ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Как сделать генератор из асинхронного двигателя своими руками? Двс генератор


Устройство и принцип работы дизель – генератора

March 29, 2016

Дизель – генераторы невероятно нужные агрегаты, способные обеспечивать электроэнергией там, где нет сети, так же они могут временно заменить центральную сеть и предотвратить срыв деятельности целых организаций. Что же касается больниц, то тут они попросту незаменимы. Дизель – генераторы имеют очень разнообразные конструкции, которые зависят от многих факторов, например, таких как место и условия применения. В этой статье мы и рассмотрим устройство дизельных генераторов и их применение.

Принцип работы

Генератор представляет собой устройство, призванное преобразовывать вращательную энергию механического типа в электрическую энергию.

Сам по себе генератор энергию не делает. Для тог  чтобы на выходе появилась ЭДС необходимо вращать генератор дизельным или другим двигателем. Движение обмоток, относительно магнита или друг друга, создает электродвижущую силу в этих обмотках, которая и дает ток определенной силы на выходе устройства. Чтобы было проще понять такой процесс, его можно сравнить с насосом, который точно так же не создает воду, а прокачивает ее через себя.

В основе работы любого генератора лежит закон магнитной индукции, который подразумевает появление электродвижущей силы в проводнике, который движется в магнитном поле. При таком движении на концах провода возникает разность потенциалов, что, в свою очередь, заставляет двигаться заряженные частички, тем самым создавая течение тока.

Из чего состоит генератор

Движущей силой любого генератора является двигатель, который приводит в действие сам генератор. Для работы двигателя необходима топливная система, а для стабильности напряжения, вырабатываемого генератором, регулятор напряжения. Не менее необходимой является и система охлаждения, как двигателя внутреннего сгорания, так и самого генератора. Еще одним важным компонентом является система смазки. На станине, которая содержит все узлы и агрегаты находится так же зарядное устройство для аккумулятора и панель управления. Также в обязательном порядке присутствует глушитель шума.

Двигатель

Схема подключения генератора кавитации к топливной системе

Двигатель служит источником механической энергии, которую и будет преобразовывать генератор. Во всех случаях от мощности дизеля зависит и мощность самого генератора. При выборе силовой установки нужно учитывать несколько важных моментов, которые в обязательном порядке указываются заводом изготовителем.

Тип топлива

Двигатели внутреннего сгорания, которые приводят генератор в действие, могут питаться бензином, газом или дизельным топливом. Если мощность генератора не велика, выгоднее использовать двигатель именно бензинового типа, если же от машины требуется большая мощность, в перспективе дизели и ДВС на газу. Существуют так же силовые установки, которые работают сразу на двух типах топлива.

топливо для дизель генератора

Самыми распространенными двигателями внутреннего сгорания являются верхнеклапанные модели. Их клапаны находятся в самой головке цилиндров, а не в блоке, как у других типов ДВС. К преимуществам верхнеклапанных моделей можно отнести компактный внешний вид, простоту, надежность, удобство в ремонте, а также не большой шум и менее токсичный выхлоп. Из недостатков таких силовых установок следует выделить их дороговизну.

Генератор переменного тока

Является незаменимым звеном в цепочке генерации электрической энергии. Сам генератор состоит из стационарного корпуса, статора и подвижного ротора, который вращается в статоре. Все узлы генератора построены и расположены таким образом, чтобы обеспечить максимально точное перемещение обмоток в магнитном поле. Статор представляет собой неподвижную часть, в которой расположен сердечник с намотанной на него обмоткой. Ротор (якорь) является подвижной частью, которая создает вращающееся магнитное поле. Ротор бывает щеточным, с намотанной обмоткой, и бесщеточным, в виде постоянного магнита. Ротор создает магнитное поле, которое вращаясь, создает в обмотках статора электродвижущую силу и, как следствие, ток.

Генератор переменного тока

При оценке генератора следует обратить внимание на материал его корпуса, металлические модели более прочные и долговечные. В пластиковых аналогах происходит деформация, и смещение рабочих поверхностей, что со временем приводит к уменьшению мощности машины и даже ее порче. Ротор крепится в статоре на подшипниках, подшипники шарикового типа более предпочтительны, нежели роликовые. Генератор бесщеточного типа вырабатывает более стабильное напряжение и имеет большую долговечность.

Система питания

В среднем генератор способен проработать на одной заправке около 7-ми часов. В небольших моделях топливный резервуар является частью станины или крепится на ней. Если же генератор используется в стационарном режиме на предприятии, его оснащают внешним баком, который позволяет работать намного дольше. Топливная система большинства генераторов состоит из трубопровода, который доставляет топливо из бака в двигатель и обратно, вентиляции топливного резервуара, топливного насоса, который закачивает горючее из бака в двигатель. Также важной вещью является фильтр топлива, который отделяет от него воду и мусор. Для распыления дизельного топлива в цилиндры служат форсунки.

Регулятор напряжения

Регулятор напряжения

Как видно из названия это устройство призвано регулировать выходное напряжение системы. Ниже мы подробно опишем принцип работы регулятора.

Реле осуществляет преобразование переменного тока в постоянный,  а реле – регулятор отбирает небольшую часть энергии и направляет его на вторичные обмотки, так же известные как обмотки возбуждения. Присутствуют также вращающиеся выпрямители, которые нужны для преобразования переменного тока обмоток возбуждения в постоянный.

Этот подготовительный процесс запуска длится до тех пор, пока генератор не возбудится и не начнет вырабатывать полное напряжение. Регулятор следит за состоянием выходного напряжения, и если оно превосходит заданные рамки, регулятор уменьшает напряжение возбуждения. Когда генератор работает в заданном режиме, регулятор просто поддерживает необходимое напряжение возбуждения.

Если нагрузка, прилагаемая к генератору, растет, напряжение его соответственно немного падает, и реле – регулятор добавляет питание ротору, таким образом, выходное напряжение достигает установленного значения. Цикл продолжается снова до выхода генератора на свою полную рабочую мощность.

Охлаждающая система

Охлаждающая система, схема

Двигатель дизельного генератора греется от трения движущихся частей и от тепла сгораемых газов. Очень важно удержать температуру двигателя в заданных пределах и отвести лишнее тепло.

Очень часто в генераторах в качестве охлаждающего вещества применяется обычная вода. Для обмоток самого генератора часто применяют водород, благодаря своей хорошей теплоотдаче он работает превосходно. Тепловая энергия передается через газ вторичному контуру охлаждения, который отбирает ее посредством дистиллированной воды. Оконечным контуром системы охлаждения является радиатор с принудительной подачей воздуха.

За охлаждающей системой необходимо тщательно следить и проверять уровень хладагента. Так же нужно следить за исправностью помпы (устройство подачи охлаждающей жидкости). Завод изготовитель обычно рекомендует, через какое количество времени работы нужно проводить профилактику системы охлаждения. Сам генератор обязательно должен находиться в проветриваемом помещении.

Смазочная система

Смазочная система

Для того чтобы сам двигатель внутреннего сгорания и генератор, работающий в паре с ним, прослужили долго, они обязаны иметь хорошую систему смазки. ДВС получает смазку, как и все подобные машины, из картера через маслопровод и масляные фильтры. Каждые 7 – 8 часов работы двигателя необходимо производить проверку уровня масла и отсутствие утечек. После определенного количества проработанных мот часов, масло нужно менять.

Зарядное устройство

В основном двигатель, приводящий в движение генератор, запускается от аккумулятора. Для того чтобы батарея была все время заряженной и существует зарядное устройство. Напряжение зарядки должно иметь установленную величину, ведь при слишком низком или высоком значении аккумулятор либо сядет, либо быстро выйдет из строя. Корпус устройства заряжающего аккумулятор во избежание коррозии изготавливают из нержавейки. Система полностью автоматическая и не нуждается в обслуживании или настройке.

