ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Бесшатунный двигатель внутреннего сгорания с вращающимися поршнями. Бесшатунные двс


Бесшатунный двигатель - Беседка - Новая Теория

Книга о авторской разработке поршневых авиационных двигателях большой мощности у нас после ВМВ. Реактивный двигатель убил у него будущее в воздухе, а на земле, в 70-80е было несколько попыток внедрить его на автотранспорте. Попытки были пресечены сверху. Заодно помещается рецензия на книжку из журнала "изобретатель-рационализатор". с имеющимися там иллюстрациями."Бесшатунные Двигатели Внутреннего Сгорания" Баландин C.C.файл balandin.djvu(2.83MB).

Изображение

ИР 1-1974ВЫ МАЛО ЗНАЕТЕ О ПОРШНЕВЫХ ДВИГАТЕЛЯХ.

click for enlarge 1193 X 842 248.3 Kb picture

Каждый, кто познакомится с книгой Баландина, естественно, захочет узнать, почему так долго не публиковалась эта ценнейшая работа. В 1957 г. Комитет по делам изобретений и открытий оформил за две недели авторское свидетельство, но без права публикации. Поэтому Сергей Степанович издал свою книгу только в 1972 году, дальше видимо, откладывать было нельзя, хотя важнейшее изобретение не было запатентовано за границей.

Главный конструктор бесшатунных двигателей Сергей Степанович Баландин.Модель бесшатунного 12-цилиндрового авиадвигателя, собранного из трех базовых 4-цилиндровых блоков. Двигатель хорошо вписывается в малый мидель скоростного транспортного средства.

Были не только модели. Строились бесшатунные авиационные двигатели огромной мощности - до 14000 л. с.В печати появились первые сообщения о двигателях С. С. Баландина.Кто возьмется проектировать такие двигатели? С.С. Баландин: 'Первые образцы могут быть разработаны за два года!'

Самолеты должны быть реактивными. Эта истина, перед войной теоретическая, примерно в середине войны превратилась в практическую, актуальную задачу. И через несколько лет почти вся истребительная авиация в сильнейших армиях мира была переведена на реактивную тягу, оснащена турбореактивными двигателями. И только 'прожорливость' первых ТРД и их недолговечность некоторое время еще мешали оснастить ими тяжелые дальние самолеты. Выход нашелся: для тяжелых машин был создан промежуточный тип двигателей, турбовинтовые (ТВД).

Для нашей авиации выход нашелся бы и без ТВД. В те годы специальным конструкторским бюро во главе с Сергеем Степановичем Баландиным были разработаны поршневые моторы, равные турбовинтовым по мощности, габаритам и весу, к тому же более экономичные. И только бесспорность предстоящего перехода всей авиации на реактивную тягу заставила тогда свернуть работы СКБ С. С. Баландина.

Но такие двигатели могли и могут найти применение не только в авиации! И приходится сожалеть, что нам, инженерам, пришлось так долго ждать книгу их главного конструктора 'Бесшатунные двигатели внутреннего сгорания' (Машиностроение, 1972), в которой сконцентрировано все наиболее важное об этих необыкновенных моторах.

Приводимые в книге цифры кажутся невероятными. Но за ними стоят реальные образцы бесшатунных двигателей разной мощности, придирчиво испытанные государственными комиссиями.

В 1968 г. (ИР No.4) в статье под скромным заголовком 'Существенно новый двигатель' мы рассказали о 'бесшатунном механизме для преобразования возвратно-поступательного движения во вращательное' (а. с. No.164756). Его автор - севастопольский изобретатель Е. И. Лев. А через полгода стало известно о существовании авторского свидетельства No.118471, выданного в 1957 г. Сергею Степановичу Баландину на 'Двигатель внутреннего сгорания с бесшатунным механизмом'. Но до поры до времени сущность этого изобретения была скрыта фразой 'без публикации'.

В обеих формулировках употреблено слово 'бесшатунный'. Что за ним скрыто? Тоже 'существенно новый двигатель'?

Без тщательных экспериментов никто этого сказать не мог. Двигатель, который сконструировал Е. Лев, пока не построен. Зато работы С. Баландина позволяют сказать, что за ключевым словом 'бесшатунный' притаилась, видимо, вся будущая история поршневого моторостроения.

Не будем здесь останавливаться на устройстве бесшатунного механизма, разработанного С. С. Баландиным, - об этом можно прочитать в книге. Скажем лишь, что в моторах Баландина (МБ) оригинальные системы разгрузки, смазки и охлаждения поршней приводят к тому, что поршни практически не изнашиваются. Износ шеек коленчатого вала также снижается в 3--4 раза, потому что на них передается всего лишь разность сил от противолежащих цилиндров, в то время как в обычных двигателях внутреннего сгорания вся сила давления газов на поршни.

Пониженные нагрузки на скользящие детали приводят к 3-4-кратному снижению потерь на трение. Механический к.п.д. моторов Баландина равен 94% (против 75-85% у обычных двигателей внутреннего сгорания). Снижаются габариты моторов А литровая мощность первых же МБ в 1,5 раза превзошла рубеж, до сих пор остающийся заветным для 'обычного' двигателестроения - 100 л.с./л.

Возможности моторов Баландина очень велики. Пока только в них удалось конструктивно просто реализовать двухсторонний рабочий процесс в цилиндрах и таким путем почти в два раза повысить мощность двигателя без существенного увеличения его габаритов (они лишь немного увеличиваются из-за удлинения штоков). Только на этих двигателях при большом мощности применимо золотниковое газораспределение, что ранее удавалось осу ществлять только на маленьких двигателях, например для гоночных мотоциклов. В результате могут быть упорядочены фазы газораспределения, нарушавшиеся в больших двигателях из-за огромных нагрузи на клапанные механизмы. Только в этих моторах может быть достигнута средняя скорость поршня - 80 м/сек, в то время как у лучших образцов шатунных двигателей она не превышает 30 м/сек (при большей скорости поршня эффективная мощность двигателя устремлялась к нулю из-за опережающего роста потерь, в основном на преодоление растущих сил трения). Бесшатунный механизм практически не реагирует на рост средней скорости поршня; эффективная мощность таких моторов в 5-6 раз (а при двойном действии в 10 раз) выше мощности шатунных двигателей тех же габаритов и веса. Об этом свидетельствует график, приведенный в книге. Он ограничен диапазоном до 100 м/сек, но кривые как бы стремятся вырваться за этот предел. Никому в мире - хотя за дело брались крупнейшие фирмы - не удалось еще создать обычный поршневой авиационный мотор мощностью более 6000 л. с. Табу накладывал все тот же кривошипно-шатунный механизм. Под руководством С.С. Баландина строился авиационный мотор мощностью 10000 л. с, весом менее 3,5 т, был разработан бесшатунный авиадизель мощностью 14000 л. с. А в принципе можно построить мотор на все двадцать тысяч л. с. И всего при 24 цилиндрах. Для сравнения: спроектированный фирмой 'Лайкоминг' (США) авиационный поршневой мотор XR-7755 мощностью 5000 л. с. имел 36 цилиндров и гораздо худшие характеристики. Но рост средней скорости - это рост оборотов, рост инерционных нагрузок, вибраций.

И здесь, оказывается, моторы Баландина вне конкуренции. Осциллограммы вибраций самых мощных образцов, снятые в трех осях, кажутся неправдоподобными. Амплитуды - всего 0,05-0,1 мм. Даже наиспокойнейшие турбины зачастую обладают менее уравновешенным характером.

Идеальная уравновешенность моторов Баландина сохраняется при любом числе цилиндров. Из базовых блоков по четыре цилиндра (хотя возможны одно- и двухцилиндровые двигатели) можно, как из кубиков, складывать любые композиции, не сомневаясь в их превосходном поведении. Какой мотор может похвастаться такой пластичностью?

Да еще прибавьте сюда экономичность. Удельный расход топлива у моторов Баландина в среднем на 10% ниже, чем у шатунных. Отключая подачу топлива в один или несколько рядов цилиндров, можно заставить двигатель работать с высокой и практически постоянной экономичностью на режимах от 0,25 до номинальной мощности. Режиму работы на частичных нагрузках - а это основной и, как ни странно, наименее изученный режим подавляющего большинства двигателей - в последнее время уделяется большое внимание. Ведь обычный двигатель хорош лишь в узком диапазоне мощностей и чисел оборотов. Немного в сторону - и все его характеристики ухудшаются. Кроме того, экспериментально установлено, что удельный расход топлива в моторах Баландина можно снизить еще минимум на 10% применением так называемого цикла с удлиненным расширением, т. е. с более длинным рабочим ходом поршня. Цикл этот не выгоден в обычных двигателях, так как приходится резко раздувать их габариты. В бесшатунных же двигателях требуемое увеличение габаритов ровно вдвое меньше, а с учетом их изначальной малогабаритности такой 'подарок' грех не принять.

И последнее. Производство опытных образцов моторов Баландина было в среднем в 1,6 раза дешевле производства равных по мощности обычных поршневых двигателей, причем серийных. То же самое, очевидно, будет иметь место и в новых разработках.Каждый, кто познакомится с книгой Баландина, естественно, захочет узнать, почему так долго не публиковалась эта ценнейшая работа.

В 1957 г. Баландин получил 'добро' на публикацию материалов. Но и после этого Комитет по делам изобретений и открытий, оформив за две недели соответствующее авторское свидетельство, снабдил его грифом 'без публикации'. И только один из иностранных журналов туманно сообщил, что в СССР созданы какие-то уникальные поршневые двигатели. Прошло еще десятилетие, прежде чем Сергей Степанович издал свою книгу. Дальше, видимо, откладывать было нельзя, хотя важнейшее изобретение не было запатентовано за границей. За авторским свидетельством Баландина стоят не только поршневые двигатели ближайшего будущего, но и поршневые насосы, компрессоры без смазки, пневмо- и комбинированные двигатели.Использование двигателей Баландина сулит большие выгоды народному хозяйству. Для их разработки нужна, видимо, специальная конструкторская организация. Вопрос этот как межотраслевой должен решить Государственный комитет СМ СССР по науке и технике.По мнению С.С. Баландина, первые двигатели могут быть разработаны и построены уже через два-три года после создания такой организации.

К. ЧИРИКОВ, инженер

www.newtheory.ru

бесшатунный двигатель внутреннего сгорания с вращающимися поршнями - патент РФ 2166654

