ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Электростатический двигатель. Электростатический двигатель


Электростатический двигатель Сергея Литовченко | Проект Заряд

Заслуженный изобретатель России С.С.Литовченко разработал новую схему электростатического двигателя. Уникальность схемы в отсутствии щеток, предельной простоте и значительной скорости ротора, вращающегося в любую сторону.

Экспериментальная установка представляет собой капролоновый статор в котором со скоростью 40 оборотов в секунду вращается ротор. Частота вращения ротора может быть увеличена до экстремальных значений. Между ротором и электродами статора проскакивают искры, воздух пахнет озоном.

Вал двигателя можно затормозить пальцами, так как крутящий момент не более 80 Гсм. Остановленный ротор холоден на ощупь. Это объяснимо. Различные модификации новой машины потребляют мощность от 4 до 8 Вт при маленьких токах (от 0,2 до 0,6 мА), но при высоких напряжениях (от 1 до 8 кВ).

Статор выполнен в виде цилиндра с электродами внутри (36 бронзовых проводов диаметром 8 мм), на которые поочередно подается высокий потенциал разного знака. Цилиндр статора имеет высоту 54 мм. Во внутрь цилиндра вставлена капролоновая болванка (ротор), диаметром 140 и высотой 40мм. Её масса 200 грамм, и на ней нет никаких электродов. Ротор можно изготовить в виде алюминиевой звезды с 36 лучами.

Точного ответа на вопрос, почему же все-таки вращается ротор, до сих пор нет. Среди гипотез и явление «черных дыр», и неоднородность физического вакуума, и пульсация гравитационного поля. Силу вращения пытались объяснить эффектом, открытым Герцем в 1881 году. Диэлектрический образец спонтанно вращается в электрическом поле. Причиной вращения является поляризация так называемой электрореологической среды, которая смещается силами Кулона и увлекает за собой ротор. Однако, согласно расчетом, возникающие силы тяги намного меньше развиваемых необычной машиной. При нанесении на образец тонкого покрытия из металла эффект исчезает, что никак не согласуется с тем, что в двигателе Литовченко работают металлические звезды-роторы.

Гипотеза о существовании электрического ветра, стекающего с ротора и тянущего его реактивными силами, также отпадает. Заряды, стекающие с электродов статора, направлены навстречу движению ротора, а стекающие с ротора – по ходу движения. В обоих случаях они тормозят ротор.

Сам Литовченко выдвинул предположение, что ротор смещался из-за притяжения наведенных зарядов. Однако, потратив первичный импульс на трение, при устойчивом положении электрода против электрода, двигатель не смог бы вращаться.

Измерения показывают, что установившиеся обороты ротора и вращающий момент зависят от квадрата напряжения на электродах. Фактически Литовченко изобрел электромеханическую автоколебательную систему. В качестве источника энергии можно использовать заряженный конденсатор. За счет наведения зарядов на лучах ротора возбуждаются колебания статорного тока. Луч ротора будет втянут в зазор, а емкость статорного контура возрастет. Увеличится заряд электродов на статоре и, соответственно, сила притяжения им ротора. Когда луч ротора проскочит электрод статора, силы между ними становятся слабее, так как заряд уменьшается по величине. Вращение ротора происходит все быстрее. В цепи статора устанавливаются слабозатухающие колебания тока, которые зависят от напряжения, количества электродов, инерции ротора и трения в осях.

zaryad.com

электростатический двигатель - патент РФ 2430269

Изобретение относится к электростатическим двигателям, работающим в вакууме. Электростатический двигатель содержит расположенные в вакуумной емкости напротив друг друга дискообразные статор и ротор. Статор и ротор оснащены электрически изолированными первыми и вторыми электродами. Эти электроды прикреплены к опорам с чередованием по окружности. Каждые из первых и вторых электродов статора расположены с интервалом в два или более рядов на заданном расстоянии от центра вращающегося вала. Каждые из первых и вторых электродов ротора расположены на заданном расстоянии от центра вращающегося вала в промежутке между рядами первых и вторых электродов статора. К первым и вторым электродам статора прикладываются предопределенные электрические поля. К первым и вторым электродам ротора прикладываются напряжения различных полярностей. Эти напряжения переключаются согласно заданному распределению во времени. Изобретение позволяет увеличить мощность двигателя. 8 з.п. ф-лы, 12 ил. электростатический двигатель, патент № 2430269

Область техники, к которой относится изобретение

Настоящее изобретение относится к электростатическому двигателю, который осуществляет приведение во вращение с использованием электростатической силы, в частности к электростатическому двигателю, который осуществляет приведение во вращение за счет выработки сильного электрического поля в вакууме.

Уровень техники

В большинстве традиционных электрических двигателей используется электромагнитная сила, создаваемая катушкой и магнитом. Также известны электростатические двигатели, которые обеспечивают приведение во вращение с использованием электростатической силы (см., например, японскую выложенную заявку на выдачу патента за № 8-88984 и работу «Study of Servo Systems using Electrostatic Motors», Akio Yamamoto и др. по электронному адресу: www.intellect.pe.u-tokyo.ac.jp/japanese/dissertationj/yamamoto.html).

Тем не менее, традиционные электрические двигатели, в которых используется электромагнитная сила, создаваемая катушкой и магнитом, производят газ в вакууме, нарушающий вакуум. Кроме того, так как в традиционных электрических двигателях используются обладающие магнитными свойствами материалы, они не могут работать в сильных магнитных полях.

Традиционные электростатические двигатели, подобные описанным выше, также производят газ в вакууме, нарушающий вакуум. В традиционных электростатических двигателях электрическое поле увеличивается за счет расположения большого числа пар электродов на изоляторе таким образом, что электроды расположены близко с промежутком. Тем не менее, при этом способе существует предрасположенность к возникновению пробоя диэлектрика, скользящему разряду, искровому разряду и прочим нежелательным явлениям. Соответственно, не может быть создано сильное электрическое поле и не может быть получена достаточная сила тяги. Следовательно, пока еще не были реализованы практически применимые электростатические двигатели.

Раскрытие изобретения

Настоящее изобретение создано с учетом вышеизложенных недостатков. Соответственно, цель настоящего изобретения состоит в предложении электростатического двигателя, который вырабатывает сильное электрическое поле в вакууме таким образом, что он может осуществлять приведение во вращение с достаточной движущей силой.

Другая цель настоящего изобретения состоит в создании электростатического двигателя, разработанного с возможностью предотвращения пробоя диэлектрика, скользящего разряда, искрового разряда и подобных явлений с целью работы в сильном электрическом поле, а также имеющего меньший вес.

Предлагаемый электростатический двигатель имеет описанные ниже характеристики для того, чтобы разрешить вышеизложенные проблемы.

В первом аспекте настоящего изобретения предлагается электростатический двигатель, отличающийся тем, что содержит дискообразный статор и дискообразный ротор, расположенные в вакуумной емкости противоположно друг другу, причем статор прикреплен к основному корпусу вакуумной емкости, а ротор опирается с возможностью вращения на основной корпус вакуумной емкости для обеспечения свободного вращения посредством вращающегося вала, при этом статор имеет первые электроды и вторые электроды, электрически изолированные посредством изолятора и прикрепленные к опорам электродов с чередованием по окружности опор электродов, и ротор имеет первые электроды и вторые электроды, электрически изолированные посредством изолятора и прикрепленные к опорам электродов с чередованием по окружности опор электродов, причем каждые из первых и вторых электродов на стороне статора расположены с интервалом в два или более рядов на заданном расстоянии от центра вращающегося вала, и каждые из первых и вторых электродов на стороне ротора расположены на заданном расстоянии от центра вращающегося вала и в промежутке между рядами первых и вторых электродов на стороне статора, при этом к первым и вторым электродам на стороне статора прикладываются предопределенные электрические поля, а к первым и вторым электродам на стороне ротора прикладываются с переключением согласно заданному распределению во времени напряжения различных полярностей.

Во втором аспекте изобретения предлагается электростатический двигатель по первому аспекту, отличающийся тем, что каждый из первых и вторых электродов на стороне статора и первых и вторых электродов на стороне ротора выполнен в форме стержня и расположен параллельно осевому направлению вращающегося вала.

В третьем аспекте изобретения предлагается электростатический двигатель по первому или второму аспекту, отличающийся тем, что опоры первых и вторых электродов на стороне статора, а также опоры первых и вторых электродов на стороне ротора поддерживаются изолирующим образом посредством изоляторов с обеспечением достаточной длины пути тока утечки.

В четвертом аспекте изобретения предлагается электростатический двигатель по любому из аспектов с первого по третий, отличающийся тем, что каждый из изоляторов на стороне статора и на стороне ротора имеет один или множество образованных на нем пазов.

В пятом аспекте изобретения предлагается электростатический двигатель по любому из аспектов с первого по четвертый, отличающийся тем, что концы первых и вторых электродов на стороне статора и концы первых и вторых электродов на стороне ротора имеют закругленную форму.

В шестом аспекте изобретения предлагается электростатический двигатель по любому из аспектов с первого по пятый, отличающийся тем, что для металлических компонентов, расположенных в вакуумной емкости, использована нержавеющая сталь, а в качестве изолирующих компонентов используется изолятор неорганического происхождения.

В седьмом аспекте изобретения предлагается электростатический двигатель по любому из аспектов с первого по шестой, отличающийся тем, что в качестве металлических компонентов, расположенных в вакуумной емкости, использован немагнитный материал.

В восьмом аспекте изобретения предлагается электростатический двигатель по любому из аспектов с первого по седьмой, содержащий кодовый датчик положения, имеющий пластину с прорезями и считывающий элемент, который определяет взаимное положение между первыми и вторыми электродами на стороне статора и первыми и вторыми электродами на стороне ротора.

В девятом аспекте изобретения предлагается электростатический двигатель по любому из аспектов с первого по восьмой, отличающийся тем, что на расположенные в вакуумной емкости компоненты нанесено покрытие из газопоглощающего материала.

Согласно изобретению первые и вторые электроды, прикрепленные к опорам электродов статора и ротора, расположены в вакууме. Соответственно, в отличие от традиционного электростатического двигателя, в котором группы электродов поддерживаются изолятором или изоляторами, настоящее изобретение предотвращает пробой диэлектрика, даже если между электродами существует сильное электрическое поле. Это приводит к выходной мощности, такой же высокой или выше, чем та, которая получена электромагнитным двигателем. Соответственно, разработан электростатический двигатель, который создает сильное электрическое поле в вакууме, так что он может осуществлять приведение во вращение с достаточной движущей силой. Электростатический двигатель, который может осуществлять привод в высоком чистом вакууме, может найти применение, например, в устройствах для производства полупроводников. Кроме того, в электростатическом двигателе отсутствуют вентиляционные потери, таким образом он имеет улучшенный КПД. Более того, электростатический двигатель, который осуществляет привод в сильном электрическом поле, созданном между электродами, позволяет практические применения, в том числе малых или крупных двигателей, и в нем достигается высокая выходная мощность и снижение веса.

В настоящем изобретении опоры электродов изолированно поддерживаются изолятором, в котором образованы пазы, обеспечивающие достаточную длину пути тока утечки. Соответственно, электростатический двигатель эффективно предотвращает пробой диэлектрика, скользящий разряд, искровой разряд и другие явления и вырабатывает сильное электрическое поле.

Кроме того, в предлагаемом электростатическом двигателе в качестве компонентов использованы нержавеющая сталь и т.п. или изолятор неорганического происхождения, такой как фарфор или стекло, которые производят меньше остаточного газа. Следовательно, электростатический двигатель может быть использован в чистом вакууме. Кроме того, применение немагнитного материала для металлических компонентов позволяет создать немагнитный двигатель, который может быть использован в сильном магнитном поле.

Кроме того, в предлагаемом электростатическом двигателе для металлических компонентов не используются тяжелые магнитные материалы, и следовательно, он имеет меньший вес, чем традиционные.

Краткое описание чертежей

На фиг.1 проиллюстрирован вертикальный разрез электростатического двигателя согласно первому варианту выполнения настоящего изобретения.

На фиг.2 показан вид в плане статора в первом варианте выполнения.

