ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Как будет работать термоядерный ракетный двигатель. Термоядерный двигатель


Термоядерные двигатели - путь в космос

Самый простой вариант такого двигателя — пробкотрон, состоящий всего из двух магнитных катушек, пробок, расположенных на некотором удалении друг от друга. Иногда посередине добавляют менее мощные катушки, которые позволяют управлять профилем магнитного поля между пробками. При достаточно большом размере в пробкотроне может проходить термоядерная реакция, выделяющая чуть больше энергии, чем тратится на ее поддержание. Но, увы, совсем ненамного и только при работе на смеси дейтерия и трития. Поскольку КПД преобразования тепловой энергии в электрическую невелик, пробкотрон всегда будет требовать для своей работы подвода энергии извне. Если вспомнить, какие мощности необходимы для создания существенной тяги при большом удельном импульсе, получится, что для питания двигателя нам потребуется полномасштабная космическая АЭС. В таких условиях проще отказаться от термоядерного реактора и использовать куда более простую и существенно лучше отработанную связку из АЭС и электрореактивных двигателей.

Развитием идеи пробкотрона является многопробочная ловушка (с гофрированным полем). В первом приближении путем увеличения ее длины можно достичь сколь угодно хорошего удержания плазмы, вплоть до зажигания самоподдерживающейся термоядерной реакции, не требующей подвода энергии извне. С учетом высокой плотности плазмы, которую можно достичь в ловушке такого типа, она производит впечатление весьма перспективного кандидата. Увы, есть две проблемы, существенно снижающие перспективность этого направления. Первая — это потери плазмой энергии поперек магнитного поля, которые для установок большой длины, скорее всего, станут основными. Вторая проблема состоит в том, что даже для смеси дейтерия и трития (1:1) необходимая длина двигателя составит около 1 км, а это на порядок превосходит размер МКС (для других видов топлива размеры двигателя будут еще больше).

Вакуум на халяву

Одной из важнейших проблем термоядерного синтеза является взаимодействие стенок вакуумной камеры и плазмы. Оно существенно ухудшает параметры плазмы, а сама стенка разрушается. Термоядерные ракетные двигатели предполагается использовать только в космосе, так что космический вакуум позволяет убрать из конструкции стенку, оставив лишь небольшие защитные накладки на магнитных катушках. Это существенно облегчит задачу зажигания термоядерной плазмы. Потенциально может случиться так, что первые термоядерные двигатели начнут работать раньше, чем наземные термоядерные электростанции.

Другим развитием пробкотрона является газодинамическая плазменная ловушка, в которой длинная область с однородным магнитным полем относительно небольшой напряженности с обоих концов заканчивается мощными магнитными пробками или парами пробок (дополнительными пробкотронами с мощным полем). Положительное свойство такой ловушки — хорошо предсказуемое поведение плазмы в ней. Однако ее длина, как и в случае многопробочной ловушки, должна будет составлять около километра или более даже при дейтерий-тритиевом топливе.

Наиболее простая открытая плазменная ловушка — пробкотрон. В простейшем случае она состоит всего из двух магнитных катушек. Развитие пробкотрона — многопробочная и газодинамическая ловушки.

Еще один вариант открытых ловушек — это ловушки с амбиполярным удержанием плазмы. В простейшем случае это система из трех пробкотронов: один центральный с очень большой длиной и два маленьких на торцах. Непрерывно подаваемая разогретая плазма в торцевых пробкотронах не дает уходить плазме из центрального пробкотрона. Сделав центральную часть достаточно длинной, мы всегда можем производить в ней больше энергии, чем нужно для поддержания плазмы в концевых участках. Такая ловушка теоретически должна получиться заметно короче газодинамической или многопробочной. Но есть у нее и недостатки. Во‑первых, обязательная инжекция плазмы в концевых участках и нагрев ее там, на что требуются десятки и даже сотни мегаватт. Таким образом, реактор должен стать не только двигателем, но и основой полномасштабной электростанции для поддержания собственной работы. Во‑вторых, конфигурация электромагнитного поля в амбиполярной ловушке куда сложнее, чем в других типах открытых ловушек, а объем экспериментальных данных недостаточен. Так что пока говорить об осуществимости такого двигателя слишком рано.

Силы инерции

В ловушках с магнитным удержанием удельный импульс ограничен температурой плазмы, которая, в свою очередь, ограничена конструкцией. А вот инерциальный ядерный синтез потенциально позволяет получить удельный импульс порядка 10 000 000 м/с (около 3% от скорости света), что делает его идеальным вариантом для межзвездных зондов. Именно этот принцип был использован в известном проекте звездолета «Дедал», который разрабатывался группой специалистов из Британского межпланетного общества в 1970-х годах. Его же использует разрабатываемый сейчас наследник «Дедала» — «Икар».

Инерциальный синтез. Основная идея инерциального синтеза состоит в равномерном облучении крупинки термоядерного топлива мощными потоками частиц (фотонов, ионов, электронов), что приводит к ее сжатию и разогреву.

Термоядерные двигатели на инерциальном синтезе — это импульсные термоядерные реакторы, дополненные магнитным соплом для продуктов реакции. Поскольку зажигание самоподдерживающейся реакции здесь принципиально невозможно, реактор должен быть не только двигателем, но и электростанцией для обеспечения энергией самого себя. Причем его электрическая мощность должна составлять как минимум 10% от мощности реактивной струи. Расчеты показывают, что при тяге двигателя всего 2000 Н (204 кгс) и удельном импульсе 10 000 000 м/с нам потребуется мощность ракетного двигателя в 10 ГВт, а электрическая — не менее 1 ГВт. Это мощность целого энергоблока крупной АЭС.

Кроме того, нет оснований полагать, что в сколько-нибудь обозримом будущем будут созданы космические лазеры, пригодные для обжатия мишеней такого двигателя. Единственным реалистичным вариантом можно считать использование пучков тяжелых ионов. Но и они, с нужными характеристиками, еще не созданы даже для наземных установок.