Двигатель может быть использован в качестве источника механической энергии машин и механизмов наземного, водного и воздушного транспорта, для привода различных промышленных и бытовых потребителей, а также как насос или компрессор. В корпусе двигателя установлена гильза цилиндра. Крышки цилиндра расположены по торцам. Поршень выполнен в виде цилиндрического трубчатого элемента, торцевые части которого уплотнены по наружной и внутренней поверхностям с помощью уплотнительных кольцевых элементов. Поршень взаимодействует посредством криволинейной замкнутой непрерывной непересекающейся канавки (паза) на своей боковой поверхности с передаточными механизмами. Механизмы установлены в корпусе двигателя и содержат тела вращения сферической или цилиндрической формы. Выходной вал двигателя проходит по оси цилиндра через ось поршня и рабочие объемы, расположенные с обеих сторон поршня. Вал взаимодействует с поршнем двигателя посредством подвижного соединения, содержащего подшипники качения или скольжения. Процессы, составляющие двух- или четырехтактный рабочий цикл поршневой тепловой машины, осуществляются поочередно с обеих сторон поршня двигателя таким образом, что поршень совершает перемещение, сопровождающееся получением полезной работы цикла (рабочий ход) в двух направлениях, что позволяет считать данный двигатель двигателем двойного действия. Данное решение обеспечивает уменьшение работы трения и механических потерь, повышение КПД двигателя, снижение динамической загруженности основных деталей ДВС, улучшение мощностных, технико-экономических, массогабаритных, ремонтно-эксплуатационных и экологических показателей двигателя, а также повышение надежности и увеличение его моторесурса (долговечности). 1 ил. Изобретение относится к области машиностроения, в частности к двигателестроению. Известны конструкции бесшатунных двигателей внутреннего сгорания, такие как, например, двигатель Баландина, поршневая машина Лапидуса. Двигатель Баландина (см.: Баландин С.С. Бесшатунные двигатели внутреннего сгорания. - М.: Машиностроение, 1972) содержит корпус, цилиндр, поршень, шток, камеру сгорания, коленчатый вал. В двигателе Баландина преобразование возвратно-поступательного движения во вращательное осуществляется при помощи коленчатого вала специальной конструкции. Поршневая машина Лапидуса (А.с. N 1038487, F 01 В 9/08, опубл. 1983), которая может быть использована в качестве двигателя внутреннего сгорания, содержит корпус, цилиндр, поршень, камеру сгорания и выходной вал, связанный с поршнем и цилиндром посредством обгонных муфт. Известна конструкция поршневой машины, которая представляет собой свободнопоршневой двигатель внутреннего сгорания (см.: Бирюков Б.Н. От водяного колеса до квантового ускорителя. - М.: Машиностроение, 1990). Этот двигатель содержит корпус, в котором размещены два поршня, свободно перемещающиеся внутри цилиндра, и два буферных устройства, расположенных по торцам внутри цилиндра. Рабочий объем и камера сгорания находятся между поршнями. Поршни выполнены из ферромагнитного материала, а на корпус двигателя намотаны токопроводящие обмотки, и при возвратно-поступательном перемещении поршней внутри цилиндра, которое ограничено с одной стороны буферными устройствами, а с другой - силой сопротивления сжатого рабочего тела, в обмотках наводится переменная ЭДС. Такая поршневая машина может быть использована в качестве генератора электрической энергии. Основными недостатками такого двигателя являются: - переменная степень сжатия с неблагоприятной зависимостью ее от нагрузки: степень сжатия увеличивается при увеличении нагрузки на двигатель; - запуск такого двигателя требует применения постороннего источника электрической энергии большой мощности для перемещения поршней внутри цилиндра путем подключения его к обмоткам на корпусе двигателя; - ненадежность поршневой машины вследствие воздействия на ее основные детали высоких ударных нагрузок, возникающих при работе машины; - ухудшение электромагнитных характеристик поршней вследствие воздействия на них высоких температур и давлений, а также агрессивности рабочего тела. Наиболее близкой к предлагаемому двигателю является конструкция бесшатунного двигателя внутреннего сгорания с вращающимися поршнями по патенту Российской Федерации N 2057948, МПК6 F 01 В 9/08. Двигатель содержит корпус, гильзу цилиндра с пазом, выполненным на ее внутренней поверхности в виде замкнутой кривой, поршень, в котором размещены передаточные механизмы в виде роликов на пальцах и шток, укрепленный в поршне и взаимодействующий с шестерней выходного вала при помощи роликов, находящихся в прямолинейных пазах в ступице шестерни. За счет перемещения роликов поршня в пазу гильзы цилиндра и роликов штока в пазу ступицы шестерни выходного вала осуществляется преобразование возвратно-поступательного движения поршня во вращательное, передающееся на выходной вал через шестерню. Недостатками такого двигателя являются: - несоответствие конфигурации роликов передаточных механизмов, имеющих форму круглых цилиндрических тел вращения, характерному виду эпюры скоростей движения внешних образующих данных элементов, которая имеет вид треугольников, симметричных относительно оси поршня, вследствие чего неизбежно возникновение проскальзывания определенных участков боковых (рабочих) поверхностей роликов относительно беговой (рабочей) поверхности пава на внутренней поверхности гильзы (цилиндра) в процессе работы двигателя; - значительное увеличение работы трения, а также возникновение колебательных процессов (вибраций) в передаточных механизмах двигателя по причине, указанной выше, что весьма отрицательно сказывается на плавности и равномерности хода двигателя и, кроме того, существенно ограничивает диапазон работоспособности и снижает показатели надежности и долговечности основных деталей такого ДВС; - существенное повышение динамической нагруженности механизма преобразования движения двигателя вследствие возникновения различного рода колебательных процессов, что в совокупности с предыдущим недостатком ведет к ускоренному износу и быстрому выходу из строя основных силовых элементов двигателя, а также к необходимости конструктивного увеличения запасов прочности указанных элементов, вследствие чего значительная часть деталей такого ДВС оказывается "переразмеренной": - высокая доля (удельный вес в конструкции) и масса ведомых (валы, шестерни и т. п.) и связанных с ними корпусных (подшипники с элементами крепления, картеры, различного рода приливы и т. д.) элементов в конструкции двигателя, что уменьшает степень ее рациональности, значительно увеличивает потери мощности в самом двигателе и снижает его КПД, а также существенно ухудшает массогабаритные параметры двигателя; - ввиду наличия у двигателя указанной совокупности недостатков сравнительно низкие мощностные, технико-экономические, эксплуатационные и экологические показатели такого ДВС. В основу изобретения поставлено решение задач существенного улучшения мощностных, технико-экономических, массогабаритных, эксплуатационных и экологических показателей, параметров и характеристик бесшатунного ДВС с вращающимися поршнями, а также значительного снижения динамической нагруженности, повышение надежности и увеличение срока службы (долговечности) как основных деталей, так и двигателя в целом. Это достигается тем, что в бесшатунном ДВС с вращающимися поршнями, содержащем размещенные в корпусе гильзу цилиндра, поршень, выходной вал и передаточные механизмы, взаимодействующие с одним из элементов цилиндропоршневой группы, содержащим на поверхности паз, а также механизм взаимодействия поршня с выходным валом двигателя, согласно изобретению поршень соединен с выходным валом, проходящим через оба днища поршня по его оси, посредством подшипников качения или скольжения, опирающихся на плоскости выходного вала, наружные поверхности верхнего и нижнего днищ поршня в совокупности с соответствующими поверхностями верхней и нижней крышек цилиндра, а также гильзы цилиндра образуют камеры сгорания, расположенные с обеих сторон одного и того же поршня, при этом паз выполнен на боковой поверхности поршня, передаточные механизмы установлены в корпусе двигателя, а механизм взаимодействия поршня с выходным валом расположен внутри поршня двигателя. Особенностью данного двигателя является то, что термодинамические и газодинамические процессы, в определенной совокупности составляющие рабочий цикл поршневого двигателя внутреннего сгорания, осуществляются поочередно с каждой из сторон одного и того же поршня таким образом, что этот поршень может совершать рабочий ход как в одну, так и в другую сторону относительно какого-либо торца (крышки цилиндра) двигателя. То есть полезная работа, совершаемая рабочим телом внутри цилиндра в процессе работы двигателя и реализуемая при помощи механизма преобразования движения, который включает передаточные механизмы, взаимодействующие с одним из элементов цилиндропоршневой группы, а также механизм взаимодействия с выходным валом двигателя, в виде вращающего (крутящего) момента на выходном валу, может быть получена при движении поршня в обе стороны, которых возможно иметь две. Это позволяет считать данный бесшатунный ДВС с вращающимися поршнями двигателем двойного действия. Благодаря указанному взаимному расположению и способу взаимодействия поршня с передаточными механизмами, выходным валом и корпусом (цилиндром) двигателя достигается сокращение числа пар трения, при этом в имеющихся в двигателе парах трения трение скольжения в максимальной степени заменено трением качения, а форма и пространственная конфигурация основных деталей и конструктивных элементов механизма преобразования движения полностью соответствует требованиям, предъявляемым к данным деталям и элементам с точки зрения совершенства кинематических и динамических параметров поршневого бесшатунного ДВС. Это позволяет согласовать геометрические характеристики основных силовых элементов механизма преобразования движения такого ДВС с учетом физической сущности протекающих в двигателе кинематических и динамических процессов, значительно снизить работу трения, а также исключить возникновение вибраций, ударных нагрузок и колебательных явлений в процессе работы двигателя. Таким образом достигается снижение динамической нагруженности, повышение надежности и долговечности работы двигателя, а также улучшение технико-экономических показателей и, в частности, увеличение КПД такого ДВС. Вследствие осуществления принципа двойного действия при работе двигателя повышается энергетическая эффективность ДВС при значительной компактности его как силового агрегата, что ведет к улучшению как мощностных и массогабаритных, так и ремонтно-эксплуатационных показателей, параметров и характеристик такого двигателя. Поршень бесшатунного ДВС двойного действия предназначен для размещения механизма взаимодействия с выходным валом двигателя. Выходной вал проходит по оси цилиндра двигателя, в том числе и через рабочие объемы, и уплотняется в поршне и крышках цилиндра двигателя соответствующими уплотнительными элементами, что позволяет существенно снизить габариты и массу, а также упростить конструкцию двигателя. Каждая крышка цилиндра двигателя в совокупности с соответствующим днищем поршня и частью внутренней поверхности стенок гильзы цилиндра образует отдельный рабочий объем, в котором осуществляется рабочий цикл двигателя, при этом каждый рабочий объем посредством окон в гильзе цилиндра сообщается с впускными и выпускными органами двигателя, что позволяет значительно повысить удельные мощностные показатели двигателя. Следовательно, для каждого поршня двигатель имеет два независимых друг от друга рабочих объема, в каждом из которых осуществляются процессы, составляющие рабочий цикл поршневого ДВС. Открытием и закрытием впускных и выпускных окон гильзы цилиндра для каждого рабочего объема управляет один и тот же поршень в процессе своего перемещения, чем достигается конструктивная простота и эффективность управления процессами газообмена. Таким образом, рабочий цикл осуществляется с обеих сторон одного и того же поршня, причем процессы рабочего хода чередуются попеременно в каждом рабочем объеме, при этом двигатель может работать как по двух-, так и по четырехтактному рабочему циклу, и может являться как карбюраторным (с внешним смесеобразованием), так и дизельным (с внутренним смесеобразованием), чем достигаются высокие энергетические показатели двигателя, а также его универсальность. На боковой поверхности поршня бесшатунного ДВС двойного действия выполнена бесконечная криволинейная замкнутая непересекающаяся канавка, что обеспечивает закон перемещения поршня, задаваемый продольным профилем канавки. В корпусе бесшатунного ДВС двойного действия установлены передаточные механизмы, которых может быть по меньшей мере два и каждый из которых содержит колодку и тело вращения сферической или цилиндрической формы, взаимодействующее с канавкой поршня, что обеспечивает кинематическую связь элементов цилиндро-поршневой группы. Поршень посредством подвижного соединения, содержащего подшипники, связан с выходным валом двигателя, что обеспечивает передачу крутящего момента потребителю. Изобретение поясняется чертежом, на котором представлен схематический разрез бесшатунного ДВС (БШ ДВС) двойного действия на примере одноцилиндровой поршневой машины, работающей по двухтактному циклу. Бесшатунный ДВС двойного действия содержит корпус 1 с гильзой цилиндра 2, крышки цилиндра 3 и 4, расположенные с обеих сторон цилиндра, поршень 5, взаимодействующий посредством канавки 6 на своей боковой поверхности с передаточными механизмами 7, содержащими колодку 8 и тело вращения 9 сферической формы, а также подвижное соединение 10, обеспечивающее передачу вращения на выходной вал 11 двигателя. Гильза цилиндра 2 имеет два впускных 12 и два выпускных 13 окна, а в местах, требующих по условиям работы применения уплотнений, установлены уплотнительные элементы 14 и 15 в виде колец. Выходной вал двигателя 11 установлен в подшипниках 16 и снабжен маховиком (последний на чертеже не показан). Выходной вал 11 выполнен в средней, находящейся внутри поршня части плоским и имеет две лыски для взаимодействия с элементами подвижного соединения 10. Подвижное соединение 10 содержит оси 17, установленные в поршне 5, на которых размещены ролики 18 на втулках 19. Ролики 18 опираются на плоскости (лыски) выходного вала 11. Вместо роликов 18 на втулках 19, образующих подшипники скольжения, в подвижном соединении 10 могут быть использованы подшипники качения. Бесшатунный ДВС двойного действия работает следующим образом. В процессе сгорания и расширения газы, находящиеся в верхнем рабочем объеме А цилиндра, заставляют поршень 5 перемещаться вниз, при этом в нижнем рабочем объеме Б осуществляется сжатие рабочей смеси; в конце хода поршня 5 в верхнем рабочем объеме происходит открытие вначале выпускных 13, а затем впускных 12 окон и начинается процесс газообмена, а в нижнем рабочем объеме вблизи нижней мертвой точки (НМТ) поршня 5 происходит воспламенение топливо-воздушной (рабочей) смеси. При дальнейшем движении поршня 5 газы, образующиеся в результате процесса сгорания в нижнем рабочем объеме цилиндра, заставляют поршень 5 перемещаться вверх, в результате чего в нижнем рабочем объеме цилиндра происходит рабочий ход, а в верхнем рабочем объеме заканчивается процесс газообмена (продувки-наполнения) и происходит сжатие свежего заряда рабочей смеси, поступившего в верхний рабочий объем за время продувки-наполнения. Вблизи верхней мертвой точки (ВМТ) поршня 5 в нижнем рабочем объеме цилиндра начинается процесс газообмена, а в верхнем рабочем объеме происходит воспламенение рабочей смеси. В дальнейшем указанные процессы циклически повторяются в каждом из рабочих объемов цилиндра. В процессе своего движения поршень 5 посредством бесконечной криволинейной замкнутой канавки 6 на своей боковой поверхности взаимодействует с передаточными механизмами 7, установленными в корпусе двигателя, и вследствие взаимодействия тел вращения 9 передаточных механизмов 7 с канавкой 6 поршня 5 возвратно-поступательное движение поршня 5 преобразуется во вращательное, которое при помощи подвижного соединения 10 передается на выходной вал двигателя. Маховик бесшатунного ДВС двойного действия обеспечивает требуемую равномерность хода двигателя. Изобретение обеспечивает следующие технические преимущества: - соответствие геометрических параметров и характеристик основных силовых элементов механизма преобразования движения требованиям, предъявляемым к данным деталям с точки зрения совершенства кинематических и динамических процессов, протекающих в поршневом бесшатунном ДВС во время его работы; - уменьшение работы трения и механических потерь в двигателе, а также исключение возникновения высоких ударных нагрузок и различного рода колебательных процессов, что позволяет повысить КПД двигателя, расширить диапазон (границы) работоспособности, повысить надежность и увеличить срок службы (моторесурс) двигателя; - снижение динамической нагруженности механической части двигателя, а значит возможность такой оптимизации его основных деталей, при которой их форма, размеры и масса будут обеспечивать лучшие массогабаритные и эргономические показатели двигателя; - улучшение мощностных, технико-экономических, ремонтно-эксплуатационных и экологических параметров, показателей и характеристик двигателя. Промышленная применимость Представленная конструкция бесшатунного ДВС двойного действия может быть использована в качестве источника механической энергии машин и механизмов наземного, водного и воздушного транспорта, а также для привода всевозможных промышленных и бытовых потребителей механической энергии (генераторы, насосы, компрессоры, мобильные анренаты, оборудованные ДВС, сельскохозяйственные машины и т. д.). Поршневая машина подобной конструкции может быть использована также в качестве поршневого насоса, компрессора или другого аналогичного агрегата. Бесшатунный ДВС двойного действия позволяет существенно упростить конструкцию и значительно снизить номенклатуру деталей двигателя, повысить технологичность изготовления его основных деталей, повысить надежность работы и моторесурс двигателя за счет упрощения его конструкции и достаточно высокой технологичности изготовления и сборки как основных деталей, так и двигателя в целом, а также существенно снизить массу и габариты двигателя и улучшить характеристики его компонуемости в составе силовой установки.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Бесшатунный двигатель внутреннего сгорания с вращающимися поршнями, содержащий размещенные в корпусе гильзу цилиндра, поршень, выходной вал и передаточные механизмы, взаимодействующие с одним из элементов цилиндропоршневой группы, содержащим на поверхности паз, а также механизм взаимодействия поршня с выходным валом двигателя, отличающийся тем, что поршень выполнен в виде закрытого с торцов трубчатого элемента, концы которого уплотнены по наружной и внутренней поверхностям, поршень соединен с выходным валом двигателя, проходящим через оба днища поршня по его оси, посредством подшипников качения или скольжения, опирающихся на плоскости выходного вала, наружные поверхности верхнего и нижнего днищ поршня в совокупности с соответствующими поверхностями верхней и нижней крышек цилиндра, а также гильзы цилиндра образуют камеры сгорания, расположенные с обеих сторон одного и того же поршня, что обеспечивает возможность поочередного осуществления рабочих процессов с обеих сторон одного и того же поршня, то есть, его двойное действие (двигатель двойного действия), при этом паз выполнен на боковой поверхности поршня, передаточные механизмы установлены в корпусе двигателя, а механизм взаимодействия поршня с выходным валом расположен внутри поршня двигателя.