На фиг.3 показан вид в плане ротора в первом варианте выполнения.

На фиг.4 показано выполненное отчасти подробным схематическое изображение первого и второго электродов статора в первом варианте выполнения.

На фиг.5(A) показано вертикальное частичное изображение конструкции опор электродов, а также первого и второго электродов на стороне статора в первом варианте выполнения.

На фиг.5(B) показано вертикальное частичное изображение конструкции опор электродов, а также первого и второго электродов на стороне ротора в первом варианте выполнения.

На фиг.6 проиллюстрирован принцип действия первого и второго электродов на стороне статора и первого и второго электродов на стороне ротора в первом варианте выполнения.

На фиг.7 показаны временные диаграммы напряжений первого и второго электродов на стороне ротора в первом варианте выполнения.

На фиг.8 показан вертикальный разрез электростатического двигателя согласно второму варианту выполнения настоящего изобретения.

На фиг.9 показан вертикальный разрез электростатического двигателя согласно третьему варианту выполнения настоящего изобретения.

На фиг.10 показан вертикальный разрез электростатического двигателя согласно четвертому варианту выполнения настоящего изобретения, в котором первые и вторые электроды на стороне статора и первые и вторые электроды на стороне ротора расположены радиально по отношению к центру вращающегося вала.

На фиг.11 показано сечение статора в четвертом варианте выполнения.

На фиг.12 показано сечение ротора в четвертом варианте выполнения.

Осуществление изобретения

Далее приведено подробное описание вариантов выполнения предложенного электростатического двигателя.

На фиг.1 проиллюстрирован вертикальный разрез согласно первому варианту выполнения настоящего изобретения. На фиг.2 показан вид в плане статора в первом варианте выполнения, а на фиг.3 показан вид в плане ротора в первом варианте выполнения. На фиг.4 показано выполненное отчасти подробным схематическое изображение первого и второго электродов статора в первом варианте выполнения.

В первом варианте выполнения предложенного электростатического двигателя в вакуумной емкости 11 противоположно друг другу расположены дискообразный статор S и дискообразный ротор R. В первом варианты выполнения электростатический двигатель выполнен с возможностью работать в условиях вакуума при давлении, не превышающем 3 Па.

В электростатическом двигателе согласно этому варианту выполнения первые электроды 34А прикреплены к опорам 31 электродов на стороне статора S. Первые электроды 34А расположены в два ряда на заданном расстоянии от центра вращающегося вала 1 (т.е. центра основания 10 двигателя). Подобным образом вторые электроды 34В прикреплены к другим опорам 32 электродов на стороне статора S. Как показано на фиг.2 и 4, первые электроды 34А и вторые электроды 34В расположены таким образом, что они чередуются. Первые и вторые электроды 34А, 34В расположены с равномерными интервалами вдоль окружностей соответственно опор 31, 32 электродов параллельно вращающемуся валу 1, так что первые и вторые электроды 34А, 34В закреплены в два ряда в радиальном направлении. Опоры 31, 32 электродов с соответственно первыми и вторыми электродами 34А, 34В закреплены на изоляторе 33, который установлен на основании 10 двигателя (т.е. основной корпус вакуумной емкости 11). Изолятор 33 обеспечивает достаточные толщину изоляции и длину пути тока утечки и имеет множество пазов, образованных с целью предотвращения скользящего разряда. Здесь достаточная толщина изоляции должна быть равна или превышать ту, которая соответствует напряжению пробоя изолятора, а достаточная длина пути тока утечки в несколько раз больше, чем эта толщина. Число пазов, форма паза, глубина паза и другие характеристики могут быть установлены такими, как необходимо согласно размеру и применению электростатического двигателя.

С другой стороны, первый электрод 44А прикреплен к каждой из опор 41 электродов на стороне ротора R. Эти первые электроды 44А размещены в один ряд на заданном расстоянии от центра вращающегося вала 1. Также на стороне ротора R на каждой из других опор 42 электродов расположен второй электрод 44В. Как показано на фиг.3, первые электроды 44А и вторые электроды 44В размещены так, чтобы чередоваться подобно электродам на стороне статора S. Первые и вторые электроды 44А, 44В расположены вдоль окружностей соответственно опор 41, 42 электродов с равномерными промежутками параллельно вращающемуся валу 1 так, что первые и вторые электроды 44А, 44В закреплены в один ряд в радиальном направлении. Опоры 41, 42 электродов с соответственно первыми и вторыми электродами 44А, 44В закреплены на изоляторе 43, который установлен на вращающемся валу 1. Как и на стороне статора S, изолятор 43 обеспечивает достаточную толщину изоляции и длину пути тока утечки и имеет множество пазов, образованных с целью предотвращения скользящего разряда. Число пазов, форма паза, глубина паза и другие характеристики могут быть установлены такими, какие необходимы согласно размеру и применению электростатического двигателя.

Как описано выше, первые и вторые электроды 44А, 44В на стороне ротора R закреплены соответственно на опорах 41, 42 с равномерными промежутками параллельно вращающемуся валу 1, как первые и вторые электроды 34А, 34В на стороне статора S. Тем не менее, как показано на фиг.1, положения первых и вторых электродов 44А, 44В на стороне ротора R от центра вращающегося вала 1 находятся посередине между рядами первых и вторых электродов 34А, 34В на стороне статора S, так что ротор R выполнен с возможностью приведения его во вращение. Первый электрод 34А, второй электрод 34В, первый электрод 44А и второй электрод 44В имеют форму стержней. Предпочтительно, чтобы концы электродов были закруглены с целью предотвращения между ними разряда. Однако форма этих электродов не ограничена стержневидной.

Энергия подается к электродам 44А, 44В на стороне ротора R через контактные токосъемные кольца 51, 52 и щетки 61, 62.

Кодовый датчик положения образован из оптической системы (т.е. пластины 7 с прорезями и считывающего элемента 8) или магнитной системы (т.е. магнитного диска и считывающего элемента). В этом варианте выполнения применено первое из указанных. Считывающий элемент 8 определяет моменты времени, соответствующие подаче питания к первым и вторым электродам 44А, 44В на стороне ротора R, и определенный результат подвергается процессу обработки сигнала цепью возбуждения (не показанной). На выходе происходит выдача высокого напряжения (приблизительно от 1 до 100 кВ), и оно подается к первым и вторым электродам 44А, 44В.

Когда электростатический двигатель применяется в воздушной или газовой среде, к основанию 10 двигателя прикрепляют вакуумное уплотнение 9 для поддержания вакуума внутри электростатического двигателя.

Настоящее изобретение использует электростатический двигатель, который работает в вакууме. Излишне говорить о том, что настоящее изобретение функционирует как электростатический двигатель даже в среде изолирующего газа, такого как газ элегаз (газ «SF6» («sulfur hexafluoride»)).

В вышеприведенном описании первые и вторые электроды 34А и 34В, соответственно на стороне статора S, расположены в два ряда, в то время как первые и вторые электроды 44А и 44В соответственно, на стороне ротора R, расположены в один ряд. Тем не менее, как описано ниже, число рядов не ограничено только одним, а также могут быть установлены два или более рядов.

Вдобавок к этому в первом варианте выполнения в качестве металлических компонентов, которые расположены в вакуумной емкости 11 (например, первых и вторых электродов 34А, 34В, опор 31, 32 электродов, первых и вторых электродов 44А, 44В, опор 41, 42 электродов) может быть использована нержавеющая сталь или подобный материал, который производит меньше остаточного газа. Также в качестве изолирующих компонентов может быть использован изолятор неорганического происхождения, такой как фарфор или стекло, который производит меньше остаточного газа. Тем самым может быть обеспечена возможность применения электростатического двигателя в чистом вакууме. Также является эффективным нанесение на компоненты, используемые в вакуумной емкости 11, покрытий из газопоглощающего материала (т.е. вещества, обладающего способностью геттерирования), такого как титан, ванадий, тантал или цирконий,

В первом варианте выполнения применение немагнитного материала в качестве металлических компонентов, используемых в вакуумной емкости 11, дает возможность получения немагнитного двигателя, который может быть использован в сильном магнитном поле. Кроме того, в качестве металлических компонентов не используется никакой тяжелый магнитный материал, за счет чего обеспечивается снижение веса.

Теперь приведем разъяснение принципов функционирования электростатического двигателя согласно первому варианту выполнения, который имеет вышеописанную конфигурацию. Как показано на фиг. 5 (А), за счет приложения высокого напряжения (приблизительно от 1 до 100 кВ) между опорами 31, 32 электродов на стороне статора S, между первыми и вторыми электродами 34А, 34В создается сильное электрическое поле (напряженностью от 1 до 100 кВ/мм или около того).

Так как электростатический двигатель выполнен таким образом, что первые и вторые электроды 44А, 44В на стороне ротора R свободно перемещаются вдоль окружности между первыми и вторыми электродами 34А, 34В на стороне статора S, то первые и вторые электроды 44В, 44А соответственно заряжены положительно и отрицательно за счет приложения к опорам 42 электродов высокого положительного напряжения (от 1 до 100 кВ или около того). Исходя из распределения во времени подачи заряда направление тяги (т.е. вращающей силы), например, определяется тем, где выполненные на стороне ротора R электроды 44В расположены относительно вторых электродов 34В на стороне статора S. Следовательно, величина и время подачи напряжения значительно влияют на величину тяги (вращающей силы).

На фиг.6 проиллюстрирован принцип действия электростатического двигателя путем показа только первых и вторых электродов 34А, 34В на стороне статора S и первых и вторых электродов 44А, 44В на стороне ротора R. Например, когда каждый из вторых электродов 44В на стороне ротора R достиг местоположения (т.е. местоположения Х1), которое слегка смещено вправо от местоположения Х0 второго электрода 34В на стороне статора S, ко второму электроду 44В прикладывается положительный потенциал. Тем самым между вторыми электродами 34В и вторым электродом 44В возникает сила отталкивания, в то время как между первыми электродами 34А и вторым электродом 44В возникает сила притяжения. Следовательно, соединенный с первыми и вторыми электродами 44А, 44В ротор R подвергается действию движущей силы, направленной вправо, и движется соответствующим образом.

К местоположению (т.е. местоположению Х2), которое находится непосредственно перед первыми электродами 34А, происходит переключение напряжения каждого из вторых электродов 44В. Эта операция переключения повторяется для второго электрода 44В каждый раз, когда сигналом от считывающего элемента 8 кодового датчика положения определяется момент времени, соответствующий такому положению второго электрода 44В.

На фиг.7 показаны временные диаграммы напряжения первых и вторых электродов 44А, 44В на стороне ротора R (в которых Т0 представляет момент времени при нахождении в местоположении Х0, а Т1 и Т2 соответственно представляют моменты времени в местоположениях Х1 и Х2).

Далее приведено описание электростатического двигателя согласно второму варианту выполнения настоящего изобретения.

На фиг.8 показан вертикальный разрез предлагаемого электростатического двигателя согласно второму варианту выполнения. На фиг. 8 те элементы, которые одинаковы с показанными в иллюстрациях к первому варианту выполнения, обозначены теми же самыми символами, и дублирование описания разъяснения этих элементов не приводится.

Во втором варианте выполнения вдоль окружностей опор 31, 32 электродов на стороне статора S расположены соответственно три ряда первых электродов 34А и три ряда вторых электродов 34В. Аналогичным образом вдоль окружностей опор 41, 42 электродов расположены соответственно два ряда первых электродов 44А и два ряда вторых электродов 44В. Во втором варианте выполнения за счет увеличения числа электродов получен электростатический двигатель с высокой выходной мощностью.

Далее приведено описание электростатического двигателя согласно третьему варианту выполнения настоящего изобретения.

На фиг. 9 показан вертикальный разрез предлагаемого электростатического двигателя в третьем варианте выполнения. На фиг. 9 одинаковые элементы с теми, которые показаны в иллюстрациях к первому варианту выполнения, обозначены теми же самыми символами, и дублирование разъяснения этих элементов не приводится. Не показаны кодовый датчик положения, контактные токосъемные кольца и щетки.

