ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Тепловые двигатели. Термодинамические циклы. Цикл Карно. Двигатель карно


Цикл Карно. Газ, совершающий цикл Карно :: SYL.ru

Наиболее эффективным циклом теплового двигателя является тепловой цикл Карно. Он состоит из двух изотермических и двух адиабатических процессов. Второе начало термодинамики устанавливает, что не вся поставляемая в тепловой двигатель теплота может быть использована для выполнения работы. КПД такого двигателя, реализующего цикл Карно, дает предельное значение той части ее, которая может быть использована для этих целей.

Несколько слов об обратимости физических процессов

Физический (а в узком смысле термодинамический) процесс в некоторой системе тел (включающей твердые тела, жидкости, газы) является обратимым, если после того, как он был осуществлен, можно восстановить состояние, в котором система находилась до его начала. Если она не может вернуться в исходное состояние в конце процесса, то он является необратимым.

Обратимые процессы не встречаются в природе. Это идеализированная модель реальности, своеобразный инструмент ее исследования в физике. Примером такого процесса является цикл Карно. Идеальная тепловая машина - это модель реальной системы, реализующая процесс, носящий имя французского физика Сади Карно, который его впервые описал.

цикл карно идеальная тепловая машина

Что вызывает необратимость процессов?

Факторы, которые приводят к ней, включают в себя:

Процесс необратим, если в наличии любой из этих факторов. Идеальный цикл Карно является обратимым процессом.

Внутренне и внешне обратимые процессы

Когда процесс осуществляется, факторы его необратимости могут находиться в рамках самой системы тел, а также в ее окрестности. Он называется внутренне обратимым, если система может быть восстановлена в то же самое состояние равновесия, в котором она находилась в его начале. При этом внутри нее не может быть факторов необратимости, пока длится рассматриваемый процесс.

Если факторы необратимости отсутствуют за пределами границ системы в процессе, то он называется внешне обратимым.

Процесс называется обратимым полностью, если он и внутренне, и внешне обратим.

Что такое цикл Карно?

В этом процессе, реализуемом идеальным тепловым двигателем, рабочее тело - нагретый газ - выполняет механическую работу за счет теплоты, получаемой из высокотемпературного теплового резервуара (нагревателя), а также отдает теплоту низкотемпературному тепловому резервуару (холодильнику).

идеальный газ совершает цикл карно

Цикл Карно является одним из самых известных обратимых циклов. Он состоит из четырех обратимых процессов. И хотя подобные циклы недостижимы на практике, но они задают верхние пределы производительности реальных циклов. В теории показано, что данный прямой цикл осуществляет с предельно возможной эффективностью преобразование тепловой энергии (теплоты) в механическую работу.

Рассмотрим идеальный тепловой двигатель, содержащий цилиндр с газом и поршнем. Четырьмя обратимыми процессами цикла работы такой машины являются:

1. Обратимое изотермическое расширение. В начале процесса газ в цилиндре имеет температуру TH. Через стенки цилиндра он контактирует с нагревателем, имеющим с газом бесконечно малую разность температур. Следовательно, соответствующий фактор необратимости в виде конечной разности температур отсутствует, и имеет место обратимый процесс теплопередачи от нагревателя к рабочему телу - газу. Его внутренняя энергия растет, он расширяется медленно, выполняя при этом работу по перемещению поршня и оставаясь при постоянной температуре TH. Общее количество теплоты, передаваемой газу нагревателем во время этого процесса, равно QH, однако только часть ее в дальнейшем преобразуется в работу.

тепловой цикл карно

2. Обратимое адиабатическое расширение. Нагреватель удаляют, и газ, совершающий цикл Карно, медленно расширяется далее адиабатическим образом (с неизменной энтропией) без теплообмена через стенки цилиндра или поршень. Его работа по перемещению поршня приводит к уменьшению внутренней энергии, что выражается в снижении температуры от TH до TL. Если предположить, что поршень движется без трения, то процесс является обратимым.

идеальный цикл карно

3. Обратимое изотермическое сжатие. Цилиндр приводится в контакт с холодильником, имеющим температуру ТL. Поршень начинает толкать обратно внешняя сила, выполняющая работу по сжатию газа. При этом его температура остается равной ТL, а процесс, включающий теплопередачу от газа к холодильнику и сжатие, остается обратимым. Общее количество теплоты, отводимой от газа в холодильник, равно QL.

цикл карно тепловой машины

4. Обратимое адиабатическое сжатие. Холодильник удаляется, и газ медленно сжимается далее адиабатическим образом (при постоянной энтропии). Его температура поднимается от TL до ТН. Газ возвращается в исходное состояние, что завершает цикл.

газ совершающий цикл карно

Принципы Карно

Если процессы, которые составляют цикл Карно тепловой машины, являются обратимыми, то она носит наименование обратимой тепловой машины. В противном случае имеем ее необратимый вариант. На практике все тепловые двигатели являются таковыми, поскольку обратимых процессов не существует в природе.

Карно сформулировал принципы, являющиеся следствием второго начала термодинамики. Они выражаются следующим образом:

1. КПД необратимого теплового двигателя всегда меньше, чем у обратимого, работающего от тех же двух тепловых резервуаров.