www.freepatent.ru

Бесшатунный двигатель - Автомобильный портал iCarz

«Меня заинтересовала статья в журнале «Изобретатель и рационализатор» о двигателе С. Баландина, — пишет ленинградец К. Фролкин. — Прошу объяснить его принцип работы и устройство» Ответить на просьбу читателей, интересующихся этой темой, мы попросили инженера В. ТИШАКОВА, который работает над проектом бесшатунного двигателя на одном из наших автомобильных заводов.

Как известно, традиционный кривошипно-шатунный механизм поршневых двигателей внутреннего сгорания при работе создает боковое усилие на стенку цилиндра. Чтобы предупредить связанный с этим повышенный износ поршней, приходится придавать им конусную форму, а их юбкам эллипсность. Кроме того, боковая нагрузка на стенку цилиндра увеличивает потери на трение, то есть приводит к уменьшению механического КПД двигателя. Исключить ее можно, применив такой механизм, в котором шатун двигался бы только возвратно-поступательно, не совершая угловых качаний относительно поршневого пальца.

Рис. 1. Частный случай гипоциклоиды: при обкатке одной окружности внутри другой, имеющей вдвое больший радиус, точки А и В малой окружности перемещаюРис. 1. Частный случай гипоциклоиды: при обкатке одной окружности внутри другой, имеющей вдвое больший радиус, точки А и В малой окружности перемещаются по взаимно перпендикулярным прямым.

К реализации этой идеи приступил С. Баландин. Он предложил применить сначала для паровой машины, а затем поршневого авиационного двигателя «точное прямило» — механизм, давно известный в теории механизмов и машин. Каков же его принцип действия?

Если катить без скольжения внутри большой окружности малую, то любая точка последней опишет за один цикл взаимных перемещений звездообразную криволинейную фигуру — гипоциклоиду. При соотношении диаметров окружностей 1 к 2 фигура превращается в две взаимно перпендикулярные прямые линии (рис. 1). Это явление было известно еще Копернику. Приложить созданный на его основе механизм к двигателю внутреннего сгорания пытались в 1908 году Бюрль во Франции и Бухерер в Германии, но неудачно.

Рис. 2. Принцип гипоциклического перемещения точек окружности в приложении к механизму, преобразующему возвратно — поступательное движение поршней воРис. 2. Принцип гипоциклического перемещения точек окружности в приложении к механизму, преобразующему возвратно — поступательное движение поршней во вращательное (обозначения точек те же, что на рис. 1).

Баландин же, всесторонне исследовав проблему, нашел свое решение (рис. 2). Оно базировалось на частном принципе гипоциклического движения. Схема взаимного перемещения элементов предложенного им механизма (кинематическая схема) была применена в бесшатунном двигателе внутреннего сгорания (рис. 3).

Инженерное воплощение эти изобретения получили в опытном двигателе ОМБ, где были использованы цилиндры, их головки и поршни от пятицилиндрового авиационного мотора М-11А. По сравнению с ним звездообразный четырехцилиндровый бесшатунный двигатель мощнее на 33% и на 84% меньше в площади поперечного сечения. Но самый главный результат — благодаря сокращению потерь на трение между поршнем и цилиндром механический КПД повысился с 0,86 до 0,95, вырос моторесурс. С применением бесшатунного механизма цилиндро-поршневая группа перестала лимитировать надежность и долговечность мотора.

Рис. 3. Кинематическая схема бесшатунного двигателя.Рис. 3. Кинематическая схема бесшатунного двигателя.

После завершения экспериментов с ОМБ был построен и испытан ряд других опытных двигателей, работавших по принципиально той же схеме (рис. 4 на вкладке). В них функции шатунов выполняют поршневые штоки 1, жестко (а не через поршневые пальцы) связанные с поршнями 6 и, подобно шатунам, охватывающие шейки коленчатого вала 2. На каждом штоке по обеим сторонам подшипника выполнены ползуны (на рис. 4 для упрощения не показаны), которые скользят по направляющим в картере, полностью разгружая поршень и цилиндр от боковых усилий. В результате поршень превращается просто в обойму для поршневых колец, которые герметизируют стык «поршень — цилиндр». Поэтому допуски на размеры поршня могут быть менее жесткими.

На рисунке показана четырехцилиндровая секция бесшатунного двигателя, но возможны конструкции с восемью цилиндрами, двенадцатью, шестнадцатью и т. д. Угол между цилиндрами 8 из-за особенностей кинематической схемы допустим любой, кроме 0 и 180°, так-как невозможно получить конструкции, где цилиндры расположены в один ряд или оппозитно. Во всяком случае, нет препятствий для создания низкого компактного мотора с крестообразным. Х-образным или V-образным расположением цилиндров.

Рис. 4. Принципиальное устройство бесшатунного двигателя: 1 — поршневой шток; 2 — коленчатый вал; 3 — подшипник кривошипа; 4 — кривошип; 5 — вал отбоРис. 4. Принципиальное устройство бесшатунного двигателя: 1 — поршневой шток; 2 — коленчатый вал; 3 — подшипник кривошипа; 4 — кривошип; 5 — вал отбора мощности; 6 — поршень; 7 — ползун штока: 8 — цилиндр.

Коленчатый вал 2 бесшатунного двигателя вращается на подшипниках 3. смонтированных в кривошипах 4. Они через зубчатые венцы на их щеках передают крутящий момент на шестерни так называемого синхронизирующего вала 5, который может служить и для съема мощности.

Типичная компоновка четырехцилиндрового бесшатунного двигателя одинарного действия приведена на рис. 5. Здесь можно видеть ползуны 7 штока, выполненные заодно со штоком 1 поршни 6.

Отсутствие угловых колебаний штока относительно поршня открывает возможность создания двигателя двойного действия (рис. 6). В этом случае рабочий процесс идет по обе стороны поршня, что позволяет снять почти вдвое большую мощность.

Рис. 5. Компоновка бесшатунного двигателя одинарного действия. Позиции те же, что на рис. 4.Рис. 5. Компоновка бесшатунного двигателя одинарного действия. Позиции те же, что на рис. 4.

Кстати, для того чтобы создать возможность для двустороннего рабочего процесса, в поршневых паровых машинах и судовых двигателях внутреннего сгорания применяют так называемый крейцкопфный кривошипно-шатунный механизм. Однако при такой конструкции резко увеличиваются габарит и масса двигателя. Сопоставление поперечного габарита V-образных поршневых двигателей внутреннего сгорания двойного действия (рис. 7) крейцкопфного и бесшатунного типа показывает значительные преимущества последнего.

Рис. 6. Компоновка цилиндра у бесшатунного двигателя двойного действия.Рис. 6. Компоновка цилиндра у бесшатунного двигателя двойного действия.

Экспериментальный бесшатунный авиационный двигатель МБ-4 одинарного действия при габарите, примерно таком же, как у двигателя ГАЗ-24 «Волга», имел близкую к нему массу и развивал в полтора раза более высокую мощность (140 л. с./103 кВт при 2200 об/мин). Удельная мощность двигателя МБ-4 составляла 20,4 л. с./л; удельная масса — 1,14 кг/л. с.; удельный расход топлива в эксплуатационном режиме — 220 г/л. с. в час.

Последний из опытных бесшатунных двигателей С. Баландина, восьмицилиндровый ОМ-127РН двойного действия развивал мощность 3500 л. с. (2576 кВт). Он имел систему впрыска топлива и турбонаддув.

