощность четырехтактного ДВС

Тут вроде бы всё ясно — мощность поршневого двигателя в основном определяется:

  1. объёмом цилиндров;
  2. степенью сжатия рабочей смеси;
  3. частотой вращения.

Поднять мощность четырехтактного двигателя также можно повысив пропускную способность тактов всасывания и выхлопа, увеличив диаметр клапанов (особенно впускных).

Так же максимальная мощность получается при максимальном заполнении цилиндров, для этого используют турбины принудительной подкачки воздуха в цилиндр. В следствии чего повышается давление в цилиндре и соответственно КПД двигателя значительно возрастает.

Применение в настоящее время

Четырёхтактные двигатели бывают бензиновыми и дизельными. Применяются эти двигатели на транспортных или стационарных энергоустановках. Использовать такой двигатель рекомендуется в случаях, когда есть возможность регулировать соотношение оборотов, мощности и крутящего момента.

Например, если двигатель, работает в паре с электрогенератором, то нужно выдерживать нужный диапазон оборотов. А при использование промежуточных передач, четырёхтактный двигатель можно адаптировать к нагрузкам в достаточно широких пределах. То есть использовать в автомобилях.

Вернёмся к истокам его создания. В группе изобретателя Отто работал очень талантливый инженер Готлиб Даймлер, он понял что значит четырехтактный двигатель, его перспективы развития, и предложил на базе четырёхтактного двигателя построить автомобиль. Но шеф не посчитал нужным что-то менять в двигателе, и Даймлер, увлеченный своей идеей, покинул мэтра.

И через некоторое время, вместе с другим энтузиастом Карлом Бенцом в 1889 году создали автомобиль, который приводился в движение именно бензиновым четырехтактным двигателем внутреннего сгорания изобретателя Отто.

Готлиб Даймблер и Карл Бенц

Эта технология с успехом используется и сегодня. В случаях, когда силовая установка работает на переходных режимах или режимах со снятием частичной мощности ‒ она незаменима, так как обеспечивает стабильную устойчивость процесса.

Теперь, дорогой друг, ты в общих чертах знаешь что значит четырехтактный двигатель, где он используется. Теперь ты стал на голову выше. Но не скупись полученой информацией, поделись с друзьями. К твоим услугам кнопки социальных сетей.

Да и подписаться можно на наш блог, чтобы всегда быть в курсе интересного материала, а его всегда много и будет еще больше.

До новых встреч!

auto-ru.ru

Такт работы двигателя

В нижней мертвой точке (НМТ) у поршня происходит "перекладка" т. е. изменение опоры поршня на цилиндр с левой стороны юбки на правую.

Чем больше зазор между юбкой поршня и цилиндром, тем интенсивнее перекладка, а значит шумность двигателя, дальнейший износ юбки поршня и нижней части цилиндра, по которой "бьет" правая сторона юбки поршня.

После прохода поршнем нижней мертвой точки начинается второй такт работы двигателя - сжатие топливо-воздушной смеси.

Работа двигателя во время такта впуск

1.Такт сжатия

Непосредственно сжатие (повышение давления в цилиндре) начинается не сразу после начала движения поршня вверх. Дело в том, что топливо-воздушная смесь при открытом впускном клапане некоторое время продолжает поступать в цилиндр, несмотря на начало повышения давления. Поэтому закрытие впускного клапана должно быть согласовано с характером течения смеси у его тарелки.

С точки зрения наилучшего наполнения цилиндра (и, соответственно, наибольшей мощности) в момент закрытия впускного клапана смесь у клапана должна остановиться, т. е. в этот момент через клапан нет ни прямого - в цилиндр, ни обратного - из цилиндра, течения. Здесь на процесс очень сильно влияет конструкция впускной системы, частота вращения, положение дроссельной заслонки. В общем случае, чем больше частота вращения и открытие дроссельной заслонки, тем больше при неизменной длине впускного канала должен запаздывать с закрытием впускной клапан.

На практике, как правило, выбирают компромиссный вариант, однако существуют конструкции с переменными фазами газораспределения (при которых изменяется запаздывание закрытия впускного клапана) и с переменной длиной каналов впускной системы, улучшающих наполнение цилиндров и параметры двигателя в широком диапазоне режимов. Компромиссные решения обычно приводят к ухудшению параметров двигателя за счет обратного выброса смеси на низких частотах вращения и "недозарядки" цилиндра (т. е. снижения количества поступающей смеси относительно максимально возможного) на высоких оборотах. Меньшее по сравнению с традиционными конструкциями запаздывание закрытия клапана имеют двигатели с многоклапанными головками (с тремя или четырьмя клапанами на цилиндр).При движении поршня вверх при закрытых клапанах происходит сжатие топливо-воздушной смеси. При этом давление в цилиндре зависит от утечек смеси через поршневые кольца и клапаны. Их износ или повреждения, а также царапины и риски на поверхности цилиндра также увеличивают утечки смеси через поршневые кольца. Поршневые кольца под действием трения и давления в цилиндре прижимаются к нижним поверхностям канавок, а уплотнение полости цилиндра над поршнем достигается с одной стороны по стыку колец с поверхностью цилиндров, а с другой - по нижним торцевым поверхностям колец и канавок.

Перекладка поршня

2.Перекладка поршня в нижней мертвой точке.

Под действием сил давления и трения торцевые поверхности колец и канавок изнашиваются, а торцевой зазор в канавках увеличивается. При большом зазоре кольца вблизи мертвых точек (ВМТ и НМТ) передвигаются от одного торца канавки к другому. Возникает так называемый "насосный" эффект, характерный для изношенных двигателей, из-за которого значительно увеличивается расход масла. Возрастает также прорыв газов в картер из камеры сгорания. Кроме того, при большом торцевом зазоре кольца достаточно быстро разбивают края канавок, вследствие чего "насосный" эффект и прорыв газов быстро прогрессируют.Когда поршень находится вблизи ВМТ, не доходя до нее обычно 5-30° по углу поворота коленчатого вала (ПКВ), происходит искровой разряд на свече зажигания. Этот угол, называемый углом опережения зажигания, при работе двигателя обязательно регулируется. Дело в том, что процесс горения смеси происходит с некоторым запаздыванием с момента искрового разряда на величину так называемого времени формирования фронта пламени. В двигателях с искровым зажиганием это величина условная и равна времени с момента искрового разряда до начала "видимого" сгорания (начала повышения давления свыше давления в цилиндре без сгорания). В дизелях процесс видимого сгорания также происходит с задержкой. При этом время задержки воспламенения в дизелях имеет физический смысл как время, необходимое для нагрева и испарения топпива, впрыскиваемого в цилиндр.Поскольку горение смеси - химическая реакция, времена формирования фронта пламени (задержки воспламенения) и горения зависят от давления и температуры смеси, а также от интенсивности ее перемешивания (турбулентности): чем они больше, тем быстрее идет процесс. Открытие дроссельной заслонки приводит к увеличению давления и плотности смеси во впускном коллекторе, увеличиваются давление и температура в цилиндре на такте всасывания и, соответственно, в конце такта сжатия, улучшается перемешивание смеси. Эти факторы определяют уменьшение времени горения и формирования фронта пламени. При увеличении частоты вращения эти времена уменьшаются не так быстро, как время цикла (время, за которое коленчатый вал делает 2 оборота). Поэтому при неизменном моменте зажигания процесс сгорания с увеличением частоты сдвигается далеко в область рабочего хода и "растягивается" по циклу, что приводит к ухудшению параметров двигателя. Чтобы этого не происходило, угол опережения зажигания приходится увеличивать на 25-30° с ростом частоты вращения. Зависимость угла опережения от нагрузки более слабая - при открытии дроссельной заслонки обычно требуется уменьшать угол опережения зажигания в среднем на 8.Непосредственно перед воспламенением смеси давление в цилиндре достаточно высоко - свыше 1,0-И ,2 МПа. Это давление несколько ниже максимального давления, которое было бы в цилиндре при проверке компрессии, т. к. воспламенение начинается до прихода поршня в ВМТ. Максимальное давление в цилиндре (без сгорания) зависит от степени сжатия б = Vh/VKC, где Vh - рабочий объем цилиндра (Vh = Fn.S), Fn - площадь поршня; S - ход поршня; VKc - объем камеры сгорания.Степень сжатия - величина чисто геометрическая.  По этой весьма приближенной зависимости давление измеряемое компрессометром, численно должно быть существенно выше степени сжатия. Однако в действительности из-за задержки закрытия впускного клапана, возможного некоторого разрежения в цилиндре и начале сжатия, потерь тепла и т. д. максимальное давление (компрессия) существенно ниже - порядка 1,1-1 ,5 МПа.При приближении поршня к ВМТ начинают "работать" так называемые вытеснители. Вытеснители образуются поверхностями днища поршня и головки, которые при положении поршня в ВМТ подходят друг к другу наиболее близко обычно зазор между поршнем и головкой в таких местах 0,5-5-1,0 мм. При подходе поршня к ВМТ смесь, расположенная между вытеснительными поверхностями, как бы "вытесняется" в зону камеры сгорания, образуя потоки определенного направления.Чем ближе подходят друг к другу поршень и головка, тем сильнее эффект вытеснения, т. е. больше скорость вытеснения потока. Вытеснители выполняют весьма важную задачу - турбупизируют (т. е. интенсивно перемешивают) смесь в момент воспламенения, а это повышает скорость и полноту сгорания. Турбулизация смеси препятствует также распространению детонации.При движении поршня к ВМТ во время такта работы двигателя давление в цилиндре быстро растет. Увеличивается и давление в зазоре между верхней частью боковой поверхности поршня (огневым поясом) и цилиндром. Рост давления при сгорании приводит к существенному увеличению усилия прижатия компрессионных колец к поверхности цилиндра и нижним поверхностям канавок поршня. Наибольшие усилия испытывает верхнее кольцо, поскольку давление в канавке верхнего кольца значительно выше, чем среднего. Под действием силы давления газов и силы трения кольца о цилиндр верхнее кольцо разворачивается (закручивается) в канавке. После непродолжительной работы кольцо приобретает характерный профиль поперечного сечения с несимметричной бочкообразностью наружной поверхности и небольшой вогнутостью на нижнем торце, а нижняя поверхность канавки становится конической со скругленным краем. От формы наружной поверхности кольца сильно зависят износ цилиндра и расход масла. В частности, при сжатии в цилиндре закручивание кольца может привести к его маслосъемному действию при движении поршня вверх, т. е. к вытеснению части масла со стенок цилиндра в камеру сгорания. В этом случае скребковая верхняя кромка кольца уменьшает и без того тонкую масляную пленку между кольцом и цилиндром, в результате чего возможно образование прижогов на кольце и задиров на поверхности цилиндра.При движении поршня вверх по мере роста давления толщина масляной пленки уменьшается, а вблизи ВМТ становится очень малой. Чтобы недостаток смазки не приводил к повышенному износу, очень важное значение имеют материалы трущихся деталей, состояние их поверхностей, а также упругость колец.Стойкую к износу пару трения "кольцо-цилиндр" образуют обычно твердые гладкие покрытия колец и, как правило, более мягкий материал цилиндра, на поверхности которого создается шероховатость в виде наклонных рисок определенной глубины. Чем глубже риски, тем больше масла в них находится, тем лучше смазка колец и цилиндра.При подходе поршня к ВМТ на поршень действует сила давления газов. Поршень опирается на поршневой палец и чем больше сила давления поршня на палец, тем выше трение в отверстии бобышек поршня и тем труднее поршню повернуться на неподвижном пальце. На практике это выглядит как поворот поршня вместе с шатуном вблизи ВМТ, т. е. как уже упомянутая выше "перекладка", но с гораздо большими усилиями. Для уменьшения этих усилий и снижения возможного стука поршня при повышенном зазоре в цилиндре ось пальца на поршне обычно смещают на 0,05 мм влево, если смотреть на поршень спереди. Тогда, как это видно на схеме, момент сил, поворачивающих поршень вблизи ВМТ, компенсируется моментом от сил давления газов на поршень.Силы давления газов и силы инерции, действующие на поршень, передаются через поршневой палец и шатун на шейку коленчатого вала.Вблизи ВМТ суммарные силы от давления газов и инерции вызывают большие напряжения в шатуне и бобышках поршня. В эксплуатации представляют большую опасность случаи значительного (во много раз) увеличения давления в ВМТ. Обычно это связано с попаданием в камеру сгорания различных жидкостей, например, воды через входной патрубок воздушного фильтра, топлива, масла или охлаждающей жидкости при возникновении соответствующих неисправностей. В таких случаях происходит деформация стержня шатуна - так называемая потеря устойчивости, а также поломки шатуна и поршня, опасные серьезными повреждениями в двигателе. Далее поговорим о такте впуска двигателя.

