Начнем наверное, с того, что использование систем экологической безопасности, так называемых катализаторов и постоянный контроль всей системы выхлопных газов с помощью датчиков кислорода (?- зонды), все это неотъемлемая часть очень строгих и так необходимых экологических требований практически во всем Мире (Евро-3, Евро-4).
Контроль этих параметров заложен в программу бортового компьютера, который через данные, полученные от ?- зондов, оценивает работу двигателя автомобиля и корректирует ее при его эксплуатации. Все эти процессы напрямую связаны с расходом топлива автомобиля и его динамическими характеристиками в различных режимах.
Давно известно, что для равномерной и экономичной работы двигателя автомобиля необходимо, чтобы все системы автомобиля были исправны и правильно настроены, а также необходимо; качественное топливо, своевременная замена воздушного и топливного фильтра, и что еще немаловажно, катализатор автомобиля находился в рабочем состоянии. Так выглядит стандартная схема рабочего процесса современного двигателя.
Использование технологии, ионизации — активации кислорода в потоке воздуха, поступающего в камеру сгорания, позволяет качественно улучшить характеристики образовавшейся воздушно — топливной смеси и самого процесса сгорания топлива в камере сгорания (происходит более полное и качественное сгорание топлива). При этом происходит значительное снижение выброса различных углеродистых соединений (СО, HC).
Качественное изменение отработанных газов фиксируются бортовым компьютером по полученным данным от лямбда зондов, который, в свою очередь начинает перестраивать циклы подачи топлива через форсунки путем изменения в сторону экономии долговременной коррекции топлива, корректирует угол опережения зажигания. Таким образом, происходит адаптация автомобиля и начинается процесс экономии расхода топлива.
Для не прогретого двигателя работа прибора очень актуальна еще тем, что именно при работе холодного двигателя происходит максимальное обогащение воздушно — топливной смеси, что приводит к максимальному выбросу и залипанию углеродистых соединений (СО, HC).
При применении прибора происходят довольно ощутимые изменения в соотношении угла положения дроссельной заслонки и оборотов работающего двигателя. Для набора тех же оборотов, теперь достаточен меньший угол положения (газовой педали) дроссельной заслонки. Теперь можно меньше давить на педаль, чтобы двигатель набрал необходимые обороты. А ведь чем сильнее давишь на педаль газа, тем больше расход топлива и это аксиома. Отсюда получается, для разгона и поддержания заданной скорости, мы меньше давим на педаль газа, получая при этом дополнительный запас мощности, который бывает так необходим для уверенного обгона.
Конечно, это не волшебная палочка, которая сделает из автомобиля самолет, но все снятые показатели в процессе испытаний и эксплуатации прибора реальны и дают ощутимый результат. Известно, что КПД бензинового ДВС. примерно 30% дизельного 40%. С нашим прибором этот коэффициент значительно увеличивается.
Целесообразнее установка прибора на более новые автомобили, так как двигатель пока менее подвержен залипанию твердых частичек углеродистых соединений (нагар). Также электронная система датчики, сенсоры работоспособны и корректны.
Многие задают вопрос: «Не выйдет ли из строя бортовой компьютер?»Роль бортового компьютера — регулировать угол опережения зажигания, кратковременная коррекция по топливу, долговременная коррекция по топливу, состав воздушно топливной смеси, управление работой топливных форсунок от датчиков: температуры воздуха, температуры двигателя, количество поступающего воздуха, обороты двигателя, положение дроссельной заслонки, также от датчиков кислорода (лямбда зондов), которые осуществляют контроль состава выхлопных газов. Эти параметры заложены в программу бортового компьютера. При применении устройства меняется свойство воздуха, это позволяет качественно улучшить характеристики образовавшейся воздушно топливной смеси и самого процесса горения топлива, меняется состав выхлопных газов. Происходит значительное снижение выброса различных углеродистых соединений, это фиксируют лямбда зонды и дают команду компьютеру на коррекцию в сторону экономии. Устройство меняет свойство воздуха, а не воздействует напрямую на компьютер. Наконец кем сказано, что на образование воздушно топливной смеси должен подаваться простой атмосферный воздух.
rashodanet.ru
ENZO-IP - это электронное устройство(гибрид), которое предназначено для увеличения эффективности горения топлива в двигателях внутреннего сгорания (ДВС) путём ионизации молекул кислорода, благодаря чему обеспечивается более полное сгорание топлива. Применяется на всех типах ДВС, работающих на любом виде топлива.
В сложном углеводородном топливе (независимо от базового качества) под воздействием температуры, давления, а также из-за наличия других соединений орг. и неорг. природы, неизбежно протекает процесс формирования уплотнённых групп углеводородных молекул. И них до 60% , в зависимости от вида топлива, не полностью сгорая в ДВС, выбрасываются с выхлопом и/или дожигаются в катализаторе. Ионы кислорода, которые образуются при прохождении воздуха через электрод ENZO-IP, благодаря более сильной реакционно - окислительной способности, обладают большей электрохимической активностью, чем базовые молекулы кислорода, и активнее вступают в реакцию горения с топливом. Кроме того, воздух приобретает свойства наэлектризованности, статичности, что приводит к физическому увеличению объёма области разряда свечей и, как следствие, воздушно-топливная смесь поджигается за меньшее время и в большем объёме. Таким образом обеспечивается более полное сгорание топлива, в результате чего двигатель развивает большую мощность при меньшем потреблении топлива, уменьшается количество вредных соединений в выхлопных газах, а также сокращается в значительной мере образование, а в дальнейшем, залипание твердых частиц углеродистых соединений в самом двигателе, на свечах и топливных форсунках, а также в катализаторе и на лямбда-зондах, что в значительной мере продлит их эксплуатационный ресурс.
В результате работы ENZO-IP изменяется состав выхлопных газов (снижается количество остаточного кислорода), что фиксируют лямбда-зонды, а ЭБУ, в свою очередь, изменяет продолжительность открытия топливных форсунок в меньшую сторону, благодаря чему и достигается экономия топлива.
1. Электронный блок питания - управления (монтируется под капотом) 2. Электрод (встраивается в патрубок воздухозаборника после фильтра) Питание: 12V – 24V. Ток потребления: 0,3-0,6А.
- сокращение расхода топлива на 12% - 20% - значительное сокращение выбросов СО, HС, NOх (до 50%) - увеличение мощности на 10% -15% - более лёгкий запуск в морозы - полный отказ от применения дорогостоящих импортных присадок к топливу - увеличение ресурса двигателя, катализатора, сажевого фильтра, свечей зажигания, лямда-зондов, моторного масла - возможность использования топлива с более низким октановым (цетановым) числом - возможность самостоятельной установки, и в дальнейшем, демонтажа-монтажа на другое автосредство.
P.S.: Почему ENZO-IP не стоит с завода?! Да хотя бы, потому, что производителям не выгодно повышать ресурс своих изделий!!! А зачем?! Нас постепенно приучают ко всему одноразовому. Времена, когда механизмы делались на десятилетия, канули в прошлое…
5 500 руб.
4 800 руб.
В наличии
Экономия топлива от 9% до 18%
avtoraketa.ru
К счастью, вылетающие из дефлектора Lexus GS частицы не так велики, как на рисунке, но, как утверждают, весьма полезны.
«Интересно узнать, планируется ли в нашем любимом онлайн-журнале тест автомобильных ионизаторов воздуха? Уж очень интересный сей девайс, хотелось бы услышать мнения экспертов по данному продукту. На форумах много отзывов, но все как «вилами по воде» толку нет. Кто купил — начнет хвалить, потому-что сделал ошибку и тянет за собой остальных, а кто и на горе-примере друга не рекомендует.Заранее спасибо, Эдуард».