Удельные параметры ОМ-127РН: мощность — 146 л. с./л, расход топлива при максимальной мощности — 200 г/л. с. в час, масса — 0,6 кг/л. с.

Суммируя достоинства бесшатунного двигателя, можно отметить, что по сравнению с рядом поршневых двигателей внутреннего сгорания и газовыми турбинами он компактнее, менее металлоемок. Для изготовления многих его деталей пригодны действующие технология и оборудование моторостроительных производств в автомобильной промышленности.

Рис. 7. Сравнение поперечного габарита двигателей двойного действия — обычного и бесшатунного (выделен красным цветом): слева — при одинаковых диаметРис. 7. Сравнение поперечного габарита двигателей двойного действия — обычного и бесшатунного (выделен красным цветом): слева — при одинаковых диаметре цилиндра и ходе поршня, справа — при одинаковой мощности.

Все эксперименты и исследования по бесшатунным двигателям велись в свое время специалистами авиамоторостроения. Серийно для нужд авиации он, однако, не выпускался, поскольку пригоден только для винтовых машин, время которых прошло. Развитие же идей С. Баландина применительно к автомобильным двигателям представляет интерес. Так, некоторое время назад на одном из наших автомобильных заводов группой конструкторов под руководством Р. Розова был разработан проект бесшатунного двигателя с Х-образным расположением цилиндров. Ближайшее будущее, видимо, покажет, насколько реальны перспективы применения бесшатунного двигателя на автомобиле в условиях массового производства.

Литература

С. С. Баландин. Бесшатунные поршневые двигатели внутреннего сгорания. М., Машиностроение, 1968 (1972 г. — второе издание).

В. ТИШАКОВ, инженер («За Рулем», №4, 1982)

www.icarz.ru

БЕСШАТУННЫЙ ДВИГАТЕЛЬ И СПОСОБ УСТРАНЕНИЯ ЗАКЛИНИВАНИЯ ЕГО МЕХАНИЗМА

Изобретение относится к поршневым машинам с бесшатунным механизмом преобразования движения и может быть использовано в их конструкциях.

Известен кривошипно-ползунный четырехзвенный прямолинейно направляющий механизм Скот-Рассела, в котором имеется равенство звеньев. При вращении одного из звеньев вокруг неподвижной оси конечная точка другого звена описывает прямолинейную траекторию [1]. Ниже рассматриваемые механизмы построены на его основе.

Известен бесшатунный механизм для преобразования возвратно- поступательного движения во вращательное, содержащий корпус, сдвоенные оппозитно расположенные поршни с общим штоком и ведущую шестерню, отличающийся тем, что он содержит вторую пару оппозитно расположенных поршней с общим штоком, пересекающуюся с первой парой, а ведущая шестерня выполнена цилиндрической и снабжена двумя цапфами, расположенными диаметрально противоположно на противоположных плоскостях диска шестерни и соединенными каждая со средней частью соответствующего штока, а также содержит планетарную передачу, выполненную в виде расположенной внутри корпуса на подшипниках солнечной шестерни с внутренним венцом, входящим в зацепление с ведущей цилиндрической шестерней и внешним венцом, входящим в зацепление с ведомым элементом [2].

Известен двигатель внутреннего сгорания с бесшатунным механизмом преобразования возвратно-поступательного движения поршней во вращательное движение рабочего вала со звездообразно расположенными цилиндрами, поршни которых жестко связаны между собой штоками, сочлененными через подшипники со средними шейками коленчатого вала, имеющего вращение крайних шеек с перемещением поршневых систем и связывающих их штоков по оси противолежащих цилиндров, отличающийся тем, что рабочий вал двигателя выполнен из двух частей с кривошипами, несущими подшипники для закрепления на них на радиусе одной четверти хода поршней крайних шеек коленчатого вала и снабжен соединительным валом, фиксирующим с помощью шестерен положение кривошипов обеих частей рабочего вала относительно друг друга [3], прототип.

Известна книга, С.С.Баландин, "Бесшатунные двигатели внутреннего сгорания" [4].

Автор, будучи руководителем проекта, построил и испытал двигатели внутреннего сгорания с использованием механизмов, описанных в источниках [2] и [3]. Он отмечал, что основным условием бесперебойной работы двигателей с бесшатунным силовым механизмом является обеспечение гарантированных зазоров между трущимися поверхностями, заполненных несущей масляной пленкой, предохраняющей поверхности от износа и заклинивания. Способом достижения данного условия является технологическое повышение точности исполнения номинальных размеров и требований по соосности и концентричности элементов бесшатунного механизма.

Известна статья, И.П.Седунов, "Конструктивный анализ бесшатунных двигателей Баландина и пути их совершенствования" [5]. Автор исследует влияние движущихся масс, в частности комплекта поршней на преобразование и накопление энергии. Прямолинейное возвратно-поступательное движение одного комплекта поршней преобразуется в возвратно-поступательное движение другого комплекта поршней. Поршни представляют собой маховичные накопители энергии, их период разгона от нуля до максимальной линейной скорости достигается в течение четверти оборота коленчатого вала. Накопленная энергия непрерывно циркулирует, переходя из потенциальной в кинетическую и наоборот, что в предложенных им схемах позволяет максимально эффективно использовать силы инерции поступательно движущихся масс. Он, правда, не исследует влияние кинетической энергии коленчатого вала, вращающегося вокруг оси крайних шеек, который может быть дополнительно оснащен маховиком.

Известна статья, И.М.Кошелев и др., "Бесшатунный карбюраторный двигатель" [6].

Известны другие успешные, а также неудачные разработки и отзывы о них в Интернете на Сайте "Ассоциация Экспериментальной Авиации" в разделе "Альтернативные двигатели и рабочие процессы" [7].

Опыт, оценки и отзывы специалистов и практиков по данной теме использованы в предлагаемой заявке на изобретение.

Общий недостаток всех разработанных и построенных двигателей с бесшатунным механизмом преобразования движения - сложность обеспечения высоких технологических требований в комплектующих его деталях. Температурные деформации корпуса и деформации от рабочего процесса также влияют на показатели качества работы таких двигателей, особенно, на переходных режимах. Сборка серийно изготовленных деталей в узлы преобразования движения не обеспечивает их работоспособности без индивидуальной подгонки сопрягаемых деталей, прежде всего поверхностей штоков поршней и их направляющих элементов, именно на которых происходит интенсивный износ и задиры, приводящие иногда к заклиниванию механизма.

Задачей изобретения является преодоление препятствий, приводящих к нестабильной работе бесшатунного двигателя, в частности к износу его деталей и заклиниванию механизма, а также повышение его удельной мощности.

Технический результат достигается тем, что бесшатунный двигатель, содержащий корпус со звездообразно установленными на нем как минимум шестью цилиндрами, в который помещен и закреплен в нем взаимодействующий поверхностями своих элементов со штоками поршней узел направляющих, а в последний установлен коленчатый вал, имеющий равномерно расположенные по окружности с центром в оси его крайних шеек кривошипы, по числу пар цилиндров, которые шарнирно соединены со штоками поршней противолежащих цилиндров, причем, коленчатый вал имеет осевое вращение крайних шеек и орбитальное вращение по радиусу четверти хода поршней и обеспечивает посредством кривошипов перемещение поршневых систем и связывающих их штоков, а крайние шейки коленчатого вала на радиусе одной четверти хода поршней шарнирно соединены с рычагами, выполненного из двух частей рабочего вала, помещенного в ось орбиты коленчатого вала, отличающийся тем, что синхронизация частей рабочего вала осуществляется посредством равномерного распределения нагрузок от действия газовых сил на шейки кривошипов коленчатого вала по обе стороны от его середины, шарнирно сопряженные с парными штоками поршней, взаимодействующих с поверхностями элементов узла направляющих, а части рабочего вала являются валами отбора мощности, равномерно распределенной между ними.

На фиг.1 показан общий вид бесшатунного двигателя.

На фиг.2 показан узел направляющих.

На фиг.3 показан коленчатый вал с одним из установленных на него маховиков и штоки поршней в сборе, сопряженные с его кривошипами.

На фигурах для наглядности некоторые элементы показаны в разрезе, не все одноименные элементы показаны, элементы крепления показаны частично, подшипники, уплотнения не показаны. Не показаны также элементы систем двигателя, не относящиеся к предмету данного изобретения.

Бесшатунный двигатель (см. фиг.1-3) состоит из корпуса 1, на котором установлены цилиндры 2, в которые помещены поршни 3, имеющие посредством серег 4 шарнирную связь со штоками 5-1…5-n, взаимодействующих с направляющими элементами 6-n одноименного узла 6, изображенного на фиг.2, установленного в корпус 1 и скрепленного с ним сопряжением элементов 6-1 и 6-2, в котором элементы 6-1…6-n скреплены винтами 7 и зафиксированы втулками 8. Внутрь узла направляющих 6 помещен коленчатый вал 9, кривошипы которого сопряжены со штоками 5-1…5-n, один из которых, 5-1 в данной схеме с числом цилиндров восемь, выполнен двойной ширины, а штоки 5-n - двойные, т.е. одному поршню принадлежит два штока. На крайних шейках коленчатого вала 9 установлены маховики 10. Крышки 11 с установленными в них частями выходного вала 12, на которые установлены шкивы 13, закреплены на элементах 6-1 и 6-2 узла направляющих 6. Ремни 14 находятся в сопряжении со шкивами 13.

Работа бесшатунного двигателя заключается в преобразовании возвратно-поступательного движения поршней, помещенных в цилиндры и получающих энергию от теплового расширения газов во вращательное движение выходного вала, и происходит на условии, обратном условию работы механизма Скот-Рассела [1], а именно: при прямолинейном возвратно-поступательном движении конечной точки механизма, в котором имеется равенство звеньев, конечная точка другого звена описывает окружность и аналогична работе известного двигателя [3], с той разницей, что синхронизация частей выходного вала в нем осуществляется посредством равномерного распределения нагрузок от действия газовых сил на шейки кривошипов коленчатого вала по обе стороны от его середины, шарнирно сопряженные с парными штоками поршней, взаимодействующих с поверхностями элементов узла направляющих.

Бесшатунный двигатель работает следующим образом.

В установленных в корпус 1 цилиндрах 2 поршни 3, имеющие возможность перемещения и получающие энергию от теплового расширения газов, посредством серег 4, штоков 5, находящихся в контакте с направляющими 6, передают движение на коленчатый вал 9, воздействуя на кривошипы, равномерно расположенные на окружности с центром в оси его крайних шеек, заставляя его вращаться в этой оси и выполнять орбитальное вращение по радиусу четверти хода поршней, которое передается на выходной вал 12, состоящий из двух частей, помещенный в ось орбиты коленчатого вала 9 и имеющий рычаги на радиусе четверти хода поршней, шарнирно сопряженные с его крайними шейками. Вращение частей выходного вала 12 посредством механической передачи (на фиг.1 изображена передача с использованием шкивов 13 и зубчатых ремней 14) с определенным передаточным отношением передается на вал потребителя механической энергии.

Узел направляющих 6 (см. фиг.2) состоит из элементов 6-1…6-n, определяющих угловые и осевые положения штоков 5. Поверхности его элементов, взаимодействующие со штоками 5, имеющими антифрикционные накладки (не показаны), упрочнены, к ним по каналам под давлением подается гидравлическая смазка для заполнения зазора пары элемент направляющей - накладка штока несущей масляной пленкой.

Маховики 10 установлены на крайних шейках коленчатого вала 9. Вращаясь вместе с ним в оси его крайних шеек, они обеспечивают равномерность его вращения и уменьшают амплитуду циклических нагрузок от воздействий поршневых систем на него.

