Скорее всего, самым действенным из всех существующих механизмов, которые извлекают энергию из физического вакуума, является резонансный механизм. В нем постоянно меняется как направление вектора скорости, так численное значение скорости движения. Любое колебание характеризуется высокой степенью неравномерности, а чем неравномерность больше, тем максимально высоким будет результат.
По некоторым источникам известно, что первым исследователем, который разрабатывал резонансные генераторы, был физик Генри Мюррей. Примерно в середине двадцатых годов прошедшего века он провел первый удачный опыт по получению энергии из физического вакуума в очень больших объемах. А уже в конце двадцатых Генри построил тридцати ступенчатый агрегат, который имел мощность в 50 кВт и работал несколько месяцев без перерыва.
Мюррей ничего не скрывая, открыто демонстрировал всем желающим свой агрегат. Это и навлекло на него неприятности – неизвестный аноним принес на территорию лаборатории бомбу и взорвал ее. Спустя немного времени внезапно скончался и сам Мюррей. И, так как, после его смерти исчезли все чертежи установки этого механизма, никто так и не знает точно, как конкретно был устроен этот аппарат.
Второй генератор, который работал на резонансном принципе, построил физик Никола Тесла. Однако, лабораторию в Колорадо-Спрингс, где он проводил испытания, тоже взорвали. Тесла был очень известен и поэтому его оставили в живых, но перекрыли финансирование любых дальнейших разработок механизма. Аппарат Тесла состоял из искровика и электрогенератора соединенного с электродвигателем. Генератор вращался с помощью двигателя и вырабатывал для него необходимый ток. Причем, ток вырабатывался в огромном количестве, что его было достаточно и для всех внешних потребителей. Причиной такой выработки тока было наличие в цепи резонанса. Если искра проскакивает между электродами в искровике, в ней начинаются колебания широкого спектра частот, одна из которых обязательно совпадет с резонансным значением. При изменении в нагрузке, резонанс станет производиться на другой частоте.
Вся эта система очень удобна, она не нуждается в блоке управления, так как подстраивается в резонансный режим автоматически. Но Тесла отверг данную систему, так как испускаемая искра очень вредна для здоровья своим рентгеновским излучением.
Арсений Меделяновский, Александр Чернетский, Владилен Докучаев – современники, работающие с искровой схемой, именно по причине вредного излучения скончались. Также искра производит настолько мощные радиоволны, что все радиоприемники и телевизоры выходят из строя. По причине этих недостатков Тесла отказался от этой схемы. Он разработал новый, более безопасный способ, использовав стандартный колебательный контур, который имеется в каждом радиоприемнике и содержит хотя бы одну индукционную катушку, а также электрический конденсатор переменной емкости. Волны электромагнитные широкого спектра происходят от постоянных гроз и молний на Земле. Улавливая эти волны, антенна провоцирует в контуре небольшой переменный ток, который благодаря режиму резонанса усиливается до такой степени, что начинает работать имеющийся там мотор.
На промышленной выставке в Далласе Тесла заручился поддержкой таких фирм, как «Pierce-Arrow» и «General Electric» и установил на мотор демонстрируемого автомобиля электрический двигатель со скоростью вращения 1800 об/мин и мощностью переменного тока 80 л.с. Далее Тесла соорудил из резисторов, проводов и нескольких электронных ламп небольшую коробочку размерами 60×30×15см с двумя антеннами, установил ее за сиденьем, и подсоединил к электромотору. Тесла гонял автомобиль целую неделю, развивая скорость до 150 километров в час, а на все вопросы об источнике подачи энергии, он отвечал, что она поступает из эфира, т.е. физического вакуума. Разгневанный доводами неграмотных обывателей, которые решили, что Тесла связался с самим дьяволом, он снял коробку с автомобиля и рассказывать, как она работает, отказался.
В настоящий момент некоторые, работающие в данном направлении, физики видят источник энергии коробочки Тесла в электромагнитных полях. Конечно, получать энергию из магнитного поля станет возможным, если установить частоты аппарата на частоты электромагнитного поля Земли («резонанс Шумана» - от 7-7.5 герц). В таком случае это будет противоречить словам Тесла, ведь он сам как никто разбирался в магнитных полях, но качестве источника всегда говорил о некоем физическом вакууме.
На данный момент над подобными схемами работают Дон Мартин в США, Паоло Кореа в Канаде и Андрей Мельниченко в России. Американцы держат в секрете схемы установок Дон Мартина, но есть информация, что они в практически идентичны схемам Мельниченко.