2. КПД всех обратимых тепловых двигателей, работающих от тех же двух тепловых резервуаров, являются одинаковыми.

То есть КПД обратимой тепловой машины не зависит от используемого рабочего тела, его свойств, длительности цикла работы и типа теплового двигателя. Он является функцией только температуры резервуаров:

η = 1 - QL / QН = g (ТН, TL)

или

QH/QL = f (TH,TL),

где QL - теплота, передаваемая низкотемпературному резервуару, который имеет температуру TL; QH - теплота, передаваемая от высокотемпературного резервуара, который имеет температуру ТH; g, F - любые функции.

Тепловой двигатель Карно

Им называется такая тепловая машина, которая работает на обратимом цикле Карно. Тепловой КПД любой тепловой машины, обратимой или нет, определяется как

ηth = 1 - QL/QH,

где QL и QH являются количествами теплоты, передаваемыми в цикле низкотемпературному резервуару при температуре ТL и от высокотемпературного резервуара при температуре ТН соответственно. Для обратимых тепловых машин тепловой КПД может быть выражен через абсолютные температуры этих двух резервуаров:

ηth = 1 - TL/TH.

КПД теплового двигателя Карно является самым высоким КПД, которого может достигать тепловой двигатель, работая между высокотемпературным резервуаром при температуре ТН и низкотемпературным резервуаром при температуре ТL. Все необратимые тепловые двигатели, работающие между теми же двумя резервуарами, имеют более низкий КПД.

Обратный процесс

Рассматриваемый цикл является полностью обратимым. Его холодильный вариант может быть достигнут, если реверсировать все процессы, входящие в него. При этом работа цикла Карно используется для создания разности температур, т.е. тепловой энергии. Во время обратного цикла количество теплоты QL газ получает из низкотемпературного резервуара, а количество теплоты QH отдается им в высокотемпературный тепловой резервуар. Энергия Wnet,in требуется, чтобы выполнить цикл. Она равна площади фигуры, ограниченной двумя изотермами и двумя адиабатами. PV-диаграммы прямого и обратного цикла Карно показаны на рисунке ниже.

работа цикла карно

Холодильник и тепловой насос

Холодильник или тепловой насос, реализующий обратный цикл Карно, называется холодильником Карно или тепловым насосом Карно.

КПД обратимого или необратимого холодильника (ηR)или теплового насоса (ηHP) определяется как:

ηR = 1/((QH/QL) - 1),

ηHP = 1/(1-(QL/QH)),

где QН - количество теплоты, отводимое в высокотемпературной резервуар; QL - количество тепла, получаемое из низкотемпературного резервуара.

Для обратимых холодильников или тепловых насосов, таких как холодильники Карно или тепловые насосы Карно, КПД может быть выражен через абсолютные температуры:

ηR= 1/((TH/TL) - 1),

ηHP = 1/(1 - (TL/TH)),

где ТН = абсолютная температура в высокотемпературном резервуаре; TL = абсолютная температура в низкотемпературном резервуаре.

ηR (или ηHP) являются самыми высокими КПД холодильника (или теплового насоса), которые они могут достигать, работая между высокотемпературным резервуаром при температуре TH и низкотемпературным резервуаром при температуре ТL. Все необратимые холодильники или тепловые насосы, работающие между теми же двумя резервуарами, имеют более низкие КПД.

Бытовой холодильник

Основная идея домашнего холодильника проста: он использует испарение хладагента для поглощения тепла от охлаждаемого пространства в холодильнике. Есть четыре основные части в любом холодильнике:

Обратный цикл Карно при работы холодильника выполняется в следующем порядке:

www.syl.ru

Цикл Карно – теоретические основы устройства и работы всех двигателей внутреннего сгорания

Среди всех циклических термодинамических процессов особое теоретическое значение и практическое применение имеет цикл Карно. Часто его называют непревзойденным, великим, идеальным и т. д. А многим он вообще кажется чем-то загадочным и непонятным. Однако если верно расставить все акценты, то моментально откроются вся простота, гениальность и красота этого изобретения, которое было открыто французским ученым и инженером Сади Карно. И станет понятно, что ничего сверхъестественного в предложенном им процессе нет, а есть только максимально эффективное использование некоторых законов природы.

Цикл Карно

Так что же на самом деле собой представляет знаменитый и таинственный цикл Карно? Его можно определить как квазистатический процесс, основанный на приведении термодинамической системы в тепловой контакт с парой резервуаров-термостатов, имеющих постоянные и устойчивые температурные значения. При этом предполагается, что температура первого (нагревателя) превышает аналогичный показатель второго (холодильника). Цикл Карно заключается в том, что сначала термодинамическая система, изначально имеющая определенное тепловое значение, вступает в контакт с нагревателем. Затем путем бесконечно медленного уменьшения давления в ней вызывается квазистатическое расширение, сопровождаемое заимствованием теплоты от нагревателя и сопротивлением внешнему давлению.