В первом и втором вариантах выполнения ограничения, возникающие в результате консольной конструкции, препятствуют какому-либо необязательному увеличению длины электродов. В третьем варианте выполнения первые электроды 44А проходят от обеих сторон каждой из опор 41 электродов на стороне ротора R, а вторые электроды 44В также проходят от обеих сторон каждой из опор 42 электродов на стороне ротора R. Это позволяет получать выходную мощность, которая в два раза выше по сравнению с той, которая получается в электростатическом двигателе с электродами с консольной конструкцией, в первом варианте выполнения. Кроме того, первые и вторые электроды 34А, 34В могут проходить от обеих сторон соответственно опор 31, 32 электродов на стороне статора S, и роторы R и статоры S могут быть установлены стопкой в осевом направлении более, чем в одну ступень.

Далее приведено описание электростатического двигателя согласно четвертому варианту выполнения настоящего изобретения.

На фиг.10 показан вертикальный разрез предлагаемого электростатического двигателя согласно четвертому варианту выполнения, в котором первые и вторые электроды на стороне статора и первые и вторые электроды на стороне ротора расположены радиально по отношению к центру вращающегося вала. На фиг.11,12 показаны соответственно вертикальные разрезы статора и ротора согласно четвертому варианту выполнения. К тому же на фиг.10-12 элементы, одинаковые с теми, которые показаны в иллюстрациях к первому варианту выполнения, обозначены теми же самыми символами, и дублирование разъяснения этих элементов не приводится. Не показаны кодовый датчик положения, контактные токосъемные кольца и щетки.

Тем не менее, в четвертом варианте выполнения взаимные расположения между опорами 31, 32 электродов, изолятором 33, первыми и вторыми электродами 34А, 34В на стороне статора S и опорами 41, 42 электродов, изолятором 43 и первыми и вторыми электродами 44А, 44В на стороне ротора R отличаются от таковых в вариантах выполнения с первого по третий.

В четвертом варианте выполнения первые электроды 44А проходят через сравнительно широкие отверстия выполненной в виде трубы опоры 41 электродов, затем плотно вставлены по направлению к оси в выполненную в виде трубы опору 42 электродов, имеющую большое количество отверстий, и таким образом зафиксированы в этом положении. Вторые электроды 44В прикреплены к опоре 41 электродов. Аналогичным образом первые и вторые электроды 34А, 34В прикреплены соответственно к опорам 31, 32 электродов вдоль оси. Опоры 31, 32 электродов прикреплены к основанию 10 двигателя или к корпусу вакуумной емкости 11 посредством изолятора 33. Опоры 41, 42 электродов присоединены к вращающемуся корпусу 12 и вращающемуся валу 1 посредством изолятора 43.

Конфигурация в четвертом варианте выполнения обеспечивает такие же отличные результаты, как те, которые обеспечиваются в вариантах выполнения с первого по третий.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Электростатический двигатель, содержащий дискообразный статор и дискообразный ротор, расположенные в вакуумной емкости противоположно друг другу, причем статор прикреплен к основному корпусу вакуумной емкости, а ротор опирается с возможностью вращения на основной корпус вакуумной емкости для обеспечения свободного вращения посредством вращающегося вала, при этом статор имеет первые электроды и вторые электроды, электрически изолированные посредством изолятора и прикрепленные к опорам электродов с чередованием по окружности опор электродов, и ротор имеет первые электроды и вторые электроды, электрически изолированные посредством изолятора и прикрепленные к опорам электродов с чередованием по окружности опор электродов, причем каждые из первых и вторых электродов на стороне статора расположены с интервалом в два или более рядов на заданном расстоянии от центра вращающегося вала, и каждые из первых и вторых электродов на стороне ротора расположены на заданном расстоянии от центра вращающегося вала и в промежутке между рядами первых и вторых электродов на стороне статора, при этом к первым и вторым электродам на стороне статора прикладываются предопределенные электрические поля, а к первым и вторым электродам на стороне ротора прикладываются с переключением согласно заданному распределению во времени напряжения различных полярностей.

2. Электростатический двигатель по п.1, отличающийся тем, что каждый из первых и вторых электродов на стороне статора и первых и вторых электродов на стороне ротора выполнен в форме стержня и расположен параллельно осевому направлению вращающегося вала.

3. Электростатический двигатель по п.1 или 2, отличающийся тем, что опоры первых и вторых электродов на стороне статора, а также опоры первых и вторых электродов на стороне ротора поддерживаются изолирующим образом посредством изоляторов с обеспечением достаточной длины пути тока утечки.

4. Электростатический двигатель по п.1 или 2, отличающийся тем, что каждый из изоляторов на стороне статора и на стороне ротора имеет один или множество образованных на нем пазов.

5. Электростатический двигатель по п.1 или 2, отличающийся тем, что концы первых и вторых электродов на стороне статора и концы первых и вторых электродов на стороне ротора имеют закругленную форму.

6. Электростатический двигатель по п.1 или 2, отличающийся тем, что для металлических компонентов, расположенных в вакуумной емкости, использована нержавеющая сталь, а в качестве изолирующих компонентов используется изолятор неорганического происхождения.

7. Электростатический двигатель по п.1 или 2, отличающийся тем, что в качестве металлических компонентов, расположенных в вакуумной емкости, использован немагнитный материал.

8. Электростатический двигатель по п.1 или 2, отличающийся тем, что содержит кодовый датчик положения, имеющий пластину с прорезями и считывающий элемент, который определяет взаимное положение между первыми и вторыми электродами на стороне статора и первыми и вторыми электродами на стороне ротора.

9. Электростатический двигатель по п.1 или 2, отличающийся тем, что на расположенные в вакуумной емкости компоненты нанесено покрытие из газопоглощающего материала.

www.freepatent.ru

Электростатика, Электростатический двигатель, БТГ — LENR.SU

В данной статье изложены перспективы использования статического электричества напрямую, без попыток преобразования его в «горячее электричество». Мы считаем данное направление весьма перспективным направлением альтернативной энергетики. Начнем с небольшого и обзора и быстро перейдем к сути.

Природа Электричества

На протяжение долгого времени человеку была известна только одна сила, способствующая притяжению предметов и действительно, с этой силой мог познакомится каждый, достаточно поднять предмет, а затем отпустить и предмет неминуемо упадёт на землю. Эта сила получила название гравитация. Далее выяснили, что сила, с которой тела притягиваются зависит от массы взаимодействующих тел. Именно от массы, а не от веса тела или от его размеров, два одинаковых по размеру предмета могут иметь разную массу — например, деревянный и стальной шары, имеют одинаковый геометрический размер, но их вес будет разным.  Вес – следствие взаимодействия массы Земли и массы шара. Масса – это количество вещества в объёме. Но вот около двух с половиной тысяч лет назад (по данным официальной истории), греческий философ и исследователь природы Фалес Милетский заметил, что появилась новая сила, способная действовать противоположно силе гравитации, и даже преодолевать её.Было обнаружено, что сухой янтарь, завёрнутый в шерстяную ткань приобретал свойства притягивать лёгкие предметы, мелкие кусочки ткани или ворс. Далее выяснилось, что янтарь не только должен быть завёрнут в шерсть, но и некоторое время перемещаться по её поверхности, например, в кармане шерстяной одежды при ходьбе, но ещё лучшим был результат, когда янтарь специально тёрли о шерсть. На вопрос о том, почему такое происходит только с янтарём и шерстью, а с другими предметами нет, первые исследователи не могли дать ответ, но дали “имя” этому явлению. Греческое слово “электрон”, означало “янтарь”, поэтому и эту новую силу назвали “ЭЛЕКТРИЧЕСТВО”.С появлением новых видов материалов электрические свойства стали проявляться и у них, например, многие виды пластиков и пластмасс подобно янтарю притягивают лёгкие предметы, но обязательным условием для проявления этих эффектов осталось трения материала о ткань или другую материю. Многие знакомы с эффектом притягивания пластмассовой расчёской клочков бумаги, пыли или мелких предметов, после того, как провести такой расчёской по сухому волосу. Так же эффектом притяжения предметов обладает и стекло после натирания его поверхности шёлковой тканью.

Электростатика, Электростатический двигатель, БТГ

В ходе последующих опытов выяснилось, что хоть разные материалы притягивают мелкие предметы, но при этом действуют на разном принципе, а именно проявляют свойства избытка или недостатка электрического заряда на своей поверхности. И тут следует пояснить что такое этот самый “заряд”.

«Заряд»

Введение понятия “электрический заряд” потребовалось в связи с тем, что в ходе экспериментов были выявлены отличия в электрических свойствах у разных материалов. Разберём школьный опыт, в котором участвуют два разных материала – пластмассовая (эбонит) и стеклянная палочки, при этом пластмассовую палочку будем натирать с помощью шерсти (аналог янтаря), а стеклянную шёлком.

 

Произведём трение материалов о соответствующие ткани как показано на рисунке.Далее для проведения опыта понадобятся два штатива с подвешенными на них лёгкими цилиндрами (рисунок 6)

Электростатика, Электростатический двигатель, БТГ

И так, разберём два принципиально разных случая на рисунке шесть, в ходе проведения опыта будем касаться наэлектризованными палочками цилиндры на подвесах. До проведения опыта в нормальных условиях цилиндры висят перпендикулярно к поверхности Земли и нити параллельны друг другу.Случай “а” (наэлектризованные цилиндры отталкиваются), будет тогда, когда цилиндры заряжаются от одинакового материала т.е. либо оба цилиндра от стеклянной палочки, либо оба цилиндра от эбонитовой палочки.А вот в случае “б”, один из цилиндров заряжен от стеклянной палочки, а другой от эбонитовой (цилиндры или палочки в ходе опытов можно менять местами).Из данного не сложного опыта можно сделать очень важный выводы:1) случай “а” – заряд предметов от одного материала приводит к отталкиванию и это явление получило название — “одноимённый заряд”.2) случай “б” – заряд предметов от разных материалов приводит к их притяжению и это явление получило название — ”разноимённый заряд”. (тут следует сразу оговорить случай, когда разные материалы могут проявлять одинаковые электрические свойства, тогда наэлектризованный цилиндры будут также отталкиваться).3) если бы электричество было только одного сорта, то взаимодействие зарядов всегда было бы одинаково: наэлектризованные предметы либо только притягивались друг к другу, либо только отталкивались.

Итак, есть два одинаково проявляющих себя явления (притягивают лёгкие предметы), но по-разному взаимодействующих друг с другом, из этого следует наличие двух различных способов электризации, которые условно разделили на два “сорта” – положительное и отрицательное. При этом условились, что стеклянная палочка проявляет свойство положительного заряда (стали обозначать знаком “+”), а эбонитовая палочка проявляет свойство отрицательного заряда (стали обозначать знаком “-”).Далее с появлением новых инструментов, человек выяснил наличие у веществ окружающего его мира, мельчайших компонентов — “кирпичиков” из которых они собраны, сначала молекул, а затем и атомов веществ. Сложилось научное понимание о строение атома и в ходе его разрушения были обнаружены частицы материи, которые и были ответственны за электрический заряд, они получили имя – “электрон”.Электроны – это частицы с отрицательным зарядом, которые согласно планетарной модели атома располагаются вокруг ядра атома. Ядро атома в свою очередь состоит из протонов и нейтронов. Протон же имеет положительный заряд, и он почти в две тысячи раз тяжелее электрона по массе, но не смотря на разность масс, электрический заряд протона равен по силе электрическому заряду электрона. Нейтрон же по современным представлениям физиков электрическим зарядом не обладает. Можно весьма условно, для облегчения понимания процесса, представить атом в виде солнечной системы, где солнце – ядро атома, а планеты на орбитах – это электроны, вращающиеся вокруг ядра. На самом деле это сложные структуры, сформированные из полей, не имеющие чётких границ.