Глобус-М. Экспериментальный зал ФТИ РАН со сферическим токамаком Глобус-М. Потомки этой установки могут стать основой как наземной электростанции, так и термоядерного ракетного двигателя.

Токамаки в космосе

Почти все авторы проектов термоядерных двигателей игнорируют токамаки, ссылаясь на сложность осуществления отбора плазмы для реактивной струи. Но они ошибаются.

На заре термоядерных исследований предполагалось, что в токамаке плазма будет надежно удерживаться. Однако быстро выяснилось, что плазма поперек магнитного поля уходит на стенку установки и разрушает ее. Одним из наиболее эффективных способов решения этой проблемы оказалась концепция дивертора. Суть ее в том, что в конфигурации магнитного поля создается четкая граница — сепаратриса. Внутри сепаратрисы плазма максимально хорошо удерживается, но за ее пределами почти мгновенно уходит на специальные пластины в нижней (чаще всего) части установки, которая и называется дивертором.

Таким образом взаимодействие между термоядерной плазмой и стенкой существенно ослабляется. Ничто не мешает использовать плазму, пересекающую сепаратрису и уходящую в дивертор, для создания тяги в ракетном двигателе. Напуск водорода в область дивертора позволит, как и в случае открытых ловушек, на порядок повысить тягу, пожертвовав удельным импульсом.

Важнейшее преимущество токамака перед всеми иными концепциями термоядерных ракетных двигателей — максимальная отработанность этого типа магнитных ловушек. Если параметры созданных открытых магнитных ловушек хуже необходимых в сотни раз, то параметры токамаков нужно улучшить всего на порядок. Кроме того, наработки по термоядерному ракетному двигателю окажутся крайне полезными для наземных термоядерных электростанций. Расчеты показывают, что сферический токамак с сильным магнитным полем, работающий на смеси 98% дейтерия и 2% трития, способен развивать выходную мощность порядка 300 МВт. Объединяя несколько таких токамаков, можно получить тягу порядка 1000 кгс при удельном импульсе в 350 000 м/с, при этом расход дейтерия составит 1,5 г/с, а водорода, используемого как дополнительное рабочее тело, — около 26 г/с. Корабль «сухой» массой 565 т, несущий 35 т дейтерия и 600 т водорода, сможет разогнаться до скорости 65 км/с, затормозить, снова разогнаться до этой скорости и снова затормозить. Такие параметры позволяют уложить длительность экспедиции к Сатурну в два года.

Полный бак

На чем же будут работать звездолеты? Выбор топлива — отдельная серьезная проблема. Проще всего запустить реакцию в смеси дейтерия и трития 1:1. Однако с ее использованием есть большие проблемы. Тритий в природе не встречается, его необходимо получать искусственно. Необходимые количества при этом составят десятки тонн, что во много раз превышает возможности его производства за всю историю! Кроме того, он радиоактивен (хотя и слабо) и благодаря этому саморазогревается, так что его практически невозможно хранить в сжиженном виде, а хранить под давлением, да еще и охлаждать — не самая простая задача.

www.popmech.ru

Термоядерный ракетный двигатель — WiKi

В настоящее время предложены 2 варианта конструкции ТЯРД :

ТЯРД на основе термоядерного реактора с магнитным удержанием плазмы

В первом случае принцип действия и устройство ТЯРД выглядят следующим образом: основной частью двигателя является реактор, в котором происходит управляемая реакция термоядерного синтеза. Реактор представляет собой полую «камеру» цилиндрической формы, открытую с одной стороны, т. н. установку термоядерного синтеза схемы «открытая ловушка» (также именуемую «магнитная бутылка» или пробкотрон). «Камера» реактора вовсе не обязательно (и даже нежелательно) должна быть цельно-герметичной, скорее всего она будет представлять собой легкую размеростабильную ферму, несущую катушки магнитной системы. В настоящее время наиболее перспективной считается схема т. н. «амбиполярного удержания» или «магнитных зеркал» (англ. tandem mirrors), хотя возможны и другие схемы удержания: газодинамические ловушки, центробежное удержание, обращенное магнитное поле (FRC). По современным оценкам, длина реакционной «камеры» составит от 100 до 300 м при диаметре 1-3 м. В камере реактора создаются условия, достаточные для начала термоядерного слияния компонентов выбранной топливной пары (температуры порядка сотен миллионов градусов, факторы критерия Лоусона). Термоядерное топливо — предварительно нагретая плазма из смеси топливных компонентов — подаётся в камеру реактора, где и происходит постоянная реакция синтеза. Генераторы магнитных полей (магнитные катушки той или иной конструкции), окружающие активную зону, создают в камере реактора поля большой напряжённости и сложной конфигурации, которые удерживают высокотемпературную термоядерную плазму от соприкосновения с конструкцией реактора и стабилизируют происходящие в ней процессы. Зона термоядерного «горения» (плазменный факел) формируется по продольной оси реактора. Полученная плазма, направляемая магнитными управляющими системами, истекает из реактора через сопло, создавая реактивную тягу.

Следует отметить возможность многорежимности ТЯРД. Путём впрыска в струю плазменного факела относительно холодного вещества можно резко повысить общую тягу двигателя (за счет снижения удельного импульса), что позволит кораблю с ТЯРД эффективно маневрировать в гравитационных полях массивных небесных тел (например больших планет) где зачастую требуется большая общая тяга двигателя. По общим оценкам, ТЯРД такой схемы может развивать тягу от нескольких килограммов вплоть до десятков тонн при удельном импульсе от 10 тыс. сек до 4 млн. сек. Для сравнения, показатель удельного импульса наиболее совершенных химических ракетных двигателей — порядка 450 сек.