КПД цикла Карно

После этого система изолируется, что опять же вызывает в ней квазистатическое расширение по адиабате, пока ее температура не достигнет аналогичных показателей холодильника. При таком типе расширения термодинамической системой также совершается некая работа сопротивления внешнему давлению. В таком состоянии система и приводится в контакт с холодильником, при этом путем непрерывного увеличения давления она сжимается до определенного момента, вследствие чего потом в полном объеме отдает второму резервуару тепловую энергию, позаимствованную от нагревателя. Цикл Карно уникален тем, что не сопровождается какой-либо потерей тепла. Теоретически такую схему можно назвать вечным двигателем. Это все потому, что термический КПД цикла Карно, зависящий исключительно от температур пары резервуаров, всегда будет максимально возможным. Однако пока никто не сумел создать машину, тепловая эффективность которой превышала бы тридцать процентов от допускаемой цикличным процессом Сади Карно.

Обратный цикл Карно

А этот процесс называют идеальным, поскольку он намного лучше других циклов способен превращать теплоту в полезную работу. С другой стороны, из-за трудностей в организации и проведении изотермических процессов его применение в реальных двигателях чрезвычайно затруднено. Для максимальной эффективности теплопередачи такую машину требуется полностью изолировать от внешней среды, что в действительности практически невозможно.

Обратный цикл Карно лежит в основе принципа действия теплового насоса, который, в отличие от холодильной машины, должен как можно больше отдать энергии какому-либо горячему объекту, например отопительной системе. Некоторая часть тепла заимствуется из внешней среды, имеющей более низкую температуру, остальная доля необходимой энергии выделяется при выполнении механической работы, например компрессором.

fb.ru

Тепловые двигатели. Термодинамические циклы. Цикл Карно

Тепловым двигателем называется устройство, способное превращать полученное количество теплоты в механическую работу. Механическая работа в тепловых двигателях производится в процессе расширения некоторого вещества, которое называется рабочим телом. В качестве рабочего тела обычно используются газообразные вещества (пары бензина, воздух, водяной пар). Рабочее тело получает (или отдает) тепловую энергию в процессе теплообмена с телами, имеющими большой запас внутренней энергии. Эти тела называются тепловыми резервуарами.

Как следует из первого закона термодинамики, полученное газом количество теплоты Q полностью превращается в работу A при изотермическом процессе, при котором внутренняя энергия остается неизменной (ΔU = 0):

Но такой однократный акт преобразования теплоты в работу не представляет интереса для техники. Реально существующие тепловые двигатели (паровые машины, двигатели внутреннего сгорания и т. д.) работают циклически. Процесс теплопередачи и преобразования полученного количества теплоты в работу периодически повторяется. Для этого рабочее тело должно совершать круговой процесс или термодинамический цикл, при котором периодически восстанавливается исходное состояние. Круговые процессы изображаются на диаграмме (p, V) газообразного рабочего тела с помощью замкнутых кривых (рис. 3.11.1). При расширении газ совершает положительную работу A1, равную площади под кривой abc, при сжатии газ совершает отрицательную работу A2, равную по модулю площади под кривой cda. Полная работа за цикл A = A1 + A2 на диаграмме (p, V) равна площади цикла. Работа A положительна, если цикл обходится по часовой стрелке, и A отрицательна, если цикл обходится в противоположном направлении.

Рисунок 3.11.1.

Круговой процесс на диаграмме (p, V). abc – кривая расширения, cda – кривая сжатия. Работа A в круговом процессе равна площади фигуры abcd

Общее свойство всех круговых процессов состоит в том, что их невозможно провести, приводя рабочее тело в тепловой контакт только с одним тепловым резервуаром. Их нужно, по крайней мере, два. Тепловой резервуар с более высокой температурой называют нагревателем, а с более низкой – холодильником. Совершая круговой процесс, рабочее тело получает от нагревателя некоторое количество теплоты Q1 > 0 и отдает холодильнику количество теплоты Q2 < 0. Полное количество теплоты Q, полученное рабочим телом за цикл, равно

Q = Q1 + Q2 = Q1 – |Q2|.

При обходе цикла рабочее тело возвращается в первоначальное состояние, следовательно, изменение его внутренней энергии равно нулю (ΔU = 0). Согласно первому закону термодинамики,

Отсюда следует:

A = Q = Q1 – |Q2|.

Работа A, совершаемая рабочим телом за цикл, равна полученному за цикл количеству теплоты Q. Отношение работы A к количеству теплоты Q1, полученному рабочим телом за цикл от нагревателя, называется коэффициентом полезного действия η тепловой машины:

Коэффициент полезного действия указывает, какая часть тепловой энергии, полученной рабочим телом от «горячего» теплового резервуара, превратилась в полезную работу. Остальная часть (1 – η) была «бесполезно» передана холодильнику. Коэффициент полезного действия тепловой машины всегда меньше единицы (η < 1). Энергетическая схема тепловой машины изображена на рис. 3.11.2.

Рисунок 3.11.2.