Сам российский физик начинал с простого устройства с обыкновенным электродвигателем, генератором и конденсатором. Об этом известно из его интервью в журнале «Свет» в 1997 году, в котором говориться о том, как он работал с циркуляркой на даче, двигатель который был рассчитан на 1,5 кВт.
Внезапно отключили электроэнергию, и он нашел бензиновый генератор на 127 вольт, но двигатель циркулярки был предназначен для 220 вольт, и от такого генератора она работала так медленно, что ее легко можно остановить ладонью. Тогда Мельниченко поставил пару обычных конденсаторов последовательно с двигателем. Напряжение сразу выросло до 500 вольт, он снял конденсатор, и напряжение стало как раз подходящим для двигателя. Бензиновый генератор выдавал 100 вольт, а электродвигатель 270, это при одной и той же силе тока в 0.5 ампер – местный электрик не верил своим глазам! Напряжение двигателя на входе в 2 раза меньше, а на выходе на 20% больше – он ничего не мог понять! Мельниченко отсоединил от двигателя конденсатор величиной всего со спичечный коробок и объяснил всю суть эксперимента электрику. Воспроизвести и убедиться в его дополнительной мощности может за пару секунд любой специалист.
Вся выбрасываемая из физического вакуума энергия в этой установке, при переходе в нейтральное состояние отдается потребителю, следовательно, для следующего цикла возбуждения требуется другой источник энергии. Этим источником Мельниченко сделал бензиновый генератор, а в коробочке Тесла источником стали далекие молнии. Мельниченко заметил, что если часть энергии пустить на повторное возбуждение, то другой источник энергии не понадобится, и решил внести в установку изменения. Модернизированный аппарат включал в себя двигатель, генератор, а также конденсатор переменной емкости, нагрузку, батареи и блок управления. Электрически и механически соединялись через муфту двигатель и генератор. Конденсатор был расположен в цепи нагрузки, цепь в цепи двигателя подключалась параллельно к генератору. Батареи нужны были только для начала установки, а блок управления подстраивал конденсатор так, чтобы резонанс в цепи поддерживался постоянно. После перехода на стандартный режим, батареи отключались.
А внешний вид установки Паоло Кореа очень схож с теми, что были у Мюррея, как сообщают посетители данной лаборатории, кто видел установки. Кореа в своих установках пользуется акустическим резонансом в плазме. По всей длине внутри стеклянной трубки протягиваются два плоских электрода, на них поступает переменное напряжение, частота которой равна резонансу акустических колебаний в плазме (Мюррей применял 30 стеклянных труб, последовательно установленных в батарею). Вещество, которое тонким слоем покрывает с внутренней стороны электроды – ионизация газа, с помощью которого создается сама плазма. В своих статьях Кореа сообщает, что получает 6-18 единиц энергии от плазмы, эти показатели конечно очень низкие, но их достаточно, чтобы получить нужный результат.
Но установка канадца, к сожалению, работает неустойчиво, вырабатываемое напряжение скачет, причиной является положительная обратная связь между вкладом и отдачей энергии. Все это приводит к перенапряжению всего оборудования, и оно может выйти из строя. Решение этой проблемы исследователь пока не нашел.
Самым интересным оказалось, что все электростанции уже давно пользуются подобным оборудованием, ведь явление в электрической сети резонанса известно всем электромеханикам, но у них совсем иные цели. Когда явление резонанса возникает, идет выброс энергии, который может превосходить норму в 10 раз, и большинство потребителей перегорают. После этого индуктивность сети изменяется и тогда резонанс исчезает, но ведь перегоревшие устройства уже не восстановить. Чтобы избежать этих неудобств, устанавливают определенные антирезонирующие вставки, которые автоматически меняют свою емкость и отводят сеть из опасной зоны как только она окажется близкой к резонансным условиям. Если бы резонанс поддерживался в сети специально, с соответствующим послаблением силы тока на выходе со станции, потребление топлива снизилось бы в несколько десятков раз. И соответственно себестоимость производимой энергии бы гораздо снизилась.
Имеется информация, что резонанс мог бы позволить добиться значительного снижения затрат на энергию при распаде воды на водород и кислород. Производя электролиз током с частотой, которая равна частоте колебаний атомов водорода и кислорода в молекуле воды, то затраты на разложение станет минимальным. При таких затратах мы могли бы получать огромные количества тепла из батарей или розеток, разлагая заново полученную воду резонансом и вновь сжигая полученные газы. Но пока на эту тему подробной информации не достаточно, и никакой конкретики дать не является возможным.
zeleneet.com
Энергоинформ / Точка зрения / Как извлекать энергию из физического вакуума, часть 1: резонансный механизм
Возможно, резонансный механизм извлечения энергии из физвакуума окажется наиболее эффективным из всех существующих. Дело в том, что любое колебание характеризуется очень высокой степенью неравномерности. Здесь постоянно меняется как численное значение скорости движения колеблющегося тела, так и направление вектора скорости. А чем больше неравномерность, тем лучше должен быть результат.