Положительный и отрицательный заряды

Итак, условно выделяем две интересующие нас частицы ответственный за электрический заряд – протон и электрон. Так вот, если в ходе каких-либо физических процессов (в нашем опыте натирание палочек о поверхности тканей), некоторые атомы с поверхности материала потеряли электроны, то в целом у них начинает преобладать электрический заряд их протонов, он положителен, то и такой материал приобретает положительный заряд (стеклянная палочка). В противоположном случае, если атом приобрёл дополнительный электрон, то у него проявляется заряд электрона и материал в целом приобретает отрицательный заряд (эбонитовая палочка). Притяжение же предметов, связанно с фундаментальным законом природы – равновесием, поэтому притягивая предметы, наэлектризованный материал стремится либо отдать лишний электрон, либо наоборот его притянуть. В любом из этих случаев, обмен электронами можно осуществить при наименьшем расстоянии, поэтому предметы и притягиваются к наэлектризованным материалам.И тут следует сделать один важный акцент на то, что основным движущимся носителем заряда является электрон. Именно ДВИЖУЩИМСЯ. Протон же не может двигаться, так как находится в составе атома, который “вплетён” в состав молекулы твёрдого вещества, и сдвинуть его возможно только нарушив целостность материала. В жидкостях и газах протоны могут иметь некоторую подвижность, но тоже ограниченную скоростью перемещения молекул этих веществ, а значит на базе протонов в твёрдых средах не очень удобно организовывать последовательную цепь из зарядов для передачи энергии, а следовательно и полезной работы в твёрдых составах они не могут совершить, а вот электрон в силу своей подвижности, как раз и подходит нам для совершения работы, к тому же при своём организованном перемещение, электроны способны создавать во внешней среде (внешняя среда полевая структура) завихрение поля, которое мы регистрируем как магнитное поле. И наука сейчас хорошо знакома с таким применением электронов для совершения преобразования электрической энергии в механическую, по средствам взаимодействия притягивающихся либо отталкивающихся магнитных полей. Такие устройства получили название электромагнитные двигатели и широко распространены. Но не следует забывать, что магнитное поле – это следствие перемещения электронов, вторичное проявление электричества, а значит в данных электромеханических машинах используется не сама сила взаимодействия зарядов, а лишь поле, связанное с вынужденным перемещением зарядов по длинному проводнику.

Электростатический двигатель. Перспективы создания.

Данное понимание физических первопричин взаимодействия материи с избытком электронов и материи с недостатком электронов влечёт за собой возможность создания принципиально новых электромеханических устройств, в которых не будет образования замкнутых цепей с гальванической связью, приводящих в современных электромагнитных механизмах к разогреву проводников их соленоидов, а значит будут устранены потери электроэнергии на нагрев, а так же отсутствие упорядоченного движения зарядов приведёт к отсутствию потерь электроэнергии на образование магнитного поля, а значит отсутствия негативных моментов известных из практики эксплуатации современных трансформаторов и электромагнитных двигателей. Значительно уменьшится вес самого механического устройства в виду отсутствия надобности материала для намотки катушки индуктивности и её сердечника. Такое устройство будет использовать электрическое поле зарядов, а сила их взаимодействия будет нарастать с количеством зарядов, вовлечённых в этот процесс, это новая область в электротехнике и материаловедении.

Электростатика, Электростатический двигатель, БТГСейчас мы можем наблюдать как наэлектризованная эбонитовая палочка притягивает клочки бумаги незначительного веса и создаётся обманчивое впечатление, что сила эта мала и не способна сдвинуть с места какие-либо значительные по массе предметы, но не стоит забывать, что трением эбонитовой палочки о шерсть мы нарушили электрический баланс ничтожного числа атомов с поверхности материала.

Между тем физики уже давно посчитали какой силой притяжения будут обладать стеклянная и эбонитовая палочка, приведу цитату из давно уже забытой книги Рудольфа Свореня «Электроника шаг за шагом, 1986г:

Если стеклянную и пластмассовую палочки расположить на расстоянии метра, то под действием гравитационных сил они будут притягиваться одна к другой, как любые две массы. Но сила этого притяжения будет в милллирды миллиардов раз меньше, чем сила самого чахлого комарика.

А вот если наэлектризовать эти палочки-карандаши, уменьшить на один процент число электронов в стекле и увеличить на тот же один процент число электронов в пластмассе — обратите внимание — всего на один процент — то палочки будут притягиваться с такой силой,  что смогут сдвинуть железнодорожный состав размером из миллиарда миллиардов гружёных вагонов!

Источник:

цитата взята из раздела книги Т-20 (теория 20)

обложка книги

год издания

 

Так же нужно помнить о том, что сам атом обязан своей целостностью именно силам электрического взаимодействия электрона и протона и какая колоссальная энергия получается при разрушении этих связей – атомный взрыв.В рамках данной статьи мы рассмотрели силу электрического взаимодействия, основанную исключительно на способности материала отдавать либо принимать электроны известную нам из курса классической физики.

Роль позитрона в создании ЭСД

Но окружающий мир гораздо сложнее и интереснее, и зачастую классическая физика забывает о ещё одном законе природы – дуализме. Дуализм проявляется во всём – мужское и женское начало, день – ночь, тепло – холод, свет – тьма и.т.д.. Поэтому в рамках закона дуализма, существует ещё одна подвижная частица, ответственная за электрический заряд. Имя этой частицы “позитрон”. Но не тот позитрон, который классическая наука классифицировала как антиматерию. В природе всё гармонично, и там, где передача энергии не возможна или ведёт к большим потерям по средствам электрона, природа использует позитрон. В силу того, что мы освоили и пользуемся для передачи энергии именно электрон, мы не можем увидеть присутствия позитрона, а он и не обнаруживает себя, так как его участия не требуется. Но стоит нам сделать устройство не по канонам классической электротехники, как тут же на роль передатчика энергии выступает позитрон. Устройство перестаёт нагреваться, наоборот температура его падает в процессе работы ниже температуры окружающей среды, электрический ток начинает обладать новыми свойствами, и уже становится не опасен для человека даже при значительных потенциалах. Такой ток может свободно проходить по оголённым проводам в условиях погружения их в воду, не вызывая замыкания через водную среду. Движения позитронов не вызывает появления магнитного поля вокруг проводника, да и выбирает позитрон для своего движения проводник с бОльшим омическим сопротивлением.Свободные электрон и позитрон стремятся организовать электрически нейтральный диполь, при этом притяжение их значительно сильнее, чем притяжение между рассмотренными выше в статье атомами материалов с избытком и недостатком электронов. При этом эти электрически нейтральные диполи легко разъединяются обратно на электрон и позитрон с минимальными затратами энергии, ярким примером служит процесс в спиральном волновом резонаторе, который изобрёл Никола Тесла (не путать с LC резонаторами, которые сейчас массово делают тесла строители для получения эффектных разрядов с трансформатора тесла). Введение в конструкцию двигателя, основанного на взаимодействии зарядов второго носителя электрического заряда – позитрона, позволит значительно повысить его мощность.

Автор статьи Сергей STALKER.

Один из вариантов прототипа ЭСД

lenr.su

Электростатический двигатель

Изобретение относится к электростатическим двигателям, работающим в вакууме. Электростатический двигатель содержит расположенные в вакуумной емкости напротив друг друга дискообразные статор и ротор. Статор и ротор оснащены электрически изолированными первыми и вторыми электродами. Эти электроды прикреплены к опорам с чередованием по окружности. Каждые из первых и вторых электродов статора расположены с интервалом в два или более рядов на заданном расстоянии от центра вращающегося вала. Каждые из первых и вторых электродов ротора расположены на заданном расстоянии от центра вращающегося вала в промежутке между рядами первых и вторых электродов статора. К первым и вторым электродам статора прикладываются предопределенные электрические поля. К первым и вторым электродам ротора прикладываются напряжения различных полярностей. Эти напряжения переключаются согласно заданному распределению во времени. Изобретение позволяет увеличить мощность двигателя. 8 з.п. ф-лы, 12 ил.

 

Область техники, к которой относится изобретение

Настоящее изобретение относится к электростатическому двигателю, который осуществляет приведение во вращение с использованием электростатической силы, в частности к электростатическому двигателю, который осуществляет приведение во вращение за счет выработки сильного электрического поля в вакууме.

Уровень техники

В большинстве традиционных электрических двигателей используется электромагнитная сила, создаваемая катушкой и магнитом. Также известны электростатические двигатели, которые обеспечивают приведение во вращение с использованием электростатической силы (см., например, японскую выложенную заявку на выдачу патента за № 8-88984 и работу «Study of Servo Systems using Electrostatic Motors», Akio Yamamoto и др. по электронному адресу: www.intellect.pe.u-tokyo.ac.jp/japanese/dissertationj/yamamoto.html).

Тем не менее, традиционные электрические двигатели, в которых используется электромагнитная сила, создаваемая катушкой и магнитом, производят газ в вакууме, нарушающий вакуум. Кроме того, так как в традиционных электрических двигателях используются обладающие магнитными свойствами материалы, они не могут работать в сильных магнитных полях.

Традиционные электростатические двигатели, подобные описанным выше, также производят газ в вакууме, нарушающий вакуум. В традиционных электростатических двигателях электрическое поле увеличивается за счет расположения большого числа пар электродов на изоляторе таким образом, что электроды расположены близко с промежутком. Тем не менее, при этом способе существует предрасположенность к возникновению пробоя диэлектрика, скользящему разряду, искровому разряду и прочим нежелательным явлениям. Соответственно, не может быть создано сильное электрическое поле и не может быть получена достаточная сила тяги. Следовательно, пока еще не были реализованы практически применимые электростатические двигатели.

Раскрытие изобретения

Настоящее изобретение создано с учетом вышеизложенных недостатков. Соответственно, цель настоящего изобретения состоит в предложении электростатического двигателя, который вырабатывает сильное электрическое поле в вакууме таким образом, что он может осуществлять приведение во вращение с достаточной движущей силой.

Другая цель настоящего изобретения состоит в создании электростатического двигателя, разработанного с возможностью предотвращения пробоя диэлектрика, скользящего разряда, искрового разряда и подобных явлений с целью работы в сильном электрическом поле, а также имеющего меньший вес.

Предлагаемый электростатический двигатель имеет описанные ниже характеристики для того, чтобы разрешить вышеизложенные проблемы.

В первом аспекте настоящего изобретения предлагается электростатический двигатель, отличающийся тем, что содержит дискообразный статор и дискообразный ротор, расположенные в вакуумной емкости противоположно друг другу, причем статор прикреплен к основному корпусу вакуумной емкости, а ротор опирается с возможностью вращения на основной корпус вакуумной емкости для обеспечения свободного вращения посредством вращающегося вала, при этом статор имеет первые электроды и вторые электроды, электрически изолированные посредством изолятора и прикрепленные к опорам электродов с чередованием по окружности опор электродов, и ротор имеет первые электроды и вторые электроды, электрически изолированные посредством изолятора и прикрепленные к опорам электродов с чередованием по окружности опор электродов, причем каждые из первых и вторых электродов на стороне статора расположены с интервалом в два или более рядов на заданном расстоянии от центра вращающегося вала, и каждые из первых и вторых электродов на стороне ротора расположены на заданном расстоянии от центра вращающегося вала и в промежутке между рядами первых и вторых электродов на стороне статора, при этом к первым и вторым электродам на стороне статора прикладываются предопределенные электрические поля, а к первым и вторым электродам на стороне ротора прикладываются с переключением согласно заданному распределению во времени напряжения различных полярностей.

Во втором аспекте изобретения предлагается электростатический двигатель по первому аспекту, отличающийся тем, что каждый из первых и вторых электродов на стороне статора и первых и вторых электродов на стороне ротора выполнен в форме стержня и расположен параллельно осевому направлению вращающегося вала.

В третьем аспекте изобретения предлагается электростатический двигатель по первому или второму аспекту, отличающийся тем, что опоры первых и вторых электродов на стороне статора, а также опоры первых и вторых электродов на стороне ротора поддерживаются изолирующим образом посредством изоляторов с обеспечением достаточной длины пути тока утечки.

В четвертом аспекте изобретения предлагается электростатический двигатель по любому из аспектов с первого по третий, отличающийся тем, что каждый из изоляторов на стороне статора и на стороне ротора имеет один или множество образованных на нем пазов.

В пятом аспекте изобретения предлагается электростатический двигатель по любому из аспектов с первого по четвертый, отличающийся тем, что концы первых и вторых электродов на стороне статора и концы первых и вторых электродов на стороне ротора имеют закругленную форму.

