ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

2. Двигатель и его характеристики. Характеристика двигателя


2. Двигатель и его характеристики

Двигатель является основным источником энергии, необходи­мой для движения автомобиля. Характеристики двигателя служат для определения его мощностных и экономических показателей. Наиболее важные характеристики — скоростные, нагрузочные и регулировочные — позволяют оценивать работу двигателей, эф­фективность их использования, техническое состояние и каче­ство ремонта, сравнивать различные их типы и модели, а также судить о совершенстве конструкций новых двигателей.

2.1. Скоростные характеристики двигателей

Скоростной характеристикой называются зависимости эффек­тивной мощности Ne и эффективного крутящего момента Ме дви­гателя от угловой скорости коленчатого вала е.

У двигателя различают два типа скоростных характеристик: внешнюю (предельную) и частичные.

Внешнюю скоростную характеристику получают при полной нагрузке двигателя, т.е. при полной подаче топлива. Частичные — при неполных нагрузках двигателя, или при неполной подаче топ­лива.

Двигатель имеет только одну внешнюю скоростную характери­стику и большое число частичных, среди которых и характерис­тика холостого хода.

На частичных скоростных характеристиках значения эффектив­ной мощности и крутящего момента двигателя меньше, чем на внешней скоростной характеристике, но характер их изменения

Тягово-скоростные свойства автомобиля определяют при ра­боте двигателя только на внешней скоростной характеристике. аналогичен.

Рис. 2.1. Внешняя скоростная характеристика бензинового двигателя без ограничителя угловой скорости коленчатого вала

Рассмотрим внешние скоростные характеристики бензиновых двигателей и дизелей, которые имеют некоторые отличительные особенности

Внешняя скоростная характеристика бензинового двигателя без ограничителя угловой скорости коленчатого вала представлена на рис. 2.1. Такие двигатели применяют главным образом на легковых автомобилях и иногда на автобусах.

Приведенные зависимости имеют следующие характерные точки:

• Nmax ---- максимальная (номиналь­ная) эффективная мощность;

N— угловая скорость коленча­того вала при максимальной мощно­сти;

• Мmах — максимальный крутящий момент;

м — угловая скорость коленча­того вала при максимальном крутя­щем моменте;

• Nм — мощность при максималь­ном крутящем моменте;

•МN — крутящий момент при мак­симальной мощности;

min— минимальная устойчивая угловая скорость коленчато­го вала при полной подаче топлива; для бензиновых двигателей min = 80...100 рад/с;

mах — максимальная угловая скорость коленчатого вала при полной подаче топлива, соответствующая максимальной скорос­ти автомобиля при движении на высшей передаче; для бензино­вых двигателей без ограничителей угловой скорости коленчатого вала mах = (1,05... 1,1) n.

Из рис. 2.1 видно, что эффективная мощность и эффективный крутящий момент двигателя возрастают с увеличением угловой скорости коленчатого вала, достигают максимальных значений при соответствующих угловых скоростях

N и м затем уменьшают­ся с ростом е вследствие ухудшения наполнения цилиндров го­рючей смесью и увеличения трения. При этом возрастают дина­мические нагрузки, что приводит к ускоренному изнашиванию деталей двигателя. В условиях работает главным образом в интервале угловых скоростей от Mдо N.

Внешняя скоростная характерис­тика бензинового двигателя с огра­ничителем угловой скорости колен­чатого вала показана на рис. 2.2. Та­кие двигатели применяют на грузо­вых автомобилях и автобусах.

Ограничитель угловой скорости автоматически уменьшает подачу горючей смеси в цилиндры двигате­ля и снижает угловую скорость

коленчатого вала с целью повышения долговечности двигателя. Ог­раничитель вступает в действие на той части внешней скоростной характеристики, на которой мощность двигателя почти не возра­стает с увеличением угловой скорости коленчатого вала. Включе­ние ограничителя соответствует максимальной угловой скорости max= (0,8... 0,9) N. Максимальной эффективной мощностью в этом случае является наибольшая мощность, которую может развить двигатель при

Рис. 2.2. Внешняя скоростная характеристика бензинового двига-теля с ограничителем уг­ловой скорости коленчатого вала

отсутствии ограничителя, т.е. Nmax, соответствую­щая угловой скорости коленчатого вала

N.

Внешняя скоростная характеристика дизеля представлена на рис. 2.3. Такие двигатели применяют на грузовых автомобилях, автобусах и легковых автомобилях.