Управляющая панель

Управляющая панель генератора

Панель управления позволяет управлять генератором, каждая отдельно взятая модель имеет свой пульт, и о некоторых из них мы расскажем ниже. Панель управления позволяет осуществлять автоматический запуск генератора в случае отсутствия электричества в сети. Также существует возможность следить за работой машины и в случае необходимости производить автоматическое отключение генератора.

Система контроля, которая включает в себя датчики, позволяет следить за состоянием двигателя и генератора во время работы, в том числе за давлением масла, температурой, напряжением аккумулятора, частотой вращения системы и временем ее работы. Автоматическая система защиты останавливает работу системы в случае аварийного сигнала, полученного от одного из датчиков. Контроль ведется не только за ДВС, но и за генератором.

Станина

Дизель генератор возле дома.

Любой генератор основывается на раме, которая содержит несущую часть и кожухи, защищающие саму машину и обслуживающий персонал. Также в обязательном порядке должен присутствовать заземлитель. Несущая рама служит для жесткой фиксации всех агрегатов относительно друг друга и поверхности земли. Зачастую вся установка устанавливается в специальном контейнере, который защищает машину от воздействия со стороны окружающей среды.

Система выхлопа

При работе дизельного двигателя, как и любых других двигателей внутреннего сгорания, вырабатывается токсичный газ, который должен, тщательно отводится из помещения. В качестве системы отвода и глушения шума выступает выхлопная установка. Системе выхлопа следует уделять максимальное влияние, так как при халатном к ней отношении возможно отравление персонала выхлопным газом.

Трубы для отвода газа чаще всего делают из железа и чугуна. Устанавливаются на корпус двигателя и станину они не жестко, чтобы исключить влияние вибрации и как следствие порчу ДВС. Конечная часть выхлопной трубы выводится на улицу, в отдалении от окон и других проемов, ведущих в здание.

Еще одной важной функцией выхлопной системы является глушение шума работы двигателя. Для этой цели применяется система глушителей и таким образом громкость шума доводится до необходимого уровня.

lab-37.com

Как превратить любой Асинхронный Двигатель в генератор

Асинхронный генератор — это работающая в генераторном режиме асинхронная электрическая машина (ел.двигатель). При помощи приводного двигателя (в нашем случае ватродвигателя) ротор асинхронного электрогенератора вращается в одном направлении с магнитным полем. Скольжение ротора при этом становится отрицательным, на валу асинхронной машины появляется тормозящий момент, и генератор передает энергию в сеть.

Для возбуждения электродвижущей силы в его выходной цепи используют остаточную намагниченность ротора. Для этого применяются конденсаторы.

Асинхронные генераторы не восприимчивы к коротким замыканиям.

Асинхронный генератор устроен проще синхронного (например автомобильного генератора): если у последнего на роторе помещаются катушки индуктивности, то ротор асинхронного генератора похож на обычный маховик. Такой генератор лучше защищен от попадания грязи и влаги, более устойчив к короткому замыканию и перегрузкам, а выходное напряжение асинхронного электрогенератора отличается меньшей степенью нелинейных искажений. Это позволяет использовать асинхронные генераторы не только для питания промышленных устройств, которые не критичны к форме входного напряжения, но подключать электронную технику.

Именно асинхронный электрогенератор является идеальным источником тока для приборов, имеющих активную (омическую) нагрузку: электронагревателей, сварочных преобразователей, ламп накаливания, электронных устройств, компьютерную и радиотехнику.

Преимущества асинхронного генератора

К таким преимуществам относят низкий клирфактор (коэффициент гармоник), характеризующий количественное наличие в выходном напряжении генератора высших гармоник. Высшие гармоники вызывают неравномерность вращения и бесполезный нагрев электромоторов. У синхронных генераторов может наблюдаться величина клирфактора до 15%, а клирфактор асинхронного электрогенератора не превышает 2%. Таким образом, асинхронный электрогенератор вырабатывает практически только полезную энергию.

Еще одним преимуществом асинхронного электрогенератора является то, что в нем полностью отсутствуют вращающиеся обмотки и электронные детали, которые чувствительны к внешним воздействиям и довольно часто подвержены повреждениям. Поэтому асинхронный генератор мало подвержен износу и может служить очень долго.

На выходе наших генераторов идет сразу 220/380В переменного тока, который можно использовать напрямую к бытовым приборам (например обогреватели), для зарядки аккумуляторов, для подключения к пилораме, а также для параллельной работы с традиционной сетью. В этом случае Вы будете оплачивать разницу потребленной из сети и сгенерированной ветряком. Т.к. напряжение идет сразу промышленных параметров, то Вам не понадобятся различные преобразователи (инверторы) при прямом включении ветрогенератора к Вашей нагрузке. Например Вы можете напрямую подключить к пилораме и при наличии ветра - работать так, как если бы Вы просто подключились к сети 380В.

Смотреть видео запуска асинхронного генератора >>

http://parus.z42.ru/subdmn/parus/node/459

 

ДОПОЛНЕНИЕ:

Если ротор асинхронной машины, включенной в сеть с напряжением U1, вращать посредством первичного двигателя в направлении вращающегося поля статора, но со скоростью n2>n1, то движение ротора относительно поля статора изменится (по сравнению с двигательным режимом этой машины), так как ротор будет обгонять поле статора.

При этом скольжение станет отрицательным, а направление э.д.с. Е1, наведенной в обмотке статора, а следовательно, и направление тока I1 изменятся на противоположное. В результате электромагнитный момент на роторе также изменит направление и из вращающего (в двигательном режиме) превратится в противодействующий (по отношению к вращающему моменту первичного двигателя). В этих условиях асинхронная машина из двигательного перейдет в генераторный режим, преобразуя механическую энергию первичного двигателя в электрическую. При генераторном режиме асинхронной машины скольжение может изменяться в диапазоне

− ∞ < s < 0,

при этом частота э.д.с. асинхронного генератора остается неизменной, так как она определяется скоростью вращения поля статора, т.е. остается такой же, что и частота тока в сети, на которую включен асинхронный генератор.

Ввиду того, что в генераторном режиме асинхронной машины условия создания вращающегося поля статора такие же, что и в двигательном режиме (и в том и в другом режимах обмотка статора включена в сеть с напряжением U1), и потребляет из сети намагничивающий ток I0, то асинхронная машина в генераторном режиме обладает особыми свойствами: она потребляет реактивную энергию из сети, необходимую для создания вращающегося поля статора, но отдает в сеть активную энергию, получаемую в результате преобразования механической энергии первичного двигателя.

В отличие от синхронных асинхронные генераторы не подвержены опасностям выпадения из синхронизма. Однако асинхронные генераторы не получили широкого распространения, что объясняется рядом их недостатков по сравнению с синхронными генераторами.

Асинхронный генератор может работать и в автономных условиях, т.е. без включения в общую сеть. Но в этом случае для получения реактивной мощности, необходимой для намагничивания генератора, используется батарея конденсаторов, включенных параллельно нагрузке на выводы генератора.

Непременным условием такой работы асинхронных генераторов является наличие остаточного намагничивания стали ротора, что необходимо для процесса самовозбуждения генератора. Небольшая э.д.с. Еост, наведенная в обмотке статора, создает в цепи конденсаторов, а следовательно, и в обмотке статора небольшой реактивный ток, усиливающий остаточный поток Фост. В дальнейшем процесс самовозбуждения развивается, как и в генераторе постоянного тока параллельного возбуждения. Изменением емкости конденсаторов можно изменять величину намагничивающего тока, а следовательно, и величину напряжения генераторов. Из-за чрезмерной громоздкости и высокой стоимости конденсаторных батарей асинхронные генераторы с самовозбуждением не получили распространения. Асинхронные генераторы применяются лишь на электростанциях вспомогательного значения малой мощности, например в ветросиловых установках.

