Фирма Scuderi Group зарегистрировала заявку на патент бензинового двигателя внутреннего сгорания, получившего название «Split-Cycle».
Традиционный двигатель внутреннего сгорания изобрели не вчера — первые более или менее удачные схемы появились в середине XIX века, а действительно работоспособные бензиновые агрегаты начали строить в конце столетия. С тех пор ДВС лишь эволюционирует, и кардинально ничего не меняется вот уже более сотни лет. Даже на первый взгляд новейшие и передовые системы прямого впрыска и принудительного наддува были придуманы еще в первой половине XX века. Но, кажется, на горизонте появился действительно новый двигатель, создателем которого является американская инжиниринговая фирма Scuderi Group.
Средний КПД современных двигателей, по данным Scuderia Group, равен примерно 33%. Новый же двигатель, утверждают специалисты, эффективно использует 40% энергии горючего
Янки предложили интересную модель поршневого мотора внутреннего сгорания, изюминка которого — так называемый раздвоенный цикл. Смысл заключается в том, что за такты впуска и сжатия отвечает один цилиндр, а за рабочий ход и выпуск — другой, связанный с первым. Таким образом, два поршня, двигаясь почти синфазно, разделяют обязанности: пока первый работает над образованием и сжатием топливовоздушной смеси, второй ее получает через оснащенный клапанами специальный канал, воспламеняет и отводит отработавшие газы через выпускные клапаны.
Во время торможения включается режим рекуперации энергии. Так, замедляющиеся колеса через трансмиссию вращают коленвал, поршень рабочего хода отключается (но продолжает двигаться, хотя клапаны перекрываются), а поршень сжатия не прекращает работать, отсылая сжатую смесь в специальный контейнер. Затем, когда поршень рабочего хода снова включается в работу, топливовоздушная смесь поступает уже из контейнера, позволяя отключить цилиндр сжатия (клапаны замирают, поршень движется вверх-вниз). Технологию нарекли Air-Hybrid
То есть один такой «двойной поршень» воспламеняет горючую смесь один раз за каждый оборот коленчатого вала. Фактически два обычных поршня проделывают то же самое, однако «спаренному» при прочих равных условиях нужно вдвое меньше форсунок и свечей зажигания.
Мотор Split-Cycle работает по термодинамическому циклу Миллера, который совмещает в себе элементы циклов Отто (наиболее часто встречаемый) и Аткинсона: поршень ходит вверх и вниз с одинаковой скоростью, но фактическая степень сжатия снижается за счет позднего закрытия впускных клапанов (выигрыш заключается в возможности увеличить геометрическую степень сжатия, степень расширения и, следовательно, КПД). Для компенсации небольших мощностных потерь от данного решения используется турбонагнетатель.
Все вышеописанные ухищрения, по подсчетам компании, дают 25-процентное преимущество в топливной экономичности по сравнению с обыкновенными современными двигателями и 13-процентное — если сравнивать с лучшими ДВС на данный момент.
НА ДАННОЙ СТРАНИЧКЕ Я ВЫКЛАДЫВАЮ МАТЕРИАЛЫ ТЕОРЕТИЧЕСКОЙ ЧАСТИ МОИХ ПОСЛЕДНИХ РАЗРАБОТОК — ВТОРАЯ ПОЛОВИНА 2011г. это Схема «А», Схема «В» и Схема «С» |
Много лет прошло с тех пор, когда мне, тогда еще подростку, в 1973 году попался номер журнала «Техника-молодежи» с описанием роторного двигателя Ванкеля. Я за эти десятилетия то возвращался к идее роторного двигателя, то надолго оставлял ее. Надо было как-то жить, зарабатывать деньги,обеспечивать семью, особенно в смутное и непростое время 90-х, когда производство и новая техника были вообще никому не нужны… Какое там техническое творчество… Но более 10 лет назад я как-то все плотнее взялся за старые идеи уже не смог надолго отрываться от этих образов… Образов совершенного роторного двигателя. Помните, как у философа Платона 2300 лет назад сформулирован постулат: миры образов — эйдосов, миры первоидей стоят в начале всего на этом свете…Со временем — когда я создал классификацию роторных двигателей и перерыл многие сотни патентов СССР, США, Англии и пр. по роторным двигателям, начиная с первого патента 1859 года, я укрепился в понимании, что наиболее перспективной является схема «типа Тверской». Но эта схема работала хорошо 140 лет назад в варианте паровой расширительной машины, а идея и технологические циклы ДВС со сжатием- значительно сложнее. И вот я принялся создавать схемы и воплощать их в действующие модели и макеты. Итог этих более чем 5-ти лет постоянного экспериментирования и теоретизирования таков: накоплен немалый и весьма содержательный опыт, который позволяет определить пути дальнейшего поиска оптимальной схемы и выбрать наиболее интересные решения в этом направлении.
На этой страничке я буду вести рассуждения и выкладывать материалы о развитии идей совершенного роторного двигателя, т.е. о «тюнинге самой концепции» этой идеи, а вот о конкретных возможностях тюнинга двигателя — смотрите на соответствующей страничке этого сайта ТЮНИНГ ДВИГАТЕЛЯ
Итак, первой была схема наиболее близкая к компоновке паровой машины Н.Н. Тверского.Именно ее я создал и испытал в 3-х вариантах опытных моделей. Одна из них- последняя как-то даже дым пускала и иногда пыталась тарахтеть.
Но по итогам работы над этой схемой и такими моделями я пришел к выводу, что в малых размерах такая схема практически не работоспособна. Для создания гармоничной схемы надо делить кольцевое рабочее пространство на 4 сегмента, из которых будет формироваться 2 технологических сектора с полным набором из 5-ти технологических тактов. Но, учитывая мертвые зоны кольцевого рабочего пространства, на протяжении которых лопасти будут проходить в проемах запорных барабанов, длина дуг рабочего хода сегментов «впуска-сжатия» и «расширения-выпуска» оказывалась незначительной. Т.е. невозможно было достичь заметных степеней сжатия и расширения. В рамках этой схемы можно было идти двумя путями- либо заметно уменьшать объемы камеры сгорания и высоту лопасти, чтобы при малом объеме камер сгорания сделать заметными степени сжатия и расширения. Либо резко увеличивать диаметр поверхности ротора- чтобы при заметном объеме камер сгорания дать значительные степени «сжатия- расширения» и длину рабочего хода. Но тогда бы надо было делать диаметр корпуса более 600 мм., что сразу приводило к сложности изготовления и значительным габаритам двигателя. Что мне никак не подходило.Т.е. тут прорисовывалась ситуация как с газовыми турбинами- при всех своих плюсах и значительной привлекательности, они после уменьшения размеров до определенного параметра, они начинают резко терять свои возможности и показатель их удельной мощности в малых массо-габаритных размерах резко снижается. При сохранении высокой прожерливости.И я решил отказаться от этой компоновочной схемы.
Сразу оговорюсь, понимая скромность своих сил и трудность выхода на глобальный рынок с новой продукцией, я сразу нацелен со своими разработками на рыночных сегмент 2-х тактных двигателей. Т.е. малоразмерных моторов малого веса, которые сегодня имееют малый ресурс (около 500 моточасов), большой расход топлива и грязный выхлоп. Этот рынок давно жаждет появления новой продукции и с радостью будет восприниать ее, так как существующая продукция имеет высокую цену и очень низкие эксплуатационные характеристики. А пытаться «воевать» на рынке 4-х тактных автомобильных моторов, которые имеют очень солидные моторесурсы и сравнительно приемлемую экономичность- дело крайне трудное. Итак — мой шанс создать маленький и мощный мотор с хорошим моторесурсом, на замену 2-тактных двигателей для мотороллеров, мотоциклов, мотоблоков, квадроциклов, подвесных лодочных моторов, всяких бензопил и пр. Т.е. мотор мой должен изначально проектироваться малым и легким. |
А указанная выше схема могла быть хорошо рабочей только в большом диаметре ротора и корпуса. И это меня не устраивало.
После осмысления полученных на испытаниях результатов и их анализа я устроил мозговой штурм и сумел найти выход на новые решения. В итоге на сегодняшния день — октябрь 2011 г. я имею три очень разных схемы. Каждая из этих схем является хорошим, но весьма необычным выходом на новые вариации схемы «типа Тверской». Каждя из них имеет преимущества на для определенных габаритов.На все эти схемы уже поданы патентные заявки на изобретения.Я начинаю выкладывать новые схемы с самой большой и «громоздкой», а закончу- с самой маленькой и «компактной».
В данных эскизах несколько нарушены пропорции элементов мотора — поэтому прошу не придираться к недостаткам кажущегося нарушения этапов и геометрии схем газораспределения. . Выражаю благодарность одному из постоянных посетителей этого сайта Вячеславу Воронину — ник telekast, за помощь в создании GIF анимации.
В данной схеме очень легко делать различными соотношения рабочих объёмов компрессорной секции и роторной секции. Т.е. легко можно делать степени сжатия и расширения в любых соотношениях меж ними. Например: делать степень расширения больше на 30-50%, чем степень сжатия, и тем самым попытаться заметно поднять КПД. Это достигается изменением «толщины» роторов и корпусов роторной и компрессорной секций.