Пару месяцев назад система климат-контроля Lexus GS удостоилась премии за «интерьерную инновацию года» на выставке Automotive Interiors Expo 2012 в Штуттгарте. Называлась инновация по-современному модно: Nanoe-технология.Как ни странно, в данном случае «нано» без обмана: речь идет о добавке в воздух отрицательно заряженных частиц размером 20 – 50 нм, представляющих собой аэроионы в оболочках из молекул воды. Смысл инновации в способности этих частиц связывать и удалять из воздуха различные запахи, микропыль и влагу.Не поручусь за оболочку, но сами аэроионы штука очень давно известная. Прежде всего, стараниями профессора Чижевского, создавшего ионизатор в виде люстры имени себя. Подробнее об этом можно прочитать хотя бы здесь: www.ion.moris.ru . Такую «люстру» можно приобрестидля своего авто и отдельно от «Лексуса» за смешные деньги. Технически все просто: в крошечном, порой размером с палец приборчике стоит высоковольтный (20-30 кВ) преобразователь напряжения и игольчатый электрод коронного разряда, с которого и стекают в атмосферу «лишние» электроны, тут же заряжая молекулы и – как побочный эффект – частицы пыли. Последние тут же устремляются к положительному электроду – корпусу авто и оседают на нем. Так что не удивляйтесь: при постоянной езде с ионизатором обивка салона будет загрязняться быстрее, но это лучше, чем «пачкать» легкие.Очевидно, однако: как и в любом случае важна дозировка: мало будет ионов, ноль эффекта, много – вредно. И потом, как определить, не разводят ли вас безродные изготовители некоторых ионизаторов, оставив вместо вышеперечисленных узлов лишь один: светодиодный индикатор включения? Последнее достаточно просто. Коронный разряд неизбежно приводит к образованию озона, газа с характерным запахом. Условно говоря, нужно, включив прибор, принюхаться. Если запах слегка ощутим, значит и аэроионы есть. Если буквально «шибает в нос», лучше не брать, высокие концентрации озона вредны. Его содержание согласно нормам ГН 2.2.5.1313-03 не должно превышать 0,1 мг/м3.Ну, а как с аэроионами? Их, согласно СанПиН 2.2.4.1294-03, в воздухе должно быть не менее 600 и не более 50000 в кубическом сантиметре. Для справки: в горах и у моря концентрация отрицательных аэроионов не меньше 5000/см3, на городских улицах порядка 100 – 200, в квартирах нередки и ничтожные 40-50 ионов/см3.Питаются все автоионизаторы от гнезда прикуривателя (или бортовой розетки), потребляя ничтожные десятки-сотни миллиампер. Отличаются друг от друга, в основном, наличием или отсутствием вентилятора и фильтра, часто угольного. Как показал опыт, на вентиляторах экономят и со временем они начинают довольно противно жужжать. Зато с ними циркуляция более интенсивна.В свое время ЗР провел довольно дорогостоящую (а на коленке эти приборы не проверишь!) экспертизу ряда моделей ионизаторов с количественным измерением их параметров в специализированной лаборатории. Ознакомиться с результатами можно по ссылке: http://www.zr.ru/archive/zr/2009/03/s-veterkom-ionnym#136Да, а почему, все-таки, в заголовке стоит знак вопроса? Дело в том, что до сих пор нет однозначного вывода ученых о полезности аэроионов. Это напоминает историю с глобальным потеплением, которое часть специалистов до сих пор считают похолоданием.
experts.people.zr.ru
С момента покупки новой машины ВАЗ - 2107 я постоянно находился в недоумении, тупая динамика машины меня убивала. Был короткий промежуток времени, когда она была резвой и послушной. При резком нажатии педали газа в пол она схватывала моментально, на 4-й передаче с 40 км/ч в гору набирала скорость на зависть другим владельцам классики.
Но потом стали происходить странные вещи. Динамика постепенно упала. При попытках вытянуть с низов стала появляться детонация, при чем изменение УОЗ не давало результатов.
Доходило до того, что стреляло в глушитель, но детонация присутствовала постоянно при нажатой педали акселератора более чем на 2/3 хода. При этом движок ревел как у самолета, но удовлетворительного разгона не было.
Обращался я во многие автосервисы города, по знакомству, по советам других автовладельцев. Ситуация не изменилась. Кто-то валил вину на установленный Октан-4, кто-то на перетянутые клапана, кто-то на качество бензина и карбюратор со свечами и т.д. Выкинул я изрядную сумму на проверку всех предполагаемых причин, все было не то.
Впрочем, не я один оказался несчастным. За время своих мытарств я пообщался с уймой владельцев классики, в чьем распоряжении были автомобили от новья с иголочки до «копеек» 70-х годов. Да и не только у классики оказалась эта проблема. У переднеприводных карбюраторных ВАЗов тупость тоже встречается часто. Можно было забросить эту занозу, посчитав недоработкой отечественного автопрома, но желание исправить положение не давало покоя.
Поиски причины в технической литературе оказались безрезультатными. Просматривал в интернете статьи обычных автолюбителей и как-то наткнулся на калильное зажигание.
Его явные признаки были на лицо. Постоянная детонация, при выключении зажигания без срабатывания электроклапана карбюратора двигатель трясло еще пару секунд. Машина с непрогретым двигателем шла намного лучше. Зимой в мороз -30 появлялась хорошая резвость.
Залил я в бак «Аспект-Модификатор» для очистки камер сгорания и всей топливной системы - произошло чудо. Двигатель стал работать очень тихо, даже на высоких оборотах. Появилась приличная разгонная тяга, в кресло приятно вдавливало. Разгон до 100 км/ч (по спидометру) 11,7 сек с использованием 3-х передач.
На машине стоит БСЗ Октан-4, солекс-21073 с топливным жиклером первой камеры 110, вторая не тронута. Остальное штатное.
Счастье оказалось недолгим. Выработал бак с присадкой, и после пробега в 500км снова появилась былая вялость. За руль даже не было желания садиться.
Однажды подметил интересную вещь – машина всегда резво ехала после дождя. После грозы бывало и того лучше. Да и самому легче дышалось.
Во время грозы или дождя приземная атмосфера насыщается отрицательными ионами.
Вот с этого и начались мои изыскания по «дыханию» двигателя, в прямом смысле этого слова. Из подручных материалов я собрал ионизатор воздуха и установил его перед воздушным фильтром.
Мои догадки подтвердились – уже через 20км пробега с ионизатором я стал ощущать улучшения. А через 300км машина приобрела качества, которых я никогда в ней не наблюдал.
Можно было легко трогаться со 2-й передачи, движение на 30-ти км/ч для 4-й передачи не составляло труда. Надо ускориться? Пожалуйста! Машина тут же послушно и уверенно набирала обороты без провалов, дергания и детонации. Многие знают такую особенность классики, машина имеет лучшую динамику в интервале 3000-3500 об/мин. Хотя максимальная мощность развивается при 5600 об/мин, редко кто раскручивает выше 4000. Тяга заметно пропадает с приближением оборотов двигателя к максимальной отметке.
С ионизатором динамика равномерна на всех оборотах, на 1-й и 2-й передаче при тапке в пол максимальные обороты набираются мгновенно, успевай переключать.
Могу смело заявить, причиной тупости машины на высоких оборотах двигателя большей частью является нагар.
Ещё у большинства присутствует такой момент – при движении на оборотах 2000-2500, нажимая газ до упора, некоторое время машина никак не реагирует. Это даже не провал, просто реакция ноль. Лишь через пару секунд постепенно начинается разгон. Но за это время момент потерян, обгон сорван. Могу с уверенностью заявить, не в карбюраторе и зажигании дело. В нагаре! Даже легкий коричневатый нагар может провоцировать аномальное горение топлива. Причем в различные погодные условия скорость горения топливной смеси имеет широкий диапазон.