Подробнее об асинхронных машинах: http://model.exponenta.ru/electro/0080.htm

busega.jimdo.com

Генератор из асинхронного двигателя своими руками в домашних условиях

Для обеспечения бесперебойного электроснабжения дома используют генераторы переменного тока, приводимые во вращение дизельными или карбюраторными двигателями внутреннего сгорания. Но из курса электротехники известно, что любой электродвигатель обратим: он также способен и вырабатывать электроэнергию. Можно ли сделать генератор из асинхронного двигателя своими руками, если он и двигатель внутреннего сгорания уже имеются? Ведь тогда не потребуется покупка дорогой электростанции, а можно будет обойтись подручными средствами.

Конструкция асинхронного электродвигателя

Асинхронный электродвигатель включает в себя две основные детали: неподвижный статор и вращающегося внутри него ротор. Ротор вращается на подшипниках, закрепленных в съемных торцевых частях. Ротор и статор содержат электрические обмотки, витки которых уложены в пазы.

Устройство асинхронного электродвигателяСтаторная обмотка подключается к сети переменного тока, однофазной или трехфазной. Металлическая часть статора, куда она уложена, называется магнитопроводом. Он выполнен из отдельных тонких пластин с покрытием, изолирующих их друг от друга. Этим исключается появление вихревых токов, делающих работу электродвигателя невозможной из-за возникновения чрезмерных потерь на нагрев магнитопровода.

Выводы от обмоток всех трех фаз располагаются в специальном боксе на корпусе электродвигателя. Его называют барно, в нем выводы обмоток соединяются между собой. В зависимости от питающего напряжения и технических данных мотора выводы объединяются либо в звезду, либо в треугольник.

Барно электродвигателяОбмотка ротора любого асинхронного электродвигателя похожа на «беличью клетку», так ее и называют. Она выполнена в виде ряда токопроводящих алюминиевых стержней, рассредоточенных по наружной поверхности ротора. Концы стержней замкнуты, поэтому такой ротор называют короткозамкнутым.Обмотка, как и статорная, расположена внутри магнитопровода, также набранного из изолированных металлических пластин.

Короткозамкнутый ротор и беличья клетка

Принцип действия асинхронного электродвигателя

При подключении питающего напряжения к статору по виткам обмотки протекает ток. Он создает внутри магнитное поле. Поскольку ток переменный, то поле изменяется в соответствии с формой питающего напряжения. Расположение обмоток в пространстве выполнено так, что поле внутри него оказывается вращающимся.В обмотке ротора вращающееся поле наводит ЭДС. А раз витки обмотки накоротко замкнуты, то в них появляется ток. Он взаимодействует с полем статора, это приводит к появлению вращения вала электродвигателя.

Электродвигатель называют асинхронным, потому что поле статора и ротор вертятся с разными скоростями. Эта разница скоростей называется скольжением (S).Формула скольжениягде:n – частота магнитного поля;nr – частота вращения ротора.Чтобы регулировать скорость вала в широких пределах, асинхронные электродвигатели выполняют с фазным ротором. На таком роторе намотаны смещенные в пространстве обмотки, такие же, как и на статоре. Концы от них выведены на кольца, с помощью щеточного аппарата к ним подключаются резисторы. Чем большее сопротивление подключить к фазному ротору, тем меньше будет скорость его вращения.

Асинхронный генератор

А что будет, если ротор асинхронного электродвигателя вращать? Сможет ли он вырабатывать электроэнергию, и как сделать генератор из асинхронного двигателя?Оказывается, это возможно. Для того, чтобы на обмотке статора появилось напряжение, изначально необходимо создать вращающееся магнитное поле. Оно появляется за счет остаточной намагниченности ротора электрической машины. В дальнейшем, при появлении тока нагрузки, сила магнитного поля ротора достигает требуемой величины и стабилизируется.Для облегчения процесса появления напряжения на выходе используется батарея конденсаторов, подключаемая к статору асинхронного генератора на момент запуска (конденсаторное возбуждение).

Но остается неизменным параметр, свойственный асинхронному электродвигателю: величина скольжения. Из-за него частота выходного напряжения асинхронного генератора будет меньшей, чем частота вращения вала.Кстати, вал асинхронного генератора необходимо вращать с такой скоростью, чтобы была достигнута номинальная частота вращения поля статора электродвигателя. Для этого нужно узнать скорость вращения вала из таблички, расположенной на корпусе. Округлив ее значение до ближайшего целого числа, получают скорость вращения для ротора переделываемого в генератор электродвигателя.Табличка асинхронного двигателя

Например, для электродвигателя, табличка которого изображена на фото, скорость вращения вала равна 950 оборотов в минуту. Значит, скорость вращения вала должна быть 1000 оборотов в минуту.

Чем асинхронный генератор хуже синхронного?

Насколько хорош будет самодельный генератор из асинхронного двигателя? Чем он будет отличаться от синхронного генератора?Для ответа на эти вопросы кратко напомним принцип работы синхронного генератора. Через контактные кольца к обмотке ротора подводится постоянный ток, величина которого регулируется. Вращающееся поле ротора создает в обмотке статора ЭДС. Для получения требуемой величины напряжения генерации автоматическая система регулировки возбуждения изменит ток в роторе. Поскольку за напряжением на выходе генератора следит автоматика, то в результате непрерывного процесса регулирования напряжение всегда остается неизменным и не зависит от величины тока нагрузки.Для запуска и работы синхронных генераторов используются независимые источники питания (аккумуляторные батареи). Поэтому начало его работы не зависит ни от появления тока нагрузки на выходе, ни от достижения требуемой скорости вращения. От скорости вращения зависит только частота выходного напряжения.Но даже при получении тока возбуждения от генераторного напряжения все сказанное выше остается справедливым.Синхронный генератор имеет еще одну особенность: он способен генерировать не только активную, но и реактивную мощность. Это очень важно при питании потребляющих ее электродвигателей, трансформаторов и прочих агрегатов. Недостаток реактивной мощности в сети приводит к росту потерь на нагрев проводников, обмоток электрических машин, снижении величины напряжения у потребителей относительно генерируемой величины.Для возбуждения же асинхронного генератора используется остаточная намагниченность его ротора, что само по себе является величиной случайной. Регулирование параметров, влияющих на величину его выходного напряжения, в процессе работы не представляется возможным.

К тому же асинхронный генератор не вырабатывает, а потребляет реактивную мощность. Она необходима ему для создания тока возбуждения в роторе. Вспомним про конденсаторное возбуждение: за счет подключения батареи конденсаторов при запуске создается реактивная мощность, требуемая генератору для начала работы.В результате напряжение на выходе асинхронного генератора не стабильно и изменяется в зависимости от характера нагрузки. При подключении к нему большого числа потребителей реактивной мощности обмотка статора может перегреваться, что скажется на сроке службы ее изоляции.Поэтому применение асинхронного генератора ограничено. Он может работать в условиях, близким к «парниковым»: никаких перегрузок, пусковых токов нагрузки, мощных потребителей реактива. И при этом электроприемники, подключенные к нему, не должны быть критичными к изменению величины и частоты напряжения питания.Идеальным местом для применения асинхронного генератора являются системы альтернативной энергетики, работающие от энергии воды или ветра. В этих устройствах генератор не снабжает потребителя напрямую, а заряжает аккумуляторную батарею. От нее уже, через преобразователь постоянного тока в переменный, питается нагрузка.Поэтому, если нужно собрать ветряк или небольшую гидроэлектростанцию, лучшим выходом из положения является именно асинхронный генератор. Здесь работает его главное и единственное достоинство – простота конструкции. Отсутствие колец на роторе и щеточного аппарата приводит к тому, что в процессе эксплуатации его не нужно постоянно обслуживать: чистить кольца, менять щетки, удалять графитовую пыль от них. Ведь, чтобы сделать ветрогенератор из асинхронного двигателя своими руками, вал генератора напрямую нужно соединить с лопастями ветряка. Значит – конструкция будет находиться на большой высоте. Снимать ее оттуда хлопотно.