ТЯРД на основе систем инерционного синтеза (импульсный термоядерный реактор)

Двигатель второго типа — инерционный импульсный термоядерный двигатель. В реакторе такого двигателя управляемая термоядерная реакция проходит в импульсном режиме (доли мкс с частотой 1-10Гц), при периодическом обжатии и разогреве микромишеней (топливных «таблеток»), содержащих термоядерное топливо. Первоначально предполагалось использовать лазерно-термоядерный двигатель (ЛТЯРД). Такой ЛТЯРД предлагался, в частности, для межзвёздного автоматического зонда в проекте «Дедал». Его основой и был реактор, работающий в импульсном режиме. В сферическую камеру реактора подаётся топливная таблетка с термоядерным топливом (например, дейтерий и тритий) — сложная конструкция сфер из смеси замороженных топливных компонентов в оболочке диаметром несколько миллиметров. На внешней части камеры находятся мощные — порядка сотен тераватт — лазеры, наносекундный импульс излучения которых через оптически прозрачные окна в стенах камеры попадает на топливную таблетку. При этом на поверхности топливной таблетки создается зона с температурой более 100 млн. градусов при давлении в миллионы атмосфер — условия, достаточные для начала термоядерной реакции. Происходит термоядерный микровзрыв мощностью в несколько сотен килограммов в тротиловом эквиваленте. Частота таких взрывов в камере в проекте «Дедал» — порядка 250 в секунду, что требовало подачи топливных мишеней со скоростью более 10 км/с при помощи электромагнитной пушки. Расширяющаяся плазма вытекает из открытой части камеры реактора через сопло соответствующей конструкции, создавая реактивную тягу. На сегодняшний день уже теоретически и практически доказано, что лазерный метод обжатия/разогрева топливных таблеток — тупиковый путь: невозможно построить лазеры такой мощности с достаточным ресурсом. Поэтому в настоящее время для инерциального синтеза рассматривается вариант с ионно-пучковым обжатием/нагревом топливных таблеток, как более эффективный, компактный и с гораздо большим физическим ресурсом. Тем не менее, в Ливерморской национальной лаборатории имени Эрнеста Лоуренса с 2013 года более четырёх раз в процессе экспериментов на 192 лазерной установке National Ignition Facility получили энергии больше, чем было затрачено для инициации реакции [1].

Однако есть мнение, что инерционно-импульсный ТЯРД получится слишком громоздким из-за очень больших циркулирующих в нём мощностей при худших, чем у ТЯРД с магнитным удержанием, удельном импульсе и тяге, что вызвано импульсно-периодическим характером его действия. Идеологически к ТЯРД на инерционно-импульсном принципе примыкают взрыволёты на термоядерных зарядах типа проекта «Орион».

ТЯРД может использовать различные виды термоядерных реакций в зависимости от вида применяемого топлива. В частности, на настоящее время принципиально осуществимы следующие типы реакций:

Реакция дейтерий + тритий (Топливо D-T)

2H + 3H = 4He + n при энергетическом выходе 17,6 МэВ

Такая реакция наиболее легко осуществима с точки зрения современных технологий, даёт значительный выход энергии, топливные компоненты относительно дёшевы. Недостаток её — весьма большой выход нежелательной (и бесполезной для прямого создания тяги) нейтронной радиации, уносящей большую часть выходной энергии реакции и, как следствие, резко снижающей КПД двигателя. Тритий радиоактивен, период его полураспада — около 12 лет. То есть долговременное хранение трития невозможно. В то же время, возможно окружить дейтериево-тритиевый реактор оболочкой, содержащей литий: последний, облучаясь нейтронным потоком, превращается в тритий, что в известной степени замыкает топливный цикл, поскольку реактор работает в режиме размножителя (бридера). Таким образом, топливом для D-T-реактора фактически служат дейтерий и литий.

Реакция дейтерий + гелий-3

2H + 3He = 4He + p. при энергетическом выходе 18,3 МэВ

Условия её достижения значительно сложнее. Гелий-3, кроме того, редкий и чрезвычайно дорогой изотоп. В промышленных масштабах на настоящее время не производится. Кроме того, что энергетический выход этой реакции выше, чем у D-T-реакции, она имеет следующие дополнительные преимущества:

При реакции D-3He в форме нейтронов выделяется всего около 5% мощности (против 80% для D-T). Около 20% выделяется в форме рентгеновского излучения. Вся остальная энергия может быть непосредственно использована для создания реактивной тяги. Таким образом, реакция D-3He намного более перспективна для применения в реакторе ТЯРД.

Другие виды реакций

Реакция между ядрами дейтерия (D-D, монотопливо) D + D —> 3He + n при энергетическом выходе 3,3 МэВ, и

D + D —> T + p+ при энергетическом выходе 4 МэВ. Нейтронный выход в этой реакции весьма значителен.

Возможны и некоторые другие типы реакций:

p + 6Li → 4He (1,7 MeV) + 3He (2,3 MeV) 3He + 6Li → 2 4He + p + 16,9 MeV p + 11B → 3 4He + 8,7 MeV

Нейтронный выход в указанных выше реакциях отсутствует.

Выбор топлива зависит от многих факторов — его доступность и дешевизна, энергетический выход, лёгкость достижения потребных для реакции термоядерного синтеза условий (в первую очередь, температуры), необходимых конструктивных характеристик реактора и прочее. Наиболее перспективны для осуществления ТЯРД так называемые «безнейтронные» реакции, так как порождаемый термоядерным синтезом нейтронный поток (например, в реакции дейтерий-тритий) уносит значительную часть мощности и не может быть использован для создания тяги. Кроме того, нейтронная радиация порождает наведённую радиоактивность в конструкции реактора и корабля, создавая ещё одну опасность для экипажа. Реакция дейтерий-гелий-3 является перспективной в том числе и по причине отсутствия нейтронного выхода.В настоящее время предложена ещё одна концепция ТЯРД — с использованием малых количеств антиматерии в качестве катализатора термоядерной реакции.

ru-wiki.org

Как будет работать термоядерный ракетный двигатель

Как будет работать термоядерный ракетный двигатель

Габариты Планетной системы и Метагалактики на столько огромны, что запуск ракеты на Луну, полёт на орбиту, нахождение пилотируемой орбитальной станции (МКС) во Вселенной – являются достижениями, но они малы для освоения данного пространства. Национальное управление по воздухоплаванию и исследованию космического пространства США ведет разработку нескольких реактивных моторов и двигателей, работающих на энергии центральной звезды солнечной системы. Всё это делается для возможности полёта на планеты, находящиеся на огромных расстояниях и к которым невозможно долететь на реактивных двигателях.

