На рис.7.7 приведены характеристики синхронных двигателей СДВ 17-39-12 и СДВ-17-59-12 (С – синхронный, Д – двигатель, В – для привода вентиляторов, 17 – габарит, 39 и 59 – длина сердечника статора, см, 12 – число полюсов) и ВДС 325/49-16. Характеристики синхронных двигателей (рис.7.7) имеют ряд преимуществ по сравнению с характеристиками АД с короткозамкнутым ротором [9], [10]:• возможность работы с опережающим коэффициентом мощности;• более низкие потери;• синхронная частота вращения в независимости от нагрузки;• возможность плавного регулирования реактивной мощности и более высокое качество напряжения в узлах нагрузки;• способность сохранять устойчивую работу при колебаниях напряжения в питающей сети.Последняя особенность связана с тем, что у синхронного двигателя максимальный момент пропорционален напряжению, а у АД – квадрату напряжения – рис.7.4.
Синхронные двигатели, наряду с наличием на роторе обмотки возбуждения, имеют и мощную демпферную систему, обеспечивающую пуск и разгон ротора до подсинхронной частоты вращения в асинхронном режиме, с замкнутой на гасительное сопротивление обмоткой возбуждения. По достижении подсинхронной частоты вращения осуществляется синхронизация двигателя путем включения АГП и доведение его частоты вращения до синхронной. Синхронизация усложняется при высоких коэффициентах загрузки двигателя, а в системе собственных нужд электростанций возможности разгрузки на период синхронизации отсутствуют – рис.7.7.Недостатком синхронных электродвигателей является необходимость отключения АГП и перевод их в асинхронный режим даже при кратковременных глубоких понижениях питающего напряжения, связанных с неудаленными КЗ и ошибочным отключением рабочих вводов питания. При использовании синхронных двигателей на электростанциях они будут участвовать в самозапуске наряду с другими асинхронными двигателями в условиях более низких питающих напряжений по сравнению с пуском отдельного синхронного двигателя. При этом условия синхронизации усложняются.
Исходя из высокой чувствительности синхронных электродвигателей к глубоким понижениям напряжения, трудности синхронизации в условиях самозапуска, отсутствие необходимости компенсации реактивной мощности в системе СН ввиду небольшой удаленности синхронных генераторов, синхронные электродвигатели нашли ограниченное применение в системе СН электростанций. Синхронные электродвигатели используются для питания потребителей, не влияющих на немедленное прекращение технологического процесса: часть циркуляционных насосов, приводы компрессоров и вентиляторов, мельниц, дробилок. Перечисленные механизмы обычно имеют промежуточные бункеры топлива и запасы перекачиваемого рабочего тела в ресиверах.В виде примера в табл.7.2 изображена мельница-вентилятор с приводным синхронным двигателем марки СДМЗ2-22-61-40УХЛ4, предназначенным для привода шаровых и стержневых мельниц. В обозначении типа:С – синхронный, Д – двигатель, М – для привода мельниц, З – закрытого исполнения, 2 – вторая серия, 22 – габарит, 61 – длина сердечника статора, см, 40 – число полюсов, УХЛ4 – климатическое исполнение и категория размещения по ГОСТ. Пуск двигателя асинхронный прямой при номинальном напряжении сети с включением в цепь обмотки возбуждения разрядного сопротивления. В процессе пуска среднее напряжение на зажимах двигателя должно быть не менее 0,85Uном, минимальное напряжение в начале пуска – не менее 0,8Uном. Двигатель допускает два пуска подряд из холодного состояния или один пуск из горячего состояния при условии, что средний статический момент сопротивления механизма на валу за время пуска не превышает 0,8М ном при моменте инерции приводимого механизма не более указанного в табл.7.2. Возбуждение двигателя осуществляется от тиристорных возбудителей. Обращаем внимание на низкую частоту вращения электродвигателей серии СДМЗ2 в пределах 100 – 150 об/мин, на которые асинхронные двигатели не выпускаются.