Рабочий цикл двигателя состоит из четырех тактов: Такт впуска, такт сжатия, такт расширения, такт выпуска. 

www.autoezda.com

Такт работы двигателя

В нижней мертвой точке (НМТ) у поршня происходит "перекладка" т. е. изменение опоры поршня на цилиндр с левой стороны юбки на правую.

Чем больше зазор между юбкой поршня и цилиндром, тем интенсивнее перекладка, а значит шумность двигателя, дальнейший износ юбки поршня и нижней части цилиндра, по которой "бьет" правая сторона юбки поршня.

После прохода поршнем нижней мертвой точки начинается второй такт работы двигателя - сжатие топливо-воздушной смеси.

Работа двигателя во время такта впуск

1.Такт сжатия

Непосредственно сжатие (повышение давления в цилиндре) начинается не сразу после начала движения поршня вверх. Дело в том, что топливо-воздушная смесь при открытом впускном клапане некоторое время продолжает поступать в цилиндр, несмотря на начало повышения давления. Поэтому закрытие впускного клапана должно быть согласовано с характером течения смеси у его тарелки.

С точки зрения наилучшего наполнения цилиндра (и, соответственно, наибольшей мощности) в момент закрытия впускного клапана смесь у клапана должна остановиться, т. е. в этот момент через клапан нет ни прямого - в цилиндр, ни обратного - из цилиндра, течения. Здесь на процесс очень сильно влияет конструкция впускной системы, частота вращения, положение дроссельной заслонки. В общем случае, чем больше частота вращения и открытие дроссельной заслонки, тем больше при неизменной длине впускного канала должен запаздывать с закрытием впускной клапан.

На практике, как правило, выбирают компромиссный вариант, однако существуют конструкции с переменными фазами газораспределения (при которых изменяется запаздывание закрытия впускного клапана) и с переменной длиной каналов впускной системы, улучшающих наполнение цилиндров и параметры двигателя в широком диапазоне режимов. Компромиссные решения обычно приводят к ухудшению параметров двигателя за счет обратного выброса смеси на низких частотах вращения и "недозарядки" цилиндра (т. е. снижения количества поступающей смеси относительно максимально возможного) на высоких оборотах. Меньшее по сравнению с традиционными конструкциями запаздывание закрытия клапана имеют двигатели с многоклапанными головками (с тремя или четырьмя клапанами на цилиндр).При движении поршня вверх при закрытых клапанах происходит сжатие топливо-воздушной смеси. При этом давление в цилиндре зависит от утечек смеси через поршневые кольца и клапаны. Их износ или повреждения, а также царапины и риски на поверхности цилиндра также увеличивают утечки смеси через поршневые кольца. Поршневые кольца под действием трения и давления в цилиндре прижимаются к нижним поверхностям канавок, а уплотнение полости цилиндра над поршнем достигается с одной стороны по стыку колец с поверхностью цилиндров, а с другой - по нижним торцевым поверхностям колец и канавок.

Перекладка поршня

2.Перекладка поршня в нижней мертвой точке.