Неизвестно точно, кто был первым в разработке резонансных генераторов. Имеются сведения, что американский физик Генри Мюррей ещё в середине 20-х годов прошедшего века осуществил первый успешный опыт по извлечению энергии из физвакуума в достаточно больших объёмах. А в конце 20-х годов он построил 30-ступенчатый агрегат мощностью 50 кВт, который работал беспрерывно несколько месяцев. Мюррей не делал секрета из своих экспериментов и демонстрировал работающий генератор всем желающим. Это его и погубило. Однажды какой-то безумец принёс с собой бомбу и взорвал лабораторию. А вскоре внезапно умер и сам изобретатель. После его смерти все уцелевшие бумаги и чертежи установки исчезли. И потому точно не известно, как именно выглядел аппарат этого изобретателя.
Вторым был сербский физик Никола Тесла. Он тоже построил генератор, работающий на резонансном принципе, и его лаборатория в Колорадо-Спрингс также была взорвана. К счастью, Тесла был намного более известен по сравнению с Мюрреем и потому его самого не тронули. Но перекрыли все каналы получения денег для дальнейшей разработки. Тесловский аппарат состоял из электродвигателя и соединённого с ним через механическую муфту электрогенератора, а также искровика. Двигатель вращал генератор, а тот вырабатывал нужный для работы двигателя ток. При этом из-за наличия в цепи резонанса ток вырабатывался в таких количествах, что его хватало и для работы самого двигателя, и для питания многочисленных внешних потребителей. Когда между электродами в искровике проскакивает искра, в ней присутствуют колебания очень широкого спектра частот. И какая-нибудь из них обязательно совпадёт с резонансным значением. Если нагрузка изменится, резонанс будет осуществляться на другой частоте. Такая система очень удобна тем, что в ней не нужен блок управления и она автоматически подстраивается в резонансный режим. Но искра обладает двумя недостатками, из-за которых Тесла отверг данную схему. Во-первых, искра испускает жесткое рентгеновское излучение, вредное для организма. Именно по этой причине преждевременно ушли из жизни те наши современники, которые работали с искровой схемой: Арсений Меделяновский, Владилен Докучаев, Александр Чернетский. Во-вторых, искра порождает мощные радиоволны, от которых глохнут все телевизоры и радиоприёмники в округе.
Тесла быстро разобрался в недостатках искры и отказался от такого способа, разработав иной более безопасный и даже испробовав его на практике. Он использовал обычный колебательный контур, имеющийся во всех радиоприёмниках, и содержащий по меньшей мере, одну индукционную катушку и электрический конденсатор переменной ёмкости. На Земле постоянно бушуют грозы с молниями, которые порождают электромагнитные волны широкого спектра частот. Антенна улавливает эти волны и возбуждает в контуре слабый переменный ток. А постоянно поддерживаемый в контуре режим резонанса усиливает ток до такой степени, что находящийся там электромотор начинает работать. Когда в Далласе (штат Техас) происходила промышленная выставка, Тесла заручился поддержкой фирм «Pierce-Arrow» и «General Electric», снял бензиновый мотор с демонстрируемого автомобиля «Arrow» и установил на него электрический двигатель переменного тока мощностью 80 л.с. и скоростью вращения 1800 об/мин. После этого пошёл в местный магазин, купил там несколько электронных ламп, кучу проводов, резисторы, и из всего этого барахла соорудил небольшую коробочку размерами 60×30×15см с двумя антеннами. Установил коробочку за сиденьем, подсоединил её к электромотору и поехал. Гонял он автомобиль целую неделю, развивая скорость до 150 км/час. А на все вопросы об источнике энергии отвечал, что энергия поступает из эфира. Но неграмотные обыватели сочли, что Тесла связался с дьяволом, который и толкает автомобиль. Разгневанный такими инсинуациями, Тесла снял коробочку с автомобиля и отказался рассказывать, как она работает.
Некоторые современные физики, работающие в этой области, видят источник энергии тесловской коробочки в электромагнитных полях. В принципе, если настроить частоту аппарата на частоту земного электромагнитного поля (от 7 до 7.5 герц, так называемый резонанс Шумана), извлекать энергию из магнитного поля окажется возможным. Но это противоречит тому, что говорил сам Тесла. Ведь он прекрасно разбирался в магнитных полях, но говорил всегда об эфире, а не о поле.