В шестом аспекте изобретения предлагается электростатический двигатель по любому из аспектов с первого по пятый, отличающийся тем, что для металлических компонентов, расположенных в вакуумной емкости, использована нержавеющая сталь, а в качестве изолирующих компонентов используется изолятор неорганического происхождения.

В седьмом аспекте изобретения предлагается электростатический двигатель по любому из аспектов с первого по шестой, отличающийся тем, что в качестве металлических компонентов, расположенных в вакуумной емкости, использован немагнитный материал.

В восьмом аспекте изобретения предлагается электростатический двигатель по любому из аспектов с первого по седьмой, содержащий кодовый датчик положения, имеющий пластину с прорезями и считывающий элемент, который определяет взаимное положение между первыми и вторыми электродами на стороне статора и первыми и вторыми электродами на стороне ротора.

В девятом аспекте изобретения предлагается электростатический двигатель по любому из аспектов с первого по восьмой, отличающийся тем, что на расположенные в вакуумной емкости компоненты нанесено покрытие из газопоглощающего материала.

Согласно изобретению первые и вторые электроды, прикрепленные к опорам электродов статора и ротора, расположены в вакууме. Соответственно, в отличие от традиционного электростатического двигателя, в котором группы электродов поддерживаются изолятором или изоляторами, настоящее изобретение предотвращает пробой диэлектрика, даже если между электродами существует сильное электрическое поле. Это приводит к выходной мощности, такой же высокой или выше, чем та, которая получена электромагнитным двигателем. Соответственно, разработан электростатический двигатель, который создает сильное электрическое поле в вакууме, так что он может осуществлять приведение во вращение с достаточной движущей силой. Электростатический двигатель, который может осуществлять привод в высоком чистом вакууме, может найти применение, например, в устройствах для производства полупроводников. Кроме того, в электростатическом двигателе отсутствуют вентиляционные потери, таким образом он имеет улучшенный КПД. Более того, электростатический двигатель, который осуществляет привод в сильном электрическом поле, созданном между электродами, позволяет практические применения, в том числе малых или крупных двигателей, и в нем достигается высокая выходная мощность и снижение веса.

В настоящем изобретении опоры электродов изолированно поддерживаются изолятором, в котором образованы пазы, обеспечивающие достаточную длину пути тока утечки. Соответственно, электростатический двигатель эффективно предотвращает пробой диэлектрика, скользящий разряд, искровой разряд и другие явления и вырабатывает сильное электрическое поле.

Кроме того, в предлагаемом электростатическом двигателе в качестве компонентов использованы нержавеющая сталь и т.п. или изолятор неорганического происхождения, такой как фарфор или стекло, которые производят меньше остаточного газа. Следовательно, электростатический двигатель может быть использован в чистом вакууме. Кроме того, применение немагнитного материала для металлических компонентов позволяет создать немагнитный двигатель, который может быть использован в сильном магнитном поле.

Кроме того, в предлагаемом электростатическом двигателе для металлических компонентов не используются тяжелые магнитные материалы, и следовательно, он имеет меньший вес, чем традиционные.

Краткое описание чертежей

На фиг.1 проиллюстрирован вертикальный разрез электростатического двигателя согласно первому варианту выполнения настоящего изобретения.

На фиг.2 показан вид в плане статора в первом варианте выполнения.

На фиг.3 показан вид в плане ротора в первом варианте выполнения.

На фиг.4 показано выполненное отчасти подробным схематическое изображение первого и второго электродов статора в первом варианте выполнения.

На фиг.5(A) показано вертикальное частичное изображение конструкции опор электродов, а также первого и второго электродов на стороне статора в первом варианте выполнения.

На фиг.5(B) показано вертикальное частичное изображение конструкции опор электродов, а также первого и второго электродов на стороне ротора в первом варианте выполнения.

На фиг.6 проиллюстрирован принцип действия первого и второго электродов на стороне статора и первого и второго электродов на стороне ротора в первом варианте выполнения.

На фиг.7 показаны временные диаграммы напряжений первого и второго электродов на стороне ротора в первом варианте выполнения.

На фиг.8 показан вертикальный разрез электростатического двигателя согласно второму варианту выполнения настоящего изобретения.

На фиг.9 показан вертикальный разрез электростатического двигателя согласно третьему варианту выполнения настоящего изобретения.

На фиг.10 показан вертикальный разрез электростатического двигателя согласно четвертому варианту выполнения настоящего изобретения, в котором первые и вторые электроды на стороне статора и первые и вторые электроды на стороне ротора расположены радиально по отношению к центру вращающегося вала.

На фиг.11 показано сечение статора в четвертом варианте выполнения.

На фиг.12 показано сечение ротора в четвертом варианте выполнения.

Осуществление изобретения

Далее приведено подробное описание вариантов выполнения предложенного электростатического двигателя.

На фиг.1 проиллюстрирован вертикальный разрез согласно первому варианту выполнения настоящего изобретения. На фиг.2 показан вид в плане статора в первом варианте выполнения, а на фиг.3 показан вид в плане ротора в первом варианте выполнения. На фиг.4 показано выполненное отчасти подробным схематическое изображение первого и второго электродов статора в первом варианте выполнения.

В первом варианте выполнения предложенного электростатического двигателя в вакуумной емкости 11 противоположно друг другу расположены дискообразный статор S и дискообразный ротор R. В первом варианты выполнения электростатический двигатель выполнен с возможностью работать в условиях вакуума при давлении, не превышающем 3 Па.

В электростатическом двигателе согласно этому варианту выполнения первые электроды 34А прикреплены к опорам 31 электродов на стороне статора S. Первые электроды 34А расположены в два ряда на заданном расстоянии от центра вращающегося вала 1 (т.е. центра основания 10 двигателя). Подобным образом вторые электроды 34В прикреплены к другим опорам 32 электродов на стороне статора S. Как показано на фиг.2 и 4, первые электроды 34А и вторые электроды 34В расположены таким образом, что они чередуются. Первые и вторые электроды 34А, 34В расположены с равномерными интервалами вдоль окружностей соответственно опор 31, 32 электродов параллельно вращающемуся валу 1, так что первые и вторые электроды 34А, 34В закреплены в два ряда в радиальном направлении. Опоры 31, 32 электродов с соответственно первыми и вторыми электродами 34А, 34В закреплены на изоляторе 33, который установлен на основании 10 двигателя (т.е. основной корпус вакуумной емкости 11). Изолятор 33 обеспечивает достаточные толщину изоляции и длину пути тока утечки и имеет множество пазов, образованных с целью предотвращения скользящего разряда. Здесь достаточная толщина изоляции должна быть равна или превышать ту, которая соответствует напряжению пробоя изолятора, а достаточная длина пути тока утечки в несколько раз больше, чем эта толщина. Число пазов, форма паза, глубина паза и другие характеристики могут быть установлены такими, как необходимо согласно размеру и применению электростатического двигателя.

С другой стороны, первый электрод 44А прикреплен к каждой из опор 41 электродов на стороне ротора R. Эти первые электроды 44А размещены в один ряд на заданном расстоянии от центра вращающегося вала 1. Также на стороне ротора R на каждой из других опор 42 электродов расположен второй электрод 44В. Как показано на фиг.3, первые электроды 44А и вторые электроды 44В размещены так, чтобы чередоваться подобно электродам на стороне статора S. Первые и вторые электроды 44А, 44В расположены вдоль окружностей соответственно опор 41, 42 электродов с равномерными промежутками параллельно вращающемуся валу 1 так, что первые и вторые электроды 44А, 44В закреплены в один ряд в радиальном направлении. Опоры 41, 42 электродов с соответственно первыми и вторыми электродами 44А, 44В закреплены на изоляторе 43, который установлен на вращающемся валу 1. Как и на стороне статора S, изолятор 43 обеспечивает достаточную толщину изоляции и длину пути тока утечки и имеет множество пазов, образованных с целью предотвращения скользящего разряда. Число пазов, форма паза, глубина паза и другие характеристики могут быть установлены такими, какие необходимы согласно размеру и применению электростатического двигателя.

Как описано выше, первые и вторые электроды 44А, 44В на стороне ротора R закреплены соответственно на опорах 41, 42 с равномерными промежутками параллельно вращающемуся валу 1, как первые и вторые электроды 34А, 34В на стороне статора S. Тем не менее, как показано на фиг.1, положения первых и вторых электродов 44А, 44В на стороне ротора R от центра вращающегося вала 1 находятся посередине между рядами первых и вторых электродов 34А, 34В на стороне статора S, так что ротор R выполнен с возможностью приведения его во вращение. Первый электрод 34А, второй электрод 34В, первый электрод 44А и второй электрод 44В имеют форму стержней. Предпочтительно, чтобы концы электродов были закруглены с целью предотвращения между ними разряда. Однако форма этих электродов не ограничена стержневидной.

Энергия подается к электродам 44А, 44В на стороне ротора R через контактные токосъемные кольца 51, 52 и щетки 61, 62.

Кодовый датчик положения образован из оптической системы (т.е. пластины 7 с прорезями и считывающего элемента 8) или магнитной системы (т.е. магнитного диска и считывающего элемента). В этом варианте выполнения применено первое из указанных. Считывающий элемент 8 определяет моменты времени, соответствующие подаче питания к первым и вторым электродам 44А, 44В на стороне ротора R, и определенный результат подвергается процессу обработки сигнала цепью возбуждения (не показанной). На выходе происходит выдача высокого напряжения (приблизительно от 1 до 100 кВ), и оно подается к первым и вторым электродам 44А, 44В.

Когда электростатический двигатель применяется в воздушной или газовой среде, к основанию 10 двигателя прикрепляют вакуумное уплотнение 9 для поддержания вакуума внутри электростатического двигателя.

Настоящее изобретение использует электростатический двигатель, который работает в вакууме. Излишне говорить о том, что настоящее изобретение функционирует как электростатический двигатель даже в среде изолирующего газа, такого как газ элегаз (газ «SF6» («sulfur hexafluoride»)).

В вышеприведенном описании первые и вторые электроды 34А и 34В, соответственно на стороне статора S, расположены в два ряда, в то время как первые и вторые электроды 44А и 44В соответственно, на стороне ротора R, расположены в один ряд. Тем не менее, как описано ниже, число рядов не ограничено только одним, а также могут быть установлены два или более рядов.

Вдобавок к этому в первом варианте выполнения в качестве металлических компонентов, которые расположены в вакуумной емкости 11 (например, первых и вторых электродов 34А, 34В, опор 31, 32 электродов, первых и вторых электродов 44А, 44В, опор 41, 42 электродов) может быть использована нержавеющая сталь или подобный материал, который производит меньше остаточного газа. Также в качестве изолирующих компонентов может быть использован изолятор неорганического происхождения, такой как фарфор или стекло, который производит меньше остаточного газа. Тем самым может быть обеспечена возможность применения электростатического двигателя в чистом вакууме. Также является эффективным нанесение на компоненты, используемые в вакуумной емкости 11, покрытий из газопоглощающего материала (т.е. вещества, обладающего способностью геттерирования), такого как титан, ванадий, тантал или цирконий,

В первом варианте выполнения применение немагнитного материала в качестве металлических компонентов, используемых в вакуумной емкости 11, дает возможность получения немагнитного двигателя, который может быть использован в сильном магнитном поле. Кроме того, в качестве металлических компонентов не используется никакой тяжелый магнитный материал, за счет чего обеспечивается снижение веса.

Теперь приведем разъяснение принципов функционирования электростатического двигателя согласно первому варианту выполнения, который имеет вышеописанную конфигурацию. Как показано на фиг. 5 (А), за счет приложения высокого напряжения (приблизительно от 1 до 100 кВ) между опорами 31, 32 электродов на стороне статора S, между первыми и вторыми электродами 34А, 34В создается сильное электрическое поле (напряженностью от 1 до 100 кВ/мм или около того).