Под действием сил давления и трения торцевые поверхности колец и канавок изнашиваются, а торцевой зазор в канавках увеличивается. При большом зазоре кольца вблизи мертвых точек (ВМТ и НМТ) передвигаются от одного торца канавки к другому. Возникает так называемый "насосный" эффект, характерный для изношенных двигателей, из-за которого значительно увеличивается расход масла. Возрастает также прорыв газов в картер из камеры сгорания. Кроме того, при большом торцевом зазоре кольца достаточно быстро разбивают края канавок, вследствие чего "насосный" эффект и прорыв газов быстро прогрессируют.Когда поршень находится вблизи ВМТ, не доходя до нее обычно 5-30° по углу поворота коленчатого вала (ПКВ), происходит искровой разряд на свече зажигания. Этот угол, называемый углом опережения зажигания, при работе двигателя обязательно регулируется. Дело в том, что процесс горения смеси происходит с некоторым запаздыванием с момента искрового разряда на величину так называемого времени формирования фронта пламени. В двигателях с искровым зажиганием это величина условная и равна времени с момента искрового разряда до начала "видимого" сгорания (начала повышения давления свыше давления в цилиндре без сгорания). В дизелях процесс видимого сгорания также происходит с задержкой. При этом время задержки воспламенения в дизелях имеет физический смысл как время, необходимое для нагрева и испарения топпива, впрыскиваемого в цилиндр.Поскольку горение смеси - химическая реакция, времена формирования фронта пламени (задержки воспламенения) и горения зависят от давления и температуры смеси, а также от интенсивности ее перемешивания (турбулентности): чем они больше, тем быстрее идет процесс. Открытие дроссельной заслонки приводит к увеличению давления и плотности смеси во впускном коллекторе, увеличиваются давление и температура в цилиндре на такте всасывания и, соответственно, в конце такта сжатия, улучшается перемешивание смеси. Эти факторы определяют уменьшение времени горения и формирования фронта пламени. При увеличении частоты вращения эти времена уменьшаются не так быстро, как время цикла (время, за которое коленчатый вал делает 2 оборота). Поэтому при неизменном моменте зажигания процесс сгорания с увеличением частоты сдвигается далеко в область рабочего хода и "растягивается" по циклу, что приводит к ухудшению параметров двигателя. Чтобы этого не происходило, угол опережения зажигания приходится увеличивать на 25-30° с ростом частоты вращения. Зависимость угла опережения от нагрузки более слабая - при открытии дроссельной заслонки обычно требуется уменьшать угол опережения зажигания в среднем на 8.Непосредственно перед воспламенением смеси давление в цилиндре достаточно высоко - свыше 1,0-И ,2 МПа. Это давление несколько ниже максимального давления, которое было бы в цилиндре при проверке компрессии, т. к. воспламенение начинается до прихода поршня в ВМТ. Максимальное давление в цилиндре (без сгорания) зависит от степени сжатия б = Vh/VKC, где Vh - рабочий объем цилиндра (Vh = Fn.S), Fn - площадь поршня; S - ход поршня; VKc - объем камеры сгорания.Степень сжатия - величина чисто геометрическая.  По этой весьма приближенной зависимости давление измеряемое компрессометром, численно должно быть существенно выше степени сжатия. Однако в действительности из-за задержки закрытия впускного клапана, возможного некоторого разрежения в цилиндре и начале сжатия, потерь тепла и т. д. максимальное давление (компрессия) существенно ниже - порядка 1,1-1 ,5 МПа.При приближении поршня к ВМТ начинают "работать" так называемые вытеснители. Вытеснители образуются поверхностями днища поршня и головки, которые при положении поршня в ВМТ подходят друг к другу наиболее близко обычно зазор между поршнем и головкой в таких местах 0,5-5-1,0 мм. При подходе поршня к ВМТ смесь, расположенная между вытеснительными поверхностями, как бы "вытесняется" в зону камеры сгорания, образуя потоки определенного направления.Чем ближе подходят друг к другу поршень и головка, тем сильнее эффект вытеснения, т. е. больше скорость вытеснения потока. Вытеснители выполняют весьма важную задачу - турбупизируют (т. е. интенсивно перемешивают) смесь в момент воспламенения, а это повышает скорость и полноту сгорания. Турбулизация смеси препятствует также распространению детонации.При движении поршня к ВМТ во время такта работы двигателя давление в цилиндре быстро растет. Увеличивается и давление в зазоре между верхней частью боковой поверхности поршня (огневым поясом) и цилиндром. Рост давления при сгорании приводит к существенному увеличению усилия прижатия компрессионных колец к поверхности цилиндра и нижним поверхностям канавок поршня. Наибольшие усилия испытывает верхнее кольцо, поскольку давление в канавке верхнего кольца значительно выше, чем среднего. Под действием силы давления газов и силы трения кольца о цилиндр верхнее кольцо разворачивается (закручивается) в канавке. После непродолжительной работы кольцо приобретает характерный профиль поперечного сечения с несимметричной бочкообразностью наружной поверхности и небольшой вогнутостью на нижнем торце, а нижняя поверхность канавки становится конической со скругленным краем. От формы наружной поверхности кольца сильно зависят износ цилиндра и расход масла. В частности, при сжатии в цилиндре закручивание кольца может привести к его маслосъемному действию при движении поршня вверх, т. е. к вытеснению части масла со стенок цилиндра в камеру сгорания. В этом случае скребковая верхняя кромка кольца уменьшает и без того тонкую масляную пленку между кольцом и цилиндром, в результате чего возможно образование прижогов на кольце и задиров на поверхности цилиндра.При движении поршня вверх по мере роста давления толщина масляной пленки уменьшается, а вблизи ВМТ становится очень малой. Чтобы недостаток смазки не приводил к повышенному износу, очень важное значение имеют материалы трущихся деталей, состояние их поверхностей, а также упругость колец.Стойкую к износу пару трения "кольцо-цилиндр" образуют обычно твердые гладкие покрытия колец и, как правило, более мягкий материал цилиндра, на поверхности которого создается шероховатость в виде наклонных рисок определенной глубины. Чем глубже риски, тем больше масла в них находится, тем лучше смазка колец и цилиндра.При подходе поршня к ВМТ на поршень действует сила давления газов. Поршень опирается на поршневой палец и чем больше сила давления поршня на палец, тем выше трение в отверстии бобышек поршня и тем труднее поршню повернуться на неподвижном пальце. На практике это выглядит как поворот поршня вместе с шатуном вблизи ВМТ, т. е. как уже упомянутая выше "перекладка", но с гораздо большими усилиями. Для уменьшения этих усилий и снижения возможного стука поршня при повышенном зазоре в цилиндре ось пальца на поршне обычно смещают на 0,05 мм влево, если смотреть на поршень спереди. Тогда, как это видно на схеме, момент сил, поворачивающих поршень вблизи ВМТ, компенсируется моментом от сил давления газов на поршень.Силы давления газов и силы инерции, действующие на поршень, передаются через поршневой палец и шатун на шейку коленчатого вала.Вблизи ВМТ суммарные силы от давления газов и инерции вызывают большие напряжения в шатуне и бобышках поршня. В эксплуатации представляют большую опасность случаи значительного (во много раз) увеличения давления в ВМТ. Обычно это связано с попаданием в камеру сгорания различных жидкостей, например, воды через входной патрубок воздушного фильтра, топлива, масла или охлаждающей жидкости при возникновении соответствующих неисправностей. В таких случаях происходит деформация стержня шатуна - так называемая потеря устойчивости, а также поломки шатуна и поршня, опасные серьезными повреждениями в двигателе. Далее поговорим о такте впуска двигателя.

Рабочий цикл двигателя состоит из четырех тактов: Такт впуска, такт сжатия, такт расширения, такт выпуска. 

www.autoezda.com

Принцип Работы Двигателя Внутреннего Сгорания Картинки

Устройство и принцип работы двигателя внутреннего сгорания

Двигатель внутреннего сгорания (ДВС) – самый распространенный тип двигателя из всех, которые устанавливаются в настоящее время на автомобили. Несмотря на то, что современный двигатель внутреннего сгорания состоит из тысячи частей, принцип его работы весьма прост. Давайте подробнее рассмотрим устройство ДВС.

В каждом двигателе внутреннего сгорания есть цилиндр и поршень. Именно внутри цилиндра ДВС происходит преобразование тепловой энергии, выделяемой при сжигании топлива, в энергию механическую, способную заставить наш автомобиль двигаться. Этот процесс повторяется с частотой несколько сотен раз в минуту, что обеспечивает непрерывное вращение выходящего из двигателя коленчатого вала.

Обычно в автомобилях устанавливают четырехтактные ДВС. Чтобы лучше понять принцип устройства бензинового двигателя внутреннего сгорания, предлагаем вам взглянуть на рисунок ниже:

Устройство двигателя внутреннего сгорания

Топливно-воздушная смесь, попадая через впускной клапан в камеру сгорания (такт первый – впуск ), сжимается (такт второй – сжатие ) и воспламеняется от искры свечи зажигания. При сжигании топлива, под воздействием высокой температуры в цилиндре двигателя образуется избыточное давление, заставляющее поршень двигаться вниз к так называемой нижней мертвой точке ( НМТ ), совершая при этом такт третий – рабочий ход. Перемещаясь во время рабочего хода вниз, с помощью шатуна, поршень приводит во вращение коленчатый вал. Затем, перемещаясь от НМТ к верхней мертвой точке ( ВМТ ) поршень выталкивает отработанные газы через выпускной клапан в выхлопную систему автомобиля – это четвертый такт ( выпуск ) работы двигателя внутреннего сгорания.

Давайте еще раз закрепим определения, а затем посмотрим это видео :

Такт – это процесс, происходящий в цилиндре двигателя за один ход поршня. Совокупность тактов, повторяющихся в строгой последовательности и с определенной периодичностью, обычно называют рабочим циклом. в данном случае, двигателя внутреннего сгорания.

  1. Такт первый - ВПУСК. Поршень перемещается от ВМТ к НМТ, при этом возникает разряжение и полость цилиндра ДВС заполняется горючей смесью через открытый впускной клапан. Смесь, попадая в камеру сгорания, смешивается с остатками отработавших газов. В конце впуска давление в цилиндре составляет 0,07–0,095 МПа, а температура 80-120 ºС.
  2. Такт второй – СЖАТИЕ. Поршень движется к ВМТ, оба клапана закрыты, рабочая смесь в цилиндре сжимается, а сжатие сопровождается повышением давления (1,2–1,7 МПа) и температуры (300-400 ºС).
  3. Такт третий – РАСШИРЕНИЕ. При воспламенении рабочей смеси в цилиндре ДВС выделяется значительное количество теплоты, резко увеличивается температура (до 2500 градусов по Цельсию). Под давлением поршень перемещается к НМТ. Давление равно 4–6 МПа.
  4. Такт четвертый – ВЫПУСК. Поршень стремится к ВМТ через открытый выпускной клапан, отработавшие газы выталкиваются в выпускной трубопровод, а затем в окружающую среду. Давление в конце цикла: 0,1–0,12 МПа, температура 600-900 ºС.

И так, вы смогли убедиться, что двигатель внутреннего сгорания устроен не очень сложно. Как говорится, все гениальное – просто. А для большей наглядности рекомендуем посмотреть видео, на котором очень хорошо показан принцип работы ДВС.

Принцип работы двигателя внутреннего сгорания

Шумоизоляция авто своими руками

Повышенный расход топлива. Как сэкономить?

Как утеплить капот автомобиля?

Построение музыки в авто для начинающих

Как защитить машину от угона?

Принцип работы двигателя внутреннего сгорания

Современный автомобиль, чаще всего, приводится в движение двигателем внутреннего сгорания. Таких двигателей существует огромное множество. Различаются они объемом, количеством цилиндров, мощностью, скоростью вращения, используемым топливом (дизельные, бензиновые и газовые ДВС). Но, принципиально, устройство двигателя внутреннего сгорания, похоже.