Особенностью работы двигателя является равенство скорости вращения ротора и скорости вращения магнитного потока. Поэтому скорость вала двигателя не зависит и не изменяется от величины подключаемой нагрузки. Это достигается за счет того, что индуктор синхронного электродвигателя является электромагнитом, в некоторых случаях постоянным магнитом.
Количество пар полюсов ротора одинаково с числом пар полюсов у движущегося магнитного поля. Взаимное воздействие этих полюсов дает возможность выравнивания скорости ротора. На валу в этот момент может быть любая по величине нагрузка. Она не влияет на скорость вращения индуктора.
Основными составными частями синхронного электродвигателя являются: статор, который неподвижен, и ротор, иными словами называемый индуктором. Статор имеет другое название – якорь, но от этого его суть не меняется. Эти части двигателя разделены прослойкой воздуха. Между пазами заложена трехфазная обмотка, которая чаще всего имеет соединение по схеме звезды.
Когда двигатель после запуска начал работать, токи якоря образуют движущееся магнитное поле, его вращение дает пересечение поля индуктора. В итоге такой работы двух полей возникает энергия. Магнитное поле статора по своей сути является полем его реакции. В работе генераторов такую энергию получают с помощью индукторов.
Полюсами являются электромагниты статора, работающие на постоянном токе. Статоры синхронных моторов могут выполняться по различным схемам: неявнополюсной, а также явнополюсной. Они отличаются положением полюсов.
Для снижения магнитного сопротивления и оптимизации условий прохода магнитного поля используют сердечники из ферромагнитного материала. Они находятся в роторе и якоре. Производятся они из электротехнической стали, которая содержит большое количество кремния. Это дает возможность снизить вихревые токи и увеличить электрическое сопротивление стали.
Долгое время для разгона мотора применяли отдельный пусковой двигатель. Его соединяли механическим путем с синхронным мотором. При запуске ротор мотора ускорялся и достигал синхронной скорости. Далее мотор самостоятельно втягивался в синхронное движение. При выборе мощности пускового мотора руководствовались 15% мощности от номинала разгоняемого двигателя. Этого резерва мощности было достаточно для запуска синхронного двигателя, даже при наличии небольшой нагрузки.
Такой метод разгона более сложный, значительно повышает стоимость оборудования. В современных конструкциях синхронные электродвигатели не имеют такой схемы разгона. Применяют другую систему разгона. Реостатом замыкают обмотки индуктора по аналогии с асинхронным двигателем. Для запуска на ротор монтируют короткозамкнутую обмотку, являющуюся также и успокоительной обмоткой, которая предотвращает раскачивание ротора при синхронизации.
При достижении ротором номинальной скорости, к индуктору подключают постоянный ток. Однако, для пуска моторов с постоянными магнитами не обойтись без применения пусковых внешних двигателей.
В криогенных синхронных электродвигателях применяется обращенная конструкция. В ней якорь и индуктор размещены наоборот, индуктор находится на статоре, а якорь расположен на роторе. У таких машин возбуждающие обмотки состоят из сверхпроводимых материалов.
Синхронные двигатели имеют основное преимущество по сравнению с асинхронными моторами тот факт, что возбуждение от постоянного тока внешнего источника дает возможность работы при значительной величине коэффициента мощности. Эта особенность дает возможность увеличить значение коэффициента мощности для общей сети благодаря включению синхронного мотора.
В итоге можно сказать, что все-таки преимущества синхронных двигателей перекрывают недостатки. Поэтому двигатели такого вида широко применяются в технологических процессах, где идет постоянный непрерывный процесс, и не требуется частая остановка и запуск оборудования: на мельничном производстве, в компрессорах, дробилках, насосах и так далее.
• Условия эксплуатации электродвигателя. По условиям выбирают тип двигателя, который может быть защищенным, открытым или закрытым. А также моторы отличаются по защите токовых частей от влаги, температуры, агрессивных сред. Для взрывоопасного производства существуют специальные защиты, предотвращающие образование искр в двигателе.• Особенности выполнения подключения электродвигателя с потребителем.