Пилотируемый космический аппарат с такой силовой установкой, как термоядерный ракетный двигатель, работающий на процессе ядерного синтеза, обязан создавать высокотемпературные реакции, происходящие в центре солнца. Энергия, вырабатываемая в двигателе при помощи реакций воссоздаёт импульс, при использовании таких установок, ракета имеет возможность долететь до Марса примерно за 90 дней, в сравнении со стандартными космическими аппаратами, которым необходимо 210 дней.

Как работает термоядерный синтез

Люди и планета Земля зависят от более 1 миллиона ядерных реакций процесса синтеза, происходящие ежесекундно в центре Солнца. Эти процессы необходимы для жизни, сияния, теплоты. Суть нитратного процесса синтеза – 2 атома H сталкиваются и получается более большой атом He – 4, в процессе этого He выпускает энергию.

Сущность этой реакции:

1. 2 протона вместе создают атом дейтерия, позитрон и нейтрино2. Протон и атом дейтерия образуют атом He-3, состоящим из двух протонов и одного нейтрона, и луч-гамма3. 2 атома He-3 вместе создают атом He-4, состоящим из двух протонов и двух нейтронов, также 2 протона

Ядерный синтез происходит при условии высокой температуры (несколько миллионов градусов) окружающей среды. Природным веществом для получения реакции нитратного процесса синтеза являются массивные газовые шары, излучающие свет (звезды), которые состоят из ионизированного газа. Частично или полностью ионизированный газ представляет собой плазму, её именуют 4-ым состоянием вещества. Плазма состоит из атомов, которые частично лишены электронов. Восемьдесят пять процентов энергии центральной звезды, солнечной системы создает реакция синтеза.

По причине высокого уровня тепла, который нужен для получения ионизированного газа, не получается эту плазму поместить в какой-либо контейнер, потому что человечество не знает такой материал из которого можно изготовить данный тип контейнера. Ионизированный газ отлично пропускает электричество и это способствует удержанию, управлению и ускорению плазмы при помощи силового поля. Космическое агентство США планирует в течении двадцати пяти лет возвести космический аппарат основной принцип работы, которого будет двигатель с процессом на ядерном синтезе.

Ниже приведены образцы проектов двигателей в основу работы которых заложен этот процесс.

Корабль на энергии синтеза

В связи с тем, что в процессе термоядерного синтеза освобождается большое количество энергии, ученые хотят найти возможность приспособить её к двигательной системе. Ракета, работающая на процессе ядерного синтеза сможет выдвинуть на несколько шагов вперед космическое агентство США в погоне за планету Марс. Такая ракета может уменьшит время полёта на Марс на пятьдесят процентов, а это в свою очередь сокращает действие излучения и микро гравитации.

Еще быстрее этой цели нам помог Варп Двигатель, возможностьпостроения которого сейчас исследуется в НАСА, но эта технология еще в столетиях от достижения своего потенциала.

Возведение космического аппарата, работающего на энергии процесса синтеза, равно строительству машины передвигающейся в 2 раза скоростнее любой машины Земле. В космическом кораблестроении эффективность применения горючего реактивным мотором измеряется удельной тягой. Одна сила тяги на одну силу пропеллента, используемая за определенное количество времени называется удельным импульсом.

Мотор, работающий на ядерном синтезе обладает удельной тягой больше чем в триста раз по сравнению с обычными химическими мотором. Стандартно химический мотор имеем тягу около 22 минут, это обозначает, что двигатель дает один кг импульса на один кг горючего за 22 минуты. Космический корабль на процессе синтеза обладает тягой в 139 часов. Такой космический корабль использует в качестве горючего элемент H и поэтому будет иметь возможность заполниться при полете по космосу. Элемент H находится в атмосферах большого количества планет, поэтому для процесса заправки кораблю необходимо только находится в атмосфере.

Космические корабли, работающие на ядерном синтезе обеспечивают большее количество притяжения по сравнению с химическими кораблями, у которых быстро сгорает горючее. При подобном двигателе можно будет долететь до самой дальней отметки планетной системы и за 2 года съездить на Марс с учетом возврата.

У агентства есть еще две программы по разработке технологии ядерного синтеза.

VASIMR – магнитоплазменный космический корабль с переменной удельной тягой

VASIMR – плазменный космический аппарат, предместник аппаратов на нитратном процессе синтеза. Двигатель у этого корабля делает ионизированный газ в очень жарких условиях и потом создает импульс. У такого двигателя 3 звена:

1. Переднее звено – инертное вещество, с помощью которого создается избыточное давление, для элемент Н запускается в звено и ионизируется для получения ионизированного газа.2. Центральное звено – необходимо для увеличения подогрева ионизированного газа электромагнитной энергией. Радиоволны увеличивают энергию в ионизированном газе, как в микроволновке.3. Кормовое звено – силовая дюза, которая меняет энергию ионизированного газа в струю выхлопных газов. Силовое поле необходимо для выброса ионизированного газа и защиты ракеты от соприкосновения с оболочкой. Ионизированный газ уничтожает любое вещество с которым соприкасается. Температура ионизированного газа в дюзе около ста млн градусов Цельсия, что в 25 тысяч выше температуры газа, выбрасываемого из челнока.

Такой двигатель в процессе полета на Марс смог бы разгонятся во время первой половины полета, а потом бы уменьшил скорость во 2-ой половине. Ракету на переменном ионизированном газе применяют с целью определения координат спутников на орбите нашей планеты.