Как работает двигатель и почему называется четырехтактным двигателем внутреннего сгорания? Про внутреннее сгорание понятно. Внутри двигателя сгорает топливо. А почему 4 такта двигателя, что это такое? Действительно, бывают и двухтактные двигатели. Но на автомобилях они используются крайне редко.

Четырехтактным двигатель называется из-за того, что его работу можно разделить на четыре, равные по времени, части. Поршень четыре раза пройдет по цилиндру – два раза вверх и два раза вниз. Такт начинается при нахождении поршня в крайней нижней или верхней точке. У автомобилистов-механиков это называется верхняя мертвая точка (ВМТ) и нижняя мертвая точка (НМТ) .

Первый такт - такт впуска

Первый такт, он же впускной, начинается с ВМТ (верхней мертвой точки). Двигаясь вниз, поршень всасывает в цилиндр топливовоздушную смесь. Работа этого такта происходит при открытом клапане впуска. Кстати, существует много двигателей с несколькими впускными клапанами. Их количество, размер, время нахождения в открытом состоянии может существенно повлиять на мощность двигателя. Есть двигатели, в которых, в зависимости от нажатия на педаль газа, происходит принудительное увеличение времени нахождения впускных клапанов в открытом состоянии. Это сделано для увеличения количества всасываемого топлива, которое, после возгорания, увеличивает мощность двигателя. Автомобиль, в этом случае, может гораздо быстрее ускориться.

Второй такт - такт сжатия

Следующий такт работы двигателя – такт сжатия. После того как поршень достиг нижней точки, он начинает подниматься вверх, тем самым, сжимая смесь, которая попала в цилиндр в такт впуска. Топливная смесь сжимается до объемов камеры сгорания. Что это за такая камера? Свободное пространство между верхней частью поршня и верхней частью цилиндра при нахождении поршня в верхней мертвой точке называется камерой сгорания. Клапаны, в этот такт работы двигателя закрыты полностью. Чем плотнее они закрыты, тем сжатие происходит качественнее. Большое значение имеет, в данном случае, состояние поршня, цилиндра, поршневых колец. Если имеются большие зазоры, то хорошего сжатия не получится, а соответственно, мощность такого двигателя будет гораздо ниже. Компрессию можно проверить специальным прибором. По величине компрессии можно сделать вывод о степени износа двигателя.

Третий такт - рабочий ход

Третий такт – рабочий. начинается с ВМТ. Рабочим он называется неслучайно. Ведь именно в этом такте происходит действие, заставляющее автомобиль двигаться. В этом такте в работу вступает система зажигания. Почему эта система так называется? Да потому, что она отвечает за поджигание топливной смеси, сжатой в цилиндре, в камере сгорания. Работает это очень просто – свеча системы дает искру. Справедливости ради, стоит заметить, что искра выдается на свече зажигания за несколько градусов до достижения поршнем верхней точки. Эти градусы, в современном двигателе, регулируются автоматически «мозгами» автомобиля.

После того как топливо загорится, происходит взрыв – оно резко увеличивается в объеме, заставляя поршень двигаться вниз. Клапаны в этом такте работы двигателя, как и в предыдущем, находятся в закрытом состоянии.

Четвертый такт - такт выпуска

Четвертый такт работы двигателя, последний – выпускной. Достигнув нижней точки, после рабочего такта, в двигателе начинает открываться выпускной клапан. Таких клапанов, как и впускных, может быть несколько. Двигаясь вверх, поршень через этот клапан удаляет отработавшие газы из цилиндра – вентилирует его. От четкой работы клапанов зависит степень сжатия в цилиндрах, полное удаление отработанных газов и необходимое количество всасываемой топливно-воздушной смеси.

Устройство и принцип действия двухтактного двигателя внутреннего сгорания

Cуществует два основных типа двигателей: двухтактные и четырехтактные. В двухтактных двигателях все рабочие циклы (процессы впуска топливной смеси, выпуска отработанных газов, продувки) происходят в течении одного оборота коленвала за два основных такта. У двигателей такого типа отсутствуют клапаны (как в четырехтактных ДВС), их роль выполняет поршень, который при своем перемещении закрывает впускные, выпускные и продувочные окна. Поэтому они более просты в конструкции.

Мощность двухтактного двигателя при одинаковых размерах цилиндра и частоте вращения вала теоретически в два раза больше четырехтактного за счет большего числа рабочих циклов. Однако неполное использование хода поршня для расширения, худшее освобождение цилиндра от остаточных газов и затраты части вырабатываемой мощности на продувку приводят практически к увеличению мощности только на 60. 70%.

Итак, рассмотрим конструкцию двухтактного ДВС, показанную на рисунке 1:

Двигатель состоит из картера, в который на подшипниках с двух сторон установлен коленчатый вал и цилиндра. Внутри цилиндра движется поршень - металлический стакан, опоясанный пружинящими кольцами (поршневые кольца), вложенными в канавки на поршне. Поршневые кольца не пропускают газов, образующихся при сгорании топлива, в промежутке между поршнем и стенками цилиндра. Поршень снабжен металлическим стержнем - пальцем, он соединяет поршень с шатуном. Шатун передаёт прямолинейное возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Далее уже, в частности на мотороллере, вращательное движение передается на вариатор, принцип работы которого описан в статье: Устройство и принцип работы вариатора .

Смазка всех трущихся поверхностей и подшипников внутри двухтактных двигателей происходит с помощью топливной смеси, в которое подмешано необходимое количество масла. Из рисунка 1 видно, что топливная смесь (желтый цвет) попадает и в кривошипную камеру двигателя (это та полость, где закреплен и вращается коленчатый вал), и в цилиндр. Смазки там нигде нет, а если бы и была, то смылась топливной смесью. Вот по этой причине масло и добавляют в определенной пропорции к бензину. Тип масла используется специальный, именно для двухтактных двигателей. Оно должно выдерживать высокие температуры и сгорая вместе с топливом оставлять минимум зольных отложений.

Теперь о принципе работы. Весь рабочий цикл в двигателе осуществляется за два такта.

Такт сжатия.

1. Такт сжатия. Поршень перемещается от нижней мертвой точки поршня (в этом положении поршень находится на рис. 2, далее это положение называем сокращенно НМТ) к верхней мертвой точке поршня (положение поршня на рис.3, далее ВМТ), перекрывая сначала продувочное 2, а затем выпускное 3 окна. После закрытия поршнем выпускного окна в цилиндре начинается сжатие ранее поступившей в него горючей смеси. Одновременно в кривошипной камере 1 вследствие ее герметичности и после того как поршень перекрывает продувочные окна 2, под поршнем создается разряжение, под действием которого из карбюратора через впускное окно и открывающийся клапан поступает горючая смесь в кривошипную камеру.

2. Такт рабочего хода. При положении поршня около ВМТ сжатая рабочая смесь (1 на рис. 3) воспламеняется электрической искрой от свечи, в результате чего температура и давление газов резко возрастают. Под действием теплового расширения газов поршень перемещается к НМТ, при этом расширяющиеся газы совершают полезную работу. Одновременно, опускаясь вниз, поршень создает высокое давление в кривошипной камере (сжимая топливо-воздушную смесь в ней). Под действием давления клапан закрывается, не давая таким образом горючей смеси снова попасть во впускной коллектор и затем в карбюратор.

Когда поршень дойдет до выпускного окна (1 на рис. 4), оно открывается и начнется выпуск отработавших газов в атмосферу, давление в цилиндре понижается. При дальнейшем перемещении поршень открывает продувочное окно (1 на рис. 5) и сжатая в кривошипной камере горючая смесь поступает по каналу (2 на рис. 5), заполняя цилиндр и осуществляя продувку его от остатков отработавших газов.

Далее цикл повторяется.

Стоит упомянуть о принципе зажигания. Так как топливной смеси нужно время для воспламенения, искра на свече появляется чуть раньше, чем поршень достигает ВМТ. В идеале, чем быстрей движения поршня, тем раньше должно быть зажигание, потому-что поршень от момента искры быстрее доходит до ВМТ. Существуют механические и электронные устройства, меняющие угол зажигания в зависимости от оборотов двигателя. Практически у мотороллеров до 2000 г.в. таких систем не было и угол опережения зажигания был установлен в расчете на оптимальные обороты. На некоторых же скутерах, например Honda Dio ZX AF35, установлен электронный коммутатор с динамическим опережением. С ним двигатель развивает больше мощности.

Наглядно просмотреть работу двухтактного ДВС можно на этом флеш-ролике:

Принцип работы двигателя внутреннего сгорания

Рассмотрим принцип работы двигателя  внутреннего сгорания, начнем с четырехтактного одноцилиндрового бензинового двигателя.

На картинке а изображен первый такт ВПУСК. Поршень, перемещаясь вниз из верхней мертвой точки в нижнюю мертвую точку, за счет разрежения создаваемого в цилиндре втягивает воздух или рабочую смесь (если двигатель карбюраторный). При этом впускной клапан открыт выпускной закрыт. Как только поршень достигает нижней мертвой точки, закрывается впускной клапан и начинается движение поршня вверх.