Они служат для компенсирования коэффициента мощности в электрической сети и стабилизации номинального значения напряжения в местах подключения нагрузок к двигателю. Нормальным режимом синхронного компенсатора является режим перевозбуждения в момент отдачи в электрическую сеть реактивной мощности.
Такие компенсаторы еще называют генераторами реактивной мощности, так как они предназначены для выполнения такой же задачи, как батареи конденсаторов на подстанциях. Когда мощность нагрузок уменьшается, то часто необходимо действие синхронных компенсаторов в невозбужденном режиме при их потреблении реактивной мощности и индуктивного тока, потому что напряжение в сети старается увеличиться, а для его стабилизации на рабочем уровне нужно нагрузить сеть током индуктивности, который вызывает в сети снижение напряжения питания.
Для таких целей синхронные компенсаторы обеспечиваются регулятором автоматического возбуждения. Регулятор изменяет ток возбуждения таким образом, что напряжение на компенсаторе не изменяется.
Широкое использование электродвигателей асинхронного типа со значительными недогрузками делает работу станций и энергосистем сложнее, так как уменьшается коэффициент мощности системы, это ведет к незапланированным потерям, к их неполному использованию по активной мощности. В связи с этим появилась необходимость в использовании двигателей синхронного типа, особенно для приводов механизмов значительной мощности.
Если сравнивать синхронные электродвигатели с асинхронными, то достоинством синхронных стала их работа коэффициентом мощности равном 1, благодаря действию возбуждения постоянным током. При этом они не расходуют реактивную мощность из питающей сети, а если работают с перевозбуждением, то даже отдают некоторую величину реактивной мощности для сети.
В итоге коэффициент мощности сети улучшается, и снижаются потери напряжения, увеличивается коэффициент мощности генераторов электростанций. Наибольший момент синхронного электродвигателя прямо зависит от напряжения, а у синхронного электромотора – от квадрата напряжения.
Поэтому, при уменьшении напряжения синхронный электромотор имеет по-прежнему значительную нагрузочную способность. Также, применение возможности повышения возбуждающего тока синхронных моторов дает возможность повышать их надежность эксплуатации при внезапных снижениях напряжения, и оптимизировать в таких случаях работу всей энергосистемы.
Из-за большой величины воздушного промежутка дополнительные потери в стальных сердечниках и в роторе синхронных моторов меньше, чем у двигателей асинхронного вида. Поэтому КПД синхронных моторов чаще бывает больше.
Однако устройство синхронных моторов намного сложнее, а также необходим возбудитель или другое устройство питания возбуждения. Поэтому синхронные моторы имеют более высокую стоимость по сравнению с асинхронными с короткозамкнутым ротором.
Запуск и регулировка скорости у синхронных электродвигателей имеет свои сложности. Но при больших мощностях их преимущества превосходят недостатки. Поэтому они применяются во многих местах, где не нужны частые пуски, остановки оборудования, а также нет необходимости в регулировки оборотов двигателя с приводом механизмов насосов, компрессоров, мельниц и т.д.
Похожие темы:
electrosam.ru
Синхронный двигатель, в отличии от своего асинхронного собрата, имеет постоянную частоту вращения при разнообразных нагрузках. Часто такие приборы применяют для приводов машин, которые работают с постоянной неизменной скоростью (например, компрессоры, вентиляторы, насосы и прочее).
Как устроен синхронный двигатель?
В статоре такого электроприбора имеется обмотка, которая подключается к сетям трехфазного тока. Она образует собой магнитное поле, которое вращается. Ротор у такой электроэнергетической машины, как синхронный двигатель, состоит из сердечника и обмотки возбуждения. Обмотка подключается через специальные контактные кольца к источнику (обычно это источник постоянного тока или же иногда используют выпрямленный переменный ток). Электрический ток, который протекает через обмотки возбуждения, создает намагничивающее ротор магнитное поле. Синхронная машина (а двигатель довольно просто переделать в генератор, так как двигатель преобразует электрическую энергию в механическую, а генератор - наоборот, механическую в электроэнергию) обычно работает на переменном токе. На сегодняшний день есть разработки такого устройства, как синхронный двигатель переменного тока. Однако в большинстве случаев для его собственных нужд используют аккумуляторные батареи переменного тока, благодаря которым постоянный ток выпрямляется специальными приборами до состояния, аналогичного постоянному (то есть неизменному во времени значению).