Если после грозы машина идет с легкостью и при утапливании педали газа в пол вы можете даже не наблюдать детонации, то в туман или перед грозой к железному коню словно прицепляют плуг. Машина отказывается ехать, появляется сильное торможение двигателем, детонация, двигатель ревет, а динамики нет. В такую погоду происходит активное накопление нагара в камерах сгорания.
Многие выскажут мнение что виной всему влажность. Однако вспомните недавнее прошлое когда многие умельцы пытались для уменьшения потребления топлива и выбросов СО внедрять устройства добавления воды в топливную смесь. Нагар отсутствовал, СО практически пропадал и мотор работал весело. Поэтому на процесс горения влияет не вода, а наличие отрицательных ионов в окружающем воздухе.
Находясь рядом с водопадом в тумане из падающей воды, вы ощущаете свежесть и легкость дыхания, не смотря на высокую влажность от которой одежда становится сырой. Вот оно различие свойств высокой влажности – при обычном тумане и рядом с водопадом.
Электрическая схема ионизатора приведена на рисунке. Применение полевого транзистора позволяет максимально упростить схему. По своему опыту скажу что не боятся они статического электричества, можно смело работать как с обычными. Высоковольтные конденсаторы в умножителе лучше использовать такого типа какой указан, большая емкость при малых габаритах и удобно с ними работать. Их полно в телеателье и на радиорынке.
Детали:
R1 – 47k, R2 – 75k, R3 – 1.5k, R4 – 2k;
C1 – 10нФ, C2 – 47мкФ х 25В, С3 – 500мкФ х 25В;
DD1 – К561ЛН2;
VT1 – IRL3803, IRF3205, IRFP064, IRFP2907;
VD1,2 – КД103А, КД521А.
Т1 – ТВС110П2;
FU1 – 2A;
Умножитель – конденсаторы 2200пФ х 10000В типа К73-13, диоды КЦ106Г.
Выводы микросхемы DD1 слева направо: 13,12,1,2,3,4.
Вывод с КРЕН5А на 7-й вывод DD1.
Повышающий трансформатор строчник от ЧБ телевизора, найдете там же. Удаляете все первичные обмотки и наматываете 9 витков тем же проводом от удаленных обмоток. Лучше предварительно намотать несколько витков изоленты. Для питания микросхемы можно использовать КРЕНку на 9В, но она сильно греется. Транзистор обязательно установите на радиатор не менее 5х5 см с ребрами охлаждения. Сами понимаете, не домашние условия под капотом. Умножитель напряжения собираете навесным монтажем, можно скрепить клеем между собой конденсаторы, а потом подпаять диоды. Обязательно залейте эпоксидным компаундом в походящей форме. На крайний случай купите компаунд фирмы Анлес «Эпокси Классик», это эпоксидка со свойствами замазки. Обработайте ею толстым слоем все выводы конденсаторов и диодов.
Располагается схема в одном корпусе. У меня умножитель расположен в 4 см от радиатора транзистора, нет проблем. Корпус строчного трансформатора подсоедините к массе, на нем скапливается электростатическое электричество которое периодически пробивает на первичную обмотку через прокладку. Неполадок конечно не происходит, но лучше перестраховаться.
И обязательно после сборки схемы испытайте ее на холостую без трубки. При этом на умножителе напряжение будет порядка 60000В. В темноте корпус умножителя не должен светиться. Потом это перерастет в пробой.
Приведенная схема слаба для трубки и при подключении её напряжение не будет подниматься выше 30000-35000В. Вместо самодельного умножителя можно применить умножитель от телевизора УН-9/27. Там вывод плюс. Казалось бы никакой разницы. Но двигатель с разной полярностью умножителя меняет свой характер. Если умножитель с отрицательным выводом, то двигатель эластичнее в работе, отличная низовая и верховая тяга, угол зажигания увеличится на 1-3 градуса. Если использовать готовый от телевизора, то плохая низовая тяга с детонацией (но лучше чем вообще без ионизатора), верховая отличная, УОЗ наоборот придется уменьшать на пару градусов, двигатель работает шумно.
И еще недостаток – трубка является электрофильтром, задерживает самую мелкую пыль которая оседает на внутренней стенке. Постепенно она становится электроизолятором и эффект уменьшается. Придется протирать стенки каждые 300 км. На рисунке 2 схема включения промышленного УН9/27. Для повышения напряжения и эффекта можно добавить самодельный умножитель как показано, можно и без него.
Не используйте мегаомные резисторы на выводе высокого напряжения с умножителя как это делается для безопасности в домашних ионизаторах. В трубке будет сильное падение напряжения и потеря эффекта, лучше позаботиться об изоляции.
В корпусе где расположены компоненты схемы делаете отверстие для вывода высокого напряжения. Я использовал контакт с крышки трамблера который вклеивается в корпус эпоксидкой. К контакту легко подпаивается провод от умножителя и стандартно подсоединяется высоковольтный провод зажигания. Он будет один. В своем варианте я сделал два вывода без заземления на массу автомобиля. В любом случает работает хорошо и разницы никакой. Настройка схемы заключается в установке резистором R1 тока потребления 0,6-0,8А. Больший ток не дает результатов.
Эскиз трубки показан на рисунке 3. Трубка сделана из корпуса дезодоранта, у всех практически стандартный диаметр 52мм. Длина трубки 7-9см. Ее надо заключить в подходящий корпус так чтобы растояние до корпуса составляло 5-7 мм. Можно склеить корпус из текстолита. Вырезаете перегородку из текстолита или пластмассы по диаметру трубки и внутреннему размеру корпуса, одеваете на трубку, промазываете стыки быстрым клеем (я использовал поксипол), вставляете в корпус, снова промазываете и заливаете полость эпоксидным компаундом. Она обозначена желтым цветом. Сначала с одной стороны, после застывания клея с другой. До краев трубки. Затем вырезаете две планки шириной 3мм и делаете тонкое отверстие в центре. Наклеиваете на края трубки так чтобы отверстие было четко в центре трубы.
Корпус трубки будет насаживаться на переключатель зима-лето снизу вместо патрубка теплого воздуха. Надо вырезать еще одну деталь наподобие планки с круглым отверстием или вырезать в готовом корпусе для стыковки с переключателем. Также в корпусе трубки-ионизатора сделайте отверстие для вклейки контакта с крышки трамблера.
Если умножитель с отрицательным потенциалом, то контакт подключается к центральной проволоке в трубке, а корпус трубки на массу. Если вывод плюс, то контакт на корпус трубки, а центральную жилку на массу. Можно сделать два контакта как на рисунке, но это дороже, а разницы нет.
Роль центральной проволоки в ионизаторе выполняет волосок от тросика. Чем тоньше, тем лучше. Крепится электротехническими зажимами на планках внатяжку. В этот же зажим вставляется минусовой провод. Края трубки обязательно обмазываются эпоксидкой во избежание коронного разряда.
Вообще все высоковольтные части надо хорошо обработать (кроме внутренней поверхности трубки и центральной проволочки), провода должны быть как можно короче.
Воздух поступает в трубку снизу, ионизируется и следует дальше через переключатель зима-лето.
Корпус ионизатора снизу надо сделать на 3-4 см длиннее трубки для безопасности. Хорошим будет вариант с круглым пластиковым корпусом ионизатора, чтобы его можно было вставить вместо переключателя зима-лето.
Сначала можете не изготавливать трубку, а найти подходящий корпус, набить его металлическими губками для мойки посуды и подключить к этой сетке минусовой вывод умножителя. Напряжение сразу подскочит до 50000В. В этом варианте надо подпаять на выводе умножителя резистор на 20-30Мом.
Возможно вам понравится и не придется изготавливать трубку. Трубка представляет собой мощный ионизатор и при напряжении в трубке порядка 45-50 КВ создается дополнительный эффект.
