ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Технические характеристики частотных преобразователей. Частотный преобразователь двигателя


Маленькие подсказки по применению частотных преобразователей

В настоящее время частотный преобразователь стал достаточно широко распостраненным прибором, и часто эксплуатируется людьми без специального образования по электроприводу. Данная статья в краткой тезисной форме помогает получить необходимую информацию по электроприводу и избежать некоторых ошибок при выборе, монтаже и работе оборудования с частотным преобразователем. Конечно, статья не заменит руководстова по эксплуатации и учебники по электроприводу, но самый минимальный набор полезных знаний она дать в состоянии.

Плавный пуск

Плавный пуск, обеспечиваемый частотным преобразователем, в любом приложении механически защищает приводную систему, уменьшая износ подшипников и предотвращая разрыв ремней, цепей, конвейерных лент и т.д. Плавный пуск также снижает электрические нагрузки на сеть, уменьшая пусковой ток с 600 % до 100-150% номинального тока двигателя.

Выбор двигателя

Ошибкой номер один при выборе электродвигателя для частотно-регулируемого привода является ориентация только на мощность (кВт). Нужно иметь ввиду, что указанная мощность частотного преобразователя относится только к эксплуатации его со стандартным 4-х полюсным асинхронным двигателем в стандартном применении. Во всех иных случаях нужно руководствоваться номинальными током (А) и напряжением (В) преобразователя и двигателя.

Работа двигателя на низкой скорости

Когда в приложении требуется, чтобы стандартный самовентилируемый двигатель длительно работал на низких скоростях (мене 1/3 от номинальной), то следует помнить, что охлаждающая способность вентилятора, расположенного на валу двигателя, резко снижается, и двигатель может быть перегрет. Поэтому нужно адекватно снижать нагрузку на двигатель или применять независимое охлаждение.

Электромагнитная совместимость

Грамотная прокладка электрических кабелей – ключ к решению большинства проблем электромагнитной совместимости. По возможности используйте экранированный кабель между преобразователем и двигателем, и прокладывайте его отдельно (на расстоянии от 100мм) от всех других проводов. В местах пересечения силовых и сигнальных проводов располагайте их под углом 90o друг к другу.

Питание от генератора

Плавный пуск электропривода позволит снизить стоимость питающего его электрического генератора, так можно будет применить генератор меньшей мощности (в 4 – 6 раз). Мощность генератора будет рассчитываться исходя из тока в установившемся режиме. Между генератором и преобразователем частоты должен быть установлен контактор, управляемый от релейного выхода преобразователя, выключающего его при срабатывании защиты. Таким образом, в случае перенапряжения от генератора, контактор разомкнется, и опасно-высокое напряжение с частотного преобразователя будет снято.

Свободновращающиеся вентиляторы

Вентиляторы в некоторых приложениях могут самораскручиваться, причем в обратную сторону, под воздействием движения воздуха. При пуске такого вентилятора могут возникать токи короткого замыкания, способные повредить частотный преобразователь и двигатель. Что бы этого избежать, на простых приводах нужно использовать функцию торможения постоянным током перед стартом, а на продвинутых приводах можно использовать функцию синхронизации с вращающимся двигателем.

Нагрузка с переменным моментом

Некоторые типы механизмов, например, такие как осевые и центробежные вентиляторы и насосы, имеют момент, зависящий от частоты вращения. Для них можно применять приводы (с перегрузочной способностью 120%), специально предназначенные для такой нагрузки. Для других типов насосов и вентиляторов, имеющих возвратно поступательное движение (например, поршневые) нужно применять общепромышленные приводы (с перегрузочной способностью 150%), предназначенные для работы с постоянным моментом.

Питание 3-х фазного преобразователя от однофазной сети

Трехфазные частотные преобразователи Optidrive могут быть запитаны напряжением требуемого уровня от однофазной сети. Только при этом его нельзя нагружать током более 50% от номинального.