Так как электростатический двигатель выполнен таким образом, что первые и вторые электроды 44А, 44В на стороне ротора R свободно перемещаются вдоль окружности между первыми и вторыми электродами 34А, 34В на стороне статора S, то первые и вторые электроды 44В, 44А соответственно заряжены положительно и отрицательно за счет приложения к опорам 42 электродов высокого положительного напряжения (от 1 до 100 кВ или около того). Исходя из распределения во времени подачи заряда направление тяги (т.е. вращающей силы), например, определяется тем, где выполненные на стороне ротора R электроды 44В расположены относительно вторых электродов 34В на стороне статора S. Следовательно, величина и время подачи напряжения значительно влияют на величину тяги (вращающей силы).

На фиг.6 проиллюстрирован принцип действия электростатического двигателя путем показа только первых и вторых электродов 34А, 34В на стороне статора S и первых и вторых электродов 44А, 44В на стороне ротора R. Например, когда каждый из вторых электродов 44В на стороне ротора R достиг местоположения (т.е. местоположения Х1), которое слегка смещено вправо от местоположения Х0 второго электрода 34В на стороне статора S, ко второму электроду 44В прикладывается положительный потенциал. Тем самым между вторыми электродами 34В и вторым электродом 44В возникает сила отталкивания, в то время как между первыми электродами 34А и вторым электродом 44В возникает сила притяжения. Следовательно, соединенный с первыми и вторыми электродами 44А, 44В ротор R подвергается действию движущей силы, направленной вправо, и движется соответствующим образом.

К местоположению (т.е. местоположению Х2), которое находится непосредственно перед первыми электродами 34А, происходит переключение напряжения каждого из вторых электродов 44В. Эта операция переключения повторяется для второго электрода 44В каждый раз, когда сигналом от считывающего элемента 8 кодового датчика положения определяется момент времени, соответствующий такому положению второго электрода 44В.

На фиг.7 показаны временные диаграммы напряжения первых и вторых электродов 44А, 44В на стороне ротора R (в которых Т0 представляет момент времени при нахождении в местоположении Х0, а Т1 и Т2 соответственно представляют моменты времени в местоположениях Х1 и Х2).

Далее приведено описание электростатического двигателя согласно второму варианту выполнения настоящего изобретения.

На фиг.8 показан вертикальный разрез предлагаемого электростатического двигателя согласно второму варианту выполнения. На фиг. 8 те элементы, которые одинаковы с показанными в иллюстрациях к первому варианту выполнения, обозначены теми же самыми символами, и дублирование описания разъяснения этих элементов не приводится.

Во втором варианте выполнения вдоль окружностей опор 31, 32 электродов на стороне статора S расположены соответственно три ряда первых электродов 34А и три ряда вторых электродов 34В. Аналогичным образом вдоль окружностей опор 41, 42 электродов расположены соответственно два ряда первых электродов 44А и два ряда вторых электродов 44В. Во втором варианте выполнения за счет увеличения числа электродов получен электростатический двигатель с высокой выходной мощностью.

Далее приведено описание электростатического двигателя согласно третьему варианту выполнения настоящего изобретения.

На фиг. 9 показан вертикальный разрез предлагаемого электростатического двигателя в третьем варианте выполнения. На фиг. 9 одинаковые элементы с теми, которые показаны в иллюстрациях к первому варианту выполнения, обозначены теми же самыми символами, и дублирование разъяснения этих элементов не приводится. Не показаны кодовый датчик положения, контактные токосъемные кольца и щетки.

В первом и втором вариантах выполнения ограничения, возникающие в результате консольной конструкции, препятствуют какому-либо необязательному увеличению длины электродов. В третьем варианте выполнения первые электроды 44А проходят от обеих сторон каждой из опор 41 электродов на стороне ротора R, а вторые электроды 44В также проходят от обеих сторон каждой из опор 42 электродов на стороне ротора R. Это позволяет получать выходную мощность, которая в два раза выше по сравнению с той, которая получается в электростатическом двигателе с электродами с консольной конструкцией, в первом варианте выполнения. Кроме того, первые и вторые электроды 34А, 34В могут проходить от обеих сторон соответственно опор 31, 32 электродов на стороне статора S, и роторы R и статоры S могут быть установлены стопкой в осевом направлении более, чем в одну ступень.

Далее приведено описание электростатического двигателя согласно четвертому варианту выполнения настоящего изобретения.

На фиг.10 показан вертикальный разрез предлагаемого электростатического двигателя согласно четвертому варианту выполнения, в котором первые и вторые электроды на стороне статора и первые и вторые электроды на стороне ротора расположены радиально по отношению к центру вращающегося вала. На фиг.11,12 показаны соответственно вертикальные разрезы статора и ротора согласно четвертому варианту выполнения. К тому же на фиг.10-12 элементы, одинаковые с теми, которые показаны в иллюстрациях к первому варианту выполнения, обозначены теми же самыми символами, и дублирование разъяснения этих элементов не приводится. Не показаны кодовый датчик положения, контактные токосъемные кольца и щетки.

Тем не менее, в четвертом варианте выполнения взаимные расположения между опорами 31, 32 электродов, изолятором 33, первыми и вторыми электродами 34А, 34В на стороне статора S и опорами 41, 42 электродов, изолятором 43 и первыми и вторыми электродами 44А, 44В на стороне ротора R отличаются от таковых в вариантах выполнения с первого по третий.

В четвертом варианте выполнения первые электроды 44А проходят через сравнительно широкие отверстия выполненной в виде трубы опоры 41 электродов, затем плотно вставлены по направлению к оси в выполненную в виде трубы опору 42 электродов, имеющую большое количество отверстий, и таким образом зафиксированы в этом положении. Вторые электроды 44В прикреплены к опоре 41 электродов. Аналогичным образом первые и вторые электроды 34А, 34В прикреплены соответственно к опорам 31, 32 электродов вдоль оси. Опоры 31, 32 электродов прикреплены к основанию 10 двигателя или к корпусу вакуумной емкости 11 посредством изолятора 33. Опоры 41, 42 электродов присоединены к вращающемуся корпусу 12 и вращающемуся валу 1 посредством изолятора 43.

Конфигурация в четвертом варианте выполнения обеспечивает такие же отличные результаты, как те, которые обеспечиваются в вариантах выполнения с первого по третий.

1. Электростатический двигатель, содержащий дискообразный статор и дискообразный ротор, расположенные в вакуумной емкости противоположно друг другу, причем статор прикреплен к основному корпусу вакуумной емкости, а ротор опирается с возможностью вращения на основной корпус вакуумной емкости для обеспечения свободного вращения посредством вращающегося вала, при этом статор имеет первые электроды и вторые электроды, электрически изолированные посредством изолятора и прикрепленные к опорам электродов с чередованием по окружности опор электродов, и ротор имеет первые электроды и вторые электроды, электрически изолированные посредством изолятора и прикрепленные к опорам электродов с чередованием по окружности опор электродов, причем каждые из первых и вторых электродов на стороне статора расположены с интервалом в два или более рядов на заданном расстоянии от центра вращающегося вала, и каждые из первых и вторых электродов на стороне ротора расположены на заданном расстоянии от центра вращающегося вала и в промежутке между рядами первых и вторых электродов на стороне статора, при этом к первым и вторым электродам на стороне статора прикладываются предопределенные электрические поля, а к первым и вторым электродам на стороне ротора прикладываются с переключением согласно заданному распределению во времени напряжения различных полярностей.

2. Электростатический двигатель по п.1, отличающийся тем, что каждый из первых и вторых электродов на стороне статора и первых и вторых электродов на стороне ротора выполнен в форме стержня и расположен параллельно осевому направлению вращающегося вала.

3. Электростатический двигатель по п.1 или 2, отличающийся тем, что опоры первых и вторых электродов на стороне статора, а также опоры первых и вторых электродов на стороне ротора поддерживаются изолирующим образом посредством изоляторов с обеспечением достаточной длины пути тока утечки.

4. Электростатический двигатель по п.1 или 2, отличающийся тем, что каждый из изоляторов на стороне статора и на стороне ротора имеет один или множество образованных на нем пазов.

5. Электростатический двигатель по п.1 или 2, отличающийся тем, что концы первых и вторых электродов на стороне статора и концы первых и вторых электродов на стороне ротора имеют закругленную форму.

6. Электростатический двигатель по п.1 или 2, отличающийся тем, что для металлических компонентов, расположенных в вакуумной емкости, использована нержавеющая сталь, а в качестве изолирующих компонентов используется изолятор неорганического происхождения.

7. Электростатический двигатель по п.1 или 2, отличающийся тем, что в качестве металлических компонентов, расположенных в вакуумной емкости, использован немагнитный материал.

8. Электростатический двигатель по п.1 или 2, отличающийся тем, что содержит кодовый датчик положения, имеющий пластину с прорезями и считывающий элемент, который определяет взаимное положение между первыми и вторыми электродами на стороне статора и первыми и вторыми электродами на стороне ротора.

9. Электростатический двигатель по п.1 или 2, отличающийся тем, что на расположенные в вакуумной емкости компоненты нанесено покрытие из газопоглощающего материала.

www.findpatent.ru

Электростатический двигатель. : Пургаторий (Ф)

Электростатический маятник. Маятник качается между 2 электродами, подключенными к источнику высокого напряжения. При соприкосновении с отрицательным электродом, часть электронов переходит на маятник. Он заряжается отрицательно, отталкивается от отрицательного электрода и притягивается к положительному. Электроны с маятника переходят на положительный электрод. Маятник заряжается положительно и отталкивается от электрода. Маятник колеблется, пока на электродах есть высокое напряжение. Если электроды отключить от высоковольтного источника, то маятник перенесёт электроны с отрицательного на положительный электрод. Заряды на электродах уменьшится и маятник остановится. Электростатический двигатель. ИзображениеСтатор – 1. Ротор – 2. Положительно и отрицательно заряженные электреты – 3. Время жизни заряда у электрета из политетрафторэтилена составляет 100 - 1000 лет. Электроды – 4. Красные и синие электроды из разных металлов. Эти электроды заземлены. Электроды, находящиеся на роторе – 5. При вращении ротора электроды 5 соприкасаются с электродами 4. При соприкосновении между ними возникает контактная разность потенциалов. При соприкосновении электродов 5 с красными электродами, электроды 5 заряжаются положительно. А при соприкосновении с синими электродами – отрицательно. Если крутнуть ротор, то электроды 5 при вращении войдут в электреты 3. При этом они соприкоснуться с электродами 4 и получат заряд. Электроды, которые вошли в положительные электреты – положительный. А которые вошли в отрицательные электреты – отрицательный. Соответственно, одноимённые заряды отталкиваются и на ротор действует электростатическая сила, вращающая его. При дальнейшем вращении электроды 5 будут уже притягиваться к другим, противоположно заряженным электретам. При этом также на ротор действует электростатическая сила, вращающая ротор. Как только электроды 5 вошли в следующие электреты, то они при соприкосновении с электродами 4 меняют свой заряд на противоположный. И процесс повторяется. Конечно, контактная разность потенциалов при соприкосновении разнородных металлов мала. Соответственно, электростатическая сила тоже. Не могу понять, где здесь подвох? А то вечный двигатель получается.

dxdy.ru

Особенности электростатического двигателя Литовченко | Проект Заряд

Люди, несведущие в физике, наверняка не знакомы с именем заслуженного изобретателя России Сергея Сергеевича Литовченко. Что и говорить, даже не все люди о науки знакомы с его специфическими работами. Его главное изобретение – электростатический двигатель – с первого взгляда поражает своей неказистостью. Казалось бы, всего несколько деталей, размером и конфигурацией напоминающих алюминиевую миску, соединяющихся между собой вручную, и обычная штепсельная вилка. Однако внешняя несуразность лишь усиливает эффект, производимый от его действия. Посмотрим же, каким образом устроен электростатический двигатель Литовченко.

 

Особенности устройства двигателя Литовченко

 

Электростатический двигатель Литовченко состоит из выпрямителя, статора и двух роторов – металлического и диэлектрического. Статор представляет собой капролоновый цилиндр (высота – 54 мм). Внутри цилиндра диаметром 146 мм располагаются электроды – 36 проволок из бронзы, по 0,8 мм диаметром каждая. Все проволоки вытянуты вдоль оси изделия и по отдельности уложены. Восемнадцать электродов получают высокий потенциал положительного знака, оставшиеся восемнадцать, соответственно, заряжаются отрицательно. Кроме того, в статор помещается еще одна пластиковая болванка из капролона (масса – 200 г, высота – 40 мм, диаметр – 140 мм). Вместо нее вполне может быть использована стандартная 36-лучевая алюминиевая звездочка.