На высоких оборотах двигателя воздух движется с большой скоростью через трубку, при потенциале более 40 КВ успевает ионизироваться весь поступающий воздух. Ионизированный воздух не встречает сопротивления во всем тракте до камер сгорания, а значит чем выше обороты тем больше происходит нагнетание и появляется эффект наддува. Разгон на 1-й и 2-й скоростях до предельных оборотов практически мгновенный. Движок приятно жужжит без надрывного рева.
Конечно периодически эффект будет теряться, трубка забивается пылью и надо производить чистку внутренних стенок. По своему опыту приходилось делать раз в 600-700км. Признаться надоело и я хочу попробовать вариант с металлическими губками.
И ещё несколько слов по конструированию. К сожалению приведенная схема слаба для максимального эффекта трубки. Можно использовать любую схему повышения напряжения. Хочу попробовать ее с катушкой зажигания и частотой 200-300гц. Эффект начинает пропадать при частоте преобразователя напряжения выше 7-10 кГц.
Первые несколько минут при работе преобразователя на высоких частотах претензий не возникает, но затем постепенно ионизация нарушается. Чем выше частота, тем быстрее наступает этот момент. Также влияет и выходное напряжение повышающего трансформатора. Чем оно выше, тем ниже должна быть частота преобразователя.
Высокочастотное высоковольтное напряжение не поляризуется диодами. Я долго думал над этим вопросом, почему не работает? Плюс на месте, минус тоже присутствует. Но почему из трубки несет спертым и теплым на запах воздухом, от которого начинает болеть голова? И при этом ионизатор вообще не оказывает эффекта. Даже пытался делать как в люстре Чижевского один отрицательный электрод, но он тоже излучал противную вонь.
Все раскрылось случайно – я подключил последовательно два высоковольтных диода, но противоположными выводами. С выхода не должно было присутствовать никакого напряжения. Но поднеся отвертку, я увидел дугу. Переменному току высокой частоты и напряжения диоды не преграда.
Для хорошего результата достаточно 0,4А при бортовом напряжении, частоте преобразователя 800-3000Гц и 25000В на электродах трубки. Свежий морозный озоновый запах из работающей трубки знак правильной работы ионизатора. И напротив, теплый спертый и неприятный ветерок признак неисправности. Это может быть пробит силовой транзистор, задана высокая частота преобразователя или неисправность умножителя.
В этом направлении есть еще над чем поработать. Можно найти более эффективный излучатель отрицательных ионов. Электрическая схема точно требует доработки. Руки чешутся, а времени нет. Буду признателен за вашу помощь.
Дополнения к наблюдениям:
1. Резистор R1 в схеме лучше поставить подстроечный типа СП-5. У меня в схеме на каждом ухабе он постоянно менял сопротивление и изменялся ток потребления ионизатора. Изменялся и эффект трубки, постоянно приходилось корректировать УОЗ. Грешил на грязь в трубке, но оказывается она заметно не сказывается на работе ионизатора. Поэтому трубку можно не очищать. После сборки проверьте постукиванием по прибору, ток не должен изменяться.
2. Ток можно установить 1,3-1,5 А, эффект есть. Вообще изменение тока потребления на несколько десятых долей значительно сказывается на эффекте. Особенно на высоких оборотах.
3. При первоначальной установке ионизатора УОЗ будет уходить в положительную сторону за счет удаления нагара из камер сгорания (детонация исчезает). Однако при его отключении УОЗ может еще больше увеличиться, но на пару сотен км. Дальше машина снова становится вялой с надрывно работающим двигателем, динамика падает до прежних показателей. После значительного пробега с ионизатором при его отключении ощущается значительный упадок мощности.
4. Двигатель с ионизатором прогревается быстрее, но и греется в пробках сильнее. Влияет повышенная температура горения смеси. Однако каких-либо ухудшений, прогорания клапанов, оплавлений не замечено. За 25000 км пробега с ионизатором наблюдаются только положительные показатели. Топливная смесь горит быстрее, что указывает на появление детонации после включения ионизатора, приходится уменьшать УОЗ на 1-3 град. Но если не использовать ионизатор, то УОЗ все равно придется уменьшать на несколько град. из-за образования нагара. Машина при этом тупеет, возрастает потребление топлива.
5. Трубка вырабатывает мизерное количество озона, он абсолютно не сказывается на деталях всего тракта от впуска до выпуска. Можете прочитать ссылку про озоновую крышу, приведенную ниже. В этом варианте автомобиль работал практически на одном озоне, но как видно из наблюдений автора ухудшений не произошло.
6. Излучателей более эффективнее трубки я не нашел. Она компактна, при напряжении выше 40000 Вольт максимально ионизирует высокоскоростной напор воздуха при максимальных оборотах двигателя. Разница значительна при выключенном и включенном ионизаторе.
7. Измерить напряжение в трубке просто – длинной отверткой с хорошо изолированной ручкой касаетесь центрального электрода (проволочки) и подводите ее кончик к стенкам трубки. Как только начнут проскакивать искры, измерьте расстояние пробоя. 1мм это 3000 Вольт. Если пробой 12 мм, то напряжение соответственно 36000 Вольт. Но так как приведенная схема слаба, а ток в трубке обязательно увеличится при таком измерении, то на самом деле напряжение будет выше чем при измерении. Возможно на 3000-5000 Вольт.
8. Схема хорошо себя зарекомендовала, хотя проста и далека от идеала. Очень качественные указанные полевые транзисторы. После простоя в пробках до радиатора транзистора не возможно было дотронуться рукой, он был раскален. Но схема работала без нареканий. Фирма гарантирует работу транзисторов до температуры нагрева 170 град. Похоже на правду. По крайней мере, наши транзисторы в подобных условиях «приказывали долго жить». По началу я боялся ионизатора, мало ли что случится под капотом или вообще с машиной. Под креслом до сих пор два приличных огнетушителя. Но опасения оказались напрасными. Ионизатор прошел годовую проверку жарой, морозом и ныряниями в глубокие лужи. Так что добросовестно сделанный прибор хлопот не доставит.
electro-shema.ru
Ионизатор – интересная и полезная штука, способная сделать воздух в доме более свежим и чистым. На рынке представлено огромное количество этих приборов на любой вкус и кошелек. И если не рассматривать варианты сложных климатических систем, которые помимо основополагающих задач, выполняют также и функции кондиционирования, увлажнения и дезинфекции, то почему бы не задаться вопросом: как сделать ионизатор воздуха своими руками? Наверняка, эту идею не так сложно воплотить в жизнь.
Самодельный ионизатор воздуха может выполнять возложенные на него обязанности ничуть не хуже простейшего фабричного устройства. Начнем с того, что подготовим все необходимое для своей будущей сборки.
Нам понадобится следующее:
При помощи обычной бытовой иголки следует проделать небольшие отверстия в контейнерах. После этого необходимо взять подготовленные провода и распустить их на раздельные жилы, продев в созданные отверстия (отверстия должны быть соответствующего размера!).
Обращаем внимание на то, чтобы в одном отверстии жила имела положительную полярность, а в другом – отрицательную.
Изолируем жилы, соединяем провода. При желании можно соединить проводки с разборной штепсельной вилкой, и прибор готов к использованию. Все. Как видите, схема проста. Недостатком самодельного устройства можно назвать, пожалуй, только его хрупкость. В остальном – он ничем не хуже покупного.
Автомобили – это такие же замкнутые пространства, как и обычные помещения. Отличие их в том, что помимо микроскопической пыли, собирающейся внутри салона, негативного воздействия имеющихся электрических устройств, к перечню вредных факторов добавляется повышенная степень влияния бензиновых и масляных выбросов. В таких условиях ионизирующее устройство, безусловно, необходимо. Можно его купить, а можно, опять же, собрать самостоятельно.