Энергетическая схема тепловой машины: 1 – нагреватель; 2 – холодильник; 3 – рабочее тело, совершающее круговой процесс. Q1 > 0, A > 0, Q2 < 0; T1 > T2

В двигателях, применяемых в технике, используются различные круговые процессы. На рис. 3.11.3 изображены циклы, используемые в бензиновом карбюраторном и в дизельном двигателях. В обоих случаях рабочим телом является смесь паров бензина или дизельного топлива с воздухом. Цикл карбюраторного двигателя внутреннего сгорания состоит из двух изохор (1–2, 3–4) и двух адиабат (2–3, 4–1). Дизельный двигатель внутреннего сгорания работает по циклу, состоящему из двух адиабат (1–2, 3–4), одной изобары (2–3) и одной изохоры (4–1). Реальный коэффициент полезного действия у карбюраторного двигателя порядка 30 %, у дизельного двигателя – порядка 40 %.

Рисунок 3.11.3.

Циклы карбюраторного двигателя внутреннего сгорания (1) и дизельного двигателя (2)

В 1824 году французский инженер С. Карно рассмотрел круговой процесс, состоящий из двух изотерм и двух адиабат, который сыграл важную роль в развитии учения о тепловых процессах. Он называется циклом Карно (рис. 3.11.4).

Рисунок 3.11.4.

Цикл Карно

Цикл Карно совершает газ, находящийся в цилиндре под поршнем. На изотермическом участке (1–2) газ приводится в тепловой контакт с горячим тепловым резервуаром (нагревателем), имеющим температуру T1. Газ изотермически расширяется, совершая работу A12, при этом к газу подводится некоторое количество теплоты Q1 = A12. Далее на адиабатическом участке (2–3) газ помещается в адиабатическую оболочку и продолжает расширяться в отсутствие теплообмена. На этом участке газ совершает работу A23 > 0. Температура газа при адиабатическом расширении падает до значения T2. На следующем изотермическом участке (3–4) газ приводится в тепловой контакт с холодным тепловым резервуаром (холодильником) при температуре T2 < T1. Происходит процесс изотермического сжатия. Газ совершает работу A34 < 0 и отдает тепло Q2 < 0, равное произведенной работе A34. Внутренняя энергия газа не изменяется. Наконец, на последнем участке адиабатического сжатия газ вновь помещается в адиабатическую оболочку. При сжатии температура газа повышается до значения T1, газ совершает работу A41 < 0. Полная работа A, совершаемая газом за цикл, равна сумме работ на отдельных участках:

A = A12 + A23 + A34 + A41.

На диаграмме (p, V) эта работа равна площади цикла.

Процессы на всех участках цикла Карно предполагаются квазистатическими. В частности, оба изотермических участка (1–2 и 3–4) проводятся при бесконечно малой разности температур между рабочим телом (газом) и тепловым резервуаром (нагревателем или холодильником).

Как следует из первого закона термодинамики, работа газа при адиабатическом расширении (или сжатии) равна убыли ΔU его внутренней энергии. Для 1 моля газа

A = –ΔU = –CV (T2 – T1),

где T1 и T2 – начальная и конечная температуры газа.

Отсюда следует, что работы, совершенные газом на двух адиабатических участках цикла Карно, одинаковы по модулю и противоположны по знакам

По определению, коэффициент полезного действия η цикла Карно есть

С. Карно выразил коэффициент полезного действия цикла через температуры нагревателя T1 и холодильника T2:

Цикл Карно замечателен тем, что на всех его участках отсутствует соприкосновение тел с различными температурами. Любое состояние рабочего тела (газа) на цикле является квазиравновесным, т. е. бесконечно близким к состоянию теплового равновесия с окружающими телами (тепловыми резервуарами или термостатами). Цикл Карно исключает теплообмен при конечной разности температур рабочего тела и окружающей среды (термостатов), когда тепло может передаваться без совершения работы. Поэтому цикл Карно – наиболее эффективный круговой процесс из всех возможных при заданных температурах нагревателя и холодильника:

ηКарно = ηmax.

Любой участок цикла Карно и весь цикл в целом может быть пройден в обоих направлениях. Обход цикла по часовой стрелке соответствует тепловому двигателю, когда полученное рабочим телом тепло частично превращается в полезную работу. Обход против часовой стрелки соответствует холодильной машине, когда некоторое количество теплоты отбирается от холодного резервуара и передается горячему резервуару за счет совершения внешней работы. Поэтому идеальное устройство, работающее по циклу Карно, называют обратимой тепловой машиной.

В реальных холодильных машинах используются различные циклические процессы. Все холодильные циклы на диаграмме (p, V) обходятся против часовой стрелки. Энергетическая схема холодильной машины представлена на рис. 3.11.5.

Рисунок 3.11.5.

Энергетическая схема холодильной машины. Q1 < 0, A < 0, Q2 > 0, T1 > T2

Устройство, работающее по холодильному циклу, может иметь двоякое предназначение. Если полезным эффектом является отбор некоторого количества тепла |Q2| от охлаждаемых тел (например, от продуктов в камере холодильника), то такое устройство является обычным холодильником. Эффективность работы холодильника можно охарактеризовать отношением

т. е. эффективность работы холодильника – это количество тепла, отбираемого от охлаждаемых тел на 1 джоуль затраченной работы. При таком определении βх может быть и больше, и меньше единицы. Для обращенного цикла Карно

Если полезным эффектом является передача некоторого количества тепла |Q1| нагреваемым телам (например, воздуху в помещении), то такое устройство называется тепловым насосом. Эффективность βТ теплового насоса может быть определена как отношение