Генератор на магнитах

А почему магнитное поле нужно обязательно создавать с помощью электрического тока? Ведь есть же мощные его источники – неодимовые магниты.Для переделки асинхронного двигателя в генератор потребуются цилиндрические неодимовые магниты, которые будут установлены на место штатных проводников обмотки ротора. Сначала нужно подсчитать необходимое количество магнитов. Для этого извлекают ротор из переделываемого в генератор двигателя. На нем четко видны места, в которых уложена обмотка «беличьего колеса». Размеры (диаметр) магнитов выбирается таким, чтобы при установке строго по центру проводников короткозамкнутой обмотки они не соприкасались с магнитами следующего ряда. Между рядами должен остаться зазор не менее, чем диаметр применяемого магнита.Определившись с диаметром, вычисляют, сколько магнитов поместится по длине проводника обмотки от одного края ротора до другого. Между ними при этом оставляют зазор не менее одного – двух миллиметров. Умножая количество магнитов в ряду, на число рядов (проводников обмотки ротора), получают требуемое их количество. Высоту магнитов не стоит выбирать очень большой.Для установки магнитов на ротор асинхронного электродвигателя его потребуется доработать: снять на токарном станке слой металла на глубину, соответствующую высоте магнита. При этом ротор обязательно нужно тщательно отцентровать в станке, чтобы не сбить его балансировку. Иначе у него появится смещение центра масс, которое приведет к биению в работе.

Затем приступают к установке магнитов на поверхность ротора. Для фиксации используют клей. У любого магнита есть два полюса, условно называемые северным и южным. В пределах одного ряда полюса, расположенные в сторону от ротора, должны быть одинаковыми. Чтобы не ошибиться в установке, магниты сначала сцепляют между собой в гирлянду. Они сцепятся строго определенным образом, так как притягиваются они друг к другу только разноименными полюсами. Теперь остается только отметить одноименные полюса маркером.В каждом последующем ряду полюс, находящийся снаружи, изменяется. То есть, если вы выложили ряд магнитов с отмеченным маркером полюсом, расположенным наружу от ротора, то следующий выкладывается магнитами, развернутыми наоборот. И так далее.После приклеивания магнитов их нужно зафиксировать эпоксидной смолой, Для этого вокруг получившийся конструкции из картона или плотной бумаги делают шаблон, в который зальется смола. Бумагу оборачивают вокруг ротора, обматывают скотчем или изолентой. Одну из торцевых частей замазывают пластилином или также заклеивают. Затем устанавливают ротор вертикально и заливают в полость между бумагой и металлом эпоксидную смолу. После ее отвердевания приспособления удаляют.Теперь снова зажимаем ротор в токарный станок, центруем, и шлифуем поверхность, залитую эпоксидкой. Это необходимо не из эстетических соображений, а для минимизации влияния возможной разбалансировки, образовавшейся из-за дополнительных деталей, установленных на ротор.Шлифовку производят сначала крупнозернистой наждачной бумагой. Ее крепят на деревянном бруске, который затем равномерно перемещают по вращающейся поверхности. Затем можно применить наждачную бумагу с более мелким зерном.

Теперь готовый ротор можно вставить обратно в статор и испытать получившуюся конструкцию. Она может быть с успехом использована теми, кто хочет сделать, например, ветрогенератор из асинхронного двигателя. Есть только один недостаток: стоимость неодимовых магнитов очень велика. Поэтому, прежде чем начать переделывать ротор и тратить деньги на запчасти, следует подсчитать, какой вариант экономически более выгоден: сделать генератор из асинхронного двигателя или приобрести готовый.

 

 Загрузка... Загрузка...

827

Понравилась статья? Поделитесь:

Советуем к прочтению

voltland.ru

Самодельный генератор. Все способы своими руками

Самодельный генератор

Способ 1

В Интернете нашел статью о том, как переделать генератор автомобиля на генератор с постоянными магнитами. Можно ли использовать этот принцип и переделать генератор своими руками из асинхронного электродвигателя? Возможно, что будут большие потери энергии, не такое расположение катушек.

Двигатель асинхронного типа у меня на напряжение 110 вольт, обороты – 1450, 2,2 ампера, однофазный. При помощи емкостей я не берусь делать самодельный генератор, так как будут большие потери.

Предлагается пользоваться простыми двигателями по такой схеме.

Самодельный генератор

Если изменять двигатель или генератор с магнитами округлой формы от динамиков, то надо их устанавливать в крабы? Крабы – это две металлические детали, стоят на якоре снаружи катушек возбуждения.

Если магниты надевать на вал, то вал будет шунтировать магнитные силовые линии. Как тогда будет возбуждение? Катушка тоже расположена на валу из металла.

Если поменять подсоединение обмоток и сделать параллельное соединение, разогнать до оборотов выше нормальных значений, то получается 70 вольт. Где взять механизм для таких оборотов? Если перематывать его на уменьшение оборотов и ниже питание, то слишком упадет мощность.

Двигатель асинхронного типа с замкнутым ротором – это железо, которое залито алюминием. Можно взять самодельный генератор от автомобиля, у которого напряжение 14 вольт, сила тока 80 ампер. Это неплохие данные. Двигатель с коллектором на переменный ток от пылесоса или стиральной машины можно применить для генератора. На статор установить подмагничивание, напряжение постоянного тока снимать со щеток. По наибольшему ЭДС поменять угол щеток. Коэффициент полезного действия стремится к нулю. Но, лучше, чем генератор синхронного типа, не изобрели.

Решил испытать самодельный генератор. Однофазный асинхронный мотор от стиралки малютки крутил дрелью. Подключил к нему емкость 4 мкФ, получилось 5 вольт 30 герц и ток 1,5 миллиампера на короткое замыкание.

Не каждый электромотор можно использовать в качестве генератора таким методом. Есть моторы со стальным ротором, имеющие малую степень намагниченности на остатке.

Необходимо знать разницу между преобразованием электрической энергии и генерацией энергии. Преобразовать 1 фазу в 3 можно несколькими способами. Один из них – это механическая энергия. Если электростанцию отсоединить от розетки, то пропадает все преобразование.

Откуда возьмется движение провода с повышением скорости, ясно. Откуда магнитное поле будет для получения ЭДС в проводе – не понятно.

Объяснить это просто. Из-за механизма магнетизма, который остался, образуется ЭДС в якоре. Возникает ток в статорной обмотке, который замкнут на емкости.

Ток возник, значит, дает усиление на электродвижущую силу на катушках роторного вала. Появившийся ток дает усиление электродвижущей силы. Электроток статорный образует электродвижущую силу намного больше. Это идет до установления равновесия статорных магнитных потоков и ротора, а также дополнительные потери.

Размер конденсаторов рассчитывают так, что на выводах напряжение достигает номинального значения. Если оно маленькое, то снижают емкость, то повышают. Были сомнения по поводу старых моторов, которые якобы не возбуждаются. После разгона ротора мотора или генератора надо ткнуть быстро в любую фазу малым количеством вольт. Все придет в нормальное состояние. Зарядить конденсатор до напряжения равному половину емкости. Включение производить выключателем с тремя полюсами. Это относится с 3-фазному мотору. Такая схема используется для генераторов вагонов пассажирского транспорта, так как у них ротор короткозамкнутый.