У дизелей мощность не достигает максимального значения из-за неполного сгорания горючей (рабочей) смеси. Максимальной в этом случае считается мощность, которая соответствует моменту включения регулятора угловой скорости коленчатого вала, т. е. Nmax при угловой скорости N. Для дизелей максимальная угловая ско­рость коленчатого вала практически совпадает с угловой скоростью при максимальной мощности (max=N).

Из рассмотренных внешних скоростных характеристик бензи­новых двигателей и дизеля следует, что максимальные значения эффективного крутящего момента Мmах и эффективной мощности Nmах получают при различных угловых скоростях коленчатого вала. При этом значения Mmах смещены влево относительно значений Nmах, что необходимо для устойчивой работы двигателя, или, иначе говоря, для его способности автоматически приспосабливаться к изменению нагрузки на колеса автомобиля.

Например, автомобиль двигался по горизонтальной дороге при максимальной мощности двигателя и начал преодолевать подъем. В этом случае сопротивление дороги возрастает, скорость автомо­биля и угловая скорость коленчатого вала уменьшаются, а крутящий момент двигателя увеличива­ется, обеспечивая возрастание тяго­вой силы на ведущих колесах авто­мобиля. Чем больше увеличение кру­тящего момента при уменьшении угловой скорости коленчатого вала, тем выше приспособляемость дви­гателя и меньше вероятность его остановки. У бензиновых двигателей увеличение (запас )

крутящего момента достигает 30 %, а у дизелей — 15%

Скоростные характеристики двигателей определяют экспериментальнов процессе их испытании на специальных стендах.

Рис. 2.3. Внешняя скоростная характеристика дизеля с ре­гулятором угловой скорости коленчатого вала

При проведении испытаний с двигателя сни­мают часть элементов систем охлаждения, питания (вентилятор, радиатор, глушитель, компрессор, насос гидроусилителя и др.), без которых он может работать на стендах.

Мощность и крутящий момент, измеренные при испытаниях и приведенные к условиям, соответствующим давлению окружаю­щего воздуха 1 атм. и температуре 15 °С, называют стендовыми. Их указывают в технических характеристиках, инструкциях, катало­гах, проспектах и т. п.

В действительности мощность и момент двигателя, установлен­ного на автомобиле, на 10... 20 % меньше, чем стендовые. Это свя­зано с размещением на двигателе элементов различных систем, которые демонтируют при испытаниях. Кроме того, давление и температура наружного воздуха при работе двигателя на автомо­биле отличаются от таковых при измерениях.

Реальную внешнюю скоростную характеристику двигателя мож­но получить только на основании экспериментальных данных после его создания. Если же такие данные отсутствуют, например при проектировании нового двигателя, то внешнюю скоростную ха­рактеристику можно рассчитать, используя известные соотноше­ния.

Для бензиновых двигателей

Для четырёхтактных дизелей

Эффективный крутящий момент для бензиновых двигателей и дизелей определяется по формуле

В указанных формулах мощность выражается в кВт, крутящий момент — в Н-м, угловая скорость — в рад/с.

studfiles.net

ХАРАКТЕРИСТИКИ ДВИГАТЕЛЯ

В двигателе внутреннего сгорания выделяющиеся при сгорании топлива газы давят на поршень и через преобразующий механизм выполняют механическую работу по вращению коленчатого вала двигателя. Затем эта работа используется для вращения ведущих колес автомобиля. Любой двигатель обладает определенной мощностью и крутящим моментом. Большинство людей при оценке автомобиля в первую очередь обращают внимание на мощность его двигателя и не очень интересуются крутящим мо­ ментом, хотя его значение существенно влияет на поведение автомобиля на дороге. Крутящий момент на вале двигателя представляет собой произведение величин силы и длины плеча ее действия.

Современной единицей измерения крутящего момента является ньютонометр (Н-м). Крутящий момент, создаваемый двигателем, зависит от рабочего давления внутри ци­ линдра двигателя, площади поршня, радиуса кривошипа коленчатого вала и ряда других параметров. Поскольку время воздействия давления газов на поршень изменяется при изменении частоты вращения коленчатого вала двигателя, крутящий момент также изменяется. Если умножить величину крутящего момента, соответствующую определен­ ной частоте вращения вала двигателя, на его угловую скорость, получим значение мощ­ ности двигателя, развиваемой при этой скорости. Начиная с XVIII в.,единицей измере­ ния мощности была лошадиная сила. Современной международной единицей измере­ ния мощности является киловатт (кВт). При этом лошадиную силу (л. с.) довольно часто продолжают указывать в технических характеристиках автомобильных двигателей. Для того чтобы перевести мощность, указанную в киловаттах, в лошадиные силы, нужно умножить ее значение на 1,34.