т. е. количеством теплоты, передаваемым более теплым телам на 1 джоуль затраченной работы. Из первого закона термодинамики следует:

следовательно, βТ всегда больше единицы. Для обращенного цикла Карно

www.its-physics.org

Цикл Карно — Мегаэнциклопедия Кирилла и Мефодия — статья

Карно цикл (схема) Цикл Карно́ — обратимый круговой процесс, в котором совершается превращение теплоты в работу (или работы в теплоту). Состоит из последовательно чередующихся двух изотермических и двух адиабатных процессов, где рабочее тело — идеальный газ. Впервые рассмотрен Н. Л. С. Карно (1824) в связи с определением КПД тепловых машин. Цикл Карно — самый эффективный цикл из всех возможных, он имеет максимальный КПД.

Из всех периодически действующих тепловых машин, имеющих одинаковые температуры нагревателей (Т1) и холодильников (Т2), наибольшим КПД обладают обратимые машины; при этом КПД обратимых машин, работающих при одинаковых температурах нагревателей (Т1) и холодильников (Т2), равны друг другу и не зависят от природы рабочего тела (тела, совершающего круговой процесс и обменивающегося энергией с другими телами).

КПД цикла Карно ν не зависит от свойств рабочего тела (пара, газа и т. п.) и определяется температурами теплоотдатчика Т1 и теплоприемника Т2, ν = (Т1-Т2)/Т1. КПД любой тепловой машины не может быть больше КПД цикла Карно (при тех же Т1 и Т2).

Термодинамический процесс в идеальной тепловой машине должен протекать настолько медленно, чтобы его можно было рассматривать как последовательный переход от одного равновесного состояния к другому. Предполагается, что этот процесс является обратимым, то есть его можно провести в обратном направлении без изменения совершенной работы и переданного количества теплоты. В машине Карно осуществляется круговой процесс или термодинамический цикл, при котором система после ряда преобразований возвращается в исходное состояние.

Рабочее тело последовательно находится в тепловом контакте с двумя тепловыми резервуарами (имеющими постоянные температуры) — нагревателем и холодильником с T2 < T1. Превращение теплоты в работу сопровождается переносом рабочим телом определенного количества теплоты от нагревателя к холодильнику.

Цикл Карно состоит из двух изотерм и двух адиабат. Сначала газ расширяется изотермически при температуре T1. При этом он получает от нагревателя количество теплоты Q1. Затем газ расширяется адиабатно, но не обменивается теплотой с окружающими телами. Далее следует изотермическое сжатие газа при температуре Т2, при этом газ отдает холодильнику количество теплоты Q2. В финале газ сжимается адиабатно и возвращается в начальное состояние. Коэффициент полезного действия машины Карно равен отношению разности абсолютных температур нагревателя и холодильника к абсолютной температуре нагревателя. Площадь, ограниченная изотермами и адиабатами, численно равно работе цикла Карно.

Термический КПД цикла Карно \(\eta = {Q_1 - Q_2 \over Q_1} = {T_1 - T_2 \over T_1}\)

Q1 — подводимое количество теплоты;

Q2 — отводимое количество теплоты.

\(\eta\)— функция только двух температур, не зависит от устройства машины и вида топлива.

Все процессы в идеальной тепловой машине являются равновесными и обратимыми. В реальности все термодинамические процессы имеют необратимый характер.

Цикл Карно обратим и его можно осуществить в обратной последовательности, то есть в направлении ADCBA. При этом количество теплоты dQ2 отбирается у холодильника и передается нагревателю за счет затраченной работы dA. Машина, работающая по обратному циклу, называется холодильной машиной. А тепловой двигатель в обратном режиме работает как идеальная холодильная машина.

Редактировать

Последовательность термодинамических процессов в цикле Карно

Изотермическое расширение при температуре T1 (AB)

\(T_1 = const; V_2 > V_1; p_2 < p_1. \)

p — давление. V — объем.

Подведенная теплота Q1 равна работе расширения А12, совершенной газом при переходе из состояния A в состояние B:

\(Q_1 = A_{12}.\)

Адиабатное расширение Q = 0 (BC)

\(T_2 < T_1; V_3 > V_2; p_3 < p_2.\)

Теплообмн с окружающей средой отсутсвует, и работа расширения A23 совершается за счет изменения внутренней энергии:

\(A_{23} = {-\Delta U}\)

Изотермическое сжатие при температуре T2 (CD)

\(T_2 = const; V_4 < V_3; p_4 > p_3.\)

Количество теплоты Q2, отданное газом холодильнику при изотермическом сжатии, равно работе сжатия A34.

\(A_{34} = -Q_2.\)

Адиабатное сжатие Q = 0 (DA)

\(T_1 > T_2; V_1 < V_4; p_1 > p_4.\)

Работа адиабатного сжатия

\(A_{41} = -A_{23}.\)

КПД тепловых двигателей в процентах

ДвигательКПД, %
Паровая машина1
Паровоз8
Карбюраторный двигатель20-30
Газовая турина36
Паровая турбина35-46
Ракетный двигатель на жидком топливе47

Для повышения КПД теплового двигателя следует понижать температуру холодильника и увеличивать температуру нагревателя.