  Данная схема — «Схема №1» или «Схема «А», является самой сложной и самой «габаритной» из всех новых схем. Например — в ней 12 шестерен. Для не сильно разобравшихся в схеме персон поясняю — ни одна шестерня не передает основную мощность, все они «крутят» вспомогательные элементы с небольшими усилиями. Но вот самая маленькая компоновка — схема «С», будет иметь всего 3 шестерни.  Зато схема схема «А» обещает быть самой мощной, так как при габаритах корпуса: D 620 мм.х 160 мм. она имеет плечо крутящего момента 125 мм. и дает 9 рабочих тактов за оборот вала. Я прикинул теоретический крутящий момент, но не хочу его тут обозначать, ибо получается что-то невероятное.  Для сравнения — наиболее распространенный двигатель грузовика КаМАЗа при 8 цилиндрах имеет плечо крутящего момента 60 мм, при 2-х рабочих тактах за один оборот главного вала двигателя. При габаритах 1103х908х965, весе в 850-900 кг. и мощности в 240-260 л.с.
НЕСКОЛЬКО ПОЗЖЕ ВЫЛОЖУ НА ЭТОЙ СТРАНИЧКЕ САЙТА ИНФОРМАЦИЮ ПО ДРУГИМ КОМПОНОВОЧНЫМ СХЕМАМ РАЗВИТИЯ ЭТОГО НАПРАВЛЕНИЯ РОТОРНЫХ ДВИГАТЕЛЙ — СХЕМАМ «В» и «С».ВЫКЛАДЫВАЮ СХЕМУ «В»Работаю на ноутбуке- поэтому качество не самое хорошее. 2 недели сижу в Москве, вдали от большого своего компа со всей основной информацией, посему- извиняйте за не самое лучшее качество.
Конструкция получилась «вывернутой наизнанку» — с центральным запорным барабаном(2) и вынесенными на его перефирию секторами «впуска- сжатия» и «расширения -выпуска». Между секторами размещены камеры сгорания (5). (3) — это роторы сеторов «впуска- сжатия», а (4) — это роторы силовых секторов, секторов «расширения-выпуска». Газораспределением — впуском и выпуском рабочих газов в и из камер сгорания будут управлять вращающиеся золотниковые клапана. Они на схемах пока не указаны- расположены на пересечении газоводов, рядом с Камерами Сгорания.Особенность схемы — мощность с двух роторов силовых секторов передается через шестерни на главный вал. Вижу возражения- мощность передается через шестерни, это плохо, шестерни не выдержат нагрузок. Но — двигатель должен вращать роторы силовых секторов достаточно плавно, при этом крутящий момент будут передавать сразу две шестерни, симметрично относительно оси главного вала разнесенные по сторонам. Зато на главный вал сразу будет передаваться в два раза уменьшенные обороты, с увеличенным вдвое усилием крутящего момента. Полагаю, что для двигателей небольшой мощности в 60 — 80 КВт такая схема вполне будет дееспособной.В этой схеме удается достигнуть значительной схемы компактности конструкции, так как при тех же габаритах корпуса ходы роторов в таким образом устроенных рабочих секторах оказываются заметно длиннее. Далее- в такой компоновке каналы газообмена между Камерой Сгорания и секторами «сжатия» и «расширения» можно сделать предельно короткими. А это важный элемент эффективности и вообще работоспособости двигателя.Создаваемая сейчас модель имеет максим габарит корпса 420 мм, плечо крутящего момента 56 мм (у ЗИЛ-130 плечо крут момента 47 мм). Содержит 8 шестерен, для привода всех элементов- запорных барабанов и золотниковых клапанов.В прорисованной компоновке данный двигатель будет давать 4 рабочих хода за один оборот главного вала.Размышления по поводу системы охлаждения и КПД схемы читайте в моих постах на Форуме сайта ОХЛАЖДЕНИЕ
8 декабря 11 г. — НАЧИНАЮ ВЫКЛАДЫВАТЬ МАТЕРИАЛЫ ПО СХЕМЕ «С»Это (3-я по счету из последних разработанных мною конструкций) самая малая и компактная из всех разработанных мною схем. Обошелся без длинных газоводов на роторе и обособленных золотниковых клапанов. Для этого пришлось делать камеры сгорания в роторах рабочих секций. Т.е. камеры сгорания вращаются с вращением роторов. В двигателе этой компоновки содержится две рабочих роторных секции (две силовых машины), а между ними — по центру- расположена компрессорная секция. В моторе такой компоновки всего три шестерни.Двигатель дает 8 рабочих тактов за один оборот главного вала.Максимальный габарит корпуса создаваемой сейчас модели будет 150 мм — т.е. модель делается весьма миниатюрной. При таком малом габарите двигателя плечо крутящего момента составляет — 40 мм, т.е. несколько больше чем у большинства моторов современных легковых машин, мощность которых составляет 100- 120 л.с.. Корпус двигателя сейчас делается из дюрали Д16Т, поэтому двигатель обещает быть очень легким.В схему работы двигателя встроен паровой цикл, т.е. теоретически на выхлоп будут идти газы с температурой не более 200 градусов (у современных поршневых ДВС — 800-1000 град.). Т.е. таким «охлаждением изнутри» решается сразу две задачи — резкое увеличение КПД и исчезновение необходимости в специальной и громоздкой системе охлаждения.
В данной конструкции легко делать разными по объему сегменты сжатия и сегменты расширения. На выложенном ниже эскизе — схеме показано, что центральная секция (секция сжатия) меньше по толщине и по диаметру. За счет этого объем сегмента сжатия, меньше чем сегмент расширения. Т.е. степень сжатия меньше, чем степень расширения.
25 декабря 11г. Надо сказать, что схема «С» имеет несколько разных решений в плане своей компоновки. Т.е. это принципиальное объемное решение по типу размещения и взаимоотношения разных секций двигателя имеет несколько различных вариантов применения различных второстепенных элементов и систем двигателя. Вверху на чертеже представлено одно из таких решений. При этом различные варианты схемы «С» могут давать достаточно разные уровни решения главных задач- соотношения степени сжатия к степени расширения, разные типы встраивания в двигатель «паровой фазы», разные варианты размещения каналов газообмена и пр. На данный момент я экспериментирую с одним из таких вариантов, но уже готовятся рабочие чертежи для изготовления очередного компоновочного решения схемы «С». 13 января 12г. Двигатель схемы «С» изготовлен. Начинаю собирать мотор — фотографии некоторых деталей ЗДЕСЬ. 05.07.13г. Давно не обновлял этот раздел, хотя материала накопилось много. Это время активно занимался совершенствованием схемы компоновки «С», считая её самой эффективной и перспективной. Она оказалась возможной к многим вариациям. Подано несколько патентных заявок на изобретения на эти схемы. Выкладываю ГИФ анимацию киниматической схемы одной из таких компоновок. Эта анимация визуализирует только часть конструктивных (но основные -показаны) элементов для осуществления рабочих процессов двигателя. Делать элементы в движении со всеми их деталями- получится весьма громоздко и трудно воспринимаемо…
16.07.13г. Что-то ГИФ анимация туго работает, в смысле — тормозит работу сервера. Вынужден на её место поставить статичную картинки- всего один кадр из анимации. Не так наглядно, но — зато сайт лучше теперь работает.
www.rotor-motor.ru
Уже более 100 лет в легковом автомобилестроение используются двигатели внутреннего сгорания и за все это время никаких революционных изменений в их работе или промышленном строение придумано не было. Однако, недостатков у этих моторов предостаточно. Борьбу с ними инженеры вели всегда, как ведут и по сей день. Случается, что некоторые идеи перерастают в довольно оригинальные и впечатляющие технические решения. Одни из которых так и остаются на стадии разработки, а другие воплощаются в жизнь на некоторых сериях автомобилей.
Поговорим о наиболее интересных инженерных разработках в области «автодвигателей»
Классический четырехтактный мотор был изобретен в далеком 1876 году одним немецким инженером по имени Николаус Отто, цикл работы такого двигателя внутреннего сгорания (ДВС) прост: впуск, сжатие, рабочий ход, выпуск. Но уже через 10 лет после варианта Отто британский изобретатель Джеймс Аткинсон предложил усовершенствовать данную схему. На первый взгляд цикл Аткинсона, его порядок тактов и принцип работы такой же как и двигателя, который изобрел немец. Однако, по сути это абсолютно другая и весьма оригинальная система.
Перед тем как мы расскажем об изменениях в классическом строении ДВС, посмотрим о принципе работы такого двигателя, чтобы всем было понятно о чем мы говорим.
3-D модель работы ДВС:
Комментарии и простейшая схема ДВС:
Во-первых, в двигателе Аткинсона имеется уникальный коленчатый вал, обладающий смещенными точками крепления.
Такая новация позволила сократить количество потерь на трение и увеличить уровень сжатия двигателя.