Части рабочего вала 12, сопряженные с крайними шейками коленчатого вала 9, исполнены с балансировочными противовесами как одно целое, которые полностью или частично уравновешивают вращающийся в оси своих крайних шеек и выполняющий орбитальное вращение по радиусу четверти хода поршней коленчатый вал 9, а также устраняют дисбаланс, возникающий в механизме от перемещения поршневых систем. Для полной балансировки бесшатунного двигателя балансировочными противовесами могут быть оснащены диски маховиков, принадлежащие шкивам 13, установленные на наружных частях рабочего вала, которые обеспечивают как равномерность осевого вращения его частей, так и равномерность орбитального вращения коленчатого вала 9, шарнирно в оси крайних шеек с ним связанного, уменьшая амплитуду циклических нагрузок от воздействий поршневых систем на него.

Для устранения влияния на работу бесшатунного двигателя тепловых деформаций и деформаций от рабочего процесса, возникающих в корпусе 1, предусмотрено, что в цилиндрах 2 поршни 3 имеют возможность самоустанавливаться благодаря тому, что они сопряжены со штоками 5 посредством серег 4.

Сборка бесшатунного двигателя производится поэтапно. Вначале элементы его кинематической схемы предварительно собраны на стенде в единый силовой блок с учетом их фактических размеров, в сопрягаемых поверхностях установлены требуемые зазоры, элементы 6-1…6-n узла направляющих 6 ориентированы по углу и положению и скреплены винтами 7. Потом силовой блок разобран, и по подготовленным поверхностям элементы 6-1…6-n узла направляющих 6 зафиксированы от смещения втулками 8. При окончательной сборке узел направляющих 6 помещен в корпус 1 и закреплен в нем, а элементы кинематической схемы бесшатунного двигателя восстановлены в тех позициях, в которых предварительно были собраны в силовой блок на стенде.

Предложенная конструкция бесшатунного двигателя позволяет исключить из его кинематической схемы синхронизирующие шестерни и связывающий их вал, что снижает его габаритные и весовые характеристики. Способ устранения заклинивания его механизма определяет его устройство и позволяет получить стабильные характеристики его работы.

Источники информации

1. И.И. Артоболевский, "Механизмы в современной технике" в 7 томах, том 2, Москва, "Наука", 1979, стр.471, механизм 1466.

2. Описание изобретения к авторскому свидетельству №164756 - Бесшатунный механизм для преобразования возвратно-поступательного движения во вращательное, опубл. 19.07.1964.

3. Описание изобретения к авторскому свидетельству №118471 - Двигатель внутреннего сгорания с бесшатунным механизмом, опубл. 10.12.1973.

4. С.С.Баландин, "Бесшатунные двигатели внутреннего сгорания", Москва, "Машиностроение", 1972, стр.11.

5. И.П.Седунов, "Конструктивный анализ бесшатунных двигателей Баландина и пути их совершенствования", Санкт-Петербург, Двигателестроение (журнал), №1, 2000.

6. И.М.Кошелев и др., "Бесшатунный карбюраторный двигатель", Санкт-Петербург, Двигателестроение (журнал), №2, 1982.

7. (адрес в Интернете).

БЕСШАТУННЫЙ ДВИГАТЕЛЬ И СПОСОБ УСТРАНЕНИЯ ЗАКЛИНИВАНИЯ ЕГО МЕХАНИЗМАБЕСШАТУННЫЙ ДВИГАТЕЛЬ И СПОСОБ УСТРАНЕНИЯ ЗАКЛИНИВАНИЯ ЕГО МЕХАНИЗМАБЕСШАТУННЫЙ ДВИГАТЕЛЬ И СПОСОБ УСТРАНЕНИЯ ЗАКЛИНИВАНИЯ ЕГО МЕХАНИЗМА

edrid.ru

Бесшатунный двигатель внутреннего сгорания с вращающимися поршнями

 

Двигатель может быть использован в качестве источника механической энергии машин и механизмов наземного, водного и воздушного транспорта, для привода различных промышленных и бытовых потребителей, а также как насос или компрессор. В корпусе двигателя установлена гильза цилиндра. Крышки цилиндра расположены по торцам. Поршень выполнен в виде цилиндрического трубчатого элемента, торцевые части которого уплотнены по наружной и внутренней поверхностям с помощью уплотнительных кольцевых элементов. Поршень взаимодействует посредством криволинейной замкнутой непрерывной непересекающейся канавки (паза) на своей боковой поверхности с передаточными механизмами. Механизмы установлены в корпусе двигателя и содержат тела вращения сферической или цилиндрической формы. Выходной вал двигателя проходит по оси цилиндра через ось поршня и рабочие объемы, расположенные с обеих сторон поршня. Вал взаимодействует с поршнем двигателя посредством подвижного соединения, содержащего подшипники качения или скольжения. Процессы, составляющие двух- или четырехтактный рабочий цикл поршневой тепловой машины, осуществляются поочередно с обеих сторон поршня двигателя таким образом, что поршень совершает перемещение, сопровождающееся получением полезной работы цикла (рабочий ход) в двух направлениях, что позволяет считать данный двигатель двигателем двойного действия. Данное решение обеспечивает уменьшение работы трения и механических потерь, повышение КПД двигателя, снижение динамической загруженности основных деталей ДВС, улучшение мощностных, технико-экономических, массогабаритных, ремонтно-эксплуатационных и экологических показателей двигателя, а также повышение надежности и увеличение его моторесурса (долговечности). 1 ил.

Изобретение относится к области машиностроения, в частности к двигателестроению.