Полет на нитратном процессе синтеза с динамичным газовым отражением

Кроме VASIMIR конструируется система передвижения на процессе синтеза с динамичным газовым отражением. У такого мотора продолговатые тонкие мотки проволоки с током, которые работают как электромагнит, окружая вакуумную камеру ионизированным газом. На концах мотора расположены зеркальные магниты, препятствующие мгновенному выбросу ионизированного газа из мотора, при этом какое-то количество ионизированного газа должно выходить и образовывать тяготение.

Ионизированный газ неустойчив и его проблематично сдерживать, поэтому создание таких агрегатов давалось тяжело. GDM является продолговатым и тонким, и у него магнитные линии расположены продолговато, поэтому оно решает проблему мало устойчивости. Отсутствие стабильности контролируется тем, что какое-то количество ионизированного газа протекает через неширокий фрагмент зеркала.

В 1998 году был проведен опыт: GDM вырабатывает ионизированный газ в ходе работы системы впрыскивания ионизированного газа как в переднем звене системы VASIMR. Такая система вводит газ в GDM и подогревает его микроволновой антеной на частоте 2,45 герц. Данный опыт обосновывает теорию GDM. Ученые продумывают полноразмерную систему мотора с данным устройством.

Но еще большинство прогрессивных идей космического агентства США по созданию двигателей не могут быть реализованы, но основная идея по созданию двигателя на энергии синтеза заложена в них. Кроме концепции синтеза, необходимы еще идеи, которые помогут совершить полет на Марс. Во второй половине двадцать первого века полеты на Марс возможно станут стандартной операцией, как отправка пищи на Международную космическую станцию.

Интересные материалы:

Новая беспроводная электроника может исцеливать раны, а затем растворятся 6 видов транспорта будущего (7 фото)

nlo-mir.ru

Термоядерный ракетный двигатель "Вивернджет" 2.0

Если вы постоянно спотыкаетесь о неточности и ошибки в научной фантастике и не даете насладиться соседу-гуманитарию “Интерстелларом”, то самое время заняться расчетом своего звездолета. Тема довольно увлекательная, и в ней придумано множество невероятных конструкций - от миллиграммовых звездолетов-саморепликаторов, запускаемых из электромагнитного ускорителя, через лазерные паруса, для которых понадобится лазер мощностью в петаватт до звездолетов-астероидов, разгоняемых взрывами атомных бомб и передвигающихся на скорости 300 км/с, как изображенный на картинке выше.

Квинтэссенцией бумажного звездолетостроения является проектирование его двигательной установки. Существует былинный тред на Астрофоруме, где последовательно были разобраны (и похоронены) множество концепций таких двигательных установок. Одной из немногих палочек-выручалочек остается термоядерный двигатель на амбиполярной ловушке, называемый Вивернджет, по нику автора.

Амбиполярная ловушка Амбал-М (впринципе все в кардре - это она) и ее создатели в 1997 году.

Пришло время хоронить и его :) К сожалению, я не владею физикой термоядерной плазмы в достаточной степени, что бы спорить с термоядерной основой Вивернджета - проектом реактора Г.И. Димова  и И.Н. Головина на базе открытой ловушкой с амбиполярным удержанием. И хотя сегодня, очевидно, для АЛ пришла некая осень - новых не строится, имеющиеся аппараты (например Gamma-10) не позволяют уверенно делать скейлинг на гигаваттные размеры, мы оставим в покое базисные положения, и будем использовать их как пробу для инженерных прикидок. Мы будем брать широкие инженерные наработки в рамках ITER и DEMO и кувалдой забивать их в Вивернджет. Очень позитивные допущения по термоядерной части означают, что если инженерия Вивернджета 2.0 окажется неподъемной, это будет означать и конец реальных термоядерных ДУ  на данной концепции.

Упрощенная схема такой ловушки. Правое окончание заменяется магнитным соплом. Тонкие кольца посередине - главный соленоид, с рассмотрения которого мы начнем сегодня.

Двигатель VASIMR не подразумевает термоядерного источника энергии, но тоже создает тягу, выбрасывая горячую плазму, чем-то подобным должен оканчиваться Вивернджет.

Итак, поехали.

Исходный двигатель, представляющий собой открытую ловушку (упрощенно можно сравнить открытые ловушки с надутым шариком с маленьким отверстием, через которое постоянно вытекает плазма, а термоядерная реакция получается при достаточном соотношении "объема ловушки" и "сечения дырочки") имеет все элементы магнитной ловушки - систему нагрева плазмы, магнитную систему и ее питание, топливную подсистему, тепловую защиту и охлаждение. Конкретнее можно разбить двигатель на следующие элементы:

Длинна главного соленоида (ГС), м

100

Длинна концевых пробкотронов (КП), м

10

Радиус плотной плазмы, м

1

Радиус (внутренний) соленоида, м

1,25

Магнитное поле (вакуумное) в ГС, Т

6

Магнитное поле (вакуумное) в центре КП, Т

5

Магнитное поле в пробках, Т

20

Плотность плазмыi , частиц 1014см-3

1,75

Температура плазмыi, кэВ

70

Суммарная

~ 0,9

Энергия инжектируемых ионов, кэВ

500

Погонная термоядерная мощность, МВт/м

34

Объемная термоядерная мощность, МВт/м3

10,8

Термоядерная мощность, МВт

3400

Мощность (суммарная х2) ионных инжекторов КП, МВт

200

Q

~15

Что ж, начнем с “проектирования” главного соленоида.

В Вивернджете 1.0 он состоит из 100 магнитов кольцевой формы с внутренним диаметром 2500 мм. Магниты создают поле на оси ловушки 5.5 Т. Расчет в пакете OpenField показывает, что нам нужно создать ток в 7.5 мегаампер-витка, что бы получить заданные параметры. При этом поле на внутреннем краю катушки достигнет 8,5 Т. (а не 6,6, как у Виверна, пошли первые подвижки).