Во-вторых, двигатель Аткинсона имеет иные фазы распределения газа. В отличие от двигателя Отто, где клапан впуска закрывается почти сразу после прохождения поршнем нижней точки, в двигателе британского изобретателя такт впуска намного длиннее, в результате чего клапан совершает закрытие, когда поршень уже на полпути к верхней мертвой точке цилиндра. В теории такая система должна была улучшить процесс наполнения цилиндров, что в свою очередь привело бы к экономии топлива и увеличению показателей мощности мотора.
В общем-то, цикл Аткинсона на 10% показательней по эффективности, чем цикл Отто. Но все же серийно автомобили с таким ДВС не выпускались и не выпускаются.
А дело все в том, что обеспечить свою нормальную работу такой двигатель может только на повышенных оборотах, при холостых — он так и стремится заглохнуть. Чтобы этого не происходило, разработчики и инженеры пытались внедрить в систему нагнетатель с механикой, но его установка, как выяснилось, сводит практически к нулю все плюсы и достоинства двигателя Аткинсона. В виду этого серийно автомобили с таким двигателем практически не выпускались. Один из самых известных — Mazda Xedos 9/Eunos 800, выпускаемая в 1993-2002 годах. Автомобиль оснащался 2,3-литровым двигателем V6, с мощность в 210 л.с.
Mazda Xedos 9/Eunos 800:
А вот производители гибридных автомобилей с радостью стали применять в разработках данный цикл ДВС. Потому как при малой скорости такая машина движется, используя свой электрический двигатель, а для разгона и быстрой езды ей нужен бензиновый, тут-то и можно по максимуму воплотить в жизнь все достоинства цикла Аткинсона.
Главным источником шума в двигателе автомобиля является газораспределительный механизм, ведь в нем довольно много движущихся частей — различные клапаны, толкатели, распределительные валы и т.д. Многие изобретатели пытались «утихомирить» такой громоздкий механизм. Пожалуй, больше всего это удалось американскому инженеру Чарльзу Найту. Он изобрел свой собственный двигатель.
В нем нет ни стандартных клапанов, ни привода к ним. Заменяют эти детали — золотники, в форме двух гильз, которые размещены между поршнем и цилиндром. Уникальный привод заставлял двигаться золотники в верхнее и нижнее положение, они в свою очередь открывали в нужный момент окна в цилиндре, куда поступало топливо, а в атмосферу выделялись выхлопные газы.
Для начала XX века такая система была довольно бесшумной. Не мудрено, что ей стало интересоваться все большее и большее количество автопроизводителей.
Только вот стоил такой двигатель далеко не дешево, поэтому и прижился он только на престижных марках, типа Mercedes-Benz, Daimler или Panhard Levassor, покупатели которых гнались за максимальным комфортом, а не дешевизной.
Но век мотора, изобретенного Найтом, оказался недолгим. И уже в 30-ые годы прошлого столетия автопроизводители поняли, что двигатели такого типа довольно не практичны, потому как конструкция их не совсем надежна, а высокая степень трения между золотниками увеличивает и расход топлива и масла. Потому-то узнать автомобиль с ДВС такого типа можно было по сизому дымку из выхлопной трубы автомобиля от горящей смазки.
В мировой практике было множество всевозможных решений в области модернизации классического двигателя внутреннего сгорания, однако, его первоначальная схема сохранилась до сих пор. Некоторые автопроизводители конечно же применяют на практике открытия успешных ученых и умельцев, но по своей сути, ДВС — остался прежним.
В статье использованы изображения с сайтов www.park5.ru, www.autogurnal.ruspokoino.ru
В этом списке имеют право находиться только двигатели серийных пассажирских автомобилей, никаких кастомных проектов. Итак, давайте же приступим!
Bugatti Veyron W16
Конечно, куда же без него, великий и могучий Veyron W16. Одни только цифры поражают: 8 литров, более 1000 лошадиных сил, 16 цилиндров – этот двигатель является самым мощным и сложным среди всех серийных автомобилей. Он имеет 64 клапана, четыре турбины, W-компоновку – такого мы еще никогда не видели. И да, на него распространяется гарантия.
Такие двигатели являются удивительно редкими, поэтому мы должны ценить то, что нам удалось застать такие уникальные технологические прорывы.Knight Sleeve Valve
В начале прошлого века, Чарльз Йел Найт решил, что пора внести в конструкцию двигателей что-то новенькое, и придумал бесклапанный двигатель с гильзовым распределением. К всеобщему удивлению, технология оказалась рабочей. Такие двигатели были весьма эффективными, тихими и надежными. Среди минусов можно отметить потребление масла. Двигатель был запатентован в 1908 году, а позднее появлялся во многих автомобилях, в том числе Mercedes-Benz, Panhard и Peugeot. Технология отошла на задний план, когда двигатели стали быстрее крутиться, с чем традиционная клапанная система справлялась гораздо лучше.
Mazda Wankel Rotary
Пришел как-то один парень в офис Mazda, и предложил сделать двигатель, в котором трехконечный поршень должен вращаться в овальном пространстве. По сути, это напоминало футбольный мяч в стиральной машине, но по факту двигатель оказался удивительно сбалансированным. Вращаясь, ротор создает три небольших полости, которые отвечают за четыре фазы силового цикла: впрыск, компрессия, мощность и выхлоп. Звучит эффективно, и так оно и есть. Соотношение мощности и объема довольно высоко, но сам по себе движок нефонтанистый, потому что камера сгорания у него сильно удлинена. Странно, не так ли? А знаете, что еще более странно? Он всё еще в производстве. Купите Mazda RX-8 и получите сумасшедший движок, который вращается до 9000 об/мин. Чего же вы ждете? Скорее в салон!
Eisenhuth Compound
Джон Айзенхат знаменит тем, что изобрел интересный трехцилиндровый двигатель, в котором два крайних цилиндра питали средний, «мертвый» незажженный цилиндр своими выхлопными газами, который, в свою очередь, отвечал за выходящую энергию. Айзенхат пророчил своему двигателю 47-процентную экономию топлива. Через пару лет компания развалилась и обанкротилась. Делайте выводы.
Panhard Flat-Twin
Французская компания Panhard стала известна благодаря своим интересным двигателям с алюминиевыми блоками. Их изюминкой является конструкция. Суть в том, что блок и головка блока цилиндров сварены в единое целое. Объем двигателя составлял от 0.61 до 0.85 литра, мощность – от 42 до 60 л.с, в зависимости от модели. Удивительный факт: этот двигатель является самым странным участником и победителем (!!!) гонок Le Mans.
Commer Rootes TS3
Странный двигатель со странным названием. Трехлитровый движок с оппозитными поршнями Commer TS3 оснащался компрессором и одним коленвалом (большинство оппозитных двигателей имеет два). Очень интересная махина во всех смыслах этого слова.
Lanchester Twin-Crank Twin
Компания Lanchester была основана в 1899 году, а уже через год они выпустили свой первый автомобиль Lanchester Ten, оснащенный четырехлитровым атмосферным двигателем с двумя коленвалами. Выжимал он 10.5 лошадиных сил при 1250 об/мин. Если вы еще не встречали элегантного произведения инженерного искусства, то вот оно.
Cizeta-Moroder Cizeta V16T
Как и Veyron, суперкар Cizeta выпускался ограниченной партией, и его ключевой деталью был двигатель. 560 лошадей, 6 литров, компоновка V-16. По сути, это два двигателя V8, использующих общий блок. Найти эту машину сейчас сложнее, чем честного чиновника. Количество произведенных автомобилей держится в тайне.
Gobron Brillie Opposed Piston
Двигатель Commer TS3 построили, вдохновившись именно этим чудом инженерии родом из Франции. Поршни располагались противоположно друг другу. Первая пара отвечала за коленвал, вторая – за шатуны, соединенные с коленвалом под углом 180°. Компания производила широкий спектр двигателей, от двухцилиндровых объемом 2.3 литра, до шестицилиндровых объемом 11.4 литра. Был еще огромный 13.5-литровый четырехцилиндровый гоночный движок, благодаря которому впервые была пройдена отметка скорости в 100 миль/час в 1904 году.
Adams-Farwell
Сама идея того, что сзади тебя в автомобиле вращается двигатель, довольно интересна, именно поэтому данный движок попал в наш список. Вообще, вращался не весь двигатель, а только цилиндры и поршни, потому что коленвалы были прочно зафиксированы. Установленные по кругу цилиндры охлаждались воздухом и напоминали крутящееся колесо. Сам двигатель устанавливался позади водительского места, которое было выдвинуто максимально вперед. Идеальная схема для летального исхода во время аварии.
Бонус! Безумные двигатели не из серийных автомобилей
Chrysler A57 Multibank 30 цилиндров, пять карбюраторов, пять распределителей – вот что случается, когда Америка выходит на тропу войны. Этот монстр питал своими 425 силами такие знаменитые танки, как M3A4 Lee и M4A4 Sherman.