Известны конструкции бесшатунных двигателей внутреннего сгорания, такие как, например, двигатель Баландина, поршневая машина Лапидуса. Двигатель Баландина (см.: Баландин С.С. Бесшатунные двигатели внутреннего сгорания. - М.: Машиностроение, 1972) содержит корпус, цилиндр, поршень, шток, камеру сгорания, коленчатый вал. В двигателе Баландина преобразование возвратно-поступательного движения во вращательное осуществляется при помощи коленчатого вала специальной конструкции. Поршневая машина Лапидуса (А.с. N 1038487, F 01 В 9/08, опубл. 1983), которая может быть использована в качестве двигателя внутреннего сгорания, содержит корпус, цилиндр, поршень, камеру сгорания и выходной вал, связанный с поршнем и цилиндром посредством обгонных муфт. Известна конструкция поршневой машины, которая представляет собой свободнопоршневой двигатель внутреннего сгорания (см.: Бирюков Б.Н. От водяного колеса до квантового ускорителя. - М.: Машиностроение, 1990). Этот двигатель содержит корпус, в котором размещены два поршня, свободно перемещающиеся внутри цилиндра, и два буферных устройства, расположенных по торцам внутри цилиндра. Рабочий объем и камера сгорания находятся между поршнями. Поршни выполнены из ферромагнитного материала, а на корпус двигателя намотаны токопроводящие обмотки, и при возвратно-поступательном перемещении поршней внутри цилиндра, которое ограничено с одной стороны буферными устройствами, а с другой - силой сопротивления сжатого рабочего тела, в обмотках наводится переменная ЭДС. Такая поршневая машина может быть использована в качестве генератора электрической энергии. Основными недостатками такого двигателя являются: - переменная степень сжатия с неблагоприятной зависимостью ее от нагрузки: степень сжатия увеличивается при увеличении нагрузки на двигатель; - запуск такого двигателя требует применения постороннего источника электрической энергии большой мощности для перемещения поршней внутри цилиндра путем подключения его к обмоткам на корпусе двигателя; - ненадежность поршневой машины вследствие воздействия на ее основные детали высоких ударных нагрузок, возникающих при работе машины; - ухудшение электромагнитных характеристик поршней вследствие воздействия на них высоких температур и давлений, а также агрессивности рабочего тела. Наиболее близкой к предлагаемому двигателю является конструкция бесшатунного двигателя внутреннего сгорания с вращающимися поршнями по патенту Российской Федерации N 2057948, МПК6 F 01 В 9/08. Двигатель содержит корпус, гильзу цилиндра с пазом, выполненным на ее внутренней поверхности в виде замкнутой кривой, поршень, в котором размещены передаточные механизмы в виде роликов на пальцах и шток, укрепленный в поршне и взаимодействующий с шестерней выходного вала при помощи роликов, находящихся в прямолинейных пазах в ступице шестерни. За счет перемещения роликов поршня в пазу гильзы цилиндра и роликов штока в пазу ступицы шестерни выходного вала осуществляется преобразование возвратно-поступательного движения поршня во вращательное, передающееся на выходной вал через шестерню. Недостатками такого двигателя являются: - несоответствие конфигурации роликов передаточных механизмов, имеющих форму круглых цилиндрических тел вращения, характерному виду эпюры скоростей движения внешних образующих данных элементов, которая имеет вид треугольников, симметричных относительно оси поршня, вследствие чего неизбежно возникновение проскальзывания определенных участков боковых (рабочих) поверхностей роликов относительно беговой (рабочей) поверхности пава на внутренней поверхности гильзы (цилиндра) в процессе работы двигателя; - значительное увеличение работы трения, а также возникновение колебательных процессов (вибраций) в передаточных механизмах двигателя по причине, указанной выше, что весьма отрицательно сказывается на плавности и равномерности хода двигателя и, кроме того, существенно ограничивает диапазон работоспособности и снижает показатели надежности и долговечности основных деталей такого ДВС; - существенное повышение динамической нагруженности механизма преобразования движения двигателя вследствие возникновения различного рода колебательных процессов, что в совокупности с предыдущим недостатком ведет к ускоренному износу и быстрому выходу из строя основных силовых элементов двигателя, а также к необходимости конструктивного увеличения запасов прочности указанных элементов, вследствие чего значительная часть деталей такого ДВС оказывается "переразмеренной": - высокая доля (удельный вес в конструкции) и масса ведомых (валы, шестерни и т. п.) и связанных с ними корпусных (подшипники с элементами крепления, картеры, различного рода приливы и т. д.) элементов в конструкции двигателя, что уменьшает степень ее рациональности, значительно увеличивает потери мощности в самом двигателе и снижает его КПД, а также существенно ухудшает массогабаритные параметры двигателя; - ввиду наличия у двигателя указанной совокупности недостатков сравнительно низкие мощностные, технико-экономические, эксплуатационные и экологические показатели такого ДВС. В основу изобретения поставлено решение задач существенного улучшения мощностных, технико-экономических, массогабаритных, эксплуатационных и экологических показателей, параметров и характеристик бесшатунного ДВС с вращающимися поршнями, а также значительного снижения динамической нагруженности, повышение надежности и увеличение срока службы (долговечности) как основных деталей, так и двигателя в целом. Это достигается тем, что в бесшатунном ДВС с вращающимися поршнями, содержащем размещенные в корпусе гильзу цилиндра, поршень, выходной вал и передаточные механизмы, взаимодействующие с одним из элементов цилиндропоршневой группы, содержащим на поверхности паз, а также механизм взаимодействия поршня с выходным валом двигателя, согласно изобретению поршень соединен с выходным валом, проходящим через оба днища поршня по его оси, посредством подшипников качения или скольжения, опирающихся на плоскости выходного вала, наружные поверхности верхнего и нижнего днищ поршня в совокупности с соответствующими поверхностями верхней и нижней крышек цилиндра, а также гильзы цилиндра образуют камеры сгорания, расположенные с обеих сторон одного и того же поршня, при этом паз выполнен на боковой поверхности поршня, передаточные механизмы установлены в корпусе двигателя, а механизм взаимодействия поршня с выходным валом расположен внутри поршня двигателя. Особенностью данного двигателя является то, что термодинамические и газодинамические процессы, в определенной совокупности составляющие рабочий цикл поршневого двигателя внутреннего сгорания, осуществляются поочередно с каждой из сторон одного и того же поршня таким образом, что этот поршень может совершать рабочий ход как в одну, так и в другую сторону относительно какого-либо торца (крышки цилиндра) двигателя. То есть полезная работа, совершаемая рабочим телом внутри цилиндра в процессе работы двигателя и реализуемая при помощи механизма преобразования движения, который включает передаточные механизмы, взаимодействующие с одним из элементов цилиндропоршневой группы, а также механизм взаимодействия с выходным валом двигателя, в виде вращающего (крутящего) момента на выходном валу, может быть получена при движении поршня в обе стороны, которых возможно иметь две. Это позволяет считать данный бесшатунный ДВС с вращающимися поршнями двигателем двойного действия. Благодаря указанному взаимному расположению и способу взаимодействия поршня с передаточными механизмами, выходным валом и корпусом (цилиндром) двигателя достигается сокращение числа пар трения, при этом в имеющихся в двигателе парах трения трение скольжения в максимальной степени заменено трением качения, а форма и пространственная конфигурация основных деталей и конструктивных элементов механизма преобразования движения полностью соответствует требованиям, предъявляемым к данным деталям и элементам с точки зрения совершенства кинематических и динамических параметров поршневого бесшатунного ДВС. Это позволяет согласовать геометрические характеристики основных силовых элементов механизма преобразования движения такого ДВС с учетом физической сущности протекающих в двигателе кинематических и динамических процессов, значительно снизить работу трения, а также исключить возникновение вибраций, ударных нагрузок и колебательных явлений в процессе работы двигателя. Таким образом достигается снижение динамической нагруженности, повышение надежности и долговечности работы двигателя, а также улучшение технико-экономических показателей и, в частности, увеличение КПД такого ДВС. Вследствие осуществления принципа двойного действия при работе двигателя повышается энергетическая эффективность ДВС при значительной компактности его как силового агрегата, что ведет к улучшению как мощностных и массогабаритных, так и ремонтно-эксплуатационных показателей, параметров и характеристик такого двигателя. Поршень бесшатунного ДВС двойного действия предназначен для размещения механизма взаимодействия с выходным валом двигателя. Выходной вал проходит по оси цилиндра двигателя, в том числе и через рабочие объемы, и уплотняется в поршне и крышках цилиндра двигателя соответствующими уплотнительными элементами, что позволяет существенно снизить габариты и массу, а также упростить конструкцию двигателя. Каждая крышка цилиндра двигателя в совокупности с соответствующим днищем поршня и частью внутренней поверхности стенок гильзы цилиндра образует отдельный рабочий объем, в котором осуществляется рабочий цикл двигателя, при этом каждый рабочий объем посредством окон в гильзе цилиндра сообщается с впускными и выпускными органами двигателя, что позволяет значительно повысить удельные мощностные показатели двигателя. Следовательно, для каждого поршня двигатель имеет два независимых друг от друга рабочих объема, в каждом из которых осуществляются процессы, составляющие рабочий цикл поршневого ДВС. Открытием и закрытием впускных и выпускных окон гильзы цилиндра для каждого рабочего объема управляет один и тот же поршень в процессе своего перемещения, чем достигается конструктивная простота и эффективность управления процессами газообмена. Таким образом, рабочий цикл осуществляется с обеих сторон одного и того же поршня, причем процессы рабочего хода чередуются попеременно в каждом рабочем объеме, при этом двигатель может работать как по двух-, так и по четырехтактному рабочему циклу, и может являться как карбюраторным (с внешним смесеобразованием), так и дизельным (с внутренним смесеобразованием), чем достигаются высокие энергетические показатели двигателя, а также его универсальность. На боковой поверхности поршня бесшатунного ДВС двойного действия выполнена бесконечная криволинейная замкнутая непересекающаяся канавка, что обеспечивает закон перемещения поршня, задаваемый продольным профилем канавки. В корпусе бесшатунного ДВС двойного действия установлены передаточные механизмы, которых может быть по меньшей мере два и каждый из которых содержит колодку и тело вращения сферической или цилиндрической формы, взаимодействующее с канавкой поршня, что обеспечивает кинематическую связь элементов цилиндро-поршневой группы. Поршень посредством подвижного соединения, содержащего подшипники, связан с выходным валом двигателя, что обеспечивает передачу крутящего момента потребителю. Изобретение поясняется чертежом, на котором представлен схематический разрез бесшатунного ДВС (БШ ДВС) двойного действия на примере одноцилиндровой поршневой машины, работающей по двухтактному циклу. Бесшатунный ДВС двойного действия содержит корпус 1 с гильзой цилиндра 2, крышки цилиндра 3 и 4, расположенные с обеих сторон цилиндра, поршень 5, взаимодействующий посредством канавки 6 на своей боковой поверхности с передаточными механизмами 7, содержащими колодку 8 и тело вращения 9 сферической формы, а также подвижное соединение 10, обеспечивающее передачу вращения на выходной вал 11 двигателя. Гильза цилиндра 2 имеет два впускных 12 и два выпускных 13 окна, а в местах, требующих по условиям работы применения уплотнений, установлены уплотнительные элементы 14 и 15 в виде колец. Выходной вал двигателя 11 установлен в подшипниках 16 и снабжен маховиком (последний на чертеже не показан). Выходной вал 11 выполнен в средней, находящейся внутри поршня части плоским и имеет две лыски для взаимодействия с элементами подвижного соединения 10. Подвижное соединение 10 содержит оси 17, установленные в поршне 5, на которых размещены ролики 18 на втулках 19. Ролики 18 опираются на плоскости (лыски) выходного вала 11. Вместо роликов 18 на втулках 19, образующих подшипники скольжения, в подвижном соединении 10 могут быть использованы подшипники качения. Бесшатунный ДВС двойного действия работает следующим образом. В процессе сгорания и расширения газы, находящиеся в верхнем рабочем объеме А цилиндра, заставляют поршень 5 перемещаться вниз, при этом в нижнем рабочем объеме Б осуществляется сжатие рабочей смеси; в конце хода поршня 5 в верхнем рабочем объеме происходит открытие вначале выпускных 13, а затем впускных 12 окон и начинается процесс газообмена, а в нижнем рабочем объеме вблизи нижней мертвой точки (НМТ) поршня 5 происходит воспламенение топливо-воздушной (рабочей) смеси. При дальнейшем движении поршня 5 газы, образующиеся в результате процесса сгорания в нижнем рабочем объеме цилиндра, заставляют поршень 5 перемещаться вверх, в результате чего в нижнем рабочем объеме цилиндра происходит рабочий ход, а в верхнем рабочем объеме заканчивается процесс газообмена (продувки-наполнения) и происходит сжатие свежего заряда рабочей смеси, поступившего в верхний рабочий объем за время продувки-наполнения. Вблизи верхней мертвой точки (ВМТ) поршня 5 в нижнем рабочем объеме цилиндра начинается процесс газообмена, а в верхнем рабочем объеме происходит воспламенение рабочей смеси. В дальнейшем указанные процессы циклически повторяются в каждом из рабочих объемов цилиндра. В процессе своего движения поршень 5 посредством бесконечной криволинейной замкнутой канавки 6 на своей боковой поверхности взаимодействует с передаточными механизмами 7, установленными в корпусе двигателя, и вследствие взаимодействия тел вращения 9 передаточных механизмов 7 с канавкой 6 поршня 5 возвратно-поступательное движение поршня 5 преобразуется во вращательное, которое при помощи подвижного соединения 10 передается на выходной вал двигателя. Маховик бесшатунного ДВС двойного действия обеспечивает требуемую равномерность хода двигателя. Изобретение обеспечивает следующие технические преимущества: - соответствие геометрических параметров и характеристик основных силовых элементов механизма преобразования движения требованиям, предъявляемым к данным деталям с точки зрения совершенства кинематических и динамических процессов, протекающих в поршневом бесшатунном ДВС во время его работы; - уменьшение работы трения и механических потерь в двигателе, а также исключение возникновения высоких ударных нагрузок и различного рода колебательных процессов, что позволяет повысить КПД двигателя, расширить диапазон (границы) работоспособности, повысить надежность и увеличить срок службы (моторесурс) двигателя; - снижение динамической нагруженности механической части двигателя, а значит возможность такой оптимизации его основных деталей, при которой их форма, размеры и масса будут обеспечивать лучшие массогабаритные и эргономические показатели двигателя; - улучшение мощностных, технико-экономических, ремонтно-эксплуатационных и экологических параметров, показателей и характеристик двигателя. Промышленная применимость Представленная конструкция бесшатунного ДВС двойного действия может быть использована в качестве источника механической энергии машин и механизмов наземного, водного и воздушного транспорта, а также для привода всевозможных промышленных и бытовых потребителей механической энергии (генераторы, насосы, компрессоры, мобильные анренаты, оборудованные ДВС, сельскохозяйственные машины и т. д.). Поршневая машина подобной конструкции может быть использована также в качестве поршневого насоса, компрессора или другого аналогичного агрегата. Бесшатунный ДВС двойного действия позволяет существенно упростить конструкцию и значительно снизить номенклатуру деталей двигателя, повысить технологичность изготовления его основных деталей, повысить надежность работы и моторесурс двигателя за счет упрощения его конструкции и достаточно высокой технологичности изготовления и сборки как основных деталей, так и двигателя в целом, а также существенно снизить массу и габариты двигателя и улучшить характеристики его компонуемости в составе силовой установки.

Формула изобретения

Бесшатунный двигатель внутреннего сгорания с вращающимися поршнями, содержащий размещенные в корпусе гильзу цилиндра, поршень, выходной вал и передаточные механизмы, взаимодействующие с одним из элементов цилиндропоршневой группы, содержащим на поверхности паз, а также механизм взаимодействия поршня с выходным валом двигателя, отличающийся тем, что поршень выполнен в виде закрытого с торцов трубчатого элемента, концы которого уплотнены по наружной и внутренней поверхностям, поршень соединен с выходным валом двигателя, проходящим через оба днища поршня по его оси, посредством подшипников качения или скольжения, опирающихся на плоскости выходного вала, наружные поверхности верхнего и нижнего днищ поршня в совокупности с соответствующими поверхностями верхней и нижней крышек цилиндра, а также гильзы цилиндра образуют камеры сгорания, расположенные с обеих сторон одного и того же поршня, что обеспечивает возможность поочередного осуществления рабочих процессов с обеих сторон одного и того же поршня, то есть, его двойное действие (двигатель двойного действия), при этом паз выполнен на боковой поверхности поршня, передаточные механизмы установлены в корпусе двигателя, а механизм взаимодействия поршня с выходным валом расположен внутри поршня двигателя.

РИСУНКИ

Рисунок 1

www.findpatent.ru

Поршневой, бесшатунный двигатель внутреннего сгорания (варианты)

Изобретение относится к машиностроению, в частности к двигателестроению. Техническим результатом является повышение экономичности и ресурса двигателя за счет уменьшения трения поршней о стенки цилиндра. Сущность изобретения заключается в том, что двигатель содержит коленвал с радиусом кривошипа, равным четверти хода поршня, размещенный на кривошипе эксцентрик с эксцентриситетом, равным четверти хода поршня, и ползун, надетый на эксцентрик и опирающийся на боковые поверхности картера. Ползун соединен с поршнем при помощи штока. Для прохождения «мертвых» точек механизм оснащен фиксаторами в виде подпружиненных роликов, которые позволяют вращаться коленвалу только в одну сторону, а эксцентрику - в противоположную. Например, на эксцентрике устанавливается упор в виде эвольвентного зуба или цилиндрического штифта, а на картере выполняются ответные впадины. 3 н.п. ф-лы, 13 ил.

 

Изобретение относится к машиностроению, в частности к двигателестроению, и может быть использовано на транспортных средствах: мотоциклах, автомобилях, речных судах, летательных аппаратах, а также в качестве привода стационарных энергетических установок.

Аналогом предлагаемому двигателю являются бесшатунные двигатели Баландина (Баландин С.С. Бесшатунные двигатели внутреннего сгорания, 1972).

В бесшатунных двигателях Баландина в несколько раз снижаются потери на трение, значительно увеличивается КПД, повышается надежность и создаются условия для увеличения ресурса двигателей за счет снижения трения поршней о цилиндры вследствие применения бесшатунного механизма преобразования движения.

Механический КПД опытных бесшатунных моторов Баландина равен 94% против 75…85% двигателей с кривошипно-шатунными механизмами.

Прототипом является двигатель внутреннего сгорания Баландина, выполненный по схеме со спаренным эксцентриком (То же, стр.14. Рис. 11в).