На картинке б изображен второй такт СЖАТИЕ. Поршень, перемещаясь вверх, сжимает воздух (или рабочую смесь) так как оба клапана закрыты воздух в цилиндре нагревается. В конце такта сжатия в цилиндр через форсунку впрыскивается дизельное топливо в мелкораспыленном состоянии (или подается электрическая искра для бензиновых и газовых двигателей).

На картинке в изображен третий такт РАСШИРЕНИЕ или рабочий ход. Частицы топлива, соприкасаясь с нагретым воздухом, самовоспламеняются (дизельный двигатель) или происходит воспламенение от искры (бензиновый или газовый двигатель). Поршень перемещается вниз под действием давления расширяющихся газов. Во время рабочего хода оба клапана закрыты, поршень передает усилие через шатун на кривошипно-шатунный механизм. Как только поршень достигает нижней мертвой точки начинается четвертый такт выпуск.

На картинке г изображен четвертый такт ВЫПУСК. Выпускной клапан открывается поршень, двигаясь вверх выталкивает отработавшие газы в систему выпуска. После того как поршень достигнет верхней мертвой точки, выпускной клапан закрывается, а впускной в свою очередь открывается и цикл повторяется вновь.

Существуют так же двухтактные бензиновые двигатели, давайте рассмотрим их устройство и принцип их работы.

Устройство двигателя:

    выхлопная труба и выпускное окно. карбюратор и впускное окно. кривошипная камера. продувочный канал. поршень.

Теперь рассмотрим принцип работы двухтактного двигателя.

ПЕРВЫЙ ТАКТ на изображении а. При движении вверх поршень 5 перекрывает сначала впускное окно 2, затем выпускное окно 1 рабочая смесь в цилиндре сжимается, как только поршень достигает верхней мертвой точки образуется искра в свече, рабочая смесь при этом воспламеняется как изображено на изображении б, на этом первый такт закончен.

ВТОРОЙ ТАКТ изображение в. В результате воспламенения происходит расширение газов по другому рабочий ход, в следствии чего давление на поршень возрастает, поршень начинает двигаться вниз. Как только поршень выпускное окно 1 отработавшие газы выдавливаются в выхлопную систему рабочей смесью через продувочный канал 4, причем часть рабочей смеси также выходит из цилиндра через выпускное окно. Далее поршень начинает движение вверх в кривошипной камере создается разрешение как только поршень впускное окно 2 в кривошипную камеру поступает рабочая смесь. Далее цикл повторяется.

Как видно из рисунков у четырехтактного одноцилиндрового двигателя один оборот является холостым, у двухтактного же двигателя каждый оборот завершается рабочим ходом. Двухтактный одноцилиндровый двигатель работает более равномерно по сравнению с одноцилиндровым четырехтактным двигателем. Двухтактный двигатель значительно легче и проще четырехтактного. При этом двухтактные двигатели менее экономичны, чем четырехтактные. При продувке часть рабочей смеси выходит в выпускные окна. Двухтактные двигатели так же менее экологичны, чем четырехтактные. Основное распространение двухтактные двигатели получили в механизмах, чей вес и габариты имеют важнейшее значение: ручной инструмент, легкие мотоциклы и мопеды, небольшие моторные лодки.

Существуют также и многоцилиндровые двигатели внутреннего сгорания 2, 3, 4, 5, 6, 8, 10, 12, цилиндровые двигатели, двухтактные двигатели, как правило, более 2 цилиндров не имеют. Многоцилиндровые двигатели могут быть однорядными или двухрядными V – образными, встречаются так же  оппозитные двигатели, например двигатели Порше и Субару, бывают и трехрядные двигатели W – образные, их применяют на автомобилях марки Ауди, Бугатти, и фольксваген. Рядные двигатели более 6 цилиндров, как правило, не имеют. Рядные двигатели более 6 цилиндров, как правило, не имеют. V – образные двигатели более легкие и компактные по сравнению с рядными. Чем большее количество цилиндров имеет двигатель, тем чаще будет происходить такт РАСШИРЕНИЕ (рабочий ход), и тем соответственно больше мощность и равномернее вращение коленчатого вала. Следовательно, требуется меньший вес маховика.

Рассмотрим принцип работы однорядного четырехцилиндрового четырехтактного двигателя внутреннего сгорания. Любой многоцилиндровый двигатель имеет определенный порядок работы (очередность рабочих циклов) цилиндров. Двигатели Российского производства имеют следующий порядок работы 1-3-4-2. Конструктивно четырехцилиндровый двигатель выполнен следующим образом: 1, 2, 3, 4 – цилиндры 5 – маховик 6 – кривошип (колено) 7 – коленчатый вал. Колена расположены в одной плоскости и направлены в разные стороны, когда 1 и 4 поршень движутся вниз 1 и 3 движутся вверх. Такая конструкция сделана для более равномерной работы двигателя.

Источники: http://unit-car.com/ustroystvo/24-dvigatel-vnutrennego-sgoraniya.html, http://amastercar.ru/articles/engine_car_19.shtml, http://autoustroistvo.ru/dvigatel-dvs/rabota-dvigatelya-vnutrennego-sgoraniya-takti-dvigatelya/, http://www.motosvit.com/LikBes/dvigatel.htm, http://ya-avtolubitel.ru/ustroystvo-dvigatelya-avtomobilistam/printsip-rabotyi

Комментариев пока нет!

avtopiligrim.ru

Такт работы двигателя

В нижней мертвой точке (НМТ) у поршня происходит "перекладка" т. е. изменение опоры поршня на цилиндр с левой стороны юбки на правую.

Чем больше зазор между юбкой поршня и цилиндром, тем интенсивнее перекладка, а значит шумность двигателя, дальнейший износ юбки поршня и нижней части цилиндра, по которой "бьет" правая сторона юбки поршня.

После прохода поршнем нижней мертвой точки начинается второй такт работы двигателя - сжатие топливо-воздушной смеси.

Работа двигателя во время такта впуск

1.Такт сжатия

Непосредственно сжатие (повышение давления в цилиндре) начинается не сразу после начала движения поршня вверх. Дело в том, что топливо-воздушная смесь при открытом впускном клапане некоторое время продолжает поступать в цилиндр, несмотря на начало повышения давления. Поэтому закрытие впускного клапана должно быть согласовано с характером течения смеси у его тарелки.

С точки зрения наилучшего наполнения цилиндра (и, соответственно, наибольшей мощности) в момент закрытия впускного клапана смесь у клапана должна остановиться, т. е. в этот момент через клапан нет ни прямого - в цилиндр, ни обратного - из цилиндра, течения. Здесь на процесс очень сильно влияет конструкция впускной системы, частота вращения, положение дроссельной заслонки. В общем случае, чем больше частота вращения и открытие дроссельной заслонки, тем больше при неизменной длине впускного канала должен запаздывать с закрытием впускной клапан.

На практике, как правило, выбирают компромиссный вариант, однако существуют конструкции с переменными фазами газораспределения (при которых изменяется запаздывание закрытия впускного клапана) и с переменной длиной каналов впускной системы, улучшающих наполнение цилиндров и параметры двигателя в широком диапазоне режимов. Компромиссные решения обычно приводят к ухудшению параметров двигателя за счет обратного выброса смеси на низких частотах вращения и "недозарядки" цилиндра (т. е. снижения количества поступающей смеси относительно максимально возможного) на высоких оборотах. Меньшее по сравнению с традиционными конструкциями запаздывание закрытия клапана имеют двигатели с многоклапанными головками (с тремя или четырьмя клапанами на цилиндр).При движении поршня вверх при закрытых клапанах происходит сжатие топливо-воздушной смеси. При этом давление в цилиндре зависит от утечек смеси через поршневые кольца и клапаны. Их износ или повреждения, а также царапины и риски на поверхности цилиндра также увеличивают утечки смеси через поршневые кольца. Поршневые кольца под действием трения и давления в цилиндре прижимаются к нижним поверхностям канавок, а уплотнение полости цилиндра над поршнем достигается с одной стороны по стыку колец с поверхностью цилиндров, а с другой - по нижним торцевым поверхностям колец и канавок.

Перекладка поршня

2.Перекладка поршня в нижней мертвой точке.