British Racing Motors H-16
Не упомянуть его было бы преступлением. Трехлитровый двигатель имел 32 клапана H-16, по сути два восьмицилиндровых двигателя, соединенных воедино инженером по имени Тони Радд. Он выжимал более 400 л.с, но был ненадежным и ужасно высоким. В 1966 году этот двигатель стал победителем гонок Формула 1 Гран При США, за рулем болида находился Джим Кларк.
источник
menstois.ru
----------------------<cut>----------------------
В одной из недавних публикаций под названием "Резервное питание. Если в пути накрыл форс-мажор" речь шла о том, что в критической ситуации можно залить в бак автомобиля. Как выяснилось, двигатель может работать на альтернативных видах топлива, правда не одинаково хорошо. Одни горючие жидкости проявили себя лучше, другие наоборот. Вкратце напомним. Лучше всего зарекомендовали себя скипидар, керосин, бытовой газ из баллонов с редуктором и газ в "китайских" баллончиках для походных горелок. Дизельное топливо, ацетон, растворители, этиловый спирт и еще кое-какой алкоголь проявили меньшую преемственность, хотя на "крайний случай" могут быть использованы. Получается, что двигатель внутреннего сгорания вещь довольно капризная. Причина этому – сгорание топливной смеси в ограниченном объеме при переменном давлении. Сам процесс сгорания больше напоминает взрыв, почему и существует такое понятие как "детонационная стойкость топлива". Если ваш двигатель рассчитан на 95-й бензин, а вы залили или разбавили 80-м или 76-м, то "эффект" ощутится сразу, в виде характерных звуков. Такая работа для двигателя неблагоприятна.Но существует разновидность двигателей которым все равно на каком топливе работать. Это двигатели работающие по циклу Стирлинга. Более распространенное название — "Двигатель Стирлинга". Об этом двигателе уже неоднократно писали. Вот некоторые ссылки по теме (если не активная — оригинал здесь)
Что же это за двигатель такой диковинный? Как у него получается работать на любом топливе? И если он такой "всеядный", то почему широко не используется до сих пор? Об этом речь пойдет дальше.
От автора: Возможно кто-то из читателей уже знаком с двигателями такого типа, кто-то слышал, но подробностей не знает, кто-то может не знать ничего и ему будет интересно узнать новое. Не буду слишком перегружать читателей заумными научными формулировками и тонкостями, постараюсь изложить в доступной форме, так чтобы и знатокам было интересно и тем кто еще не знает. Хотя кое-где без формул и специфических терминов не обойтись. Чтобы излишне не раздувать содержание публикации в тексте будет много ссылок на другие источники (зачем "копипастить" все подряд?) и литературу из которой взят данный материал. Заранее извиняюсь за местами некачественный графический материал.С двигателем внутреннего сгорания (ДВС) мы сталкиваемся практически ежедневно. Автомобили легковые и грузовые, маршрутные такси и автобусы, дизельные поезда, корабли, а также легкая и средняя винтовая авиация. ДВС настолько распространен и привычен, что порой кажется, что других типов двигателей и не существует. Еще в школе на уроках физики учителя демонстрировали его модель.
На самом деле это не так. Существуют и другие типы двигателей внутреннего сгорания. В силу ряда причин они получили меньшее распространение. В следующей публикации о них будет рассказано подробнее.Сегодня речь пойдет о другом типе двигателя – "двигателе внешнего сгорания" или "двигателе Стирлинга". Для работы двигателя используется внешний подвод теплоты и в дальнейшем (чтобы избежать путаницы с терминами) введем формулировку "Двигатель с Внешним Подводом Теплоты" или сокращено ДВПТ. Откуда же взялся такой двигатель? Кто его изобрел?
Двигатель Стирлинга был впервые запатентован шотландским священником Робертом Стирлингом в Эдинбурге, столице Шотландии 27 сентября 1816 года (английский патент № 4081 на "машину, которая производит движущую силу посредством нагретого воздуха"). Однако первые элементарные "двигатели горячего воздуха" были известны ещё в конце XVII века, задолго до Стирлинга. Достижением Стирлинга является добавление очистителя, который он назвал "эконом". В современной научной литературе этот очиститель называется "регенератор" (теплообменник). Он увеличивает производительность двигателя, удерживая тепло в тёплой части двигателя, в то время как рабочее тело охлаждается. Этот процесс намного повышает эффективность системы. В 1843 году Джеймс Стирлинг использовал этот двигатель на заводе, где он в то время работал инженером. Двигатель Стирлинга был изобретен приблизительно за 80 лет до дизеля, и поэтому пользовался значительной популярностью до начала ХХ века. В 1827 и 1840 годах Стирлинг получает еще два патента на усовершенствованные варианты своей машины. А в 1845 году на литейном заводе в Дании была пущена машина Стирлинга мощностью 50 индикаторных лошадиных сил, проработавшая в течение трех лет. В XIX веке инженеры хотели создать безопасную альтернативу паровым двигателям того времени, котлы которых часто взрывались из-за высоких давлений пара и неподходящих материалов для их постройки. Хорошая альтернатива паровым машинам появилась с созданием двигателей Стирлинга, который мог преобразовывать в работу любую разницу температур. Основной принцип работы двигателя Стирлинга заключается в постоянно чередуемых нагревании и охлаждении рабочего тела в закрытом цилиндре. Обычно в роли рабочего тела выступает газ — воздух, гелий, водород и другие.Более подробную информация для ознакомления с данным типом двигателя можно найти здесьДвигатели Стирлинга подразделяются на следующие основные типы:
Альфа-Стирлинг — содержит два раздельных силовых поршня в раздельных цилиндрах. Один поршень — горячий, другой — холодный. Цилиндр с горячим поршнем находится в теплообменнике с более высокой температурой, в то время как цилиндр с холодным поршнем находится в более холодном теплообменнике. У данного типа двигателя отношение мощности к объёму достаточно велико, но, к сожалению, высокая температура "горячего" поршня создаёт определённые технические проблемы. Бета-Стирлинг — цилиндр всего один, горячий с одного конца и холодный с другого. Внутри цилиндра движутся поршень (с которого снимается мощность) и "вытеснитель", изменяющий объем горячей полости. Газ перекачивается из холодной части цилиндра в горячую через регенератор. Регенератор может быть внешним, частью теплообменника, или совмещённым с поршнем-вытеснителем. Гамма-Стирлинг — тоже есть поршень и "вытеснитель", но при этом два цилиндра — один холодный (там движется поршень, с которого снимается мощность), а второй горячий с одного конца и холодный с другого (там движется "вытеснитель"). Регенератор соединяет горячую часть второго цилиндра с холодной и одновременно с первым (холодным) цилиндром. Существуют также другие разновидности, роторные, роторно-лопастные, свободнопоршневые простого и двойного действия. -------------------------------------------------------------------Роторный двигатель Цвауэра-Ванкеля. Пока ни одна из попыток не привела к коммерческому воплощению системы (Может у кого-то из читателей в будущем получится) -------------------------------------------------------------------Двигатель Рини с "косой шайбой". Довольно удачная компактная схема. -------------------------------------------------------------------Роторно-лопастный двигатель. Успешные работы по данному типу двигателя ведутся в Псковском госудраственном политехническом институте, что не может радовать. Подробнее здесь -------------------------------------------------------------------Бесшатунные двигатели разрабатывались в СССР Баландиным Сергеем Степановичем. Он является конструктором поршневых авиационных двигателей необычной бесшатунной схемы. Эта схема незаслуженно забыта. Подробнее здесь ------------------------------------------------------------------- Вообще двигатели Стирлинга имеют много схематических аналогов среди ДВС. Это и не удивительно, ведь их рабочие циклы похожиА теперь рассмотрим основные преимущества и недостатки данного типа двигателей.
Преимущества двигателя Стирлинга.* "Всеядность" двигателя — как все двигатели внешнего сгорания (вернее — внешнего подвода тепла), двигатель Стирлинга может работать от почти любого перепада температур: например, между разными слоями в океане, от солнца, от ядерного или изотопного нагревателя, угольной или дровяной печи и т. д.* Простота конструкции — конструкция двигателя очень проста, он не требует дополнительных систем, таких как газораспределительный механизм. Он запускается самостоятельно и не нуждается в стартере. Его характеристики позволяют избавиться от коробки передач. Однако, как уже отмечалось выше, он обладает большей материалоёмкостью.* Увеличенный ресурс — простота конструкции, отсутствие многих "нежных" агрегатов позволяет стирлингу обеспечить небывалый для других двигателей ресурс в десятки и сотни тысяч часов непрерывной работы.* Экономичность — в случае преобразования в электричество солнечной энергии стирлинги иногда дают больший КПД (более 30 %), чем паровые машины. По сравнению с ДВС городских автомобилей двгатели Стирлинга расходуют на 15-20% меньше топлива и этот показатель будет улучшаться* Бесшумность (точнее — малошумность) двигателя — стирлинг не имеет выхлопа, а значит — меньше шумит. Шумы при работе двигателя создают движущиеся части. Бета-стирлинг с ромбическим механизмом является идеально сбалансированным устройством и, при достаточно высоком качестве изготовления, почти не имеет вибраций (амплитуда вибрации меньше 0,0038 мм). (Вспомните какие неудобства создает та же стротельная техника надоедливым гудением компрессоров и генераторов. Вот было бы хорошо если вместо ДВС стали использовать "стирлинги")* Экологичность — сам по себе стирлинг не имеет каких-то частей или процессов, которые могут способствовать загрязнению окружающей среды. Он не расходует рабочее тело. Экологичность двигателя обусловлена прежде всего экологичностью источника тепла. Стоит также отметить, что обеспечить полноту сгорания топлива в двигателе внешнего сгорания проще, чем в двигателе внутреннего сгорания. Потому, что в "стирлингах" процесс горения топлива происходит при постоянном давлении и достаточном количестве воздуха.