Экономия электроэнергии

В общем случае при управлении двигателем от частотного преобразователя, снижение скорости приводит к снижению потребляемой мощности. Особенно энергосберегающий эффект выражен в насосных и вентиляционных системах, особенно с ПИД-регулятором процесса по давлению или расходу, особенно при наличии в преобразователе частоты функции оптимизации энергопотребления.

Переменная подача

Часто в некоторых технологических процессах полезно синхронизировать между собой нескольких приводов для их согласованной работы. Например, в деревообработке в продольно-резательных станках можно согласовать привод продольной пилы с приводом подачи древесины. Ток нагрузки привода пилы можно использовать в качестве сигнала отрицательной обратной связи для ПИД-регулятора привода подачи. Процесс будет оптимизирован тем, что при увеличении нагрузки на пилу подача будет адекватно уменьшена, и наоборот.

Гармоники

Все электроприводы по своей природе оказывают влияние на электрическую сеть, являясь источниками высших гармоник. Однако этот негативный эффект можно значительно снизить, используя сетевой дроссель. Кроме этого, сетевой дроссель, являясь двухсторонним буфером, оказывает много положительных эффектов на сам привод, увеличивая его надежность и продлевая эксплуатационный ресурс.

Защищенная конструкция

Разработчикам частотных преобразователей часто требуется искать компромисс между эффективностью теплоотвода и защищенностью устройства от воздействия внешних факторов (климатических, физических, человеческих). Как правило, частотники с высокой степенью защиты имеют большие размеры или меньший температурный диапазон, а иногда применяется система раздельного охлаждения. Разработчикам же систем с применение приводов приходится искать компромисс между требованиями надежности, безопасности и ценой оборудования. В некоторых случаях выгоднее использовать частотный преобразователь с высокой степенью защиты, а в некоторых устанавливать обычный ПЧ в защищенный шкаф.

Длинный моторный кабель

В идеальном случае частотный преобразователь должен быть расположен непосредственно на двигателе. Максимальная длина моторного кабеля указывается в руководстве по эксплуатации на ПЧ. Эта длина, как правило, относит к экранированным кабелям, бронированным, в металорукаве. При использовании не экранированного моторного кабеля, его длина может быть увеличена на 50%. А при использовании выходного моторного дросселя длина может быть увеличена еще в двое.

Параллельное подключение двигателей

Мощность (номинальный ток) частотного преобразователя при подключении к нему одновременно нескольких двигателей следует выбирать с запасом на 10 - 15% суммарной мощности (номинальных токов) всех двигателей. Также следует иметь в виду, что при определении длины моторного кабеля (см. предыдущий абзац) нужно суммировать длины кабелей всех двигателей. Уменьшить суммарную длину можно, подключая не все двигатели непосредственно к клеммам ПЧ, а 2-й к 1-му, 3-й ко 2-му, и т.д. Как правило, при трех и более параллельных двигателях рекомендуется ставить моторный дроссель, даже если длина их кабелей не превышает максимально допустимую. И большинство частотных преобразователей не допускает коммутации (подключения/отключения) двигателей с помощью э/м контакторов во время работы, а только через команду СТОП привода.

www.eti.su

Частотный преобразователь - работа, виды + инструкция подключения для управления электродвигателями

Электрические двигатели, в том числе трехфазные асинхронного типа, получили широкое распространение в разнообразных сферах деятельности. Рабочий цикл агрегатов связан с плавным их запуском и аналогичным способом остановки. Для решения проблемы управления частотой тока и скоростью двигателя применяются частотные преобразователи.

Краткое содержимое статьи:

Назначение и достоинства

Электромагнитные силы, образующиеся под влиянием магнитного поля, создаваемого якорной обмоткой, приводят ротор в движение. Его вращение происходит с числом оборотов, которое задается частотой сетевого тока. При частоте в 50 Гц происходит 50 колебаний в течение 1 с. Следовательно, скорость вращения ротора составит 3000 об./мин.

Назначение частотных преобразователей состоит в том, чтобы посредством изменения параметров частоты тока обеспечить эффективное управление двигателем.