В настоящее время подобные схемы исследуют Андрей Мельниченко в России, Дон Мартин (Don Martin) в США и Паоло Кореа в Канаде. Точная схема установки Дон Мартина не известна, т.к. американцы держат её в секрете. Но мой личный разговор с директором International Tesla Institute Джонном МакГиннисом (John McGinnis), который продвигает эту разработку, привёл меня к выводу, что американская установка почти в точности идентична установке Мельниченко. Начинал Андрей с самого простого устройства, куда входили только генератор, электродвигатель и конденсатор. Вот его рассказ, взятый мною из журнала «Свет», 6, 1997: «...я зарабывал деньги на строительстве дач. И работал с циркуляркой, у которой был двигатель на 1.5 кВт. Всё шло прекрасно, пока не отключили энергию. Я пошёл к соседу, у него был бензиновый генератор на 127 вольт. Но у циркулярки двигатель рассчитан на 220 вольт. От такого генератора циркулярка работала еле-еле, диск можно было остановить ладонью. Тогда я взял пару обычных конденсаторов и поставил их последовательно с двигателем. Напряжение подскочило до 500 вольт. Я снял один конденсатор, и получилась напруга как раз на двигатель. Пришёл местный электрик, померил и чуть не упал в обморок: бензиновый генератор имел 100 вольт и 0.5 кВт, а электродвигатель — 270 вольт и 1.5 кВт при одинаковой силе тока 0.5 ампер. То есть двигатель имел напряжение на входе в 2 раза меньше номинального, а на выходе на 20% больше. Пила работала как зверь — доски только отлетали. Он ничего понять не мог. Тут я вытащил из-под двигателя конденсатор величиной со спичечный коробок, который он не заметил, и объяснил суть эксперимента. Любой специалист может его воспроизвести за несколько секунд и убедиться в реальности дополнительной мощности».
В этой установке вся энергия, выбрасываемая из физвакуума при его переходе из возбуждённого состояния в нейтральное, отдавалась потребителю. Поэтому для следующего цикла возбуждения требовался посторонний источник энергии. В схеме Мельниченко им был бензиновый генератор. А в коробочке Теслы это были далёкие молнии. Но если часть получаемой энергии пускать на повторное возбуждение вакуума, посторонний источник энергии можно убрать. Поэтому Мельниченко изменил установку. Модернизированный аппарат кроме двигателя с генератором включал также конденсатор переменной ёмкости, нагрузку, блок управления и батареи. Двигатель и генератор соединялись механически через муфту и электрически. Конденсатор находился в цепи нагрузки. Цепь нагрузки и цепь двигателя подсоединялись к генератору параллельно. Блок управления менял емкость конденсатора так, чтобы в цепи всегда поддерживался резонанс. Батареи были нужны лишь для запуска установки, а после выхода на стационарный режим они отключались.
А Паоло Кореа, похоже, повторяет работы Мюррея. Потому что внешний вид установки канадца очень напоминает то, что в своё время показывал американец и как об этом рассказывали посетители его лаборатории. Кореа использует акустический резонанс в плазме. В стеклянной трубе по всей её длине тянутся два плоских электрода, на которые подаётся переменное напряжение с частотой, равной резонансной частоте акустических колебаний плазмы (а у Мюррея было 30 таких труб, установленных последовательно в батарею). Сама же плазма создаётся посредством ионизации газа заряженными частицами, вылетающими из тонкого слоя радиоактивного вещества, покрывающего внутреннюю сторону электродов. Конечно, степень ионизации и температура такой плазмы довольно низки, но для получения хорошего результата этого оказывается достаточным. Как сообщает Кореа в своих статьях, на одну единицу вкладываемой энергии он получает от 6 до 18 единиц энергии из плазмы. К сожалению, у такой схемы имеется существенный недостаток: положительная обратная связь между вкладываемой и получаемой энергиями. Поэтому установка канадца работает неустойчиво, вырабатываемые ток и напряжение скачут в слишком широком интервале значений. А это ведёт к перенапряжению оборудования и его быстрому выходу из строя. Как решить эту проблему, исследователь пока не знает.