(Коментарии, как говорится, излишни.)Недостатки:* Материалоёмкость — основной недостаток двигателя. У двигателей внешнего сгорания вообще, и двигателя Стирлинга в частности, рабочее тело необходимо охлаждать, и это приводит к существенному увеличению массо-габаритных показателей силовой установки за счёт увеличенных радиаторов.* Для получения характеристик, сравнимых с характеристиками ДВС, приходится применять высокие давления (свыше 100 атм) и специальные виды рабочего тела — водород, гелий. Эти газы обладают повышенной текучестью, что вызывает существенные проблемы с уплотнением движущихся частей двигателя в рабочем объеме.* Тепло не подводится к рабочему телу непосредственно, а только через стенки теплообменников. Стенки имеют ограниченную теплопроводность, из-за чего КПД оказывается ниже, чем можно было ожидать. Горячий теплобменник работает в очень напряжённых условиях теплопередачи, и при очень высоких давлениях, что требует применения высококачественных и дорогих материалов. Создание теплообменника, который удовлетворял бы противоречивым требованиям, весьма трудно. Чем выше площадь теплообмена, тем меньше потери тепла. При этом растёт размер теплообменника и объём рабочего тела, не участвующий в работе. Поскольку источник тепла расположен снаружи, двигатель медленно реагирует на изменение теплового потока, подводимого к цилиндру, и не сразу может выдать нужную мощность при запуске.* Для быстрого изменения мощности двигателя используются методы, отличные от тех, которые применялись в двигателях внутреннего сгорания: буферная ёмкость изменяемого объёма, изменение среднего давления рабочего тела в камерах, изменение фазного угла между рабочим поршнем и вытеснителем. В последнем случае реакция двигателя на управляющее действие водителя является практически мгновенной.
Недостатки конечно вещь неприятная, но у более распространенного ДВС тоже есть много недостатков, тем не менее он широко используется. В отличии от ДВС действующую модель двигателя Стирлинга несложно изготовить самостоятельно. Очень рекомендую материал который находится здесь. Даже продаются наборы для сборки. Более продвинутый полезный материал можно посмотреть здесь. Также много интересных примеров можно посмотреть здесь и здесь и еще бесчисленное количество примеров которые можно найти через поисковые системы.О двигателе Стирлинга писали технические и научно-популярные журналы. "Техника молодежи" №1 за 1996 год и №10 за 1979 год, "Юный техник" №9 за 1984 год, "Изобретатель и рационализатор" №5 за 1980 год, "Катера и яхты" №3 за 1986 год и ряде других.
Материал из журнала "Юный техник" о самостоятельном изготовлении модели двигателя Стирлинга доступен здесь и здесь и еще ряде других источников.Небольшое отступление.От автора:Впервые работающую модель двигателя Стирлинга мне довелось увидеть еще в школьной мастерской. Когда учился в школе, часто туда заходил и не из праздного любопытства, а потому, что занимался в кружке, как и многие ребята в то время. Это было осенью 1984 года (как раз вышел сентябрьский номер "ЮТ"). Зашел я на перемене и увидел, что на раковине для мытья рук стоит некий агрегат цилиндрической формы из жести и на нем крутятся колесики, а под ним горит спиртовка. Я сначала подумал, что это паровая машина, но привычного "чух-чух" не было как и выбросов пара. Я спросил у трудовика: "Что это такое?". В ответ я услышал слово, которое сразу ассоциировалось с английской валютой (фунтом стерлинга). Потом, позже я разобрался, в чем разница. Оказывается старшеклассники-кружковцы собрали модель по описанию из "ЮТ" который недавно вышел из печати. Только в отличие от описанного в журнале эта модель была большего размера и вместо внешнего резервуара с водой использовала проточную систему прямо из водопроводного крана, почему и была установлена на раковине. Свою модель я собрал вместе с другом по другой схеме, которая была опубликована в иностранном журнале (название не помню, давно было). Журнал этот попал к нам от двоюродного брата моего друга-моряка загранплавания. Там была опубликована интересная модель двигателя Стирлинга собранная из жестяных банок, похожая на нижеприведенной иллюстрации.
Только в нашем случае мы сделали иначе шатунный механизм. Использовали банки из под "Пепси-Колы" которая в то время, как экзотика появилась на советских прилавках, банок из под кофе, велосипедных спиц и пары дощечек. Движок работал от зажженного куска "сухого горючего". Мы даже прицепили на вал небольшой пропеллер, надеясь таким образом получить вентилятор. Но вентилятор из него получился, прямо скажем, никакой. Модель все таки.Но все это игрушки. А как обстоит дело с практическим применением двигателя Стирлинга? Долгое время двигатели Стирлинга не строились. И только в 1890 году было выпущено несколько образцов таких машин малой мощности. С конца XIX века, в связи с успехами в развитии двигателей внутреннего сгорания и отсутствия подходящих конструкционных материалов в значительной степени затруднило его дальнейшее совершенствование, интерес к двигателю Стирлинга утратился окончательно, и только с 1938 года началось ее возрождение. В 50-е годы ХХ века быстрое развитие технологии производства различных материалов вновь открыло перед двигателем Стирлинга некоторые перспективы, однако настоящий интерес к нему возродился только во времена так называемого "энергетического кризиса". Именно тогда особенно привлекательными показались потенциальные возможности этого двигателя в отношении экономического потребления обычного жидкого топлива, что представлялось особенно важным в период роста цен на топливо в геометрической прогрессии.Этапы разработки двигателей Стирлинга можно проследить начиная с 1818г., однако наибольшее внимание уделяется совершенствованию двигателей Стирлинга начиная с 1938г. Разработка конструкций двигателей Стирлинга с этого времени прошла через определенные этапы. Одной из фирм, проводивших исследования в области совершенствования двигателей была фирма "Филипс".
1937-1938 гг.Фирма "Филипс" проявляет интерес к двигателям с замкнутым циклом, работающим на подогретом воздухе и предназначенным для электрогенераторов малой мощности.
1938-1947 гг.Создано несколько опытных образцов двигателей с лучшими характеристиками по сравнению с двигателями 30-х годов.
1948-1953 гг.Внимание переключается на холодильные машины. Выясняется, что применение газов с малыми молекулярными массами улучшает рабочие характеристики. Тем не менее продолжается исследование и разработка Двигателей – источников механической энергии как простого, так и двойного действия, Интерес к ним проявляют фирмы "Форд" (США) и "Дженерал моторс". Резкий скачок в разработке двигателя Стирлинга был сделан в 1953 г., когда Мейер изобрел ромбический привод, что позволило использовать более высокие рабочие давления. Развитие конструкций двигателей- источников механической энергии и холодильных машин пошло различными путями.
1954-1958 гг.В течение этого периода было построено и испытано много двигателей с ромбическим приводом, при этом в двигателе 1-365 с водородом в качестве рабочего тела среднее давление цикла достигло 14 МПа. С использованием газа при высоких давлениях возникла проблема надежности уплотнений. Чугунные поршневые кольца не подходили из-за значительной утечки масла. Уплотнения сальникового типа для картера также оказались неподходящими. Было разработано уплотнение поршня с плотной посадкой. Поршень изготавливался с нанесенными на нем кольцевыми слоями сплава олова, свинца и сернистого молибдена. Затем поршень при сильном охлаждении вставлялся в цилиндр. В 1957 году "Дженерал моторс" вновь проявляет интерес к Двигателю Стирлинга и работам фирмы "Филипс". И в ноябре 1958 года между ними заключается соглашение по предоставлению лицензии сроком на 10 лет.
1958-1962 гг." Филипс" продолжает работу над двигателем 1-98 с ромбическим приводом. Было построено свыше 30 вариантов этого двигателя.В этот период времени были намечены три основных области применения двигателей Стирлинга, в которых фирма "Дженерал моторс" намеревалась проводить дальнейшую работу: подвесной мотор для судов, генератор для спутников, работающий на солнечной энергии, и компактный генератор ГПУ (англ). GPU-Ground Power Unit) для работы в полевых условиях для армии США. Другие возможные области применения включали силовые установки для речных и каботажных морских судов, подводных лодок и железнодорожного транспорта.Первым двигателем, который испытывался фирмой "Дженерал моторс", был одноцилиндровый двигатель мощностью 23 кВт с плотной посадкой поршня в цилиндре.