Способ 2

Самодельный генератор сделать можно и по-другому. Статор имеет хитрую конструкцию (имеет специальное конструкторское решение), имеется возможность регулировки напряжения выхода. Я сделал генератор своими руками такого вида на строительстве. Двигатель брал мощностью 7 кВт на 900 оборотов. Обмотку возбуждения я подключил по схеме треугольника на 220 В. Запустил его на 1600 оборотов, конденсаторы были на 3 на 120 мкФ. Включались они контактором с тремя полюсами. Генератор действовал как выпрямитель с тремя фазами. С этого выпрямителя питалась электрическая дрель с коллектором на 1000 ватт, и пила дисковая на 2200 ватт, 220 В, болгарка 2000 ватт.

Приходилось изготавливать систему мягкого пуска, другой резистор с закороченной фазой через 3 секунды.

Для моторов с коллекторами это неправильно. Если в два раза повысить вращающую частоту, то уменьшится и емкость.

Также повысится и частота. Схема емкостей отключалась в автоматическом режиме, чтобы не использовать тор реактивности, не расходовать горючее.

Самодельный генератор

Во время работы надо нажать на статор контактора. Три фазы разобрал их по ненужности. Причина кроется в высоком зазоре и увеличенном рассеивании поля полюсов.

Специальные механизмы с двойной клеткой для белки и косыми глазами для белки. Все-таки я получил с моторчика стиралки 100 вольт и частоту 30 герц, лампа на 15 ватт не хочет гореть. Очень слабая мощность. Надо мотор брать сильнее, или конденсаторов больше ставить.

Под вагонами используется генератор с ротором короткозамкнутым. Его механизм приходит от редуктора и на ременную передачу. Обороты вращения 300 оборотов. Он находится как дополнительный генератор нагрузки.

Способ 3

Можно сконструировать самодельный генератор, электростанцию на бензине.

Самодельный генератор

Вместо генератора использовать 3-фазный асинхронный мотор на 1,5 кВт на 900 оборотов. Электродвигатель итальянский, подключаться может треугольником и звездой. Сначала я поставил мотор на основание с мотором постоянного тока, присоединил к муфте. Стал крутить двигатель на 1100 оборотов. Появилось напряжение 250 вольт на фазах. Подключил лампочку на 1000 ватт, напряжение сразу упало до 150 вольт. Наверное, это от фазного перекоса. На каждую фазу надо включать отдельную нагрузку. Три лампочки по 300 ватт не смогут снизить напряжение до 200 вольт, теоретически. Можно конденсатор поставить больше.

Обороты двигателя надо делать больше, при нагрузке не снижать, тогда питание сети будет постоянным.

Необходима значительная мощность, автогенератор такую мощность не даст. Если перемотать большой камазовский, то с него не выйдет 220 В, так как магнитопровод будет перенасыщен. Он был сконструирован на 24 вольта.

Сегодня собирался пробовать подсоединить нагрузку через 3-фазный блок питания (выпрямитель). В гаражах свет отключили, не получилось. В городе энергетиков систематически отключают свет, поэтому надо делать источник постоянного питания электричеством. Для электросварки есть навеска, подцепляется к трактору. Для подключения электрического инструмента нужен постоянный источник напряжения на 220 В. Была мысль сконструировать самодельный генератор своими руками, и инвертор к нему, но, на аккумуляторных батареях не долго можно проработать.

Недавно включили электричество. Подключал двигатель асинхронный из Италии. Поставил его с мотором бензопилы на раму, скрутил вместе валы, поставил муфту резиновую. Катушки соединил по схеме звезды, конденсаторы треугольником, по 15 мкФ. Когда запустил моторы, то на выходе питания не получилось. Присоединял конденсатор, заряженный к фазам, напряжение появилось. Свою мощность в 1,5 кВт двигатель выдал. При этом питающее напряжение снизилось до 240 вольт, на холостых оборотах было 255 вольт. Шлифмашинка от него нормально работала на 950 ватт.

Пробовал повысить обороты двигателя, но не получается возбуждение. После контакта конденсатора с фазой напряжение возникает сразу. Буду пробовать ставить другой двигатель.

Какие конструкции систем за границей производятся для электростанций? На 1-фазных понятно, что ротор владеет обмоткой, перекоса фаз нет, потому что одна фаза. В 3-фазных имеется система, которая дает регулировку мощности при подсоединении к ней моторов с наибольшей нагрузкой. Еще можно подсоединить инвертор для сварки.

В выходные хотел сделать самодельный генератор своими руками с подключением асинхронного двигателя. Удачной попыткой сделать самодельный генератор оказалось подключение старого двигателя с корпусом из чугуна на 1 кВт и на 950 оборотов. Мотор возбуждается нормально, с одной емкостью на 40 мкФ. А я установил три емкости и подключил их звездой. Этого хватило для запуска электродрели, болгарки. Хотел, чтобы получилась выдача напряжения на одной фазе. Для этого подключал три диода, полумост. Сгорели лампы люминесцентные для освещения, и подгорели пакетники в гараже. Буду наматывать трансформатор на три фазы.

elektronchic.ru

Мощный генератор 700 Вт на альфа двигателе Стирлинга

Чаще всего в интернете на глаза попадаются двигатели Стирлинга «хоббийного» типа, от которых вы навряд ли получите какую-либо полезную мощность. Конечно же многие из этих проектов вдохновляют и даже удивляют. Но, тем не менее, многие из них имеют право на будущее в качестве генераторов различной мощности, пусть даже и очень незначительной. Именно поэтому многие стирлингостроители с волнение и завистью смотрят на более перспективные, серьёзные и мощные генераторы на двигателях Стирлинга.

SV-2 представляет собой двигатель Стирлинга альфа конфигурации с использованием воздуха в качестве рабочего тела. Рабочее давление составляет 12 бар (175 фунтов на квадратный дюйм или 11.8 атмосфер или 1,2 мегапаскаля). Объем составляет 127 кубиков. Механическая выходная мощность на валу равна 700 Вт при 1800 оборотов в минуту.

На Ютьюбе есть видео генератора, разработанного на основе автомобильного компрессора от кондиционера. Далее перевод рассказа Дэйва Кирка, который представил на YouTube свой проект SV-2 MKII альфа-стирлинг (V-Twin) генератора.

Вдохновленный MP1002C Philips

В середине 80-х, я имел удовольствие быть свидетелем испытаний генераторной установки  MP1002C Philips которая на самом деле реально работала. Опыт произвёл на меня глубокое впечатление, особенно в том, как спокойно Стирлинг завёлся и ожил. Максимум шума исходил от горелки (камеры сгорания), но в конечном итоге от двигателя Philips исходил очень приятный звуковой фон — всё, что нужно было заменить — были шумящие подшипники.

Как говорится в старой поговорке, «Он работал и работал, как швейная машинка Зингер»! В то время, мой опыт общения с двигателями Стирлинга состоял из проектирования нескольких моделек настольного размера, но, увидев и услышав работающий двигатель Philips, я захотел спроектировать, сделать дизайн и собрать двигатель такого же калибра … сделать нечто достаточно большое, что производило бы полезную ощутимую работу.

Выбор пал на конфигурацию «альфа» по следующим причинам

Наддув (нагнетание давления в Стирлинге)

Для получения значимых выходных мощностей необходимо повышать давление в рабочей зоне двигателя. Зная, что двигатель Philips работал при давлении 12 бар (175 фунтов на квадратный дюйм), я хотел бы получить двигатель, который был бы конструктивно прочным и компактным, чтобы работать на данных уровнях внутреннего давления рабочего газа. Рабочим телом был воздух, и выбран он был на основании практичности. Я хотел, чтобы в моём генераторе смазка осуществлялась маслом, так же как и в Стирлинге от Philips — эта функция в значительной степени способствует тихой работе и длительному сроку службы, который очень хочется получить в двигателе Стирлинга.