Ускорение, развиваемое автомобилем, которым так интересуется большинство водителей, как раз в основном и зависит от величины крутящего момента. Мощность двигателя определяет, главным образом, максимальную скорость автомобиля. Профес­ сиональные автомобилисты для оценки работы двигателя используют скоростные хара­ ктеристики, которые представляют собой зависимость крутящего момента двигателя и его мощности от угловой скорости или частоты вращения его вала (рис. 2.8). Скорост-

 

Рис. 2.8. Скоростная характеристика ДВС:Ne— эффективная мощность; Ме — эффек­ тивный крутящий момент; Мта х — макси­ мальный крутящий момент; Nmax— макси­ мальная мощность; MN— крутящий момент, соответствующий максимальной мощности; со — угловая скорость вала двигателя

ные характеристики реальных двигателей получают при их испытаниях на специаль­ ных стендах. Очевидно, что значения показателей двигателя будут зависеть от количества поступающего в двигатель топлива, то есть от положения педали

«газа». Зависимость скорости автомо­ биля, полученная при максимальной подаче топлива в цилиндры двигателя, называется внешней скоростной характе­ ристикой.

На графике скоростной характеристики отмечаются минимальные и максималь­ ные обороты коленчатого вала двигателя. Как можно заметить из приведенной ско­ ростной характеристики ДВС, крутящий момент достигает своего максимального значения при средних оборотах вала, а за­ тем при дальнейшем увеличении частоты вращения снижается. Хорошо это или пло­ хо? Давайте представим себе автомобиль, который движется по ровной горизонталь­ ной дороге с максимальной скоростью, а его двигатель имеет такую кривую изме­ нения крутящего момента. Максимальная скорость наступает при оборотах двигате­ ля, близких к наибольшим, когда сила,

приложенная к ведущим колесам автомобиля и соответствующая крутящему моменту двигателя при этих оборотах, увеличенному с помощью трансмиссии, уравняется с сила­ ми сопротивления движению, действующими на автомобиль. Если на дороге перед этим автомобилем возникнет даже небольшой подъем, сила сопротивления увеличится, а обороты двигателя уменьшатся. Что же произойдет при этом с крутящим моментом двигателя?

Из скоростной характеристики можно заметить, что уменьшение оборотов двигателя приведет к небольшому увеличению крутящего момента. Если подъем на дороге не очень велик, то этого увеличения крутящего момента, подводимого к ведущим коле­ сам, может хватить для его преодоления без перехода на более низкую передачу в трансмиссии автомобиля. Другими словами, двигатель с падающей характеристикой крутящего момента хорошо приспосабливается к увеличению сопротивления движению автомобиля. Причем, чем круче опускается кривая момента на скоростной характери­ стике при увеличении угловой скорости вращения вала двигателя, тем лучшей приспо- сабливаемостью он обладает.

Электрический двигатель имеет максимальное значение крутящего момента при мини­ мальных оборотах, и при их увеличении крутящий момент постоянно снижается. Поэтому у электромобиля трансмиссия значительно упрощается — ему не нужна коробка передач. Но об электромобилях мы поговорим немного позже.

Любой автомобильный двигатель представляет собой совокупность механизмов и сис­ тем. Основными механизмами четырехтактного поршневого двигателя внутреннего сгора­ ния являются кривошипно-шатунный механизм (КШМ) и газораспределительный механизм (ГРМ).

§8

Похожие статьи:

poznayka.org

Рабочая характеристика - двигатель - Большая Энциклопедия Нефти и Газа, статья, страница 1

Рабочая характеристика - двигатель

Cтраница 1

Рабочие характеристики двигателя ( рис. 12.20 6) при его работе на постоянном ( сплошные линии) и переменном ( штриховые линии) токе имеют приблизительно одинаковую форму.  [2]

Рабочие характеристики двигателя с параллельным возбуждением ( шунтового) показаны на рис. 4.15. Как видно из графиков, при увеличении нагрузки на валу двигателя скорость вращения двигателя падает. При этом двигатель, отдавая большую механическую мощность, должен потреблять большую электрическую мощность из сети Pi UI. Так как напряжение сети практически не изменяется, то увеличение потребляемой мощности приведет к увеличению тока.  [4]