1963-1968 гг.Изобретение ромбического привода и уплотнения типа "скатывающийся чулок", а также усовершенствования процесса сгорания, теплообменников и систем регулирования позволили приступить к созданию более мощных двигателей. Продолжалась интенсивная работа с двигателем ГПУ, и его мощность была доведена до 9 кВт. Кроме того, и "Филипс", и "Дженерал моторс" провели исследования и построили двигатели мощностью 200 кВт. Использовались они на морских судах, на автобусах, в военно-морских силах США.Продолжались работы и над двигателем простого действия, которые интенсивно вела фирма "Дженерал моторс". Они построили и провели испытания двигателя PD67 для спутника. В 1964 г. на автомобиле марки "Кал вер" был испытан двигатель Стирлинга мощностью 23 кВт, тепловая энергия, для которого поступала от теплового аккумулятора энергии на основе окиси алюминия. В этот же период были начаты исследования свободнопоршневых двигателей и двигателей с жидкими поршнями. Были созданы и испытаны с разной степенью успеха опытные образцы таких двигателей. Работы по свободнопоршневым двигателям проводились в различных институтах США.
1968-1978 гг.Это был период интенсивных исследований, однако, без крупных достижений. Работа над автомобильным двигателем Стирлинга не прекратилась, и ее продолжали фирмы "Форд" и "Филипс" в соответствии с соглашением, подписанным в 1972г. Шведская фирма "Юнайтед Стирлинг" также совершенствовала свои автомобильные двигатели, предназначенные для тяжелых грузовиков и автобусов. Объединение MAN-MWM не раскрыло предполагаемую область применения своих двигателей, однако, предполагалось, что эти двигатели предназначены для военно-морских судов.К концу рассматриваемого периода были достигнуты значительные успехи в разработке двигателя Стирлинга, работающего на жидком природном топливе и предназначенного для использования на легковых и грузовых автомобилях.Успешные испытания двигателей серии Р фирмы "Юнайтед Стирлинг", в которых использовался U-образный кривошипный привод Рикардо, вызвали интерес многих фирм. Помимо автомобильного транспорта были рассмотрены другие области применения, такие, как электрические генераторы, использующие солнечную энергию, установки для подводных лодок и дистанционного управляемые стационарные электрогенераторы, работающие не на жидком топливе. Работы над свободнопоршневым двигателем в этот период достигли такого уровня развития, что стало возможным приступить к коммерческому выпуску двигателей. Были предприняты работы по совершенствованию двигателя с целью использования его на Индийском субконтиненте. Изучались также возможности использования "сухой" модификации этого двигателя, работающего на угле.
Период, начиная с 1978г.Основное направление работ переключилось с двигателя с качающей шайбой на энергосиловую установку Р-40 с U-образным кривошипным приводом. Интенсивность исследований, связанных с двигателем Стирлинга, с 1978 г. возросла примерно в 10 раз, однако все усилия были направлены в основном на доводку существующих конструкций, а не на разработку новых. Нельзя, конечно, утверждать, что работа над новыми конструкциями вообще не велась. Но направление работ во всех областях в большей степени ориентировалось на создание промышленных образцов двигателей, поскольку почти все программы ориентированы на определенную область применения двигателя Стирлинга.
Как говорилось выше, в в Псковском госудраственном политехническом институте ведуться работы над роторно-лопастным двигателем Стирлинга. Достигнуты интересные результаты. Смотрите нижеприведенную таблицу:
Красным цветом выделены показатели имеющие преимущества перед двигателями других схем. Например используемый газ СО2, а не водород или гелий, да еще при более низком давлении, что существенно упрощает создание уплотнений. Температура нагрева ниже, а охлаждения выше, то есть менее требовательный. Удельная и объемная мощность выше, а удельная масса приблизилась к бензиновым ДВС. Правда КПД ниже. Если представленные данные верны (не спешите записывать изобретателей в "Петрики", лучше постарайтесь детальнее разобраться), то у данного типа двигателя есть немалый потенциал для совершенствования. Возможно это связано с особенностями схемы самого двигателя. Возможно кто-то из читателей сможет в будущем создать более совершенный двигатель. На этой оптимистической ноте рассказ о двигателях Стирлинга не заканчивается. Во второй части о применении данного типа двигателей. -----------------------------------------------------------P.S. Убедительная просьба не сорить в коментах и не использовать нецензурные выражения. Если материал вам не по душе, лучше молча покиньте страницу. Коменты злостных нарушителей буду удалять без предупреждения. Автор не является большим знатоком в данной области, поэтому, любые замечания и дополнения к материалу будут внимательно рассмотрены. Если есть существенные предложения, пишите в личную почту, пообщаемся. От плюсов в карму и статью не откажусь :)txapela.ru
Эта статья посвящена рассмотрению моторов, работающих на постоянных магнитах, с помощью которых предпринимаются попытки получить КПД>1 путем изменения конфигурации схемы соединений, схем электронных переключателей и магнитных конфигураций. Представлено несколько конструкций, которые можно рассматривать в качестве традиционных, а также несколько конструкций, которые представляются перспективными. Надеемся, что эта статья поможет читателю разобраться в сущности данных устройств перед началом инвестирования подобных изобретений или получением инвестиций на их производство. Информацию о патентах США можно найти на сайте http://www.uspto.gov.
Введение
Статья, посвященная моторам, работающим на постоянных магнитах, не может считаться полной без предварительного обзора основных конструкций, которые представлены на современном рынке. Промышленные моторы, работающие на постоянных магнитах, обязательно являются двигателями постоянного тока, так как используемые в них магниты постоянно поляризуются перед сборкой. Многие щеточные моторы, работающие на постоянных магнитах, подключаются к бесщеточным электродвигателям, что способно снизить силу трения и изнашиваемость механизма. Бесщеточные моторы включают в себя электронную коммутацию или шаговые электромоторы. Шаговый электромотор, часто применяемый в автомобильной промышленности, содержит более длительный рабочий вращающий момент на единицу объема, по сравнению с другими электромоторами. Однако обычно скорость подобных моторов значительно ниже. Конструкция электронного переключателя может быть использована в переключаемом реактивном синхронном электродвигателе. В наружном статоре подобного электродвигателя вместо дорогостоящих постоянных магнитов используется мягкий металл, в результате чего получается внутренний постоянный электромагнитный ротор.
По закону Фарадея, вращающий момент в основном возникает из-за тока в обкладках бесщеточных двигателей. В идеальном моторе, работающем на постоянных магнитах, линейный вращающий момент противопоставлен кривой частоты вращения. В моторе на постоянных магнитах конструкции как внешнего, так и внутреннего ротора являются стандартными.
Чтобы обратить внимание на многие проблемы, связанные с рассматриваемыми моторами, в справочнике [1] говорится о существовании «очень важной взаимосвязи между моментом вращения и обратной электродвижущей силой (эдс), чему иногда не придается значения». Это явление связано с электродвижущей силой (эдс), которая создается путем применения изменяющегося магнитного поля (dB/dt). Пользуясь технической терминологией, можно сказать, что «постоянная вращающего момента» (N-m/amp) равняется «постоянной обратной эдс» (V/рад/сек). Напряжение на зажимах двигателя равняется разности обратной эдс и активного (омического) падения напряжения, что обусловлено наличием внутреннего сопротивления. (Например, V=8,3 V, обратная эдс=7,5V, активное (омическое) падение напряжения=0,8V). Этот физический принцип, заставляет нас обратиться к закону Ленца, который был открыт в 1834г., через три года после того, как Фарадеем был изобретен униполярный генератор. Противоречивая структура закона Ленца, также как используемое в нем понятие «обратной эдс», являются частью так называемого физического закона Фарадея, на основе которого действует вращающийся электропривод. Обратная эдс — это реакция переменного тока в цепи. Другими словами, изменяющееся магнитное поле естественно порождает обратную эдс, так как они эквивалентны.
Таким образом, прежде чем приступать к изготовлению подобных конструкций, необходимо тщательно проанализировать закон Фарадея. Многие научные статьи, такие как «Закон Фарадея — Количественные эксперименты» [2] способны убедить экспериментатора, занимающегося новой энергетикой, в том, что изменение, происходящее в потоке и вызывающее обратную электродвижущую силу (эдс), по существу равно самой обратной эдс. Этого нельзя избежать при получении избыточной энергии, до тех пор, пока количество изменений магнитного потока во времени остается непостоянным. Это две стороны одной медали. Входная энергия, вырабатываемая в двигателе, конструкция которого содержит катушку индуктивности, естественным образом будет равна выходной энергии. Кроме того, по отношению к «электрической индукции» изменяемый поток «индуцирует» обратную эдс.