Под действием сил давления и трения торцевые поверхности колец и канавок изнашиваются, а торцевой зазор в канавках увеличивается. При большом зазоре кольца вблизи мертвых точек (ВМТ и НМТ) передвигаются от одного торца канавки к другому. Возникает так называемый "насосный" эффект, характерный для изношенных двигателей, из-за которого значительно увеличивается расход масла. Возрастает также прорыв газов в картер из камеры сгорания. Кроме того, при большом торцевом зазоре кольца достаточно быстро разбивают края канавок, вследствие чего "насосный" эффект и прорыв газов быстро прогрессируют.Когда поршень находится вблизи ВМТ, не доходя до нее обычно 5-30° по углу поворота коленчатого вала (ПКВ), происходит искровой разряд на свече зажигания. Этот угол, называемый углом опережения зажигания, при работе двигателя обязательно регулируется. Дело в том, что процесс горения смеси происходит с некоторым запаздыванием с момента искрового разряда на величину так называемого времени формирования фронта пламени. В двигателях с искровым зажиганием это величина условная и равна времени с момента искрового разряда до начала "видимого" сгорания (начала повышения давления свыше давления в цилиндре без сгорания). В дизелях процесс видимого сгорания также происходит с задержкой. При этом время задержки воспламенения в дизелях имеет физический смысл как время, необходимое для нагрева и испарения топпива, впрыскиваемого в цилиндр.Поскольку горение смеси - химическая реакция, времена формирования фронта пламени (задержки воспламенения) и горения зависят от давления и температуры смеси, а также от интенсивности ее перемешивания (турбулентности): чем они больше, тем быстрее идет процесс. Открытие дроссельной заслонки приводит к увеличению давления и плотности смеси во впускном коллекторе, увеличиваются давление и температура в цилиндре на такте всасывания и, соответственно, в конце такта сжатия, улучшается перемешивание смеси. Эти факторы определяют уменьшение времени горения и формирования фронта пламени. При увеличении частоты вращения эти времена уменьшаются не так быстро, как время цикла (время, за которое коленчатый вал делает 2 оборота). Поэтому при неизменном моменте зажигания процесс сгорания с увеличением частоты сдвигается далеко в область рабочего хода и "растягивается" по циклу, что приводит к ухудшению параметров двигателя. Чтобы этого не происходило, угол опережения зажигания приходится увеличивать на 25-30° с ростом частоты вращения. Зависимость угла опережения от нагрузки более слабая - при открытии дроссельной заслонки обычно требуется уменьшать угол опережения зажигания в среднем на 8.Непосредственно перед воспламенением смеси давление в цилиндре достаточно высоко - свыше 1,0-И ,2 МПа. Это давление несколько ниже максимального давления, которое было бы в цилиндре при проверке компрессии, т. к. воспламенение начинается до прихода поршня в ВМТ. Максимальное давление в цилиндре (без сгорания) зависит от степени сжатия б = Vh/VKC, где Vh - рабочий объем цилиндра (Vh = Fn.S), Fn - площадь поршня; S - ход поршня; VKc - объем камеры сгорания.Степень сжатия - величина чисто геометрическая.  По этой весьма приближенной зависимости давление измеряемое компрессометром, численно должно быть существенно выше степени сжатия. Однако в действительности из-за задержки закрытия впускного клапана, возможного некоторого разрежения в цилиндре и начале сжатия, потерь тепла и т. д. максимальное давление (компрессия) существенно ниже - порядка 1,1-1 ,5 МПа.При приближении поршня к ВМТ начинают "работать" так называемые вытеснители. Вытеснители образуются поверхностями днища поршня и головки, которые при положении поршня в ВМТ подходят друг к другу наиболее близко обычно зазор между поршнем и головкой в таких местах 0,5-5-1,0 мм. При подходе поршня к ВМТ смесь, расположенная между вытеснительными поверхностями, как бы "вытесняется" в зону камеры сгорания, образуя потоки определенного направления.Чем ближе подходят друг к другу поршень и головка, тем сильнее эффект вытеснения, т. е. больше скорость вытеснения потока. Вытеснители выполняют весьма важную задачу - турбупизируют (т. е. интенсивно перемешивают) смесь в момент воспламенения, а это повышает скорость и полноту сгорания. Турбулизация смеси препятствует также распространению детонации.При движении поршня к ВМТ во время такта работы двигателя давление в цилиндре быстро растет. Увеличивается и давление в зазоре между верхней частью боковой поверхности поршня (огневым поясом) и цилиндром. Рост давления при сгорании приводит к существенному увеличению усилия прижатия компрессионных колец к поверхности цилиндра и нижним поверхностям канавок поршня. Наибольшие усилия испытывает верхнее кольцо, поскольку давление в канавке верхнего кольца значительно выше, чем среднего. Под действием силы давления газов и силы трения кольца о цилиндр верхнее кольцо разворачивается (закручивается) в канавке. После непродолжительной работы кольцо приобретает характерный профиль поперечного сечения с несимметричной бочкообразностью наружной поверхности и небольшой вогнутостью на нижнем торце, а нижняя поверхность канавки становится конической со скругленным краем. От формы наружной поверхности кольца сильно зависят износ цилиндра и расход масла. В частности, при сжатии в цилиндре закручивание кольца может привести к его маслосъемному действию при движении поршня вверх, т. е. к вытеснению части масла со стенок цилиндра в камеру сгорания. В этом случае скребковая верхняя кромка кольца уменьшает и без того тонкую масляную пленку между кольцом и цилиндром, в результате чего возможно образование прижогов на кольце и задиров на поверхности цилиндра.При движении поршня вверх по мере роста давления толщина масляной пленки уменьшается, а вблизи ВМТ становится очень малой. Чтобы недостаток смазки не приводил к повышенному износу, очень важное значение имеют материалы трущихся деталей, состояние их поверхностей, а также упругость колец.Стойкую к износу пару трения "кольцо-цилиндр" образуют обычно твердые гладкие покрытия колец и, как правило, более мягкий материал цилиндра, на поверхности которого создается шероховатость в виде наклонных рисок определенной глубины. Чем глубже риски, тем больше масла в них находится, тем лучше смазка колец и цилиндра.При подходе поршня к ВМТ на поршень действует сила давления газов. Поршень опирается на поршневой палец и чем больше сила давления поршня на палец, тем выше трение в отверстии бобышек поршня и тем труднее поршню повернуться на неподвижном пальце. На практике это выглядит как поворот поршня вместе с шатуном вблизи ВМТ, т. е. как уже упомянутая выше "перекладка", но с гораздо большими усилиями. Для уменьшения этих усилий и снижения возможного стука поршня при повышенном зазоре в цилиндре ось пальца на поршне обычно смещают на 0,05 мм влево, если смотреть на поршень спереди. Тогда, как это видно на схеме, момент сил, поворачивающих поршень вблизи ВМТ, компенсируется моментом от сил давления газов на поршень.Силы давления газов и силы инерции, действующие на поршень, передаются через поршневой палец и шатун на шейку коленчатого вала.Вблизи ВМТ суммарные силы от давления газов и инерции вызывают большие напряжения в шатуне и бобышках поршня. В эксплуатации представляют большую опасность случаи значительного (во много раз) увеличения давления в ВМТ. Обычно это связано с попаданием в камеру сгорания различных жидкостей, например, воды через входной патрубок воздушного фильтра, топлива, масла или охлаждающей жидкости при возникновении соответствующих неисправностей. В таких случаях происходит деформация стержня шатуна - так называемая потеря устойчивости, а также поломки шатуна и поршня, опасные серьезными повреждениями в двигателе. Далее поговорим о такте впуска двигателя.

Рабочий цикл двигателя состоит из четырех тактов: Такт впуска, такт сжатия, такт расширения, такт выпуска. 

www.autoezda.com

Такт работы двигателя

В нижней мертвой точке (НМТ) у поршня происходит "перекладка" т. е. изменение опоры поршня на цилиндр с левой стороны юбки на правую.

Чем больше зазор между юбкой поршня и цилиндром, тем интенсивнее перекладка, а значит шумность двигателя, дальнейший износ юбки поршня и нижней части цилиндра, по которой "бьет" правая сторона юбки поршня.

После прохода поршнем нижней мертвой точки начинается второй такт работы двигателя - сжатие топливо-воздушной смеси.

Работа двигателя во время такта впуск

1.Такт сжатия

Непосредственно сжатие (повышение давления в цилиндре) начинается не сразу после начала движения поршня вверх. Дело в том, что топливо-воздушная смесь при открытом впускном клапане некоторое время продолжает поступать в цилиндр, несмотря на начало повышения давления. Поэтому закрытие впускного клапана должно быть согласовано с характером течения смеси у его тарелки.

С точки зрения наилучшего наполнения цилиндра (и, соответственно, наибольшей мощности) в момент закрытия впускного клапана смесь у клапана должна остановиться, т. е. в этот момент через клапан нет ни прямого - в цилиндр, ни обратного - из цилиндра, течения. Здесь на процесс очень сильно влияет конструкция впускной системы, частота вращения, положение дроссельной заслонки. В общем случае, чем больше частота вращения и открытие дроссельной заслонки, тем больше при неизменной длине впускного канала должен запаздывать с закрытием впускной клапан.

На практике, как правило, выбирают компромиссный вариант, однако существуют конструкции с переменными фазами газораспределения (при которых изменяется запаздывание закрытия впускного клапана) и с переменной длиной каналов впускной системы, улучшающих наполнение цилиндров и параметры двигателя в широком диапазоне режимов. Компромиссные решения обычно приводят к ухудшению параметров двигателя за счет обратного выброса смеси на низких частотах вращения и "недозарядки" цилиндра (т. е. снижения количества поступающей смеси относительно максимально возможного) на высоких оборотах. Меньшее по сравнению с традиционными конструкциями запаздывание закрытия клапана имеют двигатели с многоклапанными головками (с тремя или четырьмя клапанами на цилиндр).При движении поршня вверх при закрытых клапанах происходит сжатие топливо-воздушной смеси. При этом давление в цилиндре зависит от утечек смеси через поршневые кольца и клапаны. Их износ или повреждения, а также царапины и риски на поверхности цилиндра также увеличивают утечки смеси через поршневые кольца. Поршневые кольца под действием трения и давления в цилиндре прижимаются к нижним поверхностям канавок, а уплотнение полости цилиндра над поршнем достигается с одной стороны по стыку колец с поверхностью цилиндров, а с другой - по нижним торцевым поверхностям колец и канавок.