Рабочие характеристики двигателя даны на рис. 114, а. Скоростная характеристика п / ( Р2) при номинальном напряжении управления Uy t / HOM const и / const представляет собой падающую кривую. При увеличении нагрузки на вал двигателя возрастает полезная мощность двигателя Р2, что сопровождается ростом тока /, потребляемого от сети.  [6]

Рабочие характеристики двигателя со смешанным возбуждением приведены на рис. 5.10. Штриховой линией показана для сравнения скоростная характеристика двигателя с последовательным возбуждением.  [8]

Рабочие характеристики двигателя даны на рис. 9.8. Скоростная характеристика га2 / ( Р2) представляет собой кривую, слегка наклоненную к оси абсцисс.  [9]

Рабочие характеристики двигателя на 10 кат, 220 / 380 в, 1 500 об / мин.  [10]

Рабочие характеристики двигателя Шраге - Рихтера сходны с характеристиками асинхронного двигателя. Пуск в ход осуществляется прямым включением в сеть.  [12]

Рабочие характеристики двигателей представляют собой зависимости основных параметров от тока якоря / Л ( или Р2) при ( 7 const и / в const. Они определяют эксплуатационные свойства двигателей.  [13]

Рабочие характеристики двигателя определяются также для 17С const и / в const.  [14]

Рабочие характеристики двигателя п, / А, / в, / s, РА, Рв, PS, PR, т), cos фл, cos фв, 1дфд в зависимости от М снимаются в диапазоне от М 0 до Мт. Необходимо, чтобы среди измерений была точка, соответствующая скольжению s 0 l или иному скольжению, для которого в последующем будет получаться круговое поле.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Характеристики двигателя - это... Что такое Характеристики двигателя?

 Характеристики двигателя Характеристики двигателя зависимости основных параметров двигателя от величин, характеризующих режим и внешние условия его работы. При эксплуатации авиационного двигателя на ЛА режимы работы двигателя устанавливаются в зависимости от требуемой тяги (мощности) для обеспечения лётно-технических характеристик ЛА. Установление и поддержание режимов — задача регулирования двигателя. Зависимости тяги двигателя (мощности двигателя) и удельного расхода топлива от параметров регулирования (главным образом частоты вращения ротора или расхода топлива), соответствующие заданным условиям полёта (высоте H и Маха числу полёта М(∞)) и программе регулирования, называются дроссельными характеристиками. Зависимость тяги (мощности) и удельного расхода топлива двигателя при заданном режиме его работы от высоты полёта называется высотной характеристикой, а от скорости полёта или числа М(∞) — скоростной характеристикой. Зависимости тяги Р (мощности) и удельного расхода Суд топлива ГТД от высоты и числа М(∞) при заданных программе регулирования и режиме работы называется высотно-скоростными характеристиками. Влияние скорости полёта на характеристики ГТД зависит от параметров рабочего процесса двигателя. Увеличение степени повышения давления в компрессоре (π)к* и степени двухконтурности приводит к тому, что кривая тяги ТРДД имеет более пологий характер протекания по скорости полёта, чем в обычном ТРД, при этом удельная тяга становиться равной нулю при меньших числах М(∞). Влияние температуры газа перед турбиной Тг* является обратным, то есть с увеличением Тг* кривая тяги двигателя имеет более крутой характер протекания по скорости полёта. Влияние высоты полёта связано с уменьшением плотности (ρ) и (до H = 11 км) температуры ТH атмосферного воздуха. Уменьшение ТH приводит к возрастанию удельной тяги Pуд до H = 11 км, в дальнейшем она остаётся неизменной. Уменьшение (ρ) приводит к уменьшению расхода воздуха, что влияет на тягу существенно сильнее, чем некоторое возрастание Руд, и поэтому тяга двигателя резко падает при увеличении высоты полёта. Иногда под X. д. понимают его параметры.

Авиация: Энциклопедия. — М.: Большая Российская Энциклопедия. Главный редактор Г.П. Свищев. 1994.

.

Смотреть что такое "Характеристики двигателя" в других словарях:

dic.academic.ru

Характеристики двигателя

Строительные машины и оборудование, справочник

Категория:

   Устройство и работа двигателя

Характеристики двигателя

Для оценки мощности и экономичности двигателя при его работе в различных условиях пользуются характеристиками двигателя.

Характеристикой называется зависимость основных показателей двигателя (мощности, крутящего момента, расхода топлива и др.) от режима работы. Характеристики определяют опытным путем на специальных стендах. Применяются также аналитические методы построения приближенных характеристик двигателя.