Коленчатый вал этого двигателя аналогичен коленчатому валу кривошипно-шатунного двигателя, но имеет в два раза меньший радиус кривошипа. На шатунной шейке коленвала установлен спаренный эксцентрик. На эксцентрики устанавливаются ползуны, которые через штоки соединены с поршнями. Ползуны относительно друг друга расположены под углом 90°, поэтому двигатель может быть выполнен по Х и V-образным схемам.

Этот двигатель имеет недостатки. Так как эксцентрик спаренный, то двигатель невозможно выполнить рядным, расположить цилиндры в одной плоскости, что для автомобилестроения немаловажно. На коленвале невозможно выполнить среднюю опору между цилиндрами из-за спаренного эксцентрика, поэтому двигатель имеет небольшой ресурс. Двигатель сложен в изготовлении.

Изобретение направлено на устранение перечисленных недостатков.

Техническим результатом для всех трех вариантов является повышение экономичности и ресурса двигателя за счет уменьшения трения поршней о стенки цилиндра. Сущность изобретения заключается в том, что каждый цилиндр двигателя оснащен своим эксцентриком, расположенным на кривошипе коленвала, а также оснащен фиксаторами для прохождения средних «мертвых» точек. Для недопустимости обратного вращения коленвала на его коренной шейке также установлен фиксатор. Как вариант, для прохождения «мертвых» точек на эксцентрике устанавливается упор в форме эвольвентного зуба или в форме штифта, а в картере выполнены ответные впадины. Сущность изобретения поясняется при помощи чертежей.

На фиг.1 показан описываемый бесшатунный двигатель;

на фиг.2 - то же, разрез по А-А фиг.1;

на фиг.3 - то же, при положении поршня в средней правой «мертвой» точке;

на фиг.4 - то же, при положении поршня в средней левой «мертвой» точке;

на фиг.5 - то же, момент прохождения поршнем средней правой «мертвой» точки по инерции;

на фиг.6 - двигатель, разрез по Б-Б фиг.1;

на фиг.7 показаны силы, действующие при пуске двигателя в момент прохождения поршнем средней правой «мертвой» точки;

на фиг.8 показаны силы, действующие при пуске двигателя в момент прохождения поршнем средней левой «мертвой» точки;

на фиг.9 показано прохождение средней «мертвой» точки эксцентриком с упором в форме эвольвентного зуба;

на фиг.10 показано взаимное расположение зубьев и впадин:

- а - 15° до средней «мертвой» точки;

- 6 - 30° после средней «мертвой» точки;

на фиг.11 - показан пример выполнения упора эксцентрика в форме штифта;

Фиг.12 - поршень с ползуном и штоком, выполненные одной деталью;

Фиг.13 - четырехцилиндровый поршневой, бесшатунный двигатель.

Двигатель состоит из картера 1 (см. Фиг.1 и 2), в котором находится механизм преобразования движения, состоящий из коленвала 2, эксцентрика 3, ползуна 4, штока 5. Шток соединен с ползуном через палец 6. К картеру крепится цилиндр 7, в котором установлен поршень 8 с поршневыми кольцами 9. Поршень соединен со штоком поршневым пальцем 10. К цилиндру крепится головка цилиндра 11, на который установлена свеча зажигания 12, впускной и выпускной клапаны 13, 14. На картере выполнены направляющие поверхности 15 для ползуна. В ползуне установлены ролики 16, фиксируемые пружинами 17. На двигателе установлены система охлаждения, система смазки, система топливопитания, система пуска, механизм газораспределения, как на обычных поршневых двигателях внутреннего сгорания.

Особенностью предлагаемого двигателя является то, что он имеет четыре «мертвые» точки. Верхняя «мертвая» точка - при положении поршня в крайнем верхнем положении. Нижняя «мертвая» точка - при положении поршня в крайнем нижнем положении. Средняя-правая «мертвая» точка - при положении поршня в середине между крайними положениями, при этом кривошип коленвала повернут вправо на 90° от оси цилиндра. Средняя-левая «мертвая» точка при положении поршня в середине между крайними положениями, при этом кривошип коленвала повернут влево на 90° от оси цилиндра. Средние правая и левая «мертвые» точки показаны на Фиг.3 и 4. Прохождение «мертвых» точек работающего двигателя происходит за счет инерционных сил. На Фиг.5 показан момент прохождения средней-правой «мертвой» точки. Поршень двигается вниз, коленвал вращается вправо, эксцентрик вращается влево и проходит среднюю «мертвую» точку за счет инерционной силы 18 от поршня, ползуна, штока и эксцентрика.

Для прохождения средних «мертвых» точек неработающего двигателя, например в момент пуска двигателя, в ползуне установлены фиксаторы, которые состоят из роликов и пружин. Фиксаторы позволяют вращаться эксцентрику только в одну сторону. Для недопущения вращения коленвала в обратную сторону на картере в опоре коренной шейки коленвала установлены фиксаторы (см. Фиг.6), состоящие из роликов 19 и пружин 20.

Действие сил при прохождении средней-правой «мертвой» точки при пуске двигателя показано на Фиг.7. При пуске двигателя пусковое устройство сообщает коленвалу угловую скорость ω, при этом кривошип коленвала действует в точке А на эксцентрик с силой Р. Ролик 16 фиксирующего устройства, находящийся справа, тормозит эксцентрик 4 в точке В. Сила Р на плече L создает момент М, который вращает эксцентрик. Эксцентрик, вращаясь, двигается вниз, тянет за собой ползун, который через шток двигает поршень со скоростью v.

Действие сил при прохождении средней-левой «мертвой» точки при пуске двигателя показано на Фиг.8. При пуске двигателя пусковое устройство сообщает коленвалу угловую скорость ω, при этом кривошип коленвала действует в точке А на эксцентрик с силой Р. Ролик 16 фиксирующего устройства, находящийся слева, тормозит эксцентрик 4 в точке В. Сила Р на плече L создает момент М, который вращает эксцентрик. Эксцентрик, вращаясь, двигается вверх, тянет за собой ползун, который через шток двигает поршень со скоростью v.

Для прохождения средних «мертвых» точек в момент пуска двигателя (как вариант) на эксцентрике можно установить упор в виде зуба или штифта, а на картере сделать упор в виде выемки. Прохождение средней «мертвой» точки эксцентрика с упором, выполненным в форме зуба, показано на Фиг.9. Эвольвентный зуб 21 выполняется за одно целое с эксцентриком или изготавливается отдельной деталью и закрепляется на эксцентрике со стороны кривошипа. На картере выполнены напротив кривошипа в средней левой и правой «мертвых» точках две выемки 22 в форме впадин шестерен с внутренним зубчатым зацеплением. Д1 - делительный диаметр для зуба. Д2 - делительный диаметр впадин. Делительный диаметр зуба Д1 равен половине диаметра Д2 впадин.

На Фиг.10,а показано положение зуба эксцентрика в момент 15° до средней «мертвой» точки. На Фиг.10,б показано положение зуба эксцентрика в момент - 30° после средней мертвой точки поворота кривошипа коленвала.

На Фиг.11 упор эксцентрика выполнен в форме штифта 23, диаметр Д1 равен половине диаметра Д2, поэтому впадина 24 имеет форму цилиндрической галтели. При любом другом отношении диаметров Д1 к Д2 впадина будет иметь вид циклоиды.

Упоры в виде зубьев или штифтов можно разместить на картере, а впадины выполнить на эксцентрике.

Детали - поршень, поршневой палец, шток, палец штока, ползун - можно выполнить одной целой деталью, как у двигателей Баландина. Такая деталь показана на Фиг.12.

Работа предлагаемого двигателя не отличается от работы поршневого двигателя внутреннего сгорания с кривошипно-шатунным механизмом.

Двигатель может быть двухтактным или четырехтактным, может быть бензиновым или дизельным.

Отличительной особенностью предлагаемого бесшатунного двигателя является то, что он может быть рядным или оппозитным, а при выполнении двигателя четырехцилиндровым двигатель полностью уравновешен. Инерционные силы поршней, эксцентриков, ползунов соответственно попарно направлены друг к другу, поэтому взаимно компенсируются. Возникающий момент пары сил M1 от поршней П1 и П2 компенсируется моментом М2 от поршней П3 и П4 (см. Фиг.13).

Преимущество предлагаемого двигателя перед двигателем с кривошипно-шатунным механизмом - в уменьшении трения поршней о стенки цилиндров, в результате чего в несколько раз снижаются суммарные потери мощности на трение, значительно увеличивается коэффициент полезного действия, улучшается экономичность, повышается моторесурс.

Предлагаемый двигатель можно легко построить из автомобильного двигателя. Необходимо заменить коленвал автомобиля на коленвал с кривошипами с уменьшенным в два раза радиусами, в картере необходимо выполнить направляющие плоскости для ползунов. Установить ползуны с эксцентриками на кривошипы. В ползуны и в опору коленвала установить фиксаторы (шарики или ролики с пружинами).

Увеличение себестоимости изготовления двигателя окупается экономией топлива и увеличением ресурса по предварительным расчетам в два-три раза.

1. Поршневой, бесшатунный двигатель внутреннего сгорания, состоящий из картера, к которому крепится цилиндр, с размещенным в нем поршнем с поршневыми кольцами, закрепленной к цилиндру головкой с камерой сгорания и свечей зажигания, механизмом газораспределения, системой смазки, системой охлаждения, системой пуска, системой топливопитания, механизмом преобразования прямолинейного движения во вращательное движение, состоящего из коленвала с кривошипом, равным четверти хода поршня, эксцентриком с эксцентриситетом, равным четверти хода поршня, размещенным на кривошипе, ползуна, надетого на эксцентрик, опирающегося на опорные плоскости, выполненные в картере, отличающийся тем, что, с целью упростить конструкцию и уменьшить механические потери, для каждого цилиндра выполняется отдельный эксцентрик, который фиксируется для прохождения «мертвых» точек подпружиненными роликами, установленными в отверстиях, выполненных в ползунах по касательной к диаметру эксцентрика, для недопущения вращения коленвала в нерабочую сторону, в опоре картера шейки коленвала установлены подпружиненные ролики.

2. Поршневой, бесшатунный двигатель внутреннего сгорания, состоящий из картера, к которому крепится цилиндр, с размещенным в нем поршнем с поршневыми кольцами, закрепленной к цилиндру головкой с камерой сгорания и свечей зажигания, механизмом газораспределения, системой смазки, системой охлаждения, системой пуска, системой топливопитания, механизмом преобразования прямолинейного движения во вращательное движение, состоящего из коленвала с кривошипом, равным четверти хода поршня, эксцентриком с эксцентриситетом, равным четверти хода поршня, размещенным на кривошипе, ползуна, надетого на эксцентрик, опирающегося на опорные плоскости, выполненные в картере, отличающийся тем, что для прохождения «мертвых» точек на эксцентрике устанавливается упор в форме эвольвентного зуба, а в картере имеются две выемки в форме эвольвентных впадин, расположенные напротив друг друга в плоскости оси коленвала, перпендикулярной плоскости цилиндра, при этом диаметр делительной окружности зуба в два раза меньше делительного диаметра впадин.