Перекладка поршня

2.Перекладка поршня в нижней мертвой точке.

Под действием сил давления и трения торцевые поверхности колец и канавок изнашиваются, а торцевой зазор в канавках увеличивается. При большом зазоре кольца вблизи мертвых точек (ВМТ и НМТ) передвигаются от одного торца канавки к другому. Возникает так называемый "насосный" эффект, характерный для изношенных двигателей, из-за которого значительно увеличивается расход масла. Возрастает также прорыв газов в картер из камеры сгорания. Кроме того, при большом торцевом зазоре кольца достаточно быстро разбивают края канавок, вследствие чего "насосный" эффект и прорыв газов быстро прогрессируют.Когда поршень находится вблизи ВМТ, не доходя до нее обычно 5-30° по углу поворота коленчатого вала (ПКВ), происходит искровой разряд на свече зажигания. Этот угол, называемый углом опережения зажигания, при работе двигателя обязательно регулируется. Дело в том, что процесс горения смеси происходит с некоторым запаздыванием с момента искрового разряда на величину так называемого времени формирования фронта пламени. В двигателях с искровым зажиганием это величина условная и равна времени с момента искрового разряда до начала "видимого" сгорания (начала повышения давления свыше давления в цилиндре без сгорания). В дизелях процесс видимого сгорания также происходит с задержкой. При этом время задержки воспламенения в дизелях имеет физический смысл как время, необходимое для нагрева и испарения топпива, впрыскиваемого в цилиндр.Поскольку горение смеси - химическая реакция, времена формирования фронта пламени (задержки воспламенения) и горения зависят от давления и температуры смеси, а также от интенсивности ее перемешивания (турбулентности): чем они больше, тем быстрее идет процесс. Открытие дроссельной заслонки приводит к увеличению давления и плотности смеси во впускном коллекторе, увеличиваются давление и температура в цилиндре на такте всасывания и, соответственно, в конце такта сжатия, улучшается перемешивание смеси. Эти факторы определяют уменьшение времени горения и формирования фронта пламени. При увеличении частоты вращения эти времена уменьшаются не так быстро, как время цикла (время, за которое коленчатый вал делает 2 оборота). Поэтому при неизменном моменте зажигания процесс сгорания с увеличением частоты сдвигается далеко в область рабочего хода и "растягивается" по циклу, что приводит к ухудшению параметров двигателя. Чтобы этого не происходило, угол опережения зажигания приходится увеличивать на 25-30° с ростом частоты вращения. Зависимость угла опережения от нагрузки более слабая - при открытии дроссельной заслонки обычно требуется уменьшать угол опережения зажигания в среднем на 8.Непосредственно перед воспламенением смеси давление в цилиндре достаточно высоко - свыше 1,0-И ,2 МПа. Это давление несколько ниже максимального давления, которое было бы в цилиндре при проверке компрессии, т. к. воспламенение начинается до прихода поршня в ВМТ. Максимальное давление в цилиндре (без сгорания) зависит от степени сжатия б = Vh/VKC, где Vh - рабочий объем цилиндра (Vh = Fn.S), Fn - площадь поршня; S - ход поршня; VKc - объем камеры сгорания.Степень сжатия - величина чисто геометрическая.  По этой весьма приближенной зависимости давление измеряемое компрессометром, численно должно быть существенно выше степени сжатия. Однако в действительности из-за задержки закрытия впускного клапана, возможного некоторого разрежения в цилиндре и начале сжатия, потерь тепла и т. д. максимальное давление (компрессия) существенно ниже - порядка 1,1-1 ,5 МПа.При приближении поршня к ВМТ начинают "работать" так называемые вытеснители. Вытеснители образуются поверхностями днища поршня и головки, которые при положении поршня в ВМТ подходят друг к другу наиболее близко обычно зазор между поршнем и головкой в таких местах 0,5-5-1,0 мм. При подходе поршня к ВМТ смесь, расположенная между вытеснительными поверхностями, как бы "вытесняется" в зону камеры сгорания, образуя потоки определенного направления.Чем ближе подходят друг к другу поршень и головка, тем сильнее эффект вытеснения, т. е. больше скорость вытеснения потока. Вытеснители выполняют весьма важную задачу - турбупизируют (т. е. интенсивно перемешивают) смесь в момент воспламенения, а это повышает скорость и полноту сгорания. Турбулизация смеси препятствует также распространению детонации.При движении поршня к ВМТ во время такта работы двигателя давление в цилиндре быстро растет. Увеличивается и давление в зазоре между верхней частью боковой поверхности поршня (огневым поясом) и цилиндром. Рост давления при сгорании приводит к существенному увеличению усилия прижатия компрессионных колец к поверхности цилиндра и нижним поверхностям канавок поршня. Наибольшие усилия испытывает верхнее кольцо, поскольку давление в канавке верхнего кольца значительно выше, чем среднего. Под действием силы давления газов и силы трения кольца о цилиндр верхнее кольцо разворачивается (закручивается) в канавке. После непродолжительной работы кольцо приобретает характерный профиль поперечного сечения с несимметричной бочкообразностью наружной поверхности и небольшой вогнутостью на нижнем торце, а нижняя поверхность канавки становится конической со скругленным краем. От формы наружной поверхности кольца сильно зависят износ цилиндра и расход масла. В частности, при сжатии в цилиндре закручивание кольца может привести к его маслосъемному действию при движении поршня вверх, т. е. к вытеснению части масла со стенок цилиндра в камеру сгорания. В этом случае скребковая верхняя кромка кольца уменьшает и без того тонкую масляную пленку между кольцом и цилиндром, в результате чего возможно образование прижогов на кольце и задиров на поверхности цилиндра.При движении поршня вверх по мере роста давления толщина масляной пленки уменьшается, а вблизи ВМТ становится очень малой. Чтобы недостаток смазки не приводил к повышенному износу, очень важное значение имеют материалы трущихся деталей, состояние их поверхностей, а также упругость колец.Стойкую к износу пару трения "кольцо-цилиндр" образуют обычно твердые гладкие покрытия колец и, как правило, более мягкий материал цилиндра, на поверхности которого создается шероховатость в виде наклонных рисок определенной глубины. Чем глубже риски, тем больше масла в них находится, тем лучше смазка колец и цилиндра.При подходе поршня к ВМТ на поршень действует сила давления газов. Поршень опирается на поршневой палец и чем больше сила давления поршня на палец, тем выше трение в отверстии бобышек поршня и тем труднее поршню повернуться на неподвижном пальце. На практике это выглядит как поворот поршня вместе с шатуном вблизи ВМТ, т. е. как уже упомянутая выше "перекладка", но с гораздо большими усилиями. Для уменьшения этих усилий и снижения возможного стука поршня при повышенном зазоре в цилиндре ось пальца на поршне обычно смещают на 0,05 мм влево, если смотреть на поршень спереди. Тогда, как это видно на схеме, момент сил, поворачивающих поршень вблизи ВМТ, компенсируется моментом от сил давления газов на поршень.Силы давления газов и силы инерции, действующие на поршень, передаются через поршневой палец и шатун на шейку коленчатого вала.Вблизи ВМТ суммарные силы от давления газов и инерции вызывают большие напряжения в шатуне и бобышках поршня. В эксплуатации представляют большую опасность случаи значительного (во много раз) увеличения давления в ВМТ. Обычно это связано с попаданием в камеру сгорания различных жидкостей, например, воды через входной патрубок воздушного фильтра, топлива, масла или охлаждающей жидкости при возникновении соответствующих неисправностей. В таких случаях происходит деформация стержня шатуна - так называемая потеря устойчивости, а также поломки шатуна и поршня, опасные серьезными повреждениями в двигателе. Далее поговорим о такте впуска двигателя.

Рабочий цикл двигателя состоит из четырех тактов: Такт впуска, такт сжатия, такт расширения, такт выпуска. 

www.autoezda.com

Такт работы двигателя

В нижней мертвой точке (НМТ) у поршня происходит "перекладка" т. е. изменение опоры поршня на цилиндр с левой стороны юбки на правую.

Чем больше зазор между юбкой поршня и цилиндром, тем интенсивнее перекладка, а значит шумность двигателя, дальнейший износ юбки поршня и нижней части цилиндра, по которой "бьет" правая сторона юбки поршня.

После прохода поршнем нижней мертвой точки начинается второй такт работы двигателя - сжатие топливо-воздушной смеси.

Работа двигателя во время такта впуск

1.Такт сжатия

Непосредственно сжатие (повышение давления в цилиндре) начинается не сразу после начала движения поршня вверх. Дело в том, что топливо-воздушная смесь при открытом впускном клапане некоторое время продолжает поступать в цилиндр, несмотря на начало повышения давления. Поэтому закрытие впускного клапана должно быть согласовано с характером течения смеси у его тарелки.

С точки зрения наилучшего наполнения цилиндра (и, соответственно, наибольшей мощности) в момент закрытия впускного клапана смесь у клапана должна остановиться, т. е. в этот момент через клапан нет ни прямого - в цилиндр, ни обратного - из цилиндра, течения. Здесь на процесс очень сильно влияет конструкция впускной системы, частота вращения, положение дроссельной заслонки. В общем случае, чем больше частота вращения и открытие дроссельной заслонки, тем больше при неизменной длине впускного канала должен запаздывать с закрытием впускной клапан.