Компрессор кондиционера от Chrysler

Примерно в это же время мне в руки попался холодильный компрессор и оказалось, что он идеально подходит в качестве основы для запланированного мной двигателя. Это был автоматический компрессор кондиционера RV-2 компании Chrysler. Кривошип разносил поршни на 90 градусов (дизайн V-твин), с диаметром цилиндра 58,7 мм и ходом поршня 33,4 мм.

В обоих цилиндрах в сочетании с правильной траекторией движения газа, рабочим объемом составил 127,8 куб.см, что составляет более чем вдвое больший объём по сравнению с MP1002C двигателя Philips. Являясь холодильным компрессором, конструкция была сделана основательно и с достаточным запасом прочности для такого сильного сжатия. Кроме того, этот компрессор содержал героторный масляный насос, который  под давлением смазывал края большим шатунным подшипникам. Каждый алюминиевый поршень имел одно компрессионное кольцо и соединены через алюминиевые шатуны Alcoa. Этот компрессор оказался самым оптимальным для моей задумки.

Компрессор кондиционера Chrysler RV-2 в разобранном видеКомпрессор кондиционера Chrysler RV-2

Годы разработки

На протяжение нескольких лет, я спроектировал и уже отработал все необходимые компоненты, для того, чтобы адаптировать компрессор к работе в двигателе Стирлинга. Я также сконструировал трубчатую несущую раму, которая являлась несущим основанием для двигателя. Рама стилизована под аналогичную используемую на генераторной установке Philips.

Головка нагревателя, вытеснитель и внутренний цилиндр выполнен из труб нержавейки 302 различных размеров. В роли регенератора использовал путанку из медной проволоки. Охладитель, расположенный со стороны сжатия двигателя, был изготовлен из алюминиевых трубок. Использовал небольшой генератор 200 Вт 12 вольт с ременным приводом, который изначально был куплен и предназначался для работы на садовом тракторе.

Вот этот двигатель, получивший название SV-2 MK I (Stirling V-2 Mark I):

Генератор на базе двигателя Стирлинга альфа SV-2 MK I (Stirling V-2 Mark 1)Генератор на базе двигателя Стирлинга SV-2 MK I (Stirling V-2 Mark 1)

Изначальные характеристики и рабочее тело

Двигатель заработал, но производительность его была далека от ожидаемой величины. Я пробовал использовать гелий в качестве рабочего тела, и это помогло, повлияв как на выходную мощность, так и на обороты, но при этом было слишком очевидно, что что-то было кардинально не правильно. Работа двигателя будет существенно лучше при поднятии давления до 2 бар и оборотах 2000 в минуту, отдавая примерно 50 Вт мощности на выходе уже с электрогенератора … дальнейшее изменение в большую или меньшую сторону скорости или давления приведёт к потере выходной мощности. Кроме того, блок цилиндров начнёт очень сильно греться через незначительное время после запуска, что является доказательством о завышенной теплопередаче вдоль корпуса двигателя.

Конфигурация двигателя. Пробы и ошибки

После долгих раздумий (и нескольких лет разочарования) я понял, что в этой конфигурации допущены ошибки. В первую очередь — в любом двигателе Стирлинга нагреватель, регенератор, и холодильник должны быть «моноблочные», то есть их размещают в непосредственной близости друг от друга. Это означает, что эти три термодинамические компоненты должны все находиться в стороне от вытеснителя двигателя, вместо того, чтобы «разбросать» их по всей цепи газового тракта, как я сделал на МК I. Такой грамотный дизайн очень важен для хорошей производительности и такая плотная моноблочная компоновка чётко прослеживается на всех двигателях Philips. Тот факт, что я расположил регенератор в тесном контакте с блоком двигателя способствовали утечке тепла вдоль всей длины двигателя — это явно плохое решение в конструкции Стирлинга.

Несмотря на не оптимальную работу, я много узнал о расходе масла и о том как очищать перемещающуюся смазку в рабочем пространстве. Разобрался с техническими особенностями особой скруглённой формы вытеснителя, его прерывистых движений, уплотнительными кольцами и канавками для них и разделённой формы вытеснителя. Открытие безуглеродного состава синтетических масел с высокой температурной точкой вспышки также было очень полезно. Собственная конструкция отражателя пламени горелки на пропане также вызывал сомнение, но после нахождения некоторых старых публикаций на эту тему, успешная расчетная схема горелки наконец-то появилась и была успешно апробирована на трёх построенных экземплярах.

Конструкция самодельного кольца газовой пропановой горелкиКонструкция самодельного кольца газовой пропановой горелки

Новый дизайн и появление MK II

В тот момент я понял, что была необходима большая модернизация для того, чтобы получить хороший и эффективный двигатель. Копаясь в моих технических справочниках и книгах, я внедрил модернизацию во все термодинамические компоненты в газовом контуре. Были переработаны: головка нагревательного цилиндра из нержавеющей стали 316, на которой нанесены рёбра внутренние и внешние, фольга для регенератора, ребристый охладитель, а также новый вытеснитель из нержавейки с тонкими стенками.

Ребристый снаружи и внутри нагреватель двигателя стирлинга из нержавейкиРебристый снаружи и внутри нагреватель двигателя стирлинга из нержавейки

Мой друг и энтузиаст в стирлингостроении Джон Арчибальд, согласился подготовить чертежи из моих эскизов дизайна и используя свои навыки в качестве слесаря-механика, помочь с созданием некоторых из наиболее сложных частей. Потребовалось еще несколько лет, чтобы получить все новые компоненты, но в конце 2012 года, версия MK II двигателя была готова и была собрана.

Кулер с рёбрами для двигателя стирлингаКулер с рёбрами для двигателя стирлинга

Пробный запуск генератора Стирлинга SV-2 MK II

Для SV-2 MK II был первый запуск в январе 2013 года и сразу было видно, что редизайн улучшил как ходовые качества, так и производительность. Двигатель стал работать довольно приятно, когда давление рабочего газа было поднято до  4 бар (3,95 атм. или 0,4 МПа), и при увеличении давления обороты увеличивались пропорционально. И замеры мощности не были сделаны в тот момент из-за не соответствующей геометрии горелки новой ребристой головке нагревателя.

Собранный двигатель с генератором показан ниже:

Генератор на альфа двигателе стирлинга МК-2Генератор на двигателе стирлинга МК-2Генератор МК-2. Двигатель стирлинга альфаГенератор МК-2. Вид сзади

Водяное охлаждение стирлинга

Так как двигатель альфа имеет водяное охлаждение, то для циркуляции охлаждающей жидкости применён небольшой электрический гидронасос, запитываемый в дальнейшем от выходной мощности электрогенератора.

Дальнейшая разработка горелки

Новая горелка сейчас строится, она будет соответствовать ребристой геометрии головки нагревателя и будет выдавать более высокую теплоотдачу для предполагаемого вывода выходного вала 700 Вт на 1800 оборотов в минуту. Конструкция горелки должна быть готова к тестированию в следующем месяце или чуть позже, и должна быть полностью готова для исследования и раскрытия полного потенциала этого двигателя.

Сейчас нет планов и нет чертежей для этого генератора

У меня нет никаких планов ни производить этот двигатель ни продавать чертежи для изготовления его деталей. Это строго научный проект для демонстрации жизнеспособности данного изделия. Затруднения и издержки в изготовлении некоторых компонентов нивелировались выбором усреднённого хоббийного качества изготовления. Также, существуют компромиссы в использовании для данного двигателя элементов компрессора РВ-2, которые не будут присутствовать в идеальной конструкции. Если так и будет, то для повышения производительности это требует размещение всех термодинамических компонентов на основе собственной разработки —  то есть, спроектированный заново картер, поршни, шатуны и т.д. Только тогда это будет продукт, который сможет иметь определённый рыночный потенциал.