Вивернджет 1.0 предусматривает, что катушки сечением 100х300 мм с корпусом из бериллия будут заполнены внутри ВТСП лентой в ванне из хладагента. Такая конструкция неработоспособна минимум по трем причинам. Во-первых механические усилия в проводнике, стремящиеся его разорвать будут достигать ~20000 тонн силы, поэтому нам надо разгружать проводник на механическую основу, и не допускать подвижности ленты. Во-вторых в случае квенча (аварийной потери сверхпроводимости) межвитковое напряжение может достигнуть многих киловольт, что приведет к пробою, дуговому разряду и выходу катушки из строя. В-третьих нейтронное тепловыделение в бериллиевом корпусе катушки будет порядка мегаватта - и все это тепло нам надо отвести на температуре 23К. Расход мощности криокулера будет десятки мегаватт на каждую катушку, а проблемы с кипящим дейтерием - впечатляющи.

Думаю, самое время проапгрейдить Вивернджет новыми, реалистичными катушками.

Токонесущий кабель

Реальный кабель их высокотемпературного проводника, используемый в катушках. Такая геометрия проводника называется Рёбель (Roebel).

Не смотря на то, что ВСТП в сегодняшних больших магнитах не применяются из-за заметной деградации критической плотности тока при сильных полях, будем оптимистами. При охлаждении кипящим дейтерием (23К) и назначенной критической температуре 30 К, в поле 8.5 Т критическая плотность тока ВСТП типа ленты второго поколения REBCO примерно равна плотности тока при 77 К в собственном поле, и составляет порядка 400 А/мм^2 ленты.

Реальный ВТСП кабель, испытанный на 20 Т и токе 7 кА.

И результаты повреждения пондемоторными силами (6,8 тонн на метр). Очень серьезная проблема для сильноточных магнитов.

Базируясь на вот этой презентации CERN, “спроектируем” кабель на 40 кА: 100 лент REBCO шириной 12 мм и толщиной 0.1 спаянных в пакет между двумя миллиметровыми полосками стабилизирующей меди. Полученный квадрат 12х12 мм скручивается с шагом 200-300 мм и укладывается в круглый канал титанового кондуита внутренним диаметром 18 мм и внешним размером квадрат 23х23 мм, работающим силовой оболочкой.. В промежутке между титаном и сверхпроводником прокачивается хладагент и расположена спиральная конструкция обеспечивающая его перемешивание и передачу усилий с проводника на кондуит. Такой кабель видится слишком простым и оптимистичным, но для прикидок сойдет и такой.

Разные альтернативные кабели ВСТП. Плотности тока, к сожалению от 4.2 К до 30 К довольно сильно деградируют.

Титановый кабель оборачивается изоляцией и силовым стекловолокном, что увеличивает шаг кабеля в магните до 25 мм. 192 витка кабеля укладываются в прямоугольное сечение соленоида 12х16 (300х400 мм) и оборачивается 5 мм углепластикового укрепления, что дает итоговой размер сечения 1 катушки в 310х410 мм и плотность тока 59 А/мм^2.

Эскиз сечения катушки ГС с вышеописанным кабелем.

Сечение кабеля в 625 мм состоит в основном из титана плотностью 4,5, стеклопластика плотность 2,5, сверхпроводника и меди плотность 8 и хладагента незначительной плотности. Средняя плотность получается в районе 3,3 г/см^3, вес кабеля 577 кг при длине 1750 метров. Добавляя 10% веса на соединения кабеля, систему датчиков, систему вводов и выводов хладагента, получаем окончательный вес магнита в 634 кг.

Разрез по катушке с 192 витками кабеля.

И общий вид секции главного соленоида с тремя катушками и плазмой.

Квенч-коммутация

Индуктивность вышеописанной катушки составит 56 mH, а запасаемая энергия при рабочем токе - 45 Мегаджоулей. Несмотря на небольшую, по меркам магнитных систем, величину, эта энергия в ВТСП кабеле при потере им сверхпроводимости вполне может выделяться довольно локально, пережигая кабель. Для вывода этой энергии из кабеля требуется коммутационное оборудование.

В оригинальном проекте в случае квенча предлагалось, что по мере возрастания сопротивления, ток будет переходить на бериллиевый корпус катушки. Однако есть три соображения в пользу сброса тока с отказавшей катушки на специальный поглотитель:

Во-1 вес бериллиевого корпуса для варианта с реалистичным сечением будет просто больше, чем вес коммутации. Если же это не так — всегда можно вернуться к сбросу тепла в корпус.

Во-2 на этом бериллиевом корпусе без отключения катушки из последовательного соединения с остальными клавного соленоида выделится не 45 мегаджоулей данной, а 4,5 гигаджоуля всех катушек.

Ну и наконец, в случае внутреннего выделения тепла в криогенную массу мы будем вынуждены делать криокулеры в десяток раз более мощными, что драматически скажется на массе.

Силовой тиристор ABB на 5 кА и 2 кВ. В жидком дейтерии ток можно увеличить до 15 кА.

Для сравнения, можно представить себе тиристоры, работающие при температуре 23К, пропускающие полный ток - такие параметры будут где-то в 2-3 раза выше ныне существующих. Пусть вес их будет 10 кг, всего нам понадобится 5 тиристоров, вместе с шинами, управлением и криостатом положим массу модуля коммутации в 90 кг.

Кстати, к вышесказанному. Важным аспектом является теплоизоляция катушки от нагретой поверхности экрана, которым окружена плазма (об этом ниже). Слава богу, в космическом вакууме мы можем обойтись простым и отработанным решением. От теплопритока снаружи каждую катушку будет защищать 20-ти слойная ЭВТИ, площадью в районе 11 квадратных метров весом порядка 20 кг. Общий вес одного магнита главного соленойда 744 кг, а общий вес магнитной системы ГС ~80 тонн. Неплохое увеличение к 10 тоннам в проекте Виверна.

Тепловая нагрузка.