Цикл Карно сыграл важную роль в установлении второго начала термодинамики: с его помощью была доказана эквивалентность формулировок К. Клаузиуса и У. Томпсона. Цикл Карно был применен для определения абсолютной термодинамической шкалы температур, часто использовался для вывода различных термодинамических соотношений.

  1. Справочник школьника по физике 7-11 классы. Т.И. Тимофеева. Москва: Оникс 21 век. 2005.
  2. В.А. Касьянов. Физика 10 класс. Дрофа. 2002
  3. Физический энциклопедический словарь. М: Большая российская энциклопедия, 1995.

megabook.ru

15. Тепловой двигатель. Цикл Карно и его кпд.

Тепловой двигатель - двигатель, в котором происходит превращение внутренней энергии топлива, которое сгорает, в механическую работу.

Любой тепловой двигатель состоит из трех основных частей: нагревателя, рабочего тела (газ, жидкость и др.) и холодильника. В основе работы двигателя лежит циклический процесс (это процесс, в результате которого система возвращается в исходное состояние).

Цикл Карно

В тепловых двигателях стремятся достигнуть наиболее полного превращения тепловой энергии в механическую. Максимальное КПД.

На рисунке изображены циклы, используемые в бензиновом карбюраторном двигателе и в дизельном двигателе. В обоих случаях рабочим телом является смесь паров бензина или дизельного топлива с воздухом. Цикл карбюраторного двигателя внутреннего сгорания состоит из двух изохор (1–2, 3–4) и двух адиабат (2–3, 4–1). Дизельный двигатель внутреннего сгорания работает по циклу, состоящему из двух адиабат (1–2, 3–4), одной изобары (2–3) и одной изохоры (4–1). Реальный коэффициент полезного действия у карбюраторного двигателя порядка 30%, у дизельного двигателя – порядка 40 %.

Французский физик С.Карно разработал работу идеального теплового двигателя. Рабочую часть двигателя Карно можно представить себе в виде поршня в заполненном газом цилиндре. Поскольку двигатель Карно — машина чисто теоретическая, то есть идеальная, силы трения между поршнем и цилиндром и тепловые потери считаются равными нулю. Механическая работа максимальна, если рабочее тело выполняет цикл, состоящий из двух изотерм и двух адиабат. Этот цикл называют циклом Карно.

участок 1-2: газ получает от нагревателя количество теплоты Q1 и изотермически расширяется при температуре T1

участок 2-3: газ адиабатически расширяется, температура снижается до температуры холодильника T2

участок 3-4: газ экзотермически сжимается, при этом он отдает холодильнику количество теплоты Q2

участок 4-1: газ сжимается адиабатически до тех пор, пока его температура не повысится до T1.

Работа, которую выполняет рабочее тело - площадь полученной фигуры 1234.

Функционирует такой двигатель следующим образом:

1. Сначала цилиндр вступает в контакт с горячим резервуаром, и идеальный газ расширяется при постоянной температуре. На этой фазе газ получает от горячего резервуара некое количество тепла.

2. Затем цилиндр окружается идеальной теплоизоляцией, за счет чего количество тепла, имеющееся у газа, сохраняется, и газ продолжает расширяться, пока его температура не упадет до температуры холодного теплового резервуара.

3. На третьей фазе теплоизоляция снимается, и газ в цилиндре, будучи в контакте с холодным резервуаром, сжимается, отдавая при этом часть тепла холодному резервуару.

4. Когда сжатие достигает определенной точки, цилиндр снова окружается теплоизоляцией, и газ сжимается за счет поднятия поршня до тех пор, пока его температура не сравняется с температурой горячего резервуара. После этого теплоизоляция удаляется и цикл повторяется вновь с первой фазы.

КПД цикла Карно не зависит от вида рабочего тела

для холодильной машины

В реальных тепловых двигателях нельзя создать условия, при которых их рабочий цикл был бы циклом Карно. Так как процессы в них происходят быстрее, чем это необходимо для изотермического процесса, и в то же время не настолько быстрые, чтоб быть адиабатическими.

studfiles.net

67.Тепловой двигатель, принцип работы и принцип карно.

Вечный двигатель второго рода – периодически действующий двигатель, совершающий работу за счёт получения теплоты извне. Принцип работы от термостата с более высокой температурой Т1 называется нагревателем, за цикл отнимается кол-во теплоты Q1, а термостату с более низкой темп. Т2, называемому холодильником, за цикл пере даётся кол-во теплоты Q2, при этом совершается работа:A=Q1-Q2ɳ=A/Q1=1-Q2/Q1Чтобы был ра вен 1, необходимо, чтобы Q2 = 0 (тепловой двига тель должен иметь один источник теплоты). Корно показал, что для работы теплового двигателя необ ходимо не менее 2-х источн. тепла с различным Т.

Термостат – это термодинамическая система, ко торая может обмениваться теплотой с окружающи ми телами без изменения своей температуры.

Теорема Корно: Из всех периодически действую щих тепловых машин, имеющих одинаковую тепло ту нагревателя Т1 и холодильника Т2 наибольшая обладают обратимые машины. При этом обрати мые машины работающие при одинаковых Т1, Т2 раны друг другу, и не зависят от природы рабочего тела.