Пожалуйста, смотрите на мои новые видео YouTube, как прогрессирует развитие. Я искренне благодарю всех вас за проявленный интерес!

Дэйв Кирк

Кирк Двигатели, Inc.

Далее некоторые данные из самого видео.

Совсем недавно, полная реконструкция нагревателя, регенератора и холодильника была выполнена и ,были произведены новые компоненты. Этот вариант, SV-2 MKII включает в себя все тонкости, необходимые для достижения поставленных целей. Головка нагревателя сделана из заготовки стали 316 при помощи электроэрозионного процесса. Купол и фланец свариваются в месте. Как внутренние, так и наружные ребра использованы для усиления теплообмена с рабочей жидкостью.

Внешние рёбра нагревателя и сварочный шовВнешние рёбра нагревателя и сварочный шов

 

Внутренние рёбра нагревателя и сварочный шовВнутренние рёбра нагревателя и сварочный шов

Регенератор имеет корпус из нержавеющей стали 316 используя оберточную нержавеющую фольгу в виде материала регенератора. Толщина составляет 0,001 дюйма. Эта часть выполнена в виде цилиндрического контейнера. Торцевые экраны держат фольгу на месте.

Корпус регенератораКорпус регенератора

Охладитель сделан из 6061 Т-6 алюминиевого сплава также при помощи электроэрозионного  процесса. Внешнее кольцо образует обводный канал для охлаждающей жидкости. Нагреватель, регенератор и охладитель между собой объединены в «стек» и герметизированы при помощи кольцеобразных уплотнений. Обратите внимание на 1 кубический сантиметр, расположенный рядом.

Холодильник двигателя стирлинга с водяной рубашкойХолодильник двигателя стирлинга с водяной рубашкой

Головка цилиндра зоны компрессии изготовлена из алюминиевой заготовки. Соединительный канал сделан из толстостенной медной трубы.

Компрессионный насос двигателя стирлингаКомпрессионный насос двигателя стирлинга

«Стек» укреплён 4-мя несущими болтами диаметром 0,313 на кольцеобразных хомутах. Такая конструкция минимизирует утечку тепла в глубину структуры двигателя.

Кольцевые хомуты на двигателе стирлингаКольцевые хомуты на двигателе стирлинга

Cпасибо

domolov.ru

Как сделать генератор из асинхронного двигателя своими руками? — журнал "Рутвет"

Оглавление:

  1. Чем хороши асинхронные генераторы?
  2. Генератор из асинхронного электродвигателя
  3. Ветрогенератор из асинхронного двигателя своими руками
  4. Самодельная электростанция из мотоблока

Асинхронным генератором называется работающий в генераторном режиме асинхронный электрический двигатель. Приводной двигатель вращает ротор асинхронного электрического генератора по направлению магнитного поля, вызывая тем самым отрицательное скольжение ротора, возникновение тормозящего момента и поступление электрической энергии в сеть.

Чем хороши асинхронные генераторы?

Асинхронные генераторы отличаются следующими преимуществами по сравнению с синхронными:

Видео о том, как из асинхронного двигателя сделать электрогенератор

Все перечисленные преимущества дают возможность использования асинхронных генераторов не только в качестве источников питания различных промышленных устройств, но и для питания электронной техники. Именно асинхронные генераторы являются идеальными источниками тока для приборов с активной (омической) нагрузкой — это и электронагреватели, и сварочные преобразователи, и лампы накаливания, и электронные устройства, компьютерная и радиотехника. Отсюда возникает вопрос: можно ли сделать асинхронный двигатель своими руками?

Генератор из асинхронного электродвигателя

У асинхронного электродвигателя отсутствует магнит на роторе, а на его месте там находятся короткозамкнутые витки. Поэтому с первого взгляда может показаться, что сделать из него генератор — неосуществимая задача. Однако, используя для этой цели конденсаторы, такую идею всё же можно воплотить в жизнь. Причем сделать генератор из асинхронного двигателя довольно просто.

Пошаговая инструкция

Шаг 1

Подключите к любой из трёх обмоток асинхронного электродвигателя вольтметр.

Затем следует раскрутить вал двигателя, в результате чего на вольтметре можно будет увидеть показатели, свидетельствующие о наличии появившегося напряжения. Откуда оно взялось, если ротор без магнита? Дело в том, что напряжение появляется в результате остаточной намагниченности ротора. Конечно, из-за небольшой намагниченности, напряжение также будет соответственно небольшим, значительно меньшим, чем номинальное напряжение питания двигателя.

Шаг 2

Генератором это пока назвать нельзя, но что будет, если попытаться с помощью короткозамкнутых витков ротора создать магнитное поле? Поскольку при использовании двигателя по назначению короткозамкнутые витки ротора получают ток и намагничиваются от переменного магнитного поля обмоток статора, то можно получить такой же эффект и при работающем двигателе в режиме генератора.

Шаг 3

Далее для того чтобы сделать генератор из асинхронного двигателя своими руками, нужно зашунтировать одну обмотку статора с помощью конденсатора. При этом конденсатор необходимо выбирать не электролитический.

Затем следует раскрутить вал, в результате чего начнётся выработка сначала небольшого напряжения на обмотке статора, а через некоторое время оно начнёт увеличиваться и сравняется с номинальным напряжением электродвигателя.

Лучшего результата можно добиться при равных величинах резонансной частоты колебательного контура и частоты генерируемого напряжения, зависящего от частоты вращения вала. При вращении вала с частотой, приближенной к номинальной для двигателя, показатели частоты генерируемого напряжения также будут близки к номинальным. Затем зашунтируйте конденсатором остальные обмотки на двигателе и соедините их.

Ветрогенератор из асинхронного двигателя своими руками

Ветрогенератор из асинхронного двигателя легко сделать своими руками. К тому же для его изготовления не потребуется значительных затрат. Очень часто самодельные конструкции ветряного генератора электричества сделаны именно по такому принципу, с использованием асинхронного двигателя.

  1. Суть переделки заключается в том, чтобы проточить ротор под магниты. Затем с помощью шаблонов осуществляют приклеивание магнитов к ротору, после чего для надёжности их следует залить эпоксидной смолой. Кроме того, можно взять более толстый провод и перемотать статор для уменьшения слишком большого напряжения и поднятия силы тока. Однако в данном случае используется не перемотанный двигатель, а переделан только ротор на магниты.

  1. Ротор следует проточить с помощью токарного станка на толщину магнитов. Этот ротор не имеет металлической гильзы, вытачиваемой и надеваемой обычно на него под магниты. Наличие гильзы необходимо для того чтобы усилить магнитную индукцию. С её помощью магниты замкнут свои поля питания, что предотвратит рассеивание магнитного поля снизу и всё пойдёт в статор. Эта конструкция состоит из очень сильных магнитов большого размера (7,6 х 6 мм). Количество магнитов — 160 штук. Поэтому даже без гильзы они будут обеспечивать хорошую ЭДС.

  1. Перед тем как приступить к наклейке магнитов, следует разметить ротор на 4 полюса, а магниты расположить наискосок.
  2. Поскольку статор в данном случае не был перемотан, то ротор должен быть так же, как и двигатель, четырехполюсным.
  3. Магнитные полюса следует чередовать (условно полюса обозначены как «север» и «юг»).
  4. Полюса магнитов должны иметь промежутки, поскольку в полюсах они были сгруппированы более плотно.
  5. После того как магниты будут размещены на роторе, нужно зафиксировать их с помощью скотча и эпоксидной смолы.
  6. Когда данная конструкция была собрана, оказалось, что ротор залипает при вращении вала. Чтобы избежать этого, магниты следует сбить вместе эпоксидкой и равномерно разместить по всей поверхности ротора.

  1. Для проверки готового генератора прокрутите его дрелью и подключите для нагрузки лампочку.