При подключении штепсельной вилки к сети, капролоновая болванка (алюминиевая звездочка), выступающая в роли ротора начинает набирать обороты. При выключенном свете, работающий двигатель Литовченко, представляет собой занимательное зрелище – агрегат источает почти загадочное мерцание. В действительности, все объясняется просто – между электродами, размещенными в цилиндре, и ротором постоянно проходят искры. При этом, от изобретения исходит явственный запах озона (по ощущениям напоминает запах воздуха перед сильной грозой).

Крутящий момент электродвигателя Литовченко колеблется в промежутке от 40 до 80 Гсм, поэтому при желании, вращающийся ротор можно остановить рукой. Мощность мотора, в зависимости от модификации, составляет 4-6 Вт. При высоком напряжении капролоновая болванка может крутиться в любую сторону, набирая огромные обороты (до 40 в секунду).

zaryad.com

Электростатический двигатель, пьезодвигатель — Мир науки,техники,медицины и образования © первая научно-техническая коммерческая социальная сеть

Конструкторы считают, что у электростатического двигателя, несомненно, большое практическое будущее. Они мечтают собрать малогабаритный быстроходный "плоский" двигатель для вертолета, работающий от энергии грозового облака. Бесшумный и экономичный электростатический моторчик - неплохое дополнение к будущим разработкам моделей компрессоров, вентиляционных устройств и лентопротяжных механизмов магнитофонов.

Модель такого двигателя сконструировали и собрали на Мелитопольской станции юных техников под руководством преподавателя Н.С.Трахтенберга.

 

 

Рис 1

 

Модель двигателя состоит из двух узлов: блока питания и самого двигателя.(Рис 1) Блок питания должен обеспечивать ток 3-4 мА при напряжении 10-15 кВ. Для получения высокого напряжения можно использовать без существенных переделок блок строчной развертки от любого старого телевизора. Однако лучше собрать автономный полупроводниковый высоковольтный преобразователь напряжения.

Этот прибор работает от двух батареек для карманного фонаря КБС 0.5 (3336Л), соединенных последовательно. Трансформатор Тр1 и транзистор Т1 образуют генератор незатухающих колебаний в диапазоне звуковых частот. На обмотке III трансформатора Тр1 индуктируется переменный ток напряжением 7-10кВ, а обмотки I и IV подключены к нитям накала (катодам) высоковольтных кенотронов Л1 и Л2 типа 1Ц1С, работающих в выпрямителе, собранном по схеме удвоения напряжения.

Трансформатор преобразователя - самодельный. Его обмотки выполняются на сердечнике, составленном из двух ферритовых полуколец от отклоняющей системы телевизора.

Сначала из гетинакса или оргстекла выпилите 12-14 щечек так, чтобы в их отверстия проходили половинки ферритового сердечника. Равномерно распределите их на двух полукольцах и закрепите клеем.

В одном промежутке между щечками разместите обмотку I, которая состоит из 40+40 витков провода ПЭЛ или ПЭВ диаметром 0.35-0.6 мм. В двух соседних секциях уложите по 7 витков такого же провода для обмоток II и IV. Остальные секции полуколец заполните проводом ПЭЛ или ПЭВ 0.08-0.1. В каждой секции по 1800-2000 витков, а всего обмотка III должна иметь 15000-20000 витков. Перед выполнением обмоток ферритовое кольцо тщательно заизолируйте прокладкой из хлорвиниловой или полистироловой пленки. Концы катушек закрепите в отверстиях щечек. После выполнения обмоток ферритовые полукольца склейте клеем БФ-2, а катушки пропитайте полистироловым клеем или органическим стеклом, растворенным в дихлорэтане.

 

 

 самодельный электростатический двигатель

Рис.2

 

 

Конденсаторы С1-С3 емкостью 390 пф типа ПОВ рассчитаны на рабочее напряжение не менее 15 кВ. Сопротивление резистора R1 подбирается экспериментально при регулировке схемы.

Мощный низкочастотный транзистор Т1 типа П209-П210 укрепите на металлическом радиаторе из алюминия или меди и разместите подальше от кенотронов. Все детали блока питания монтируются на панели произвольных размеров из оргстекла или гетинакса. Сверху панель закрывается кожухом с отверстиями.(Схему другого высоковольтного генератора можно выбрать здесь).

Конструкция электростатического двигателя показана на рисунке 2. Статор вырежьте из пластины гетинакса толщиной 10-12 мм. Диаметр его внутреннего отверстия 100 мм. По периметру статора на равных расстояниях друг от друга запрессовано 16 электродов из латуни. К этим электродам подводиться напряжение от преобразователя.

Все четные электроды соединяются между собой одним проводником и подключаются к одному выводу выпрямителя, а нечетные соединяются другим проводником и подключаются к другому выводу.

Ротор выточите оз органического стекла. Он имеет форму диска диаметром 80 мм и толщиной 3-4 мм. В центре диска запрессован миниатюрный шариковый подшипник. Ротор двигателя тщательно отбалансируйте, чтобы он находился в равновесии. Ось ротора крепиться к кронштейну из гетинакса, который в свою очередь, соединяется со статором.

Латунные электроды статора отогните в одну сторону. Между концами электродов и ротором необходим зазаор 0.5-0.7 мм.

Когда на электроды подается высокое напряжение, между ними возникает электрическое поле. Это поле поляризует диэлектрик, из которого состоит ротор. Поляризация диэлектрика способствует стеканию электрических зарядов с электродов на ротор. заряды приходят в движение под действием сил поля и создают крутящий момент.

По мере поворота ротора оказываются у электрода с противоположной полярностью. Сила, удерживающая заряд на ободе ротора, становиться минимальной. Это способствует переходу заряда на электрод противоположной полярности, и в цепи появляется электрический ток. на участке цепи между электродами заряды "транспортируются" вращающимся ротором. Скорость вращения двигателя стабильна и зависит от числа электродов и величины напряжения, подаваемого на них.

Мощность электростатического двигателя можно значительно повысить, если наклеить на обод ротора узкие полоски алюминиевой фольги, расстояние между которыми должно быть не менее, чем расстояние между концами электродов.

 

ЭЛЕКТРОСТАТИЧЕСКИЙ ДВИГАТЕЛЬ .

СергейСергеевич, высокий, стройный, загорелый, под пятьдесят, кандидат технических наук, заслуженный изобретатель РСФСР, автор 60 изобретений, буднично открывает портфель, вынимает несколько деталей размером с миску, легко соединяет их и втыкает штепсельную вилку в розетку сети. Так и подмывает побиться с ним об заклад, что самоделка не заработает. Очень уж она неказиста и нехитра с виду. Посмотрите, как устроен один из двигателей, а их у изобретателя с десяток (рис. 1).

 

 

электростатический двигатель своими руками

Рис. 1. Устройство нового двигателя: статор, выпрямитель и роторы - диэлектрический и металлический. Статор - это пластиковый цилиндр с электродами (проволоками) внутри, на которые поочередно поданы высокие потенциалы разного знака (красный и синий цвета).

 

 

Обычный цилиндр из капролона высотой 54 мм. На его внутренней поверхности диаметром 146 мм вдоль оси равномерно и по отдельности уложено 36 бронзовых проволок диаметром по 0,8 мм. На половину из них от выпрямителя подается высокий потенциал положительного знака, а на другую половину отрицательного. В полость цилиндра вставляется опять-таки капролоновая болванка без каких-либо электродов высотой 40 мм, диаметром 140 мм и массой 200 г. Впрочем, можно воспользоваться и алюминиевой звездочкой с 36 лучами. Вот и все премудрости.

Если вы знакомы с электротехникой, то на ум приходит ближайший аналог электростатический двигатель (рис. 2). Там тоже на статор подается высокое напряжение, но его надо подать и на ротор. А, кроме того, естественно, нужны щетки, чтобы при провороте ротора его полудиски перезарядились и снова оттолкнулись от пластинок статора.

 

 

Рис. 2. В обычном электростатическом двигателе полудиски ротора Р1 и Р2 отталкиваются от неподвижных пластинок статора C1 и С2. Щетки меняют заряды на полудиках ротора, и направление момента вращения остается неизменным.

 

 

На исключительно важной роли щеток, пожалуй, следует остановиться особо. Ведь, по существу, нам известны электромашины только переменного тока (или заряда). Машины постоянного тока (или заряда) получают из первых, дополняя их выпрямителями, механическими или электрическими. Это и понятно: немыслимо длительное время толкать ротор в одну и ту же сторону силами одного и того же тока (или заряда) либо машина должна стать неприемлемо большой, либо ток (заряд) должен быть чудовищно велик. Итак, бесщеточных машин просто быть не может, и эта истина уже многие десятки лет считается раз и навсегда доказанной. Сотни теоретиков, тысячи изобретателей сами убедились в ее правоте и убедили электриков всех последующих поколений...

Самый простой вентилятор: его ротор вращается между электродами с постоянным напряжением.

Но "чудо" все же происходит. В капролоновом цилиндре-статоре со скрипом и легким шелестом начинает набирать обороты капролоновая болванка ротор, который через несколько секунд превращается в бешено вращающийся овал. Между ротором и электродами статора проскакивают искорки, от моторчика попахивает озоном, как при грозе. Если погасить свет, кольцеобразный зазор таинственно мерцает, тихонько потрескивают электрические разряды.

Вал двигателя можно, хотя и с трудом, затормозить пальцами, ведь крутящий момент не превышает 40 - 80 Гсм. Остановленный ротор на ощупь холоден, да это и не удивительно: разные модификации двигателя потребляют мощности 4 - 6 Вт при очень малых токах (0,2 - 0,6 мА), но зато при высоких напряжениях (1 - 8 кВ).

"Ротор может вращаться в любую сторону", - говорит изобретатель. Он задерживает вал и прокручивает его в обратном направлении. Болванка снова, чуть поскрипывая, набирает бешеные обороты, 25 - 40 в секунду. Затем Сергей Сергеевич демонстрирует нам и другие машинки, созданные им совместно с Н. Тимченко. Мы соглашаемся, что дело не меняется от того, сделан ротор из диэлектрика или из металла. Только в первом случае цилиндры могут быть гладкими, а во втором обязательно лучевыми, звездообразными, словно велосипедное колесо со спицами, но без обода. Кстати, если ротор звездочка, то некоторая ориентация ее лучей способствует предпочтительному вращению в одну сторону, но противоположное перемещение по-прежнему не запрещается. Разряды с электродов статора обычно стекают навстречу движущимся точкам ротора.

Чем же поражают эти двигатели? Ну, во-первых, отсутствием щеток. Стало быть, при эксплуатации не надо беспокоиться об их истирании, изломе, износе, о потерях за счет кругового огня на коллекторе. Во-вторых, своей предельной простотой: вал с подпятниками, да статор с электродами. В-третьих, быстротой вращения ротора, причем в любую сторону куда пожелаете. Вполне возможно, что число оборотов удастся повысить еще больше, поскольку здесь нет вращающегося поля, как в машинах переменного тока, ограничений на такое увеличение не предвидится.

Теперь оставим фактическую сторону вопроса: как работает двигатель (к исследованию которого подключились десятки специалистов и уже собрали солидный экспериментальный материал). Пора ступить на зыбкую тропу гипотез: почему же он, собственно, работает? И профессионалы, и любители от науки высказали немало догадок о причинах вращения роторов. Если отбросить предположения, в которых непонятное явление описывается гораздо более непонятными воздействиями "черных дыр", пульсациями гравитационного поля, неоднородностями физического вакуума, то останется 5 - 6 добротных инженерных мнений. Вкратце о них можно сказать следующее.

По одному из предположений, сила вращения объясняется эффектом, обнаруженным Г. Герцем в 1881 году и подробно описанным его соотечественником Г. Квинке через 15 лет. Этот эффект уже неплохо изучили ученые Москвы и Минска, занятые магнитогидродинамическими машинами, жидкостными электронасосами.