Достоинствами этих приспособлений являются:

Разновидности устройств

В зависимости от конструктивных особенностей выделяют основные типы частотных преобразователей 220/380 – индукционные и электронные. К первому варианту относят асинхронные разновидности электрических двигателей, особенностью которых является применение схемы с фазным ротором.

При этом они имеют возможность работать в режиме генератора. Однако они не сильно распространены в практике, поскольку у них невысокий КПД и низкая эффективность.

А вот электронный вариант может быть использован как при функционировании асинхронных движков, так и модификаций синхронного вида. Управление двигателями производится несколькими принципиально различающимися способами:

Посредством скалярного управления, исходя из линейных закономерностей. В этом случае учитывается пропорциональная зависимость амплитуды от частоты. Если частота меняется, то амплитуда входного напряжения также будет изменяться. В результате это влияет на крутящий момент, КПД, и уровень мощности.

Задание равномерности момента нагрузки обеспечивается постоянством соотношения амплитуды с выходной частотой. Преобразующее устройство и формирует указанное равновесие.

При векторном подходе момент нагрузки постоянен при любых пределах частотных изменений. Это позволяет получить большую точность регулирования. Возрастает и гибкость реагирования электропривода на скачки в выходной нагрузке. Частотный преобразователь для асинхронного двигателя обеспечивает постоянный контроль над моментом вращения.

Важно помнить, что фаза тока статора, которая меняется под действием магнитного поля, и представляет собой вектор тока. Он управляет моментом вращения. Таким образом, в этом случае используется амплитудная или широтно-импульсная система регулировки сигнала.

Конструктивное исполнение

Существуют разные виды частотных преобразователей для двигателя. Но при этом конструктивно можно выделить отдельные типичные блоки. Данные компоненты тесно связаны между собой. Блок управления определяет работу выходного каскада.

При этом определяющую роль играет возможность изменения параметров тока переменного типа. Дополнительно в устройстве предусматриваются системы защиты, находящиеся под контролем микроконтроллера.

Выпрямитель представляет собой первый модуль. Через него происходит движение тока. Здесь происходит изменение переменного тока. При помощи диодов он преобразуется в постоянный. Можно подобрать модели для однофазной сети или для трехфазного питания. В них будет отличаться число диодов.

Постоянное напряжение с высокими пульсациями выходит из выпрямителя. Чтобы сгладить пульсации применяются конденсатор и индуктивная катушка. А вот процесс преобразования параметров выходящего тока происходит в инверторе.

Конструктивно в нем содержатся транзисторы. Их 6 штук — по паре для каждой фазы. А микропроцессорная система гарантирует управление скоростными показателями роторного вращения. Все это можно увидеть на фото частотного преобразователя.

Особенности подключения

Устройства, предназначенные для управления частотой, могут функционировать в условиях подключении однофазного типа или за счет трехфазного электропитания. При эксплуатации источников постоянного тока, которые имеют напряжение в 220 В, то они могут также использоваться для подключения инверторов.

Модификации трехфазного типа ориентированы на сетевое напряжение 380 В. Они направляют его на двигатель. Питание однофазных инверторов ведется от сети 220 В. На выходе они создают три фазы, которые распределены по временному параметру.

Если вас интересует вопрос, как подключить частотный преобразователь, то можно выделить две принципиальные схемы. По принципу «звезда» обустраиваются обмотки под преобразователь, который подпитывается от сети с напряжением 380 В. Если же подключение идет к однофазной сети 220 В, то применяется схема «треугольник».

При этом следует учитывать параметр соответствия мощности двигателя с возможностями инвертора. Перегружать преобразователь нельзя. Наоборот, целесообразно иметь некоторый запас по мощности.

На первом этапе подключения перед устройством монтируется автоматический выключатель с номиналом, который совпадает с рабочими характеристиками тока, потребляемого двигателем. Если инструкция как настроить частотный преобразователь, была соблюдена полностью, то фазные проводники подведены к заданным контактам двигателя.

Преобразующее приспособление должно подсоединяться к контроллеру. Также требуется подключение и к пульту. Вначале проверьте положение рукоятки – нейтральное. Затем надо запустить автомат. При соответствии процесса нормативам наблюдается световая индикация.