Синхронный двигатель и его разновидности
В основном все отличия в конструктивном исполнении такого устройства - это модификации вращающейся детали. Ротор синхронной машины может быть с явно выраженными полюсами ( его обычно называют «явнополюсный»), и с неявно выраженными полюсами ( так называемый «неявнополюсный»). Явнополюсный ротор обычно имеет ярко выраженные, выступающие полюса, на которых размещаются катушки возбуждения. Неявнополюсный ротор обычно представляет собой цилиндр из ферромагнитного сплава, на поверхности которого фрезеруют пазы в осевом направлении. Впоследствии именно в эти пазы укладывают обмотки возбуждения.
Синхронный двигатель и принцип его работы
Магнитное поле статора, которое вращается, намагничивает ротор. Синхронный двигатель с постоянными магнитами имеет разное электромагнитное сопротивление по поперечной и продольной осям полюсов. Силовые линии у магнитного поля обмотки статора начнут изгибаться, потому что они будут как бы стремиться найти пути с наименьшим сопротивлением. Вследствии специфических свойств силовых магнитных линий поля, в свою очередь, такая деформация его вызовет реактивный момент. Именно поэтому ротор будет вращаться синхронно вместе с магнитным полем статора.
Синхронный двигатель и его особенности
Нельзя не упомянуть о некоторых специфических моментах. Например, о том, что у таких машин нет пускового момента. Это происходит по той причине, что из-за своей инертности ротор просто не успевает развить нужное количество оборотов. Поэтому в настоящее время часто применяют асинхронный пуск таких двигателей.
www.syl.ru
Двигатель является устройством, преобразующим энергию в механический тип работы. Только зная функции и технические характеристики мотора, можно правильно резюмировать, чем отличается синхронный двигатель от асинхронного вида устройства.
Функционирование синхронных электродвигателей базируется на взаимодействии полюсов статора и индуктора. В пусковой момент происходит ускорение мотора до показателей вращательной скорости магнитного потока. В таких условиях устройство действует в синхронном режиме, а магнитными полями образуется особое пересечение, в результате чего происходит синхронизация.
Синхронный двигатель в разрезе
Асинхронные моторы имеют частоту роторного вращения, отличную от частоты, с которой вращается магнитное поле, создаваемое в результате действия питающего напряжения. Такие двигатели не обладают автоматической регулировкой токового возбуждения.
Асинхронный двигатель в разрезе
Наличие обмоток на якоре является одним из основных отличий между двумя типами двигателей
Несмотря на внешнее сходство, асинхронные двигатели и устройства синхронного типа имеют несколько принципиальных отличий:
Статоры в двигателях асинхронного и синхронного типа характеризуются одинаковым устройством и создают вращающееся магнитное поле.
Синхронные двигатели способны работать с одновременным совмещением функций мотора и генератора.
Такие устройства относятся к категории современных двигателей, обладающих высоким КПД и постоянной частотой вращения. Асинхронные моторы сложнее регулировать, а их коэффициент полезного действия недостаточно высокий. Тем не менее, второй вариант более доступен по цене.
Оцените статью: Поделитесь с друзьями!vazweb.ru
Перевод электродвигателей с коллекторного узла управления на полупроводниковые устройства контроля позволил оптимизировать силовые агрегаты. Модернизация затронула и мощностные параметры, и конструкционные характеристики. Наиболее выраженным отличием стало уменьшение габаритов, что позволило использовать такие агрегаты в небольших по размерам приборах и установках. Типичным примером реализации бесколлекторного привода является вентильный двигатель, работающий в условиях постоянного тока. Он обеспечивает существенные технико-экономические преимущества в процессе эксплуатации, но не избавлен и от недостатков.