 

 

 

 

Его суть сводится к спонтанному вращению диэлектрического образца в электрическом поле из-за того, что жидкая, так называемая электрореологическая, среда поляризуется, а потом смещается кулоновскими силами поля, увлекая за собой ротор. Но расчеты показывают: эти силы тяги куда меньше тех, что развивает необычный мотор. К тому же эффект Герца Квинке проявляется при много больших напряжениях (10 - 20 кВ). И еще: если на образец нанести тонкое металлическое покрытие, эффект исчезнет, а у Литовченко отлично крутятся алюминиевые звездочки. Наконец, здесь нет и речи о какой-либо специальной жидкости.

Точно так же отпадает вторая гипотеза об электрическом ветре, якобы стекающем с ротора и тянущем его реактивными силами. Ведь заряды стекают с электродов статора навстречу движению ротора, а с ротора по ходу движения. И в том, и другом случаях они должны тормозить ротор. Опять же у потоков плазмы столь малое количество движения, что оно не может быть причиной вращения, для которого, как показали измерения, создаются силы примерно 10 Г.

Еще уязвимее третье объяснение принципа действия нового мотора. Сторонники этого мнения вспоминают об опытах Отто фон Герике, вошедшего в историю своими магдебургскими полушариями (две четверки лошадей не могли разъять отвакуумированные полусферы, прижатые друг к другу атмосферным давлением). Так вот, в 1660 году Герике наэлектризовал ладонью серный шар с голову ребенка. Пушинки притягивались, а, коснувшись шара, отталкивались. Об электрическом танце бумажек знал И. Ньютон. Сегодня хорошо известно, что в электрическом поле тела поляризуются и притягиваются к заряду, источнику поля. Коснувшись, они заряжаются одноименно и потому отталкиваются.

Поначалу и сам изобретатель пытался использовать электростатическую индукцию "в лоб". Металлический шарик, бумажная лента, текстолитовая палочка метались туда-сюда между пластинами конденсатора (рис.3), В одной из ранних статей ("Явление непосредственного преобразования электрической энергии в механическую". Техника средств связи, вып. 7, 1978) описано, что от колебательного движения действительно удалось перейти к вращательному.

 

 

Рис. 3. Электрический метроном: между пластинами плоского конденсатора шарик поляризуется, притягивается к ближайшей из них, заряжается и отталкивается, касается другой, перезаряжается и снова отталкивается и т. д. Здесь можно посмотреть видеоролик эксперимента.

 

 

Но как это могло случиться? - вот в чем вопрос. Казалось, что проскоки обеспечиваются инерцией и упругостью ротора. Но если бы ротор смещался за счет притяжения к статору наведенных зарядов, то, поколебавшись и затратив на трение первичный импульс, он, в конце концов, занял бы устойчивое положение, электрод против электрода, попав в потенциальную яму. Но этого нет, ротор раскручивается, стало быть, действуют какие то другие силы. Вот их то и надо найти.

Еще одну, четвертую, гипотезу можно назвать "разряд как щетка". Наведенный заряд после приближения к электроду статора якобы стекает с ротора, а тот, уже нейтральный, по инерции прокручивается дальше. Следующий, очередной электрод вновь наводит на роторе заряды и притягивает их к себе вместе с ним. Они опять стекают, ротор проскакивает и т. д.

Бесспорно, столь "умно" ведя себя, разряд действительно сыграет роль электрощетки, дергая ротор в одну сторону. Если бы это было на самом деле, изобретение такого разрядного выпрямителя принесло бы в технике немало пользы. Что-то не видно причин предпочтительной односторонней зарядки-разрядки, да и распределение зарядов на статоре и роторе должно быть строго равномерным.

С другой стороны, полупериодный разрядный выпрямитель кажется правдоподобным. Ведь сочетание напряжений, токов и зазоров в новом двигателе как раз соответствует зоне зажигания самостоятельного разряда в воздухе (так называемая кривая Пашена). Мало того, работа двигателя явно зависит от погоды: давления, влажности, температуры. Это ли не свидетельство "разрядной" причины вращения, подтверждение коммутаторной роли тлеющего разряда?

Но не менее убедительно считать, что разряды просто маскируют истинные причины смещения ротора. Мало того, разрядные токи ухудшают экономичность работы двигателя: в одной из моделей механическая мощность на валу равна 0,16 Вт, а от высоковольтного источника потребляется 4,8 Вт. Несложно видеть, что КПД не превышает 3,4%. Конечно, для массового двигателя эта цифра мизерна. Вот бы убрать разряды с электродов статора! Если ротор будет крутиться по-прежнему, значит, гипотеза "разряд как щетка" отпадает. К тому же КПД неминуемо вырастет!

Пятое предположение появляется на базе следующих данных. Измерения, проделанные Литовченко, показали, что установившиеся обороты двигателя зависят от квадрата напряжения на электродах. Растет напряжение вдвое, обороты возрастают в 4 раза. Мало того, и вращающий момент на валу также пропорционален квадрату напряжения. Вывод очевиден: величины зарядов на статоре и роторе прямо зависят от напряжения. А следовательно, силы вращения зависят от произведения зарядов, то есть причина появления этих сил явно кулоновская. Попросту говоря, именно притяжение зарядов на электродах статора и зарядов, как-то наведенных на роторе, обеспечивает раскрутку. Теперь надо бы отыскать причину уменьшения этих сил после того, как луч ротора минует электрод статора. Но причина эта уже известна давно. Заряды на электродах статора вовсе не постоянны во времени, они беспрерывно пульсируют, ибо меняются электрические параметры цепи высокого напряжения!

Каждый луч ротора меняет емкость зазора между соседними электродами. Значит, в цепи статора потечет ток, подзаряжающий электроды. Частота пульсации тока зависит от емкости и индуктивности контура, а также жестко связана с оборотами ротора. Когда фазы электрических и механических колебаний окажутся смещенными на 20-300, подтягивание ротора станет сильнее торможения и он ускорится.

Если это все верно, то есть напряжение на электродах статора меняется циклично с зазором, то Литовченко изобрел автоколебательную электромеханическую систему, состоящую из ротора и электрической цепи статора. Примерно такой преобразователь изображен на рисунке 4. Источник энергии - выпрямитель или заряженный конденсатор (проверено на опыте). Возбуждаются колебания тока в статоре за счет "наведения зарядов на лучах ротора. Луч ротора втягивается в зазор, емкость статорного контура растет, заряд статорных электродов увеличивается, сила притяжения ротора статором становится больше.

Наконец луч ротора проскакивает электрод статора, силы между ними ослабевают, потому что заряд спадает по величине. Ротор раскручивается все быстрее, пока трение в осях не уравновесит момент вращения. Несложно видеть, что в статорной цепи устанавливаются мало затухающие колебания тока, зависящие в основном от напряжения, числа электродов, инерции ротора и трения в осях. Все это можно измерить экспериментальным путем, примерно этим и заняты заинтересованные специалисты.

 

 

Рис. 4. Автоколебательный электромеханический преобразователь с самовозбуждением за счет электростатического наведения: а)расчетная модель, б)колебания тока в статоре, в)механическое вращение ротора с частотой w, г) фазовая плоскость "ток - заряд конденсатора".

 

 

 

Общая математическая теория автоколебаний разработана детально, но аналитические решения нелинейных дифференциальных уравнений второго порядка удаются нечасто. Автоколебательные преобразователи применяются весьма широко это анкерные часовые механизмы, радиотехнические ламповые генераторы колебаний. В некоторой степени новый двигатель можно уподобить параметрическому генератору, построенному в 1932 году Л.И. Мандельштамом и Н.Д. Папалекси. И тут и там меняются емкости контура, правда, по разным причинам. Энергия забирается либо от механического привода, либо от высоковольтного источника. Очевидна аналогия нового двигателя и с механизмами, использующими вынужденные колебания, только вместо навязывания заданной частоты электрическим источником она подбирается сама собой вместе с механической частотой вращения ротора.

 

 

 

 

Любопытно, что в данных опытах столбики масла или подкрашенного воздуха колеблются около электродов, стало быть, в статорной цепи токи пульсируют. Нетрудно заметить, в последних рассуждениях о принципе работы двигателя мы исходили из того, что ротор металлический, звездообразный. Если же ротор диэлектрическая болванка, то картина хотя и становится несколько сложнее, но не теряет своей наглядности. При вращении сплошной ротор сильно деформируется, стало быть, зазоры меняются, а вместе с ними и емкость. Механизм действия остается тем же, но частоты автоколебаний выше, а фазы и амплитуды меньше. Разделять диэлектрический ротор на части нет нужды, он сам вибрирует, деформируется и гнется. Кстати, вот почему при работе двигателя слышны щелчки, скрипы и удары от зацеплений.

Итак, похоже, что изобретен бесколлекторный автоколебательный преобразователь электрической и механической энергии. В нем оригинально меняется емкость колебательного контура, за счет электростатической индукции. Удачно подобраны форма и материал роторов эмпирическим путем выполнено необходимое условие самовозбуждения: ведь жесткий массивный ротор неизбежно остановится, попав в равновесное положение.

Плохо то, что у конструкции низкий КПД, но это, как говорится, дело наживное всегда отыщутся способы повышения экономичности работы. Даже если устранить разряды, потери на трение в осях ротора и электрические потери в статорном контуре останутся. Обороты двигателя довольно стабильны, но давать нагрузку на вал опасно: из-за мягкой нагрузочной характеристики резонансного типа (резонанс напряжений) обороты резко изменяются. Вот почему силовые электродвигатели могут и не получиться, хотя в принципе ничто не мешает ввести быстродействующее регулирование напряжения на статоре. Возможно, что новые преобразователи найдут себе место в слаботочной технике в виде генераторов колебаний, регуляторов, стабилизаторов электрической частоты, задатчиков механических оборотов.

Но не забудьте все это лишь предположения. Поиски продолжаются. Придя домой после работы, Литовченко запирается в ванной комнате, где что-то паяет, вытачивает и клеит. Его засыпали письмами энтузиасты. К исследованиям подключились десятки научных лабораторий. И вот последние новости из Калуги: если на статор подать не постоянное, а переменное напряжение, двигатель работает лучше!

Подача переменного напряжения на электроды статора чрезвычайно расширит круг потребителей нового двигателя, потому что теперь оказываются излишними выпрямители. Упрощение и удешевление и без того недорогой конструкции значительное, а физика процесса от этого вряд ли меняется. Действительно, в промышленности переменным считается напряжение, величина которого пульсирует 50 раз в секунду. Для нас эта частота представляется огромной, но для электронов, создающих электрические токи, она почти незаметна. Поэтому столь медленно меняющиеся электрические поля все равно принято считать статическими, точнее квазистатическими. Вот почему в поисках объяснения принципа работы двигатель по-прежнему остается в классе машин электростатических, а лучшеквази электростатических.

В электротехнике что-то не видно электрических машин столь же простой конструкции. Самые массовые двигатели, на плечах которых поистине держится вся промышленность мира, асинхронные. В них ротор предельно прост, его без особой натяжки можно назвать металлической болванкой. А электростатические машинки проще! Это ли не событие? Поскольку в них вообще нет никаких обмоток, отпадает надобность в электроизоляции проводников самой трудоемкой работе при изготовлении электродвигателей любого типа.

Второй довод: кулоновские силы неизмеримо больше магнитных, но это преимущество обычно не используется из-за трудностей удержания зарядов на проводниках. Пробой изоляционных промежутков сводит на нет все достоинства электростатических машин. Досадно, но располагаемые нами материалы не позволяют широко использовать силы Кулона, и мы вынуждены обходиться куда меньшими силами Ампера Лоренца.

Отсюда как раз проистекает третий довод в пользу нового электромотора: электротехника неминуемо сместится в сторону пополнения электростатическими конструкциями, радикально изменив свой облик в ближайшие десятилетия. С помощью электростатических полей инженеры уже научились окрашивать, прясть, изготавливать искусственный ворс, улавливать пыль дымовых газов, но это лишь первые весточки грядущий весны под названием "электротехнология".

'

industriya.com


Смотрите также