  1. Кроме того, для тестирования устройства можно подключить и кипятильник. Если всё было сделано правильно, то через минуту кручения вода, находящаяся в стакане, нагреется до горячего состояния.
  2. Теперь следует изготовить винт для ветряка. Для этого можно взять трубу ПВХ диаметром 160 мм и вырезать из неё лопасти согласно следующим данным (диаметр винта 1,7 м) :

  1. Для того чтобы закрепить генератор и хвост, потребуется металлическая стойка, оснащенная поворотной осью. Чтобы обеспечить увод ветроголовки от ветра, используется складной хвост, а генератор следует сместить от центра оси.
  2. Хвост будет одет на трубу, расположенную позади конструкции.

  1. На следующем фото представлен готовый генератор. Его следует установить на мачту, длина которой составляет около 9 метров.

  1. При достаточно сильном ветре устройство будет выдавать напряжение на холостом ходу приблизительно 80 вольт.
  2. Затем необходимо собрать контролёр и подключить через него аккумулятор для зарядки. Электрогенератор из асинхронного двигателя своими руками готов.

Видео о том, как сделать ветрогенератор из асинхронного двигателя своими руками

Самодельная электростанция из мотоблока

Многие умельцы вырабатывают электроэнергию с помощью мотоблока, которым обычно вспахивают и убирают огороды. Для воплощения в жизнь этой идеи потребуется асинхронный электрический двигатель (к примеру, серии АИР), используемый в качестве генератора. Как сделать генератор из асинхронного двигателя, описано в следующей инструкции:

  1. Возьмите электродвигатель с частотой вращения — 800-1600 об/мин, мощностью — 15 кВт.
  2. Двумя шкивами и приводным ремнём следует связать двигатель мотоблока с электродвигателем.
  3. Шкивы нужно подбирать такого диаметра, чтобы частота вращения электродвигателя в качестве генератора была на 10-15 % выше, чем паспортное значение числа оборотов электродвигателя.
  4. Затем следует включить конденсаторы параллельно каждой из пары обмоток, которые должны быть соединены звездой и образовывать треугольник.
  5. Снятие напряжения происходит между концом обмотки и средней точкой.
  6. Между обмотками получится 300 В, а между концом обмотки и средней точкой — 220В.
  7. Чтобы поддержать правильный режим работы генератора и пуска, нужно подобрать три конденсатора с одинаковой ёмкостью.

Соотношение мощности генератора и ёмкости конденсаторов:

Активная нагрузка иногда возможна и при одном конденсаторе. Для использования всех трех фаз, чтобы запитать однофазный инструмент, применяется трехфазный трансформатор. Если в процессе работы генератор будет сильно нагреваться, то ёмкость конденсаторов уменьшается. Рабочее напряжение конденсаторов должно быть не менее 400 В.

Видео о том, как сделать генератор из асинхронного двигателя

Если знать, как из асинхронного двигателя сделать электрогенератор, то с помощью таких энергетических установок можно также отапливать дом. Но для этого нужно будет использовать более мощный бензиновый двигатель.

А Вы уже пробовали сделать генератор из асинхронного двигателя? Получилось ли у Вас? Расскажите об этом в комментариях.

www.rutvet.ru

ГЕНЕРАТОР ИЗ ДВИГАТЕЛЯ СВОИМИ РУКАМИ

С разбора CD-rom скопилось уже некоторое количество бесколлекторных двигателей постоянного тока (это те, что крутят диск). И место вроде много не занимают, но на глаза попадаются часто. Наконец принял решение, что надо уже как-то с ними определиться.

фото бесколлекторных двигателей постоянного тока

Итак, это бесколекторный двигатель постоянного тока, положение ротора в нём отслеживается тремя датчиками Холла, управляется при помощи микросхемы драйвера ВА6849FP (регулировка оборотов). В теории всё просто, а вот на практике впечатления могут зашкалить уже от одного обозрения платки на которой движок собственно и установлен.

ГЕНЕРАТОР ИЗ ДВИГАТЕЛЯ - переделка

Поэтому не стал вникать в назначение многочисленных выводов шлейфа, а просто взял и располовинил двигатель, и увидел его статор. Однако полный обзор печатной платы был по прежнему недосягаем. Осознав, что без жертв не обойтись, отпаял провода (3 штуки) идущие с обмоток статора на плату, а затем сложил – переломил вдвое плату  вместе с металлической пластиной крепления.

использование моторчика в качестве генератора электричества

Освобождённый статор плюхнулся на стол и опять же в позновательных целях был незамедлительно размотан. Теперь могу сообщить, что мотор имел три обмотки (фазы) соединённых методом «звезда», но вполне возможен вариант когда они могут быть соединены методом «дельта».

Схема сборки

Схемы сборки соединены методом «дельта»

Электродвигателя конечно не стало, но вместе с ним не стало и робости перед неизведанным, ибо и неизведанного теперь не было.  На фото проводники образуют обмотки и заканчиваются выводами. Соединения обмоток  отличаются, но электрическая сущность больших изменений не претерпевает. Относительно толстые провода обмоток статора навели на мысль, что с этого движка можно получить неплохой ток, будь он использован в качестве генератора, да ещё если и несколько вольт напряжения выдаст, то возможно «счастье»!

ГЕНЕРАТОР ИЗ ДВИГАТЕЛЯ - схема 1

Остановился вот на такой схеме снятия с электродвигателя, впрочем, теперь уже генератора,  вырабатываемого им электрического тока. Данная схема была собрана и опробована со следующими номиналами электронных компонентов: С1 – 100 мкФ х 16 В, все шесть диодов 1N5817.

ГЕНЕРАТОР ИЗ ДВИГАТЕЛЯ - схема 2

Было бы интересно опробовать и такую схему, но пока «руки не дошли». Как более совершенный вариант - поставить на выход стабилизатор.

ГЕНЕРАТОР ИЗ ДВИГАТЕЛЯ CD DVD

Для дальнейших действий был взят ещё один электродвигатель и приведён в должное состояние для подключения и крепления. Шестерёнки (зубчатая пара) с передаточным отношением 1:5 от китайского фонарика – «жучка».

Шестерёнки (зубчатая пара) с передаточным отношением

Всё было смонтировано на подходящее основание. Важным в этой операции является правильно «взять» межцентровое расстояние зубчатых колёс и установить их оси вращения в единой пространственной плоскости.

двигатель возможно использовать в качестве генератора

Схема собрана, вновь обращённый генератор к тесту готов.

Как собрать ГЕНЕРАТОР ИЗ ДВИГАТЕЛЯ

При интенсивном, но без мазохизма, вращении большого зубчатого колеса пальцами рук напряжение легко достигает отметки в 1,7 вольта (без нагрузки).

двигатель использовать в качестве генератора тока

При подключении нагрузки, лампочки на 2,5 В и 150 мА, сила тока достигает 120 мА. Лампочка вспыхивает в пол накала.

Видео - работа под нагрузкой

Возьму на себя смелость заявить, что даже данный конкретный двигатель возможно использовать в качестве ветрогенератора способного вырабатывать электрический ток в достаточном количестве для зарядки одного аккумулятора ААА напряжением 1,2 В и ёмкостью до 1000 мА включительно. Прошу обратить внимание на то фото, которое показывает монтаж шестерён на основании. На правую сторону большого зубчатого колеса так и «проситься» установка ещё одного моторчика. Кинематическая схема будет такой: одно ведущее колесо вращает два ведомых. Возможности удваиваются, реальным становиться собрать повышающий преобразователь и заряжать даже аккумуляторы мобильных телефонов. Вопросами добычи электричества занимался Babay.

   Форум по электротехнике

   Обсудить статью ГЕНЕРАТОР ИЗ ДВИГАТЕЛЯ СВОИМИ РУКАМИ

radioskot.ru


Смотрите также