На практике, как правило, выбирают компромиссный вариант, однако существуют конструкции с переменными фазами газораспределения (при которых изменяется запаздывание закрытия впускного клапана) и с переменной длиной каналов впускной системы, улучшающих наполнение цилиндров и параметры двигателя в широком диапазоне режимов. Компромиссные решения обычно приводят к ухудшению параметров двигателя за счет обратного выброса смеси на низких частотах вращения и "недозарядки" цилиндра (т. е. снижения количества поступающей смеси относительно максимально возможного) на высоких оборотах. Меньшее по сравнению с традиционными конструкциями запаздывание закрытия клапана имеют двигатели с многоклапанными головками (с тремя или четырьмя клапанами на цилиндр).При движении поршня вверх при закрытых клапанах происходит сжатие топливо-воздушной смеси. При этом давление в цилиндре зависит от утечек смеси через поршневые кольца и клапаны. Их износ или повреждения, а также царапины и риски на поверхности цилиндра также увеличивают утечки смеси через поршневые кольца. Поршневые кольца под действием трения и давления в цилиндре прижимаются к нижним поверхностям канавок, а уплотнение полости цилиндра над поршнем достигается с одной стороны по стыку колец с поверхностью цилиндров, а с другой - по нижним торцевым поверхностям колец и канавок.

Перекладка поршня

2.Перекладка поршня в нижней мертвой точке.

Под действием сил давления и трения торцевые поверхности колец и канавок изнашиваются, а торцевой зазор в канавках увеличивается. При большом зазоре кольца вблизи мертвых точек (ВМТ и НМТ) передвигаются от одного торца канавки к другому. Возникает так называемый "насосный" эффект, характерный для изношенных двигателей, из-за которого значительно увеличивается расход масла. Возрастает также прорыв газов в картер из камеры сгорания. Кроме того, при большом торцевом зазоре кольца достаточно быстро разбивают края канавок, вследствие чего "насосный" эффект и прорыв газов быстро прогрессируют.Когда поршень находится вблизи ВМТ, не доходя до нее обычно 5-30° по углу поворота коленчатого вала (ПКВ), происходит искровой разряд на свече зажигания. Этот угол, называемый углом опережения зажигания, при работе двигателя обязательно регулируется. Дело в том, что процесс горения смеси происходит с некоторым запаздыванием с момента искрового разряда на величину так называемого времени формирования фронта пламени. В двигателях с искровым зажиганием это величина условная и равна времени с момента искрового разряда до начала "видимого" сгорания (начала повышения давления свыше давления в цилиндре без сгорания). В дизелях процесс видимого сгорания также происходит с задержкой. При этом время задержки воспламенения в дизелях имеет физический смысл как время, необходимое для нагрева и испарения топпива, впрыскиваемого в цилиндр.Поскольку горение смеси - химическая реакция, времена формирования фронта пламени (задержки воспламенения) и горения зависят от давления и температуры смеси, а также от интенсивности ее перемешивания (турбулентности): чем они больше, тем быстрее идет процесс. Открытие дроссельной заслонки приводит к увеличению давления и плотности смеси во впускном коллекторе, увеличиваются давление и температура в цилиндре на такте всасывания и, соответственно, в конце такта сжатия, улучшается перемешивание смеси. Эти факторы определяют уменьшение времени горения и формирования фронта пламени. При увеличении частоты вращения эти времена уменьшаются не так быстро, как время цикла (время, за которое коленчатый вал делает 2 оборота). Поэтому при неизменном моменте зажигания процесс сгорания с увеличением частоты сдвигается далеко в область рабочего хода и "растягивается" по циклу, что приводит к ухудшению параметров двигателя. Чтобы этого не происходило, угол опережения зажигания приходится увеличивать на 25-30° с ростом частоты вращения. Зависимость угла опережения от нагрузки более слабая - при открытии дроссельной заслонки обычно требуется уменьшать угол опережения зажигания в среднем на 8.Непосредственно перед воспламенением смеси давление в цилиндре достаточно высоко - свыше 1,0-И ,2 МПа. Это давление несколько ниже максимального давления, которое было бы в цилиндре при проверке компрессии, т. к. воспламенение начинается до прихода поршня в ВМТ. Максимальное давление в цилиндре (без сгорания) зависит от степени сжатия б = Vh/VKC, где Vh - рабочий объем цилиндра (Vh = Fn.S), Fn - площадь поршня; S - ход поршня; VKc - объем камеры сгорания.Степень сжатия - величина чисто геометрическая.  По этой весьма приближенной зависимости давление измеряемое компрессометром, численно должно быть существенно выше степени сжатия. Однако в действительности из-за задержки закрытия впускного клапана, возможного некоторого разрежения в цилиндре и начале сжатия, потерь тепла и т. д. максимальное давление (компрессия) существенно ниже - порядка 1,1-1 ,5 МПа.При приближении поршня к ВМТ начинают "работать" так называемые вытеснители. Вытеснители образуются поверхностями днища поршня и головки, которые при положении поршня в ВМТ подходят друг к другу наиболее близко обычно зазор между поршнем и головкой в таких местах 0,5-5-1,0 мм. При подходе поршня к ВМТ смесь, расположенная между вытеснительными поверхностями, как бы "вытесняется" в зону камеры сгорания, образуя потоки определенного направления.Чем ближе подходят друг к другу поршень и головка, тем сильнее эффект вытеснения, т. е. больше скорость вытеснения потока. Вытеснители выполняют весьма важную задачу - турбупизируют (т. е. интенсивно перемешивают) смесь в момент воспламенения, а это повышает скорость и полноту сгорания. Турбулизация смеси препятствует также распространению детонации.При движении поршня к ВМТ во время такта работы двигателя давление в цилиндре быстро растет. Увеличивается и давление в зазоре между верхней частью боковой поверхности поршня (огневым поясом) и цилиндром. Рост давления при сгорании приводит к существенному увеличению усилия прижатия компрессионных колец к поверхности цилиндра и нижним поверхностям канавок поршня. Наибольшие усилия испытывает верхнее кольцо, поскольку давление в канавке верхнего кольца значительно выше, чем среднего. Под действием силы давления газов и силы трения кольца о цилиндр верхнее кольцо разворачивается (закручивается) в канавке. После непродолжительной работы кольцо приобретает характерный профиль поперечного сечения с несимметричной бочкообразностью наружной поверхности и небольшой вогнутостью на нижнем торце, а нижняя поверхность канавки становится конической со скругленным краем. От формы наружной поверхности кольца сильно зависят износ цилиндра и расход масла. В частности, при сжатии в цилиндре закручивание кольца может привести к его маслосъемному действию при движении поршня вверх, т. е. к вытеснению части масла со стенок цилиндра в камеру сгорания. В этом случае скребковая верхняя кромка кольца уменьшает и без того тонкую масляную пленку между кольцом и цилиндром, в результате чего возможно образование прижогов на кольце и задиров на поверхности цилиндра.При движении поршня вверх по мере роста давления толщина масляной пленки уменьшается, а вблизи ВМТ становится очень малой. Чтобы недостаток смазки не приводил к повышенному износу, очень важное значение имеют материалы трущихся деталей, состояние их поверхностей, а также упругость колец.Стойкую к износу пару трения "кольцо-цилиндр" образуют обычно твердые гладкие покрытия колец и, как правило, более мягкий материал цилиндра, на поверхности которого создается шероховатость в виде наклонных рисок определенной глубины. Чем глубже риски, тем больше масла в них находится, тем лучше смазка колец и цилиндра.При подходе поршня к ВМТ на поршень действует сила давления газов. Поршень опирается на поршневой палец и чем больше сила давления поршня на палец, тем выше трение в отверстии бобышек поршня и тем труднее поршню повернуться на неподвижном пальце. На практике это выглядит как поворот поршня вместе с шатуном вблизи ВМТ, т. е. как уже упомянутая выше "перекладка", но с гораздо большими усилиями. Для уменьшения этих усилий и снижения возможного стука поршня при повышенном зазоре в цилиндре ось пальца на поршне обычно смещают на 0,05 мм влево, если смотреть на поршень спереди. Тогда, как это видно на схеме, момент сил, поворачивающих поршень вблизи ВМТ, компенсируется моментом от сил давления газов на поршень.Силы давления газов и силы инерции, действующие на поршень, передаются через поршневой палец и шатун на шейку коленчатого вала.Вблизи ВМТ суммарные силы от давления газов и инерции вызывают большие напряжения в шатуне и бобышках поршня. В эксплуатации представляют большую опасность случаи значительного (во много раз) увеличения давления в ВМТ. Обычно это связано с попаданием в камеру сгорания различных жидкостей, например, воды через входной патрубок воздушного фильтра, топлива, масла или охлаждающей жидкости при возникновении соответствующих неисправностей. В таких случаях происходит деформация стержня шатуна - так называемая потеря устойчивости, а также поломки шатуна и поршня, опасные серьезными повреждениями в двигателе. Далее поговорим о такте впуска двигателя.

Рабочий цикл двигателя состоит из четырех тактов: Такт впуска, такт сжатия, такт расширения, такт выпуска. 

www.autoezda.com


Смотрите также