Небольшой поворот рукоятки приведет к активизации вращения двигателя. Кнопка реверса позволяет задать обратное направление вращения. Чтобы настроить нужную частоту, следует произвести регулировку ручкой. В последующем работа преобразователя позволит более эффективно эксплуатировать оборудование с электродвигателем.

Фото частотных преобразователей

electrikmaster.ru

Частотный преобразователь описание.Технические характеристики

Эффективность и срок службы частотных преобразователей и механизма в целом зависит от того, насколько правильно сделан выбор. Эффект экономии от использования в производстве частотника получается из-за экономии энергии в различных механизмах до 50% за счет возможности регулировки производительности изменением выходной частоты оборотов мотора.

Характеристика частотных преобразователей

При выборе нужно смотреть на то, какой режим будет у электропривода, мощности мотора, диапазон регулировки скорости, поддержки точности вращающего номинального момента на моторе с открытым коллектором, времени разгона и торможения, множества включений в единицу времени.

Мощность многофункциональных программируемых преобразователей – это важный параметр вращающего номинального пускового момента электрического привода. Для этого нужно определиться со способностью к нагрузкам. В зависимости от номинала мощности мотора выбирается частотный преобразователь серии мощности, который рассчитывается на подходящую мощность (кВт). Это будет правильным выбором, если нагрузка на двигателе не будет меняться в динамике разгона, и ток не будет сильно выходить за номинал значения установки для вращающего момента двигателя и преобразователя.

Поэтому, лучше делать выбор по наибольшему токовому значению двигателя с режимом учета способности перегрузки. Способность к излишним нагрузкам дается в процентах от номинала тока за диапазон времени разгона. Чтобы правильно выбрать аналоговый выход двигателя, надо определить характер нагрузок имеющегося привода: уровень работы, период времени, частота появления нагрузок.

Напряжение работы привода

Важным вопросом будет напряжение питания. Самым распространенным случаем является то, когда питание от 3-фазной сети производства 380 вольт. Варианты есть, когда привод предназначен на эксплуатацию от одной фазы на 220 вольт. Последний вариант ограничен мощностями до 4 кВт. Есть варианты работы привода на высоком напряжении, которые дают векторное управление мощными двигателями, с мощностью в мегаваттах, с меньшим током. Все варианты применяются для разных видов решений, зависят от характера снабжения электрической энергией, от обуславливания использования привода конкретной характеристики.

Диапазон управления

Если скорость не снизится меньше 10% от номинального диапазона, то можно применить любой преобразователь. В других случаях нужно убедиться, может ли преобразователь серии номинальной работать с двигателем на малых оборотах. Асинхронный мотор охлаждает сам себя встроенным вентилятором на валу. При уменьшении скорости охлаждение ухудшается. Многие преобразователи векторного управления режимом имеют встроенные опции контроля температуры через датчик.

Режим снижения скорости

Торможение путем выбега подобно отключению мотора от питания. Это может продолжаться долгое время. Частотником можно быстро остановить двигатель:

Вариант торможения выбирается из экономии.

Функции управления частотным преобразователем

Многие приводы работают по заданию. Плавно повышают или снижают обороты мотора с открытым коллектором. Иногда нужна определенная скорость. В обоих случаях можно управлять с панели приборов и по цифровым входам кнопками. Если применять переключатели и потенциометры, то нужно знать количество аналоговых входов. Если частотник управляется от сети, то нужен специальный интерфейс пульта управления с встроенным многофункциональным программируемым протоколом данных.

Функции защиты

Защита имеет набор функций:

Структура преобразователя частоты

На электродвигателе есть три фазы. К фазам подключен входной дроссель для снижения нагрузки в пусковой момент. Дроссель исполняет роль входного фильтра. Следующий блок многофункционального программируемого частотного преобразователя – это высоковольтный выпрямитель. Он состоит из больших встроенных диодов. Далее, идет инвертор, который состоит из IGBT транзисторов в количестве 6 штук. На выходе инвертор создает фазы с измененной частотой.