Двигатели с переключаемым магнитным сопротивлением
При исследовании альтернативного метода индуцированного движения в преобразователе постоянного магнитного движения Эклина (патент № 3,879,622) используются вращающиеся клапаны для переменного экранирования полюсов подковообразного магнита. В патенте Эклина №4,567,407 ( «Экранирующий унифицированный мотор- генератор переменного тока, обладающий постоянной обкладкой и полем») повторно высказывается идея о переключении магнитного поля путем «переключения магнитного потока». Эта идея является общей для моторов подобного рода. В качестве иллюстрации этого принципа Эклин приводит следующую мысль: «Роторы большинства современных генераторов отталкиваются по мере их приближения к статору и снова притягиваются статором, как только минуют его, в соответствии с законом Ленца. Таким образом, большинство роторов сталкиваются с постоянными неконсервативными рабочими силами, и поэтому современные генераторы требуют наличия постоянного входного вращающего момента». Однако «стальной ротор унифицированного генератора переменного тока с переключением потока фактически способствует входному вращающему моменту для половины каждого поворота, так как ротор всегда притягивается, но никогда не отталкивается. Подобная конструкция позволяет некоторой части тока, подведенного к обкладкам двигателя, подавать питание через сплошную линию магнитной индукции к выходным обмоткам переменного тока…» К сожалению, Эклину пока не удалось сконструировать самозапускающуюся машину.
В связи с рассматриваемой проблемой стоит упомянуть патент Ричардсона №4,077,001, в котором раскрывается сущность движения якоря с низким магнитным сопротивлением как в контакте, так и вне его на концах магнита (стр.8, строка 35). Наконец, можно привести патент Монро №3,670,189, где рассматривается схожий принцип, в котором, однако, пропускание магнитного потока игается с помощью прохождения полюсов ротора между постоянными магнитами полюсов статора. Требование 1, заявленное в этом патенте, по своему объему и детальности кажется удовлетворительным для доказательства патентоспособности, однако, его эффективность остается под вопросом.
Кажется неправдоподобным, что, являясь замкнутой системой, мотор с переключаемым магнитным сопротивлением способен стать самозапускающимся. Многие примеры доказывают, что небольшой электромагнит необходим для приведения работы якоря в синхронизированный ритм. Магнитный двигатель Ванкеля [3] в своих общих чертах может быть приведен для сравнения с представленным типом изобретения. Патент Джаффе №3,567,979 также может использоваться для сравнения. Патент Минато №5,594,289, подобный магнитному двигателю Ванкеля, является достаточно интригующим для многих исследователей.
Изобретения, подобные мотору Ньюмана (патентная заявка США №06/179,474), позволили обнаружить тот факт, что нелинейный эффект, такой как импульсное напряжение, благоприятен для преодоления эффекта сохранения силы Лоренца по закону Ленца. Кроме того, сходным является механический аналог инерциального двигателя Торнсона, в котором используется нелинейная ударная сила для передачи импульса вдоль оси перпендикулярно плоскости вращения. Магнитное поле содержит момент импульса, который становится очевидным при определенных условиях, например, при парадоксе диска Фейнмана, где он сохраняется. Импульсный способ может быть выгодно использован в данном моторе с магнитным переключаемым сопротивлением, при условии, если переключение поля будет производиться достаточно быстро при стремительном нарастания мощности. Тем не менее, необходимы дополнительные исследования по этой проблеме.
Наиболее удачным вариантом переключаемого реактивного электромотора является устройство Гарольда Аспдена (патент №4,975,608), который оптимизирует пропускную способность входного устройства катушки и работу над изломом B-H кривой. Переключаемые реактивные двигатели также объясняются в [4].
Мотор Адамса получил широкое признание. Например, в журнале Nexus был опубликован одобрительный отзыв, в котором это изобретение называется первым из когда-либо наблюдавшихся двигателей свободной энергии. Однако работа этой машины может быть полностью объяснена законом Фарадея. Генерация импульсов в смежных катушках, приводящих в движение намагниченный ротор, фактически происходит по той же схеме, что и в стандартном переключаемом реактивном моторе.
Замедление, о котором Адамс говорит в одном из своих Интернет сообщений, посвященных обсуждению изобретения, может объясняться экспонентным напряжением (L di/dt) обратной эдс. Одним из последних добавлений к этой категории изобретений, которые подтверждают успешность работы мотора Адамса, является международная патентная заявка №00/28656, присужденная в мае 2000г. изобретателям Бритс и Кристи, (генератор LUTEC). Простота этого двигателя легко объясняется наличием переключаемых катушек и постоянного магнита на роторе. Кроме того, в патенте содержится пояснение о том, что «постоянный ток, подводимый к катушкам статора, производит силу магнитного отталкивания и является единственным током, подводимым снаружи ко всей системе для создания совокупного движения…» Хорошо известным является тот факт, что все моторы работают по этому принципу. На странице 21 указанного патента содержится объяснение конструкции, где изобретатели выражают желание «максимизировать воздействие обратной эдс, которое способствует поддержанию вращения ротора/якоря электромагнита в одном направлении». Работа всех моторов данной категории с переключаемым полем направлена на получение этого эффекта. Рисунок 4А, представленный в патенте Бритс и Кристи, раскрывает источники напряжения «VA, VB и VC». Затем на странице 10 приводится следующее утверждение: «В это время ток подводится от источника питания VA и продолжает подводиться, пока щетка 18 не перестает взаимодействовать с контактами с 14 по 17». Нет ничего необычного в том, что эту конструкцию можно сравнить с более сложными попытками, ранее упомянутыми в настоящей статье. Все эти моторы требуют наличия электрического источника питания, и ни один из них не является самозапускающимся.
Подтверждает заявление о том, что была получена свободна энергия то, что работающая катушка (в импульсном режиме) при прохождении мимо постоянного магнитного поля (магнита) не использует для создания тока аккумуляторную батарейку. Вместо этого было предложено использовать проводники Вейганда [5], а это вызовет колоссальный Баркгаузеновский скачок при выравнивании магнитного домена, а импульс приобретет очень четкую форму. Если применить к катушке проводник Вейганда, то он создаст для нее достаточно большой импульс в несколько вольт, когда она будет проходить изменяющееся внешнее магнитное поле порога определенной высоты. Таким образом, для этого импульсного генератора входная электрическая энергия не нужна вовсе.
Тороидальный мотор
По сравнению с существующими на современном рынке двигателями, необычную конструкцию тороидального мотора можно сравнить с устройством, описанным в патенте Лангли (№4,547,713). Данный мотор содержит двухполюсный ротор, расположенный в центре тороида. Если выбрана однополюсная конструкция (например, с северными полюсами на каждом конце ротора), то полученное устройство будет напоминать радиальное магнитное поле для ротора, использованного в патенте Ван Гила (№5,600,189). В патенте Брауна №4,438,362, права на который принадлежат компании Ротрон, для изготовления ротора в тороидальном разряднике используются разнообразные намагничивающиеся сегменты. Наиболее ярким примером вращающегося тороидального мотора является устройство, описанное в патенте Юинга (№5,625,241), который также напоминает уже упомянутое изобретение Лангли. На основе процесса магнитного отталкивания в изобретении Юинга используется поворотный механизм с микропроцессорным управлением в основном для того, чтобы воспользоваться преимуществом, предоставляемым законом Ленца, а также с тем, чтобы преодолеть обратную эдс. Демонстрацию работы изобретения Юинга можно увидеть на коммерческом видео «Free Energy: The Race to Zero Point». Является ли это изобретение наиболее высокоэффективным из всех двигателей, в настоящее время представленных на рынке, остается под вопросом. Как утверждается в патенте: «функционирование устройства в качестве двигателя также возможно при использовании импульсного источника постоянного тока». Конструкция также содержит программируемое логическое устройство управления и схему управления мощностью, которые по предположению изобретателей должны сделать его более эффективным, чем 100%.
Даже если модели мотора докажут свою эффективность в получении вращающегося момента или преобразования силы, то из-за движущихся внутри них магнитов эти устройства могут остаться без практического применения. Коммерческая реализация этих типов моторов может быть невыгодной, так как на современном рынке существует множество конкурентоспособных конструкций.
Линейные моторы
Тема линейных индукционных моторов широко освещена в литературе. В издании [6] объясняется, что эти моторы являются подобными стандартным асинхронным двигателям, в которых ротор и статор демонтированы и помещены вне плоскости. Автор книги «Движение без колес» Лэйтвайт известен созданием монорельсовых конструкций, предназначенных для поездов Англии и разработанных на основе линейных асинхронных моторов.
Патент Хартмана №4,215,330 представляет собой пример одного из устройств, в котором с помощью линейного мотора достигнуто перемещение стального шара вверх по намагниченной плоскости приблизительно на 10 уровней. Другое изобретение из этой категории описано в патенте Джонсона (№5,402,021), в котором использован постоянный дуговой магнит, установленный на четырехколесной тележке. Этот магнит подвергается воздействию со стороны параллельного конвейера с зафиксированными переменными магнитами. Еще одним не менее удивительным изобретением является устройство, описанное в другом патенте Джонсона (№4,877,983) и успешная работа которого наблюдалась в замкнутом контуре в течение нескольких часов. Необходимо отметить, что генераторная катушка может быть размещена в непосредственной близости от движущегося элемента, так чтобы каждый его пробег сопровождался электрическим импульсом для зарядки батареи. Устройство Хартмана также может быть сконструировано как круговой конвейер, что позволяет продемонстрировать вечное движение первого порядка.