Техническая инфраструктура формируется двумя сегментами – непосредственно механикой и управляющим комплексом. С точки зрения конструкционного устройства агрегат во многом похож на традиционное наполнение электромеханических роторных двигателей. Соответственно, в состав электромотора входят ротор, статор и обмотка. Причем статор представляет собой набор из отдельных изолированных листов, выполненных из стального сплава. В процессе работы они способствуют понижению вихревых токов. В нем как раз и находится обмотка, которая может иметь разное количество фаз. Начинка элемента образована стальным сердечником, а обмотка представляет собой медные волокна. Для защиты применяется корпус, на поверхности которого также предусматриваются средства физического крепления.
Что касается ротора, то он сформирован постоянными магнитами. В зависимости от модификации, он может иметь до шестнадцати пар чередующихся полюсов. Прежде для изготовления роторов применялись ферритовые магниты, что было обусловлено их ценовой доступностью. Сегодня же на первый план выходят эксплуатационные характеристики вентильного двигателя – в частности крутящий момент, который варьируется от 1 до 70 Нм. Пропускная же частота в среднем находится в пределах 2-4 тыс. оборотов. Для достижения таких показателей требуется магнит с высокой степенью индукции, поэтому производители перешли на использование редкоземельных сплавов. Такие магниты не просто дают более высокую производительность, но и обладают меньшими размерами. Отчасти и этот переход способствовал оптимизации габаритов вентильного электродвигателя. Отдельно стоит рассмотреть компоненты управляющего сегмента.
Если электромеханическая часть состоит преимущественно из трех компонентов, в числе которых ротор, статор и несущая конструкция в виде корпуса, то управляющая инфраструктура более сегментирована – количество элементов может достигать нескольких десятков. Другое дело, что их можно поделить на виды. В единственном числе будет представлен только инвертор. Он отвечает за функции коммутации, осуществляя подключение и переключение фаз. Основные же задачи контроля с подачей сигналов выполняют датчики. Главным из них является детектор положения ротора. Кроме этого, в состав управляющего блока вводится и система регуляции сигналов. Это узел с ключами, посредством которого реализуется связь датчиков и электромеханической начинки.
Информацию о позиции ротора обрабатывает микропроцессор. Внешне интерфейс этого блока представляет собой панель управления. На приеме она работает с сигналами широтно-импульсной модуляции (ШИМ-сигнал). Если предусматривается подача низковольтных сигналов, то в управляющем блоке устанавливается и транзисторный мост. Он преобразует сигнал в силовое напряжение, которое в дальнейшем подается на электродвигатель. Наличие датчиков с системой обработки импульсов как раз и отличает управление вентильным двигателем от средств контроля щеточно-коллекторных агрегатов. Другое дело, что возможность внедрения электронной аппаратуры с датчиками допускается и в коллекторных машинах наряду с механическими системами управления.
Вентильный электродвигатель в процессе работы создает индукцию магнитных полюсов через ротор. На фоне генерации электромагнитного воздействия формируется сопротивление. Иными словами, активизируется функция ротора, после чего он передает крутящий момент целевому агрегату. В условиях переменной скорости магнетизм может быть оптимизирован для более производительной работы с реверсом. Опять же, датчик положения ротора сообщает данные для регуляции в соответствии с фазами напряжения. Гибкость и оперативность настройки параметров ротора и количества фаз позволяет эффективнее регулировать работу механизма. Весь цикл демонстрирует процесс преобразования электроэнергии в физическую мощь (механическая энергия), которую вырабатывает генератор. Причем если резко отсоединить агрегат от сети, то преобразуемая в данный момент энергия будет возвращена статору.
Важным условием поддержания достаточной производительности является стабильность двигателя. Критерием оценки этой характеристики будет его плавность, достигаемая понижением пульсаций. Для этого нужно знать вектор вращения потока статора, чтобы он был синхронен с функцией ротора. Координация разных потоков вращения как раз и достигается взаимодействием датчиков и коммутатора, которым управляются вентильные двигатели. Принцип работы этой связки позволяет с высокой точностью определять, к какой фазе нужно подключать ротор, определяя также оси. В нужной последовательности панель управления через микропроцессор попеременно подключает и отключает разные фазы.