Прежде всего, следует понять принцип работы такого прибора: он связан с преобразователем напряжения. Схема преобразователя является простейшей для всех тех, кто хоть немного разбирается в технике. Активным элементом в ней служит транзистор. Лучше всего использовать транзисторы серии КТ 818 или КТ 819, в этом случае в схеме практически ничего не придется менять. В качестве умножителя напряжения используем диоды КЦ106 и аналоги.
При выборе конденсатора обращайте внимание на его рабочее напряжение, которое должно быть в промежутке от 3 до 6 кВ, и на емкость – 600-4500 мкФ.
Обмотку готового трансформатора следует делать по слоям, каждый из которых должен состоять из 100 витков. Каждый слой подлежит очень тщательной изоляции. После проделанных манипуляций трансформатор желательно залить эпоксидной смолой. Ждем, когда смола высохнет, подключаем таймер, соединяем с умножителем напряжения, раздвигаем выходные провода до 3 см и подключаем к сети.
Такой ионизатор устанавливается в целях возможности экономии топлива. Это происходит за счет создания прибором особого ионного поля, отделяющего молекулы топлива друг от друга. В связи с этим в камере сгорания образуется облако, способствующее более быстрому сгоранию бензина. Существуют различные мнения по поводу того, действительно ли подобный процесс позволяет ощутимо сэкономить на бензине, кто-то пробует заводские модели, кто-то – сделанные своими руками.
Для этого используют катушку контактного зажигания (например от ВАЗа), блок аварийного зажигания, генерирующий импульсы, коммутатор зажигания (можно все от того же ВАЗа), жгут проводов с соответствующими разъемами.
Знаменитая люстра Чижевского – это тоже ионизатор, только в виде люстры, и ее также можно изготовить самостоятельно.
Для этого на алюминиевый обруч крепятся медные провода диаметром до 1 мм, их расположение – перпендикулярно друг другу. Сетка, которая при этом получилась, должна опускаться вниз на 6-9 см. На точке пересечения проводов необходимо припаять иголки из металла размером приблизительно в 4 см. Предпочтительно, чтобы эти иголки были очень острыми, от этого зависит эффект работы люстры. На равном расстоянии к обручу прикрепляют три провода из меди, их следует спаять над обручем вместе, а потом присоединить генератор высокого напряжения. Для правильной работы люстры напряжение должно быть от 25 кВ.
Для люстры может быть использована катушка зажигания как от автомобиля, так и от мотоцикла.
Необходимое сопротивление можно собрать из трех резисторов, которые соединяются параллельно. Их мощность должна быть приблизительно 2 Вт, а сопротивление – около 3 кОм.
Монтаж деталей ионизатора должен производиться в корпусе соответствующих для этого размеров, этот размер обеспечит необходимое расстояние между выводами конденсаторов и высоковольтных диодов. После монтажа рекомендуется покрыть выводы парафином. Если люстра изготовлена правильно, она начинает исправно функционировать сразу.
В процессе эксплуатации устройства не должны присутствовать посторонние запахи. Если запахи озона все-таки ощущаются, то необходимо проверить схему подключения, а также провести инспекцию самой люстры.
При этом напряжение на выходе можно изменить через подбор сопротивления или емкости. Еще одним достоверным способом, подтверждающим эффективность работы люстры Чижевского, можно считать поднесение небольшого кусочка ваты. На расстоянии в 0,5 см его непременно должно притянуть к устройству.
Из всего вышеизложенного можно сделать вывод, что изготовление ионизатора воздуха – не такая уж сложная задача, и ее вполне можно осуществить своими собственными руками.
tehnika.expert
Изобретение относится к двигателестроению, в частности к системам двигателя внутреннего сгорания. Изобретение позволяет улучшить эксплуатационные свойства двигателей внутреннего сгорания, а именно снизить концентрацию вредных примесей в отработавших газах и уменьшить удельный расход топлива. Ионизатор воздуха для двигателя внутреннего сгорания включает цилиндрический корпус в форме трубы и расположенные в нем, изолированные друг от друга металлические электроды положительной и отрицательной полярности, подсоединенные к высоковольтному источнику питания, причем, по меньшей мере, один электрод положительной полярности выполнен в виде ленты, которой придана форма прямого геликоида, внутренняя кромка ленты заострена, а внешняя кромка прилегает к внутренней поверхности корпуса, при этом электрод отрицательной полярности выполнен в виде струны, расположенной по оси корпуса. 2 з.п. ф-лы, 1 ил.
Изобретение относится к области машиностроения, а именно к элементам двигателей внутреннего сгорания (ДВС). Техническое решение может быть использовано для увеличения эффективности сгорания топливно-воздушной смеси (ТВС).
Известно устройство обработки воздуха - многорядный ионизатор воздуха для автомобильного двигателя, которое содержит металлические решетки, расположенные по отношению одна к другой параллельно и соосно, причем рядом стоящие решетки заряжены разноименными зарядами. Решетки выполнены гибкими, с возможностью искривления поверхности решеток под воздействием потока всасываемого работающим двигателем воздуха (заявка на изобретение RU №93027451, дата публикации 27.12.1995). Предположительно недостатком данного аналога является нестабильность зоны и типа разряда, вызванная вибрацией гибких ионизационных решеток. Следствием этого является низкая эффективность производства кислородосодержащих радикалов, притом, что образуется относительно большое количество озона, по причине возникновения дуговых разрядов в местах наименьшего расстояние между решетками. Озон оказывает значительный окислительный эффект на детали ДВС, эффективность сгорания при этом возрастает не значительно.
В качестве прототипа принят ионизатор воздушной среды, применимый в том числе для обработки воздуха в карбюраторном двигателе внутреннего сгорания (заявка на изобретение RU 92002010, дата публикации 15.11.1994). Прототип содержит диэлектрическое кольцо, в проходном канале которого расположены пластинчатый изолированный положительный электрод и отрицательный электрод, выполненный из металлических нитей. Электроды подключены, соответственно, к положительному и отрицательному полюсам высоковольтного источника напряжения. Для повышения эффективности ионизатора с двух сторон пластины положительного электрода установлены изолированные пластины отрицательного электрода, при этом кромка пластины первого выступает от кромок пластин второго на расстояние, равное или большее расстояния между пластинами положительного электрода и металлическими нитями отрицательного электрода. На металлических нитях расположены элементы типа колючей проволоки, шипы которой направлены в сторону пластин электродов.
Недостатком прототипа является применение пластинчатых электродов, которые препятствуют перемешиванию воздушного потока, притом, что активное продуцирование кислородосодержащих радикалов сконцентрировано в области шипов отрицательного электрода. Таким образом, существенно сокращается объем обработки воздуха, проходящего через ионизатор, а процентное содержание продуцируемых кислородосодержащих радикалов оказывается менее возможного. При этом, согласно теории цепного горения, насыщенность ТВС указанными радикалами является важнейшим параметром, определяющим эффективность сгорания ТВС и важнейшие показатели работы ДВС, напрямую связанные с процессом горения топлива (см. с.391-417 в книге: Кондратьев В.Н. Кинетика и механизм газофазных реакций. М.: "Наука", 1974).
Задача изобретения - улучшение эксплуатационных свойств двигателей внутреннего сгорания. При использовании изобретения достигаются следующие важные функциональные технические результаты.
1. Снижается концентрация вредных примесей в отработавших газах.
2. Уменьшается удельный расход топлива.
Для достижения заявленной совокупности технических результатов в ионизаторе воздуха для двигателя внутреннего сгорания (далее ионизатор), включающем цилиндрический корпус в форме трубы и расположенные в нем, изолированные друг от друга металлические электроды положительной и отрицательной полярности, подсоединенные к высоковольтному источнику питания, введены конструктивные изменения, а именно по меньшей мере один электрод положительной полярности выполнен в виде ленты, которой придана форма прямого геликоида, внутренняя кромка ленты заострена, а внешняя кромка прилегает к внутренней поверхности корпуса, при этом электрод отрицательной полярности выполнен в виде струны, расположенной по оси корпуса.