На аналоговом входе до выпрямителя синусоида. В выпрямителе она выпрямляется. Выпрямленное напряжение формируется в миандр, то есть, прямоугольные импульсы на выходе. Не каждый электродвигатель с аналогового входа способен работать с преобразователем частоты. Существуют синфазные токи, которые за несколько минут разбивают подшипник. Это неоднократно проверялось. Микроконтроллер на выходе может менять не только целые герцы, но и доли герца. Каждый герц можно считать, как одной скоростью. Он может ее увеличивать до килогерц. Двигателям вращающего номинального момента большую частоту можно поднимать до 70 герц, будет увеличиваться скорость разгона двигателя. Превысив порог 70 герц, двигатель начнет воспринимать этот период. Паузы двигатель не будет воспринимать. Он воспримет их как постоянное напряжение. Он загудит, нагреется и сгорит. Поэтому слишком наращивать частоту не стоит.

Инвертор имеет ШИМ (широтно-импульсную модуляцию). Каждый период будет формироваться из множества открытий и закрытий транзистора. От частоты ШИМ-модуляции будет зависеть тепловой нагрев обмоток двигателя, возникнет шум при высокой частоте.

Чем больше скорость, тем будет меньше вращающий момент. У каждого двигателя есть моментная сила давления в Ньютон на метр. Чем меньше частота, тем сильнее будет давить электродвигатель при снижении нагрузки. Чем больше частота аналогового выхода, тем меньше сила давления. Это физическая формула, никуда от этого не деться. При увеличении скорости с пульта управления двигатель будет тянуть намного меньше. При низкой скорости сила двигателя будет в разы больше. Зависимость обратнопро-порциональная.

Частотный преобразователь с трехуровневым инвертором и диодным выпрямителем

Наличие в частотнике инвертора с тремя уровнями дает возможность увеличивать системное напряжение. Если не нужна рекуперация энергии в сеть, то лучше применить диодный выпрямитель с трехфазными мостами, соединенными последовательной схемой. Когда средняя точка спайки мостов диодов не соединена с точкой присоединения конденсатора инвертора, то потенциал выпрямителя на диодах имеет малые пульсации, использовать дроссель не нужно. Для соединения выпрямителя к сети применяют трансформатор с тремя обмотками. Схема частотника с выпрямителем на диодах и инвертором на трех уровнях:

Частотный преобразователь описание

Сетевой дроссель подсоединяется в питающую сеть частотника, служит для защиты от нестабильной связи с сетью, является буфером.

Частотный преобразователь описание

Дроссель двигателя подключается между мотором и частотным преобразователем, играет роль ограничителя скорости повышения напряжения, для токового ограничения от короткого замыкания.

На видео — принцип работы частотного преобразователя.

chistotnik.ru

ЧастотныеПреобразователи | частотные преобразователи для двигателей

Применение  частотных преобразователей для управления электроприводами

44_preobrazovateli-chastoty-lenz

Частотные преобразователи Vesper

В составе всех современных приводов переменного тока находится частотный преобразователь. Несмотря на то, что существует множество различных алгоритмов управления и аппаратной реализации частотных преобразователей. Большинство производителей применяют типовые решения при их изготовлении. По факту существуют негласные стандарты на структуру частотных преобразователей и функции которые они выполняют.

Выделяют 2 основные цели, которые достигаются с помощью регулируемого электропривода: управление моментом и скоростью работы двигателя. Регулирование момента обусловлено предъявляемыми к приводу техническими требованиями. Для полноценной работы электропривода нужно понижать момент и силу тока двигателя в момент торможения и пуска при приложении нагрузки.

Для некоторых механизмов, которые испытывают мощные перегрузки доходящие до вывода из строя центрального вала, необходимо непрерывно регулировать момент при работе двигателя для того чтобы уменьшить динамические ударные перегрузки.

В большинстве случаев так же необходимо точная подача усилия на рабочем валу, например, в металлобработке, намоточные и шлифовальные станки.

Режимы работы мн

chastotniniepreobrazovateli.wordpress.com


Смотрите также