Вышеописанный принцип работы как раз иллюстрирует работу синхронного двигателя. То есть в нем реализуется взаимодействие полюсов индуктора и статорного магнитного поля. Но и в таких системах могут быть свои различия. Например, и синхронный, и асинхронный двигатель могут оснащаться электромагнитами. В случае с синхронными агрегатами такого типа ток будет направляться на ротор, минуя контакт щетка-кольцо. Постоянные же магниты применяются в двигателях, базирующихся на жестких дисках. Также существуют и обращенные конструкции. В них якорные потоки находятся на роторе, а индукция – на статоре.
Для включения синхронного двигателя требуется высокий разгон по частоте, чтобы появилась возможность подстройки вращения двух функциональных компонентов. В конструкциях, где индуктор находится на статоре, поле ротора остается неподвижным относительно якоря. И напротив, если устройство предполагает обратную конструкцию, то «ввод в синхронизацию» будет осуществляться через ожидание статора. Момент ожидания зависит от того, с какой нагрузкой работает вентильный двигатель, и какая частота является оптимальной для активизации его индуктора.
В асинхронных двигателях ротор не вращается в противоположном направлении. Его нельзя назвать обратным синхронному агрегату с точки зрения взаимодействия магнитных потоков ротора и статора. И синхронный, и асинхронный двигатель предполагают следование одного поля за другим. Другое дело, что во втором случае ротор, к примеру, может быть «догоняющим». Он следует за генерацией индукционного момента.
В стандартной конструкции статор генерирует электромагнитное поле, заставляя через определенное время вращаться и ротор. Принципиальным отличием между двумя типами двигателей является и то, что индуктор не является генератором возбуждения магнитного поля ротора. Поэтому вентильный электродвигатель асинхронного типа может автономно заставлять вращаться ротор с определенной частотой от обмотки статора. Это вовсе не значит, что два механизма работают отдельно, но их функции не так тесно взаимосвязаны, как в случае с синхронными двигателями. Это же касается и скорости. Например, если в синхронном агрегате будет частота вращения на 3000 об./мин для индуктора и ротора, то асинхронный принцип работы для того же ротора может снизить эту величину до 2910 об./мин.
Можно сказать, что все вентильные электромоторы являются индукторными. В той или иной степени принцип индукции закладывается в синхронный и асинхронный агрегаты. Но есть также модели, в которых индукция способствует самонамагничиванию. Иначе эту машину можно назвать самовозбуждающейся. В традиционном исполнении вентильно-индукторный двигатель этого типа имеет простую конструкцию, питается от однополярных импульсов тока и работает с теми же датчиками ротора. Однако из-за нюансов энергоснабжения его нельзя подключать напрямую к сети. В итоге требуется введение в инфраструктуру специальных преобразователей.
С другой стороны, в данной конструкции присутствуют практически все достоинства синхронных агрегатов. Самым явным из них является широкий спектр частот вращения. Например, вентильно-реактивный двигатель с возможностью самовозбуждения способен выдавать порядка 100 тыс. оборотов. Это уже быстроходные электродвигатели, для которых используются комплектующие высокой степени прочности.
Простейшее исполнение такого электродвигателя – это однофазные агрегаты, которые предусматривают минимальное количество контактов между электронной аппаратурой и механикой. Соответственно, отсюда вытекают и слабые места конструкции, среди которых ограничения в положении ротора и сильные пульсации. Двухфазные модели способны формировать воздушный зазор, а также при определенных условиях обеспечивать асимметрию полюсов. Опять же, такие машины грешат высокой степенью пульсации, однако их можно использовать в тех случаях, когда связка статора с обмоткой является обязательным условием. Трехфазный вентильный двигатель характеризуется сочетанием невысокой скорости, но хорошей силовой отдачей. Поэтому его чаще используют как в сборке бытовых приборов, так и в изготовлении промышленной техники. Также существуют четырех- и шестифазные модели вентильных электромоторов, но это уже сегменты специализированных установок, которые дорого стоят и обладают крупными габаритами.