На Фиг.1 изображена схема ионизатора воздуха для двигателя внутреннего сгорания.
В состав ионизатора входят цилиндрический диэлектрический корпус (1), выполненный в форме трубы, и электроды. По меньшей мере один электрод (2) положительной полярности выполнен металлическим в виде ленты, которой придана форма прямого геликоида, причем внутренняя кромка (3) ленты заострена, а внешняя кромка (4) прилегает к внутренней поверхности корпуса (1). Посредством вывода (5) электрод (2) соединен с положительным выводом высоковольтного источника питания (не показан). Электродов (2) положительной полярности может быть несколько и в этом случае предпочтительно их симметричное расположение относительно оси корпуса (1). Для обеспечения коррозионной стойкости и хорошей электропроводности электроды (2) положительной полярности могут быть выполнены из алюминия. Ионизатор также содержит электрод (6) отрицательной полярности, который выполнен в виде струны и расположен по оси геликоида, т. е по оси диэлектрического цилиндрического корпуса (1). Электрод отрицательной полярности (6) может быть выполнен из позолоченной проволоки диаметром 0,1 мм. Электрод (6) укреплен в корпусе с помощью тонких растяжек-изоляторов (7), выполненных, например, из органического стекла, растяжкам-изоляторам (7) придана обтекаемая форма в направлении движения воздушного потока. Электрод (6) снабжен выводом (8), с помощью которого он подсоединен к отрицательному выводу высоковольтного источника питания.
Ионизатор установлен на всасывающем патрубке ДВС до смесеобразующего устройства (карбюратор, впускной коллектор) и функционирует следующим образом. Поток воздуха, необходимый для сжигания топлива, проходит внутри диэлектрического корпуса (1), в пространстве между положительным (2) и отрицательным (6) электродами. Напряжение от высоковольтного источника питания, подведенное к положительному (2) и отрицательному (6) электродам, вызывает тлеющий разряд на всем протяжении электродов. При этом производятся радикалы кислорода, а также озон из кислорода воздуха (см. с.339, 354 в книге: В.Н.Кондратьев, Е.Е.Никитин. Кинетика и механизм газофазных реакций. М.: "Наука", 1974).
Заостренная внутренняя кромка (3) электрода положительной полярности способствует интенсивному стеканию заряда, а геликоидная форма поверхности - интенсивному перемешиванию воздушного потока. Обогащенный радикалами кислорода и озоном воздух далее поступают в смесеобразующее устройство ДВС, смешиваются с топливом и далее обычным порядком используются для осуществления рабочего процесса ДВС. При этом заявленная совокупность технических результатов обеспечивается сущностью изобретения следующим образом соответственно.
1. Присутствие молекул озона в ТВС снижает выход СО в процессе сгорания и, следовательно, снижает концентрацию вредных примесей в отработавших газах (см. с.339 в книге: В.Н.Кондратьев, Е.Е.Никитин. Кинетика и механизм газофазных реакций. М.: "Наука", 1974).
2. Присутствие радикалов кислорода в ТВС снижает температуру ее воспламенения и способствует ее более полному сгоранию, т.е. повышается калорийность ТВС, что и обеспечивает уменьшение удельного расхода топлива (см. с.436 в книге: В.Н.Кондратьев, Е.Е.Никитин. Кинетика и механизм газофазных реакций. М.: "Наука", 1974).
Предложенный ионизатор может быть изготовлен промышленным способом на базе любого современного машиностроительного предприятия без применения каких-либо специальных технологий.
1. Ионизатор воздуха для двигателя внутреннего сгорания, включающий цилиндрический корпус в форме трубы и расположенные в нем изолированные друг от друга металлические электроды положительной и отрицательной полярности, подсоединенные к высоковольтному источнику питания, отличающийся тем, что, по меньшей мере, один электрод положительной полярности выполнен в виде ленты, которой придана форма прямого геликоида, внутренняя кромка ленты заострена, а внешняя кромка прилегает к внутренней поверхности корпуса, при этом электрод отрицательной полярности выполнен в виде струны, расположенной по оси корпуса при помощи растяжек - изоляторов.
2. Ионизатор воздуха для двигателя внутреннего сгорания по п.1, отличающийся тем, что в его состав входит несколько электродов положительной полярности, при этом они расположены симметрично относительно оси корпуса.
3. Ионизатор воздуха для двигателя внутреннего сгорания по п.1 или 2, отличающийся тем, что каждый электрод положительной полярности выполнен из алюминия, электрод отрицательной полярности выполнен из позолоченной проволоки диаметром 0,1 мм, а растяжки - изоляторы выполнены из органического стекла, и им придана обтекаемая форма.
www.findpatent.ru
Ионизатор для авто
С момента покупки новой машины ВАЗ - 2107 я постоянно находился в недоумении, тупая динамика машины меня убивала. Был короткий промежуток времени, когда она была резвой и послушной. При резком нажатии педали газа в пол она схватывала моментально, на 4-й передаче с 40 км/ч в гору набирала скорость на зависть другим владельцам классики. Но потом стали происходить странные вещи. Динамика постепенно упала. При попытках вытянуть с низов стала появляться детонация, при чем изменение УОЗ не давало результатов. Доходило до того, что стреляло в глушитель, но детонация присутствовала постоянно при нажатой педали акселератора более чем на 2/3 хода. При этом движок ревел как у самолета, но удовлетворительного разгона не было. Обращался я во многие автосервисы города, по знакомству, по советам других автовладельцев. Ситуация не изменилась. Кто-то валил вину на установленный Октан-4, кто-то на перетянутые клапана, кто-то на качество бензина и карбюратор со свечами и т.д. Выкинул я изрядную сумму на проверку всех предполагаемых причин, все было не то. Впрочем, не я один оказался несчастным. За время своих мытарств я пообщался с уймой владельцев классики, в чьем распоряжении были автомобили от новья с иголочки до «копеек» 70-х годов. Да и не только у классики оказалась эта проблема. У переднеприводных карбюраторных ВАЗов тупость тоже встречается часто. Можно было забросить эту занозу, посчитав недоработкой отечественного автопрома, но желание исправить положение не давало покоя.
А.В. Бурякин,БСЗ Октан-4,ионизатор воздуха для машины,Ионизатор для ДВС, Ионизатор для ДВС,электрическая схема ионизатора
Поиски причины в технической литературе оказались безрезультатными. Просматривал в интернете статьи обычных автолюбителей и как-то наткнулся на калильное зажигание. Его явные признаки были на лицо. Постоянная детонация, при выключении зажигания без срабатывания электроклапана карбюратора двигатель трясло еще пару секунд. Машина с непрогретым двигателем шла намного лучше. Зимой в мороз -30 появлялась хорошая резвость. Залил я в бак «Аспект-Модификатор» для очистки камер сгорания и всей топливной системы - произошло чудо. Двигатель стал работать очень тихо, даже на высоких оборотах. Появилась приличная разгонная тяга, в кресло приятно вдавливало. Разгон до 100 км/ч (по спидометру) 11,7 сек с использованием 3-х передач. На машине стоит БСЗ Октан-4, солекс-21073 с топливным жиклером первой камеры 110, вторая не тронута. Остальное штатное. Счастье оказалось недолгим. Выработал бак с присадкой, и после пробега в 500км снова появилась былая вялость. За руль даже не было желания садиться.