3. Поршневой, бесшатунный двигатель внутреннего сгорания, состоящий из картера, к которому крепится цилиндр, с размещенным в нем поршнем с поршневыми кольцами, закрепленной к цилиндру головкой с камерой сгорания и свечей зажигания, механизмом газораспределения, системой смазки, системой охлаждения, системой пуска, системой топливопитания, механизмом преобразования прямолинейного движения во вращательное движение, состоящего из коленвала с кривошипом, равным четверти хода поршня, эксцентриком с эксцентриситетом, равным четверти хода поршня, размещенным на кривошипе, ползуна, надетого на эксцентрик, опирающегося на опорные плоскости, выполненные в картере, отличающийся тем, что для прохождения «мертвых» точек на эксцентрике устанавливается упор в форме штифта, а в картере выполняются две выемки, расположенные напротив друг друга в плоскости оси коленвала, перпендикулярной плоскости цилиндра, форма которых может быть цилиндрической или циклоидной в зависимости от отношения диаметров, на которых расположены штифт и впадины.

www.findpatent.ru

Дизельный поршневой бесшатунный двигатель внутреннего сгорания

 

Полезная модель относится к двигателестроению, а именно, к дизельным поршневым бесшатунным двигателем внутреннего сгорания, и может быть использована в различных областях народного хозяйства, например, на транспорте в качестве приводов автомобилей, судов, тепловозов и др. Техническая задача заключается в создании такого бесшатунного поршневого двигателя, с планетарным преобразователем прямолинейного движения поршней во вращательное движение выходного вала, у которого вообще отсутствовал бы клапанный газораспределительный механизм и который был бы надежен и долговечен в работе при компактных радиальных и продольных габаритах, а именно, создание двухтактного дизельного поршневого бесшатунного двигателя внутреннего сгорания. В дизельном поршневом бесшатунном двигателе внутреннего сгорания, включающем корпус, установленный в нем выходной вал, взаимодействующий с шестернями планетарного односателлитного механизма, цилиндры с поршнями, размещенные попарно-противоположно, поршни снабжены подпятниками, установленными с возможностью свободного перемещения в пазах замыкающего кольца, и взаимодействуют с замыкающим кольцом и с роликами-толкателями, размещенными в ступицах шестерен, взаимодействующих с неподвижными зубчатыми колесами планетарного односателлитного механизма при передаточном отношении шестерни и зубчатого колеса 1:2. Двигатель снабжен плунжерными насосами высокого давления по числу цилиндров для впрыскивания в них топлива с возможностью приведения плунжера каждого насоса в движение от указанного планетарного механизма посредством указанных роликов-

толкателей в момент приближения поршня соответствующего цилиндра к верхней мертвой точке. Кроме того, полости цилиндров соединены с кольцевыми впускным и выпускным коллекторами и через них с впускной и выпускной камерами турбокомпрессора, который создает вихревой поток газов общего направления при нагнетании и выхлопе.

Полезная модель относится к двигателестроению, а именно, к дизельным поршневым бесшатунным двигателем внутреннего сгорания, и может быть использована в различных областях народного хозяйства, например, на транспорте в качестве приводов автомобилей, судов, тепловозов и др.

Известны бесшатунные двигатели внутреннего сгорания (см. книгу С.С.Баландина «Бесшатунные двигатели внутреннего сгорания», М. «Машиностроение, 1968 г., стр.25 рис.23, стр.39 рис.40, стр.47 рис.48) с крестообразным, Х-образным и У-образным расположением цилиндров, содержащие картер, цилиндры, поршни со штоками, ползуны или заменяющие их шестерни, коленчатые валы и др.

Эти двигатели имеют кинематически громоздкие, сложные в изготовлении механизмы газораспределения, кроме того, наличие ползунов уменьшает габариты двигателей, но не устраняет эффект их заклинивания из-за невозможности обеспечить изготовление направляющих с требуемой геометрической точностью.

Известен бесшатунный двигатель внутреннего сгорания (см. SU 1262074, F04B 75/24, 07.10.1986 г.), включающий два поршня, жестко соединенных между собой штоком и размещенных в цилиндре с возможностью возвратно-поступательного перемещения, два коленчатых вала, шейки которых через подшипники соединены со штоком, две тяги, соединяющие коленчатые валы, кривошипы, связанные с соединительным валом с помощью шестерен, два механизма газораспределения.

Такой бесшатунный двигатель внутреннего сгорания сложен в изготовлении, а наличие коленчатых валов увеличивает его габариты по длине.

Наиболее близким к предложенному является бесшатунный двигатель внутреннего сгорания (см. RU 2298107 C1, 31.10.2005 г.), включающий корпус с крышками, установленный в них выходной вал, взаимодействующий с шестернями, цилиндры и поршни, размещенные в одной плоскости, поршни снабжены опорными шайбами и подпятниками, выполненными с шейками, имеющими сферические поверхности, взаимодействующие с радиальным внутренним профилем пазов, выполненных в замыкающем кольце, размещенном между опорными шайбами и шейками подпятников, контактирующих с роликами-толкателями, размещенными в ступицах шестерен, установленных в щечках выходного вала и взаимодействующих с неподвижным зубчатым колесом, при этом подпятники установлены с возможностью свободного перемещения в пазах замыкающего кольца, корпус выполнен в виде кольца, а передаточное отношение шестерен и зубчатого колеса равно 1:2.

Недостатком такого двигателя с планетарным механизмом, преобразующим прямолинейное движение поршней во вращательное движение выходного вала, является использование в его конструкции громоздкого клапанного механизма газораспределения.

Техническая задача, поставленная в предполагаемой полезной модели, заключается в создании такого бесшатунного поршневого двигателя, с планетарным преобразователем прямолинейного движения поршней во вращательное движение выходного вала, у которого вообще отсутствовал бы клапанный газораспределительный механизм и который был бы надежен и долговечен в работе при компактных радиальных и продольных габаритах, а именно, создание двухтактного дизельного поршневого бесшатунного двигателя внутреннего сгорания.

Поставленная задача решается тем, что в дизельном поршневом бесшатунном двигателе внутреннего сгорания, включающем корпус, установленный в нем выходной вал, взаимодействующий с шестернями планетарного односателлитного механизма, цилиндры с поршнями,

размещенные попарно-противоположно, поршни снабжены подпятниками, установленными с возможностью свободного перемещения в пазах замыкающего кольца, и взаимодействуют с замыкающим кольцом и с роликами-толкателями, размещенными в ступицах шестерен, взаимодействующих с неподвижными зубчатыми колесами планетарного односателлитного механизма при передаточном отношении шестерни и зубчатого колеса 1:2, а двигатель снабжен плунжерными насосами высокого давления по числу цилиндров для впрыскивания в них топлива с возможностью приведения плунжера каждого насоса в движение от указанного планетарного механизма посредством указанных роликов-толкателей в момент приближения поршня соответствующего цилиндра к верхней мертвой точке.

Кроме того, полости цилиндров соединены с кольцевыми впускным и выпускным коллекторами и через них с впускной и выпускной камерами турбокомпрессора, который создает вихревой поток газов общего направления при нагнетании и выхлопе.

На фиг.1 - изображен дизельный поршневой бесшатунный двигатель внутреннего сгорания в поперечном разрезе;

На фиг.2 - разрез дизельного поршневого бесшатунного двигателя внутреннего сгорания по осям цилиндров, вид сверху.

Дизельный поршневой бесшатунный двигатель внутреннего сгорания содержит выполненный в виде кольца корпус 1, в котором размещено четное множество, например, четыре, лежащих в одной плоскости и расположенных попарно-противоположно цилиндров 2, с закрепленными на них головками 3, в которых установлены форсунки 4 и калильные свечи 5. В цилиндрах 2 установлены с возможностью возвратно-поступательного перемещения поршни 6, снабженные подпятниками 7, размещенными в пазах замыкающего кольца 8 с возможностью свободного перемещения и контактирования с роликами-толкателями 9, установленными на осях 10 в ступницах 11 шестерн 12 и

13, образующих сателлитный блок, установленный на подшипниках 14 в щечках водила 15, установленного на подшипниках 16 в крышках 17, 18 корпуса 1. Водило 15 имеет выходной вал 19.

Зубчатые колеса 20 и 21 размещены в корпусе 1 неподвижно с возможностью взаимодействия с подвижными шестернями 12 и 13. Передаточное отношение шестерен 12 и 13 и зубчатых колес 20 и 21 равно 1:2.

Цилиндры 2 корпуса 1 снабжены впускными 22 и выпускными 23 каналами, соединенными с впускными 24 и выпускным 25 коллекторами, которые соединены с турбокомпрессором 26, имеющим воздушный фильтр 27. В корпусе 1 установлены насосы высокого давления с плунжерами 28, взаимодействующими с роликами 29. Плунжеры 28 снабжены возвратными пружинами 30.

Работа предлагаемого дизельного бесшатунного поршневого двигателя внутреннего сгорания осуществляется следующим образом.

Предварительно топливо поступает через топливные штуцеры в нагнетательные камеры насосов высокого давления. При вращении выходного вала 19 водила 15 от стартера, воздух через воздушный фильтр 27 турбокомпрессора 26 поступает во впускной коллектор 24 и из него через впускной канал попадает в тот цилиндр, у которого поршень 6 находится в нижней мертвой точке (НМТ) и который имеет открытое впускное окно. При дальнейшем вращении выходного вала 19 ролик 9, перемещаясь прямолинейно по стрелке «А», входит в контакт с подпятником 7 и, продолжая свое движение, передвигает поршень в сторону верхней мертвой точки (ВМТ), при этом ролик 29 вступает в контакт с толкателем плунжера 28 насоса высокого давления развивает максимальное давление, и через форсунку 4 происходит впрыск топлива в камеру сгорания, в которой находится сжатый воздух, топливо-воздушная смесь воспламеняется и происходит рабочий ход поршня 6, который двигаясь вдоль цилиндра 2 перемещает подпятник 7 до контакта

его с роликом-толкателем 9, передавая ему усилие рабочего хода поршня. Ролик толкатель 9, перемещаясь прямолинейно по траектории, проходящей через центр двигателя воздействует через оси 10 установленные в ступицах 11 шестерен 12 и 13, образующие односателлитный блок, который, вращаясь на подшипниках 14 в щечках водила 15 обеспечивает зацепление шестерен 12 и 13 с неподвижными зубчатыми колесами 20 и 21 и передает вращение выходному валу 19. Одновременно поршень 6 через опорную проточку подпятника 7 воздействует на замыкающее кольцо 8, которое передает движение противоположно расположенному поршню 6, осуществляя начальную фазу такта сжатия, завершение которого осуществляет ролик-толкатель 9, достигнув противоположного крайнего положения. Поршни 6 последовательно через ролики-толкатели 9 блока шестерен 12 и 13, двигаясь по своим прямолинейным траекториям, передают вращение водилу 15 и выходному валу 19.

Замыкающее кольцо 8 при работе двигателя выполняет функцию синхронизатора скоростей перемещения поршней 6 и роликов-толкателей 9. Оно определяет величину хода поршней, равную двум величинам эксцентриситета его установки в корпусе 1. Водило 15, вместе с выходным валом 19 поворачивается на позицию следующего цилиндра, заставляя выполнить его ту же работу. При наборе оборотов выхлопные газы, вырываясь через выхлопной коллектор 25, попадают на турбину турбокомпрессора 24, обороты турбины нарастают, а с ними увеличивается и объем воздуха, нагнетаемого в камеры сгорания цилиндров. Двигатель, работая в двухтактном режиме дизеля, набирает обороты. Полная продувка и очистка цилиндров от продуктов горения осуществляется за счет паузы, которая возникает в НМТ поршня при уходе от него ролика 9 к противоположно расположенному поршню для выполнения очередного рабочего цикла, а в этот промежуток времени впускной 22 и выпускной 23 каналы остаются открытыми и,

соответственно, продуваемыми турбокомпрессором 27 вплоть до возврата ролика и начала очередного такта сжатия.

При этом ход поршней ограничен величиной хода замыкающего кольца, равной двум величинам его эксцентриситета.

1. Дизельный поршневой бесшатунный двигатель внутреннего сгорания, включающий корпус, установленный в нем выходной вал, взаимодействующий с шестернями планетарного односателлитного механизма, цилиндры с поршнями, размещенные попарно противоположно, поршни снабжены подпятниками, установленными с возможностью взаимодействия с роликами-толкателями, размещенными в ступицах шестерен, взаимодействующих с неподвижными зубчатыми колесами планетарного односателлитного механизма при передаточном отношении шестерни и зубчатого колеса 1:2, отличающийся тем, что двигатель снабжен плунжерными насосами высокого давления по числу цилиндров для впрыскивания в них топлива с возможностью приведения плунжера каждого насоса в движение от указанного планетарного механизма в момент приближения поршня соответствующего цилиндра к верхней мертвой точке.

2. Двигатель по п.1, отличающийся тем, что полости цилиндров соединены с кольцевыми впускным и выпускным коллекторами и через них с впускной и выпускной камерами турбокомпрессора, который создает вихревой поток газов общего направления при нагнетании и выхлопе.

poleznayamodel.ru


Смотрите также