Патент Хартмана основывается на том же принципе, что и известный эксперимент с электронным спином, который в физике принято называть экспериментом Стерна-Герлаха. В неоднородном магнитном поле воздействие на некий объект с помощью магнитного момента вращения происходит за счет градиента потенциальной энергии. В любом учебнике физики можно найти указание на то, что этот тип поля, сильный на одном конце и слабый на другом, способствует возникновению однонаправленной силы, обращенной в сторону магнитного объекта и равного dB/dx. Таким образом, сила, толкающая шар по намагниченной плоскости на 10 уровней вверх в направлении, полностью согласуется с законами физики.
Используя промышленые качественные магниты (включая сверхпроводящие магниты, при температуре окружающей среды, разработка которых в настоящее время находится на завершающей стадии), будет возможна демонстрация перевозки грузов, обладающих статочно большой массой, без затрат электричества на техническое обслуживание. Сверхпроводящие магниты обладают необычной способностью годами сохранять исходное намагниченное поле, не требуя периодической подачи питания для восстановления напряженности исходного поля. Примеры того положения, которое сложилось на современном рынке в области разработки сверхпроводниковых магнитов, приведены в патенте Охниши №5,350,958 (недостаток мощности, производимой криогенной техникой и системами освещения), а также в переизданной статье, посвященной магнитной левитации [7].
Статический электромагнитный момент импульса
В провокационном эксперименте с использованием цилиндрического конденсатора исследователи Грэм и Лахоз [8] развивают идею, опубликованную Эйнштейном и Лаубом в 1908 году, в которой говорится о необходимости наличия дополнительного периода времени для сохранения принципа действия и противодействия. Цитируемая исследователями статья была переведена и опубликована в моей книге [9], представленной ниже. Грэм и Лахоз подчеркивают, что существует «реальная плотность момента импульса», и предлагают способ наблюдения этого энергетического эффекта в постоянных магнитах и электретах.
Эта работа является вдохновляющим и впечатляющим исследованием, использующим данные, основанные на работах Эйнштейна и Минковского. Это исследование может иметь непосредственное применение при создании, как униполярного генератора, так и магнитного преобразователя энергии, описанного ниже. Данная возможность обусловлена тем, что оба устройства обладают аксиальным магнитным и радиальным электрическим полями, подобно цилиндрическому конденсатору, использовавшемуся в эксперименте Грэма и Лахоза.
Униполярный мотор
В книге [9] подробно описываются экспериментальные исследования и история изобретения, сделанного Фарадеем. Кроме того, уделяется внимание тому вкладу, которое привнес в данное исследование Тесла. Однако в недавнем времени был предложен ряд новых конструкторских решений униполярного двигателя с несколькими роторами, который можно сравнить с изобретением Дж. Р.Р. Серла.
Возобновление интереса к устройству Серла также должно привлечь внимание к униполярным двигателям. Предварительный анализ позволяет обнаружить существование двух различных явлений, происходящих одновременно в униполярном двигателе. Одно из явлений можно назвать эффектом «вращения» (№1), а второй — эффектом «свертывания» (№2). Первый эффект может быть представлен в качестве намагниченных сегментов некоего воображаемого сплошного кольца, которые вращаются вокруг общего центра. Примерные варианты конструкций, позволяющих произвести сегментацию ротора униполярного генератора, представлены в [9].
С учетом предложенной модели может быть рассчитан эффект №1 для силовых магнитов Тесла, которые намагничиваются по оси и распологаются вблизи одиночного кольца с диаметром 1 метр. При этом эдс, образующаяся вдоль каждого ролика, составляет более 2V (электрическое поле, направленное радиально из внешнего диаметра роликов к внешнему диаметру смежного кольца) при частоте вращения роликов 500 оборотов в минуту. Стоит отметить, что эффект №1 не зависит от вращения магнита. Магнитное поле в униполярном генераторе связано с пространством, а не с магнитом, поэтому вращение не будет оказывать влияния на эффект силы Лоренца, имеющий место при работе этого универсального униполярного генератора [10].
Эффект №2, имеющий место внутри каждого роликового магнита, описан в [11], где каждый ролик рассматривается как небольшой униполярный генератор. Этот эффект признается чем-то более слабым, так как электричество вырабатывается от центра каждого ролика к периферии. Эта конструкция напоминает униполярный генератор Тесла [12], в котором вращающийся приводной ремень связывает внешний край кольцевого магнита. При вращении роликов, имеющих диаметр, приблизительно равный одной десятой метра, которое осуществляется вокруг кольца с диаметром 1 метр и при отсутствии буксировки роликов, вырабатываемое напряжение будет равно 0,5 Вольт. Конструкция кольцевого магнетика, предложенная Серлом, будет способствовать усилению B-поля ролика.
Необходимо отметить, что принцип наложения применим к обоим этим эффектам. Эффект №1 представляет собой однородное электронное поле, существующее по диаметру ролика. Эффект №2 — это радиальный эффект, что уже было отмечено выше [13]. Однако фактически только эдс, действующая в сегменте ролика между двумя контактами, то есть между центром ролика и его краем, который соприкасается с кольцом, будет способствовать возникновению электрического тока в любой внешней цепи. Понимание данного факта означает, что эффективное напряжение, возникающее при эффекте №1 составит половину существующей эдс, или чуть больше 1 Вольт, что примерно в два раза больше, чем вырабатываемое при эффекте №2. При применении наложения в ограниченном пространстве мы также обнаружим, что два эффекта противостоят друг другу, и две эдс должны вычитаться. Результатом этого анализа является то, что примерно 0,5 Вольт регулируемой эдс будет представлено для выработки электричества в отдельной установке, содержащей ролики и кольцо с диаметром 1 метр. При получении тока возникает эффект шарикоподшипникового двигателя [14], который фактически толкает ролики, допуская приобретение роликовыми магнитами значительной электропроводности. (Автор благодарит за данное замечание Пола Ла Виолетте).
В связанной с данной темой работе [15] исследователями Рощиным и Годиным были опубликованы результаты экспериментов с изобретенным ими однокольцевым устройством, названным «Преобразователем магнитной энергии» и имеющим вращающиеся магниты на подшипниках. Устройство было сконструировано как усовершенствование изобретения Серла. Анализ автора этой статьи, приведенный выше, не зависит от того, какие металлы использовались для изготовления колец в конструкции Рощина и Година. Их открытия достаточно убедительны и детальны, что позволит возобновить интерес многих исследователей к этому типу моторов.
Заключение
Итак, существует несколько моторов на постоянных магнитах, которые могут способствовать появлению вечного двигателя с кпд, превышающим 100%. Естественно, необходимо принимать во внимание концепции сохранения энергии, а также должен исследоваться источник предполагаемой дополнительной энергии. Если градиенты постоянного магнитного поля претендуют на появление однонаправленной силы, как это утверждается в учебниках, то наступит момент, когда они будут приняты для выработки полезной энергии. Конфигурация роликового магнита, который в настоящее время принято называть «преобразователем магнитной энергии», также представляет собой уникальную конструкцию магнитного мотора. Проиллюстрированное Рощиным и Годиным в Российском патенте №2155435 устройство является магнитным электродвигателем-генератором, который демонстрирует возможность выработки дополнительной энергии. Так как работа устройства основана на циркулировании цилиндрических магнитов, вращающихся вокруг кольца, то конструкция фактически представляет собой скорее генератор, чем мотор. Однако это устройство является действующим мотором, так как для запуска отдельного электрогенератора используется вращающий момент, вырабатываемый самоподдерживающимся движением магнитов.
Литература
1. Motion Control Handbook (Designfax, May, 1989, p.33)
2. «Faraday’s Law — Quantitative Experiments», Amer. Jour. Phys.,
V.54, N.5, May, 1986, p. 422
3. Popular Science, June, 1979
4. IEEE Spectrum 1/97
5. Popular Science (Популярная наука), May, 1979
6. Schaum’s Outline Series, Theory and Problems of Electric
Machines andElectromechanics (Теория и проблемы электрических
машин и электромеханики) (McGraw Hill, 1981)
7. IEEE Spectrum, July, 1997
8. Nature, V. 285, No 15, May, 1980
9. Thomas Valone, The Homopolar Handbook
10. Ibidem, p. 10
11. Electric Spacecraft Journal, Issue 12, 1994
12. Thomas Valone, The Homopolar Handbook, p. 81
13. Ibidem, p. 81
14. Ibidem, p. 54
Tech. Phys. Lett., V. 26, #12, 2000, p.1105-07
Томас Валон Integrity Research Institute, www.integrityresearchinstitute.org
1220 L St. NW, Suite 100-232, Washington, DC 20005
Email: [email protected]
zaryad.com
|
Случайные статьиПод капотом у суперкара1989 Ferrari F40 LM |
zero-100.ru