Однажды подметил интересную вещь – машина всегда резво ехала после дождя. После грозы бывало и того лучше. Да и самому легче дышалось. Во время грозы или дождя приземная атмосфера насыщается отрицательными ионами. Вот с этого и начались мои изыскания по «дыханию» двигателя, в прямом смысле этого слова. Из подручных материалов я собрал ионизатор воздуха и установил его перед воздушным фильтром. Мои догадки подтвердились – уже через 20км пробега с ионизатором я стал ощущать улучшения. А через 300км машина приобрела качества, которых я никогда в ней не наблюдал. Можно было легко трогаться со 2-й передачи, движение на 30-ти км/ч для 4-й передачи не составляло труда. Надо ускориться? Пожалуйста! Машина тут же послушно и уверенно набирала обороты без провалов, дергания и детонации.
Многие знают такую особенность классики, машина имеет лучшую динамику в интервале 3000-3500 об/мин. Хотя максимальная мощность развивается при 5600 об/мин, редко кто раскручивает выше 4000. Тяга заметно пропадает с приближением оборотов двигателя к максимальной отметке. С ионизатором динамика равномерна на всех оборотах, на 1-й и 2-й передаче при тапке в пол максимальные обороты набираются мгновенно, успевай переключать. Могу смело заявить, причиной тупости машины на высоких оборотах двигателя большей частью является нагар. Ещё у большинства присутствует такой момент – при движении на оборотах 2000-2500, нажимая газ до упора, некоторое время машина никак не реагирует. Это даже не провал, просто реакция ноль. Лишь через пару секунд постепенно начинается разгон. Но за это время момент потерян, обгон сорван. Могу с уверенностью заявить, не в карбюраторе и зажигании дело. В нагаре! Даже легкий коричневатый нагар может провоцировать аномальное горение топлива. Причем в различные погодные условия скорость горения топливной смеси имеет широкий диапазон. Если после грозы машина идет с легкостью и при утапливании педали газа в пол вы можете даже не наблюдать детонации, то в туман или перед грозой к железному коню словно прицепляют плуг.
Машина отказывается ехать, появляется сильное торможение двигателем, детонация, двигатель ревет, а динамики нет. В такую погоду происходит активное накопление нагара в камерах сгорания. Многие выскажут мнение что виной всему влажность. Однако вспомните недавнее прошлое когда многие умельцы пытались для уменьшения потребления топлива и выбросов СО внедрять устройства добавления воды в топливную смесь. Нагар отсутствовал, СО практически пропадал и мотор работал весело. Поэтому на процесс горения влияет не вода, а наличие отрицательных ионов в окружающем воздухе. Находясь рядом с водопадом в тумане из падающей воды, вы ощущаете свежесть и легкость дыхания, не смотря на высокую влажность от которой одежда становится сырой. Вот оно различие свойств высокой влажности – при обычном тумане и рядом с водопадом.
Электрическая схема ионизатора приведена на рисунке 1. Применение полевого транзистора позволяет максимально упростить схему. По своему опыту скажу что не боятся они статического электричества, можно смело работать как с обычными. Высоковольтные конденсаторы в умножителе лучше использовать такого типа какой указан, большая емкость при малых габаритах и удобно с ними работать. Их полно в телеателье и на радиорынке.
РИС. 1
Детали:
R1 – 47k, R2 – 75k, R3 – 1.5k, R4 – 2k;
C1 – 10нФ, C2 – 47мкФ х 25В, С3 – 500мкФ х 25В;
DD1 – К561ЛН2;
VT1 – IRL3803, IRF3205, IRFP064, IRFP2907;
VD1,2 – КД103А, КД521А.
Т1 – ТВС110П2;
FU1 – 2A;
Умножитель – конденсаторы 2200пФ х 10000В типа К73-13, диоды КЦ106Г.
Выводы микросхемы DD1 слева направо: 13,12,1,2,3,4.
Вывод с КРЕН5А на 7-й вывод DD1.
Повышающий трансформатор строчник от ЧБ телевизора, найдете там же. Удаляете все первичные обмотки и наматываете 9 витков тем же проводом от удаленных обмоток. Лучше предварительно намотать несколько витков изоленты. Для питания микросхемы можно использовать КРЕНку на 9В, но она сильно греется. Транзистор обязательно установите на радиатор не менее 5х5 см с ребрами охлаждения. Сами понимаете, не домашние условия под капотом. Умножитель напряжения собираете навесным монтажем, можно скрепить клеем между собой конденсаторы, а потом подпаять диоды. Обязательно залейте эпоксидным компаундом в походящей форме. На крайний случай купите компаунд фирмы Анлес «Эпокси Классик», это эпоксидка со свойствами замазки. Обработайте ею толстым слоем все выводы конденсаторов и диодов. Располагается схема в одном корпусе. У меня умножитель расположен в 4 см от радиатора транзистора, нет проблем. Корпус строчного трансформатора подсоедините к массе, на нем скапливается электростатическое электричество которое периодически пробивает на первичную обмотку через прокладку.
Неполадок конечно не происходит, но лучше перестраховаться. И обязательно после сборки схемы испытайте ее на холостую без трубки. При этом на умножителе напряжение будет порядка 60000В. В темноте корпус умножителя не должен светиться. Потом это перерастет в пробой. Приведенная схема слаба для трубки и при подключении её напряжение не будет подниматься выше 30000-35000В. Вместо самодельного умножителя можно применить умножитель от телевизора УН-9/27. Там вывод плюс. Казалось бы никакой разницы. Но двигатель с разной полярностью умножителя меняет свой характер. Если умножитель с отрицательным выводом, то двигатель эластичнее в работе, отличная низовая и верховая тяга, угол зажигания увеличится на 1-3 градуса. Если использовать готовый от телевизора, то плохая низовая тяга с детонацией (но лучше чем вообще без ионизатора), верховая отличная, УОЗ наоборот придется уменьшать на пару градусов, двигатель работает шумно. И еще недостаток – трубка является электрофильтром, задерживает самую мелкую пыль которая оседает на внутренней стенке. Постепенно она становится электроизолятором и эффект уменьшается. Придется протирать стенки каждые 300 км. На рисунке 2 схема включения промышленного УН9/27. Для повышения напряжения и эффекта можно добавить самодельный умножитель как показано, можно и без него. Не используйте мегаомные резисторы на выводе высокого напряжения с умножителя как это делается для безопасности в домашних ионизаторах. В трубке будет сильное падение напряжения и потеря эффекта, лучше позаботиться об изоляции.
РИС. 2
В корпусе где расположены компоненты схемы делаете отверстие для вывода высокого напряжения. Я использовал контакт с крышки трамблера который вклеивается в корпус эпоксидкой. К контакту легко подпаивается провод от умножителя и стандартно подсоединяется высоковольтный провод зажигания. Он будет один. В своем варианте я сделал два вывода без заземления на массу автомобиля. В любом случает работает хорошо и разницы никакой. Настройка схемы заключается в установке резистором R1 тока потребления 0,6-0,8А. Больший ток не дает результатов.
Эскиз трубки показан на рисунке 3. Трубка сделана из корпуса дезодоранта, у всех практически стандартный диаметр 52мм. Длина трубки 7-9см. Ее надо заключить в подходящий корпус так, чтобы расстояние до корпуса составляло 5-7 мм. Можно склеить корпус из текстолита. Вырезаете перегородку из текстолита или пластмассы по диаметру трубки и внутреннему размеру корпуса, одеваете на трубку, промазываете стыки быстрым клеем (я использовал поксипол), вставляете в корпус, снова промазываете и заливаете полость эпоксидным компаундом. Она обозначена желтым цветом. Сначала с одной стороны, после застывания клея с другой. До краев трубки. Затем вырезаете две планки шириной 3мм и делаете тонкое отверстие в центре. Наклеиваете на края трубки так чтобы отверстие было четко в центре трубы. Корпус трубки будет насаживаться на переключатель зима-лето снизу вместо патрубка теплого воздуха. Надо вырезать еще одну деталь наподобие планки с круглым отверстием или вырезать в готовом корпусе для стыковки с переключателем.