Электромагнитное излучение является одним из основным каналов потерь энергии плазмы. По условиям мощность этого излучения составляет 1 МВт/м^2, что является довольно серьезной величиной. Кроме того, из плазмы утекают нейтроны, уносящие еще 1 мегаватт тепла с каждого квадратного метра. Предложенная автором концепция теплового экрана в виде вольфрамовой фольги, охлаждаемой гелием слишком наивна для таких энергопотоков - слишком высоки механические нагрузки. Проработка термоядерных реакторов будущего обычно рассматривает в качестве поверхностей, контактирующих с плазмой довольно толстые элементы из бериллия или вольфрама. Бериллий для нас является лучшим выбором - нагрузки не так высоки,а вес гораздо важнее. Гелиевое охлаждение на сегодня тоже является по большей части терра инкогнита, но как минимум оно позволяет поднять сбрасываемую температуру с ~600К (в случае воды) до 800-900 К. Единственной серьезной проблемой являются большие затраты мощности на продувку гелия, но в нашем случае вес радиаторов-холодильников (зависящий в 4 степени от температуры) решает.

Прототип первой стенки ИТЭР для нагрузки 2-5 МВт/м^2. Берилий, медный теплотвод с текущей водой, силовая коробка из нержавеющей стали.

Итак, представим себе сплошную бериллиевую трубу, закрывающую всю плазму. Всю плазму необходимо закрывать, потому что у нашего соленоида есть боковые поверхности, которые тоже нуждаются в теплозащите и нейтронной защите , и сделать сплошную цилиндрическую поверхность оказывается самым “легким” решением.  Толщина стенки 12 мм, на внешней поверхности есть мощное оребрение высотой 50 мм, через которое идет теплоноситель. Снаружи к оребрению присоединена обечайка из карбида бора толщиной 20 мм. Еще дальше выполнен второй гелиевый промежуток высотой 40 мм, организованный ребрами из нержавеющей стали, и наконец внешняя, замыкающая оболочка из B4C снова толщиной 20 мм.

Иллюстрация к вышесказанному, разрез вдоль оси трубы.

Карбид бора тут нужен для того что бы замедлять и поглащать нейтроны. Остальные материалы тоже являются хорошими замедлителями, но их слишком мало, что бы как-то снизить нейтронный поток. 40 мм карбида бора, особенно на слегка предварительно термализованных нейтронах снизят нейтронную мощность в несколько десятков раз, и решат общую задачу по снижению нейтронного теплопотока в криогенные катушки до 10 кВт/м^2.

Температура входящего гелия - 430 К (150 C), сбрасываемого - 830 К (550 С). Расход гелия на каждый квадратный метр поверхности составит 935 грамм в секунду или 587 кг/сек на всю конструкцию. При этом 99% излучаемой плазмой энергии (тут надо заметить, что я считаю, что излучается будет гораздо, гораздо больше, но пускай, мы играем честно) будет уходить в гелий. При давлении гелия в 10 МПа нам понадобиться задувать в систему охлаждения 33 кубометра в секунду, что подразумевает довольно значительную систему трубопроводов, компрессоров и клапанов. Если ткнуть пальцем в небо и посчитать, что эта система трубопроводов будет весить не больше 10 килограмм на метр квадратный, добавив вес меди для замыкания токов фуко, датчиков и т.п. мы получим вес теплового экрана - 200 кг/м^2 или 125,6 тонны для всей системы. И это еще очень неплохо по сравнению с 1600 тоннами теплозащиты ИТЭР!

Элемент первой стенки ИТЭР. Обратите внимания на прорези, нужные для снижения токов фуко и центральную конструкцию с водяными манифолдами и  упорными элементами (серые шайбы), через которые замыкаются электромагнитные силы.

Итак, мы получили первый результат на сегодня - ГС потяжелел с 10 до 205 тонн, но стал на один световой год ближе к реальной конструкции.

Продолжение следует...

tnenergy.livejournal.com

Термоядерный ракетный двигатель Википедия

Термоядерный ракетный двигатель (ТЯРД) — перспективный ракетный двигатель для космических полётов, в котором для создания тяги предполагается использовать истечение продуктов управляемой термоядерной реакции или рабочего тела, нагретого за счёт энергии термоядерной реакции.

Принцип работы и устройство ТЯРД[ | код]

В настоящее время предложены 2 варианта конструкции ТЯРД :

ТЯРД на основе термоядерного реактора с магнитным удержанием плазмы[ | код]

В первом случае принцип действия и устройство ТЯРД выглядят следующим образом: основной частью двигателя является реактор, в котором происходит управляемая реакция термоядерного синтеза. Реактор представляет собой полую «камеру» цилиндрической формы, открытую с одной стороны, т. н. установку термоядерного синтеза схемы «открытая ловушка» (также именуемую «магнитная бутылка» или пробкотрон). «Камера» реактора вовсе не обязательно (и даже нежелательно) должна быть цельно-герметичной, скорее всего она будет представлять собой легкую размеростабильную ферму, несущую катушки магнитной системы. В настоящее время наиболее перспективной считается схема т. н. «амбиполярного удержания» или «магнитных зеркал» (англ. tandem mirrors), хотя возможны и другие схемы удержания: газодинамические ловушки, центробежное удержание, обращенное магнитное поле (FRC). По современным оценкам, длина реакционной «камеры» составит от 100 до 300 м при диаметре 1-3 м. В камере реактора создаются условия, достаточные для начала термоядерного слияния компонентов выбранной топливной пары (температуры порядка сотен миллионов градусов, факторы критерия Лоусона). Термоядерное топливо — предварительно нагретая плазма из смеси топливных компонентов — подаётся в камеру реактора, где и происходит постоянная реакция синтеза. Генераторы магнитных полей (магнитные катушки той или иной конструкции), окружающие активную зону, создают в камере реактора поля большой напряжённости и сложной конфигурации, которые удерживают высокотемпературную термоядерную плазму от соприкосновения с конструкцией реактора и стабилизируют происходящие в ней процессы. Зона термоядерного «горения» (плазменный факел) формируется по продольной оси реактора. Полученная плазма, направляемая магнитными управляющими системами, истекает из реактора через сопло, создавая реактивную тягу.