Благодаря конструкционной оптимизации вентильная силовая техника обеспечивает множество эксплуатационных преимуществ. В их числе стоит отметить быстродействие, гибкость в настройке, точность определения позиции ротора (с помощью датчика), широкие возможности технической подстройки и т.д. При скромных энергозатратах можно получить высокую силовую отдачу. Что еще важно, вентильный электродвигатель задействует небольшой ресурс механического действия, а это благоприятно сказывается и на его сроке эксплуатации. Низкий уровень термического воздействия на элементную базу обуславливает отсутствие перегревов, поэтому детали лишь в редких случаях требуют замены по причине износа.
Специалисты отмечают два основных минуса таких электродвигателей. В первую очередь это сложность конструкции. Не механической части, а именно электронной основы, которая обеспечивает управление мотором. Применение микропроцессоров, датчиков, инверторов и сопутствующей электротехнической фурнитуры требует соответствующего подхода к обеспечению надежности работы компонентов системы. Таким образом, повышается и стоимость обслуживания техники. Вместе с этим, отмечается и дороговизна магнитов, на которых базируется вентильный двигатель даже в простых однофазных исполнениях. На практике пользователи стараются заменять недешевые элементы и расходники, вместе с этим упрощая и систему управления. Но такие меры сами по себе требуют определенных ресурсов, не говоря о том, что снижается эффективность двигателя.
Концепция использования электроники в составе традиционных роторных двигателей не всегда оправдывается в процессе эксплуатации. Связано это со сферами применения такого оснащения. Чаще всего это традиционные области производства, где совсем не обязательно подключение электронных систем управления. Инновационная начинка заставляет пересматривать производственные циклы, точечно модернизируя технологические процессы. К тому же стоимость двигателя, которая варьируется от 15 до 20 тыс. руб., не добавляет привлекательности этой продукции. Обычные аналоги на контроллерах с электромеханическими реле обходятся дешевле, не говоря о том, что их легче интегрировать в процессе сборки продукции.
И все же появляются направления, в которых высоко ценится именно полупроводниковое управление с датчиками роторов. Как правило, это высокотехнологичное оборудование, выпуском которого занимаются крупные компании. Причем на выходе они предоставляют продукцию разного уровня, в том числе и для бытового применения.
www.syl.ru
В целом, электрический двигатель представляет собой электромеханическое устройство, которое преобразовывает электрическую энергию в механическую.
По типу подключения двигатели бывают однофазные и 3-х фазные. Среди 3-х фазных двигателей наиболее распространенными являются индукционные (асинхронные) и синхронные электродвигатели.
Когда в 3-х фазном двигателе электрические проводники располагаются в определенном геометрическом положении (под определенным углом относительно друг друга), возникает электрическое поле. Образованное электромагнитное поле вращается с определенной скоростью, которая называется синхронной скоростью.
Если в этом вращающемся магнитном поле присутствует электромагнит, он магнетически замыкается с этим вращающимся полем и вращается со скоростью этого поля. Фактически, это нерегулируемый двигатель, поскольку он имеет всего одну скорость, которая является синхронной, и никаких промежуточных скоростей там быть не может. Другими словами, он работает синхронно с частотой сети. Ниже дана формула синхронной скорости:
Ns = 120F/p
В принципе, его строение практически аналогично 3-фазному асинхронному двигателю, за исключением того факта, что на ротор подается источник постоянного тока (в этом мы разберёмся позже). А пока рассмотрим основное строение данного типа двигателя.
На рисунке показано устройство этого типа двигателя. На статор подается 3-х фазное напряжение, а на ротор – источник постоянного тока.