И вот что интересно. Оказывается, нечто подобное уже давно используется на всех электростанциях, правда с совершенно иной целью. Явление резонанса в электрической сети прекрасно известно всем электротехникам. Когда он возникает, в сети выделяется громадное количество дополнительной энергии (выброс энергии может в 5-10 раз превышать норму), и многие потребители перегорают. От их выхода из работы ёмкость и индуктивность сети меняются и резонанс исчезает. Но для уже перегоревших устройств от этого легче не становится. Чтобы избежать такого оборота, на выходе из станции устанавливают специальные антирезонирующие вставки. Как только сеть окажется слишком близко к условиям резонанса, вставки автоматически изменяют свою ёмкость и уводят сеть из опасной зоны. Но если бы мы стали специально подерживать резонанс в сети с соответствующим уменьшением силы тока на выходе из станции, тогда потребление топлива станциями упало бы в десятки раз. И во столько же раз упала бы себестоимость производимой энергии.
Также имеются сведения, что резонанс позволяет добиться многократного снижения энергозатрат при разложении воды на водород и кислород. Если электролиз производить током с частотой, равной частоте собственных колебаний атомов водорода и кислорода в молекуле воды, тогда затраты энергии на разложение падают в десятки раз. Но при последующем сгорании этих газов один в другом выделится такая же энергия, как раньше. Разлагая повторно полученную воду током резонансной частоты и снова сжигая полученные газы, можно добиться того, что при достаточно малых затратах электричества из розетки или от батарей мы получим громадные количества тепла. К сожалению, я не нашёл достаточно подробной информации на эту тему, поэтому ничего более конкретного сказать не могу.
С уважением, И. А. Прохоровwww.energoinform.org
ОТ УСКОРИТЕЛЯ СТЕЧКИНА К ВЫСОКОЧАСТОТНОМУ БЕСКЛАПАННОМУ ПУЛЬСИРУЮЩЕМУ
ДЕТОНАЦИОННОМУ ДВИГАТЕЛЮ
Е.Ю. Марчуков, А.И. Тарасов
НТЦ им. А.Люльки НПО «Сатурн»,
Ю.Н. Нечаев, А.С. Полев
ВВИА им. проф. Н.Е. Жуковского
Идея создания бесклапанного воздушно-реактивного двигателя с периодическим сгоранием топлива была впервые обоснована и конструктивно реализована Б.С. Стечкиным во время заключения в Казанской «шарашке» в 1942 году. Этот двигатель прошел успешные испытания и предназначался для установки в качеств ускорителей на самолетах Пе-2. Поэтому он получил наименование «Ускорителя Стечкина» (УС) [1]. При своей исключительной конструктивной простоте ПуВРД Стечкина вследствие малых скоростей сгорания топлива и низких частот пульсаций оказался недостаточно эффективным.
Существенное улучшение эффективности двигателей с периодическим сгоранием топлива стало возможным только в последние годы в связи с открывшимся возможностями осуществления управляемого детонационного сгорания топлива. На этой основе в течение нескольких последних лет в России была предложена, запатентована и экспериментально проверена новая схема бесклапанного высокочастотного пульсирующего детонационного двигателя (ПуДД), не имеющего аналогов в мировой практике [2,3,4].
В первой части доклада излагаются результаты экспериментальных исследований ПуДД предложенной схемы на стендах Троицкого института термоядерных исследований, Института механики МГУ и ВВИА им. Н.Е. Жуковского. Этот цикл экспериментальных исследований завершился созданием демонстратора, который прошел испытания на стенде ОАО НПО «Сатурн» в период с 18.07.2004 по 18.08.2004 г. Демонстрационные испытания проводились в присутствии представителей ЦИАМ, ЦАГИ, ФГУП «Радуга», МО РФ и ряда других организаций.
Во второй части излагается содержание расчетно-теоретических исследований по формированию конструктивного облика силовых установок с ПуДД для летательных аппаратов различного целевого назначения.
Литература
1. Стечкин Б.С. Избранные труды, том 3. Москва, Физматлит, 2005.
2. Пушкин Р.М., Тарасов А.И. Способ получения тяги и устройство для получения тяги. Патент СССР № 1672933 от 22.04.1991 г., с приоритетом от 30.11.1989 г.
3. Марчуков Е.Ю., Нечаев Ю.Н., Полев А.С., Тарасов А.И. Второе рождение реактивных двигателей с периодическим сгоранием топлива. «Фундаментальные и прикладные проблемы космонавтики», №2, 2002.
4. Нечаев Ю.Н., Полев А.С., Тарасов А.И. Результаты экспериментальных исследований керосино-воздушных пульсирующих детонационных двигателей и вопросы их практического применения. Журнал «Химическая физика», РАН, 2003, том 22, №8.
neyromir-itv.livejournal.com