Режимы работы двигателя характеризуются нагрузкой (средним эффективным давлением ре) и частотой п вращения коленчатого вала. Характеристики, определяющие зависимость показателей двигателя при постоянном положении органов регулирования (неизменном положении рейки топливного насоса или дроссельной заслонки) от частоты вращения, называются скоростными характеристиками. Различным положениям органов регулирования соответствуют различные скоростные характеристики. Если скоростная характеристика получена при полной подаче топлива или горючей смеси, то она называется внешней скоростной характеристикой; характеристики, снятые при работе двигателя с неполной подачей, называются частичными скоростными характеристиками.

На каждом скоростном режиме крутящий момент может изменяться от нуля (режим холостого хода) до максимального значения. Например, если двигатель приводит в движение генератор, соединенный с сетью, в которую включены электродвигатели и осветительные установки, то необходимо, чтобы независимо от потребляемой энергии (нагрузки) напряжение тока было постоянным. Это достигается поддержанием постоянной частоты вращения вала двигателя при его работе на различных нагрузочных режимах. Постоянство частоты вращения при разных нагрузках требуется также в случае приведения в движение от двигателя таких машин, как, например, компрессоры, насосы и т. п. Во всех этих случаях двигатель работает по нагрузочной характеристике. Нагрузочной характеристикой называется зависимость показателей двигателя от среднего эффективного давления (или мощности). По нагрузочной характеристике можно определить допустимую мощность двигателя для заданной частоты вращения коленчатого вала, а также выявить экономичность работы двигателя при различных нагрузках.

При передаче мощности двигателя на винт (авиационные или судовые двигатели), вращающийся в среде с постоянной плотностью, обычно принимают, что мощность, поглощаемая винтом, пропорциональна частоте вращения в кубе, т. е. Ne — an3. Характеристика двигателя, соответствующая этой зависимости, называется винтовой характеристикой. Винтовая характеристика ограничена максимальной мощностью при номинальной частоте вращения и минимальной мощностью при минимальной устойчивой частоте вращения.

В эксплуатационных условиях двигатели внутреннего сгорания в зависимости от условий работы потребителя энергии должны работать при различных частотах вращения и крутящих моментах, т. е. на различных режимах по той или иной характеристике. Например, в случае установки двигателя на автомобиль частота вращения коленчатого вала, связанного через сцепление и трансмиссию с колесами, примерно пропорциональна (для существующих схем трансмиссий) скорости движения автомобиля. При движении автомобиля с постоянной скоростью сопротивление движению может меняться в зависимости от состояния пути, его уклона, силы и направления ветра и т. п., вследствие чего изменяется и потребляемая автомобилем мощность.

На рис. 1 показаны характеристики и возможные режимы работы двигателей различного назначения. По оси абсцисс отложена относительная частота вращения п/п„ (отношение данной частоты вращения к номинальной), а по оси ординат — относительная мощность Ne/Ne . Для транспортного двигателя возможны все режимы, лежащие внутри площади, ограниченной снизу осью абсцисс, сверху — внешней скоростной характеристикой, слева минимальной и справа предельно допустимой частотой вращения. Для стационарных двигателей рабочие режимы при заданной частоте вращения могут быть представлены вертикальной линией 3 от оси абсцисс до линии внешней скоростной характеристики. Характеристика — винтовая характеристика.

Рис. 1. Характеристики двигателей внутреннего сгорания: 1 — внешняя скоростная; 2 — винтовая; 3 — нагрузочная; 4 — частичные скоростные

Кроме рассмотренных выше характеристик двигатель может работать и по другим характеристикам. Например, тепловозный дизель-генератор работает по тепловозной характеристике, представляющей собой изменение мощности, расхода топлива и других параметров в зависимости от частоты вращения при определенном положении органа управления (контроллера). Каждому положению контроллера соответствует определенный момент затяжки пружины регулятора топливного насоса.

С целью установления рациональных условий работы двигателей используют регулировочные характеристики, представляющие собой зависимости мощности, удельного расхода топлива и других показателей работы двигателя от регулируемого параметра (например, угла опережения зажигания, угла опережения впрыскивания топлива, температуры охлаждающей воды и т. п.).

Читать далее: Принципы регулирования мощности и частоты вращения

Категория: - Устройство и работа двигателя

Главная → Справочник → Статьи → Форум

stroy-technics.ru


Смотрите также