Строение синхронного двигателяОсновные свойства синхронных двигателей:
Видео: Строение и принцип работы синхронного двигателя
Электронно-магнитное поле синхронного двигателя обеспечивается двумя электрическими вводами. Это обмотка статора, которая состоит из 3-х фаз и предусматривает 3 фазы источника питания и ротор, на который подается постоянный ток.
3 фазы обмотки статора обеспечивают вращение магнитного потока. Ротор принимает постоянный ток и производит постоянный поток. При частоте 50 Гц 3-х фазный поток вращается около 3000 оборотов в 1 минуту или 50 оборотов в 1 секунду. В определенный момент полюса ротора и статора могут быть одной полярности (++ или – – ), что вызывает отталкивания ротора. После этого полярность сразу же меняется (+–), что вызывает притягивание.
Но ротор по причине своей инерции не в состоянии вращаться в любом направлении из-за силы притяжения или силы отталкивания и не может оставаться в состоянии простоя. Он не самозапускающийся.
Чтобы преодолеть инерцию силы, необходимо определенное механическое воздействие, которое вращает ротор в том же направлении, что и магнитное поле, обеспечивая необходимую синхронную скорость. Через некоторое время происходит замыкание магнитного поля, и синхронный двигатель вращается с определенной скоростью.
www.asutpp.ru
Наибольшее распространение такая машина как синхронный двигатель получила в промышленности, где есть электроприводы, работающие на постоянных скоростях. Например, компрессоры с мощными двигателями, приводы насосов. Также синхронный двигатель является неотъемлемой частью и многих бытовых приборов, например, он есть в часах.
Принцип действия этой машины достаточно прост. Взаимодействие вращающегося магнитного поля якоря, создаваемого переменным током, и магнитных полей на полюсах индуктора, создаваемых постоянным током, и лежит в основе принципа работы такого электрического устройства как синхронный двигатель. Обычно индуктор расположен на роторе, а якорь – на статоре. Мощные двигатели в качестве полюсов используют электромагниты. Но есть и маломощный тип - синхронный двигатель с постоянными магнитами. Главное отличие синхронных машин от асинхронных - конструкция статора и ротора.
Для разгона двигателя до уровня номинальной скорости часто используют асинхронный режим. В этом режиме обмотка индуктора накоротко замкнута. После того как двигатель выходит на номинальную скорость, выпрямитель питает постоянным током индуктор. Только в номинальной скорости синхронный двигатель может самостоятельно работать.
Такой двигатель имеет массу достоинств. Он на порядок сложнее асинхронной машины, однако это компенсируется рядом преимуществ. Один из главных плюсов - его возможность работать без потребления или отдачи реактивной энергии. При этом коэффициент мощности двигателя будет равен единице. При таких условиях синхронный двигатель переменного тока будет нагружать сеть исключительно активной составляющей. Побочным эффектом будет уменьшение габаритов двигателя (у асинхронного двигателя обмотка статора рассчитывается и на активный, и на реактивный токи). Однако синхронный двигатель может вырабатывать и реактивную энергию, работая в режиме перевозбуждения.
Синхронный электродвигатель гораздо менее чувствителен к скачкам и перепадам напряжения в сети. Также такие электрические машины имеют более высокую устойчивость к перегрузкам. За счет повышения токов возбуждения можно увеличить перегрузочную способность двигателя. Плюсом работы с синхронной машиной является также и постоянная номинальная скорость вращения при любой нагрузке (кроме перегрузок).
Несомненно, у такой машины как синхронный двигатель есть и свои слабые места. Они связаны с повышенными затратами и сложной эксплуатацией. Основной проблемой является процесс возбуждения электродвигателя и введения его в синхронизм. В настоящее время нашли распространение тиристорные возбудители, которые имеют гораздо более высокий коэффициент полезного действия, чем электромашинные возбудители. Однако их стоимость существенно выше. С помощью тиристорного коммутатора можно решить многие вопросы: оптимальное регулирование токов возбуждения, поддержка постоянного значения косинуса фи, контроль над напряжением на шинах, регулирование токов статора и ротора в аварийных режимах и при перегрузках.
fb.ru