68.Холодильные машины.

Холодильная машина – это периодически действующая установка, в которой за счёт работы внешних сил, теплота передаётся от менее нагре тых тел к более. Принцип работы: система изоцик ла термостат с более низкой Т2 отнимается кол-во теплоты Q2 и отдаётся термостату с более высокой температурой Т1 количество теплоты Q1. Для кругового процесса:Q=A;Q=Q2-Q1;Q2-Q1= - A

Т.е. кол-во теплоты Q1, отданное системой источнику теплоты при более высокой температуре Т1 больше кол-ва теплоты Q2, полученного от исто чника теплоты с меньшим Т2 на величину работы совершённую над системой. Без совершения ра боты нельзя отбирать тепло от менее нагретого тела к более нагретому. Эффективность холо дильной машины характеризуется холодильным коэффициентом:ɳ=Q2/A=Q2/(Q1-Q2)цикл Карно

69.Цикл. Карно. Работа за цикл и термический кпд цикла Карно.

A12=m/M R T1 lnV2/V1=QA23= -m/M Cv (T2-T1)

A34=m/M R T2 lnV2/V1= -Q2A41= -m/M Cv(T1-T1)= -A2Это наиболее эффективный процесс, состоящий из двух изотерм и двух изобар. На учас тке 1-2 происходит изотермическое расширение, т.е V2>V1, а работа его равна А1-2. Работа за весь цикл:A=A12+A23+A34+A41=Q1-Q2Работа опреде ляется площадью ограничен. рассмат.изотермами и адиобатами.ɳ=(Q1-Q2)/Q1=(T1-T2)/T1Реальные газы. Жидкости.

70.Силы и потенциальная энергия межмолекулярного взаимодействия. Критерии различных агрегатных состояний вещества.

Твёрдые тела. Сила и потенциаль ная энергия межмолекулярного взаимодействия при рассмотрении реальных газов, т.е. газов, свойства которых зависят от взаимодействия моле кул, надо учитывать силы межмолекулярного взаи мод. Они короткодействующие и проявляются на расстоянии меньше 10-9ст. м. На расстоянии r = r0 силы притяжения и отталкивания равны. r0 соот ветствует равновесному расстоянию между моле кулами на которых бы они находились в отсутствии теплового движения.При r<r0 преобладают силы отталкивания, при r>r0 преобладают силы притяже ния. Из приведённой потенциальной кривой следу ет, что система из двух взаимодействующих молекул в состоянии устойчивого равновесия (r = r0) обладает минимальной потенциальной энергией. Критерии различных агрегатных состояний вещ-ва:

nmin<<kT(в-во находиться в газообразном состоянии)nmin=kT(в-во в жидком состоянии)

nmin>>kT(в-во в твердом состоянии)

71 Уравнение Ван-дер-Вальса. Учет собственного оъема молекул. Учет притяжения молекул.

Объем одного моля реального газа Vm-b, где b-об ъем занимаемый самими молекулами. b равен учетверенному собственному объему молекул. Де йствие сил притяжения между молекулами газов приводит к появлению дополнительного давления на газ - внутреннее давление. P=a/V2m-внутреннее дав ление обратно пропорционально квадрату моляр ного объема, а-постоянная Ван-дер-Вальса, хара ктеризующая силы молекулярного притяжения. Ур авнение Ван-дер-Вальса (P-a/V2m)*(Vm-b)=RT-для одного моля реального газа; PVm=RT-для одного моля идеального газа. Поправки Ван-дер-Вальса a и b постоянные для каждого газа величины.

72 Изотермы Ван-дер-Вальса и их анализ. Изотермы Ван-дер-Вальса-кривые опре деляющие зависимость давления от молекулярного объема при заданных температурах для одного моль газа. При некоторой температуре Ткрит на изотерме появляются точки перегиба, в них касательная параллельна оси абсцисс. Точка К- критическая. Давление и объем в этой точке называются кри тическими. Изотерма реального газа отличается от изотермы идеального газа только некоторым искажением формы. При низкой температуре изотермы имеют волнообразный участок. Сначала монотонно опускаясь, затем монотонно поднима ясь. При одной Т (Т<Ткрит) одному значению Р может соответствовать три значения объема V1,V2,V3 ,а при Т>Ткрит только одно значение объема. В критической точке К все три корня (объема) совпадают и равны объему при Ткрит. Р(V-Vкрит)3=0.Рассмотрим одну из изотерм. При T<Tкрит На участке 765 при уменьшени объема давление возрастает, аналогично на участ ке 321.На участке 543 объем уменьшается, а дав ление должно увеличиваться. Наличие участка 3-5 означает , что при постепенно изменяемом объ еме вещество не может оставаться виде одноро дной среды. Т.е. в некоторый момент времени происходит распад вещества на две фазы. Т.к. истинная изотерма –ломанная 1-7 , то в состояниях соответствующих кривой 2-6 наблюдается равно весие жидкости и газа. Если через крайние точки горизонтальных участков семейства изотерм про вести линию, то получится колоколообразная кри вая, которая ограничивает область двухфазных со стояний вещества – эта кривая и критическая изо терма делит диаграмму PV под изотермой на три области. Пар- это вещество находящееся в газо образном состоянии при Т<Ткрит. Насыщенный пар- пар находящийся в равновесии со своей жидкос тью. Пар отличается от остальных состояний тем , что при изотермическом сжатии , его можно под вергнуть сжижению. Газ при Т>Ткрит не может быть превращен в жидкость не при каком давлении.

studfiles.net

Тепловые двигатели, цикл Карно, коэффициент полезного действия, прямой и обратный цикл теплового двигателя

Тестирование онлайн

Тепловой двигатель

Двигатель, в котором происходит превращение внутренней энергии топлива, которое сгорает, в механическую работу.