Также в корпусе трубки-ионизатора сделайте отверстие для вклейки контакта с крышки трамблера. Если умножитель с отрицательным потенциалом, то контакт подключается к центральной проволоке в трубке, а корпус трубки на массу. Если вывод плюс, то контакт на корпус трубки, а центральную жилку на массу. Можно сделать два контакта как на рисунке, но это дороже, а разницы нет. Роль центральной проволоки в ионизаторе выполняет волосок от тросика. Чем тоньше, тем лучше. Крепится электротехническими зажимами на планках внатяжку. В этот же зажим вставляется минусовой провод. Края трубки обязательно обмазываются эпоксидкой во избежание коронного разряда. Вообще все высоковольтные части надо хорошо обработать (кроме внутренней поверхности трубки и центральной проволочки), провода должны быть как можно короче. Воздух поступает в трубку снизу, ионизируется и следует дальше через переключатель зима-лето. Корпус ионизатора снизу надо сделать на 3-4 см длиннее трубки для безопасности. Хорошим будет вариант с круглым пластиковым корпусом ионизатора, чтобы его можно было вставить вместо переключателя зима-лето. Сначала можете не изготавливать трубку, а найти подходящий корпус, набить его металлическими губками для мойки посуды и подключить к этой сетке минусовой вывод умножителя. Напряжение сразу подскочит до 50000В.
В этом варианте надо подпаять на выводе умножителя резистор на 20-30Мом. Возможно вам понравится и не придется изготавливать трубку. Трубка представляет собой мощный ионизатор и при напряжении в трубке порядка 45-50 КВ создается дополнительный эффект. На высоких оборотах двигателя воздух движется с большой скоростью через трубку, при потенциале более 40 КВ успевает ионизироваться весь поступающий воздух. Ионизированный воздух не встречает сопротивления во всем тракте до камер сгорания, а значит чем выше обороты тем больше происходит нагнетание и появляется эффект наддува. Разгон на 1-й и 2-й скоростях до предельных оборотов практически мгновенный. Движок приятно жужжит без надрывного рева.
РИС. 3
Конечно периодически эффект будет теряться, трубка забивается пылью и надо производить чистку внутренних стенок. По своему опыту приходилось делать раз в 600-700км. Признаться надоело и я хочу попробовать вариант с металлическими губками.
И ещё несколько слов по конструированию. К сожалению приведенная схема слаба для максимального эффекта трубки. Можно использовать любую схему повышения напряжения. Хочу попробовать ее с катушкой зажигания и частотой 200-300гц. Эффект начинает пропадать при частоте преобразователя напряжения выше 7-10 кГц. Первые несколько минут при работе преобразователя на высоких частотах претензий не возникает, но затем постепенно ионизация нарушается. Чем выше частота, тем быстрее наступает этот момент. Также влияет и выходное напряжение повышающего трансформатора. Чем оно выше, тем ниже должна быть частота преобразователя. Высокочастотное высоковольтное напряжение не поляризуется диодами. Я долго думал над этим вопросом, почему не работает? Плюс на месте, минус тоже присутствует. Но почему из трубки несет спертым и теплым на запах воздухом, от которого начинает болеть голова? И при этом ионизатор вообще не оказывает эффекта. Даже пытался делать как в люстре Чижевского один отрицательный электрод, но он тоже излучал противную вонь.
Все раскрылось случайно – я подключил последовательно два высоковольтных диода, но противоположными выводами. С выхода не должно было присутствовать никакого напряжения. Но поднеся отвертку, я увидел дугу. Переменному току высокой частоты и напряжения диоды не преграда. Для хорошего результата достаточно 0,4А при бортовом напряжении, частоте преобразователя 800-3000Гц и 25000В на электродах трубки. Свежий морозный озоновый запах из работающей трубки знак правильной работы ионизатора. И напротив, теплый спертый и неприятный ветерок признак неисправности. Это может быть пробит силовой транзистор, задана высокая частота преобразователя или неисправность умножителя.
В этом направлении есть еще над чем поработать. Можно найти более эффективный излучатель отрицательных ионов. Электрическая схема точно требует доработки. Руки чешутся, а времени нет. Буду признателен за вашу помощь.
Дополнения к наблюдениям:
1. Резистор R1 в схеме лучше поставить подстроечный типа СП-5. У меня в схеме на каждом ухабе он постоянно менял сопротивление и изменялся ток потребления ионизатора. Изменялся и эффект трубки, постоянно приходилось корректировать УОЗ. Грешил на грязь в трубке, но оказывается она заметно не сказывается на работе ионизатора. Поэтому трубку можно не очищать. После сборки проверьте постукиванием по прибору, ток не должен изменяться.
2. Ток можно установить 1,3-1,5 А, эффект есть. Вообще изменение тока потребления на несколько десятых долей значительно сказывается на эффекте. Особенно на высоких оборотах.
3. При первоначальной установке ионизатора УОЗ будет уходить в положительную сторону за счет удаления нагара из камер сгорания (детонация исчезает). Однако при его отключении УОЗ может еще больше увеличиться, но на пару сотен км. Дальше машина снова становится вялой с надрывно работающим двигателем, динамика падает до прежних показателей. После значительного пробега с ионизатором при его отключении ощущается значительный упадок мощности.
4. Двигатель с ионизатором прогревается быстрее, но и греется в пробках сильнее. Влияет повышенная температура горения смеси. Однако каких-либо ухудшений, прогорания клапанов, оплавлений не замечено. За 25000 км пробега с ионизатором наблюдаются только положительные показатели. Топливная смесь горит быстрее, что указывает на появление детонации после включения ионизатора, приходится уменьшать УОЗ на 1-3 град. Но если не использовать ионизатор, то УОЗ все равно придется уменьшать на несколько град. из-за образования нагара. Машина при этом тупеет, возрастает потребление топлива.
5. Трубка вырабатывает мизерное количество озона, он абсолютно не сказывается на деталях всего тракта от впуска до выпуска. Можете прочитать ссылку про озоновую крышу, приведенную ниже. В этом варианте автомобиль работал практически на одном озоне, но как видно из наблюдений автора ухудшений не произошло.
6. Излучателей более эффективнее трубки я не нашел. Она компактна, при напряжении выше 40000 Вольт максимально ионизирует высокоскоростной напор воздуха при максимальных оборотах двигателя. Разница значительна при выключенном и включенном ионизаторе.
7. Измерить напряжение в трубке просто – длинной отверткой с хорошо изолированной ручкой касаетесь центрального электрода (проволочки) и подводите ее кончик к стенкам трубки. Как только начнут проскакивать искры, измерьте расстояние пробоя. 1мм это 3000 Вольт. Если пробой 12 мм, то напряжение соответственно 36000 Вольт. Но так как приведенная схема слаба, а ток в трубке обязательно увеличится при таком измерении, то на самом деле напряжение будет выше чем при измерении. Возможно на 3000-5000 Вольт.
8. Схема хорошо себя зарекомендовала, хотя проста и далека от идеала. Очень качественные указанные полевые транзисторы. После простоя в пробках до радиатора транзистора не возможно было дотронуться рукой, он был раскален. Но схема работала без нареканий. Фирма гарантирует работу транзисторов до температуры нагрева 170 град. Похоже на правду. По крайней мере, наши транзисторы в подобных условиях «приказывали долго жить». По началу я боялся ионизатора, мало ли что случится под капотом или вообще с машиной. Под креслом до сих пор два приличных огнетушителя. Но опасения оказались напрасными. Ионизатор прошел годовую проверку жарой, морозом и ныряниями в глубокие лужи. Так что добросовестно сделанный прибор хлопот не доставит.
Автор: А.В. Бурякин
БСЗ Октан-4,ионизатор воздуха для машины,Ионизатор для ДВС, Ионизатор для ДВС,электрическая схема ионизатора, ионизатор для авто.
www.ecotoc.ru