Любой тепловой двигатель состоит из трех основных частей: нагревателя, рабочего тела (газ, жидкость и др.) и холодильника. В основе работы двигателя лежит циклический процесс (это процесс, в результате которого система возвращается в исходное состояние).

Прямой цикл теплового двигателя

Общее свойство всех циклических (или круговых) процессов состоит в том, что их невозможно провести, приводя рабочее тело в тепловой контакт только с одним тепловым резервуаром. Их нужно, по крайней мере, два. Тепловой резервуар с более высокой температурой называют нагревателем, а с более низкой – холодильником. Совершая круговой процесс, рабочее тело получает от нагревателя некоторое количество теплоты Q1 (происходит расширение) и отдает холодильнику количество теплоты Q2, когда возвращается в исходное состояние и сжимается. Полное количество теплоты Q=Q1-Q2, полученное рабочим телом за цикл, равно работе, которую выполняет рабочее тело за один цикл.

Обратный цикл холодильной машины

При обратном цикле расширение происходит при меньшем давлении, а сжатие - при большем. Поэтому работа сжатия больше, чем работа расширения, работу выполняет не рабочее тело, а внешние силы. Эта работа превращается в теплоту. Таким образом, в холодильной машине рабочее тело забирает от холодильника некоторое количество теплоты Q1 и передает нагревателю большее количество теплоты Q2.

Коэффициент полезного действия

Прямой цикл:

Показатель эффективности холодильной машины:

Цикл Карно

В тепловых двигателях стремятся достигнуть наиболее полного превращения тепловой энергии в механическую. Максимальное КПД.

На рисунке изображены циклы, используемые в бензиновом карбюраторном двигателе и в дизельном двигателе. В обоих случаях рабочим телом является смесь паров бензина или дизельного топлива с воздухом. Цикл карбюраторного двигателя внутреннего сгорания состоит из двух изохор (1–2, 3–4) и двух адиабат (2–3, 4–1). Дизельный двигатель внутреннего сгорания работает по циклу, состоящему из двух адиабат (1–2, 3–4), одной изобары (2–3) и одной изохоры (4–1). Реальный коэффициент полезного действия у карбюраторного двигателя порядка 30%, у дизельного двигателя – порядка 40 %.

Французский физик С.Карно разработал работу идеального теплового двигателя. Рабочую часть двигателя Карно можно представить себе в виде поршня в заполненном газом цилиндре. Поскольку двигатель Карно — машина чисто теоретическая, то есть идеальная, силы трения между поршнем и цилиндром и тепловые потери считаются равными нулю. Механическая работа максимальна, если рабочее тело выполняет цикл, состоящий из двух изотерм и двух адиабат. Этот цикл называют циклом Карно.

участок 1-2: газ получает от нагревателя количество теплоты Q1 и изотермически расширяется при температуре T1 участок 2-3: газ адиабатически расширяется, температура снижается до температуры холодильника T2 участок 3-4: газ экзотермически сжимается, при этом он отдает холодильнику количество теплоты Q2 участок 4-1: газ сжимается адиабатически до тех пор, пока его температура не повысится до T1. Работа, которую выполняет рабочее тело - площадь полученной фигуры 1234.

Функционирует такой двигатель следующим образом:

1. Сначала цилиндр вступает в контакт с горячим резервуаром, и идеальный газ расширяется при постоянной температуре. На этой фазе газ получает от горячего резервуара некое количество тепла.2. Затем цилиндр окружается идеальной теплоизоляцией, за счет чего количество тепла, имеющееся у газа, сохраняется, и газ продолжает расширяться, пока его температура не упадет до температуры холодного теплового резервуара.3. На третьей фазе теплоизоляция снимается, и газ в цилиндре, будучи в контакте с холодным резервуаром, сжимается, отдавая при этом часть тепла холодному резервуару.4. Когда сжатие достигает определенной точки, цилиндр снова окружается теплоизоляцией, и газ сжимается за счет поднятия поршня до тех пор, пока его температура не сравняется с температурой горячего резервуара. После этого теплоизоляция удаляется и цикл повторяется вновь с первой фазы.

КПД цикла Карно не зависит от вида рабочего тела

для холодильной машины

В реальных тепловых двигателях нельзя создать условия, при которых их рабочий цикл был бы циклом Карно. Так как процессы в них происходят быстрее, чем это необходимо для изотермического процесса, и в то же время не настолько быстрые, чтоб быть адиабатическими.

fizmat.by


Смотрите также