Следует отметить возможность многорежимности ТЯРД. Путём впрыска в струю плазменного факела относительно холодного вещества можно резко повысить общую тягу двигателя (за счет снижения удельного импульса), что позволит кораблю с ТЯРД эффективно маневрировать в гравитационных полях массивных небесных тел (например больших планет) где зачастую требуется большая общая тяга двигателя. По общим оценкам, ТЯРД такой схемы может развивать тягу от нескольких килограммов вплоть до десятков тонн при удельном импульсе от 10 тыс. сек до 4 млн. сек. Для сравнения, показатель удельного импульса наиболее совершенных химических ракетных двигателей — порядка 450 сек.

ТЯРД на основе систем инерционного синтеза (импульсный термоядерный реактор)[ | код]

Двигатель второго типа — инерционный импульсный термоядерный двигатель. В реакторе такого двигателя управляемая термоядерная реакция проходит в импульсном режиме (доли мкс с частотой 1-10Гц), при периодическом обжатии и разогреве микромишеней (топливных «таблеток»), содержащих термоядерное топливо. Первоначально предполагалось использовать лазерно-термоядерный двигатель (ЛТЯРД). Такой ЛТЯРД предлагался, в частности, для межзвёздного автоматического зонда в проекте «Дедал». Его основой и был реактор, работающий в импульсном режиме. В сферическую камеру реактора подаётся топливная таблетка с термоядерным топливом (например, дейтерий и тритий) — сложная конструкция сфер из смеси замороженных топливных компонентов в оболочке диаметром несколько миллиметров. На внешней части камеры находятся мощные — порядка сотен тераватт — лазеры, наносекундный импульс излучения которых через оптически прозрачные окна в стенах камеры попадает на топливную таблетку. При этом на поверхности топливной таблетки создается зона с температурой более 100 млн. градусов при давлении в миллионы атмосфер — условия, достаточные для начала термоядерной реакции. Происходит термоядерный микровзрыв мощностью в несколько сотен килограммов в тротиловом эквиваленте. Частота таких взрывов в камере в проекте «Дедал» — порядка 250 в секунду, что требовало подачи топливных мишеней со скоростью более 10 км/с при помощи электромагнитной пушки. Расширяющаяся плазма вытекает из открытой части камеры реактора через сопло соответствующей конструкции, создавая реактивную тягу. На сегодняшний день уже теоретически и практически доказано, что лазерный метод обжатия/разогрева топливных таблеток — тупиковый путь: невозможно построить лазеры такой мощности с достаточным ресурсом. Поэтому в настоящее время для инерциального синтеза рассматривается вариант с ионно-пучковым обжатием/нагревом топливных таблеток, как более эффективный, компактный и с гораздо большим физическим ресурсом. Тем не менее, в Ливерморской национальной лаборатории имени Эрнеста Лоур

ru-wiki.ru

Термоядерный ракетный двигатель — Традиция

Материал из свободной русской энциклопедии «Традиция»

Проект космического корабля с ЛТЯРД «Дедалус»

Термоя́дерный раке́тный дви́гатель (ТЯРД) — ракетный двигатель, в котором основным источником энергии являются термоядерные реакции. В настоящее время практически работающий двигатель ещё не создан, и работы над ним представляют теоретические изыскания и эксперименты на мощных исследовательских лазерных установках. Практическое значение этого двигателя крайне велико, так как в настоящее время именно в этом двигателе могут быть достигнуты предельные параметры удельного импульса и тяги на единицу веса.

История работ по ЛТС[править]

История термоядерного ракетного двигателя берёт своё начало с середины XX столетия, с того времени когда человечество овладело управляемой ядерной реакцией деления и получило возможность выделять термоядерную энергию в ходе мощных взрывов с использованием атомной бомбы в качестве источника тепла. Кроме того в тот период времени были открыты способы генерации лазерного излучения и было установленно что при фокусировке лазерного луча в его фокусе температуры достигают уровня необходимого для инициирования термоядерных реакций (миллионы К). В ходе исследований было установленно что для наиболее приемлемого к использованию в ЛТЯРД способа контролируемого проведения термоядерных реакций, пригоден лазерный термоядерный синтез (ЛТС). В США и СССР со второй половины 50-х годов и по сегодняшний день в связи с перспективностью ЛТС идёт создание всё более мощных лазерных комплексов, и изучение термоядерных реакций в фокусе лазерного сжатия и нагрева специальных топливных мишеней содержащих смесь дейтерия с тритием. Помимо лазерного сжатия, также проводились и проводятся эксперименты по сжатию и нагреву термоядерных мишеней с помощью сфокусированных электронных и ионных пучков. Последние более выгодны для нагрева вещества до термоядерных температур ввиду более высокого КПД преобразования энергии, но имеют крупный недостаток — большую расходимость и рассеяние энергии в плазме. Именно лазерный нагрев считается поэтому наиболее приемлимым для создания практически работающих реакторов и двигателей на основе инерциального синтеза.

Работы в СССР:

В 1968 году в СССР (ФИАН) была создана первая мощная лазерная установка для экспериментов по сжатию дейтерида лития (П. Г. Крюков, С. Д. Захаров, Ю. В. Сенатский), а в 1971 году в ФИАНе была создана ещё более мощная установка для сферического лазерного облучения топливных мишеней «Кальмар». В 1980 году в ФИАНе была запущена самая мощная в мире установка для сферического лазерно сжатия «Дельфин» на которой была показана принципиальная практическая осуществимость ЛТС с положительным выходом. Помимо этих установок также были созданы установки для экспериментов по УЛТС: «Сокол», «Прогресс», «Мишень», «Искра», «ТИР-1», «Перун» (совместно с Чехословакией). В дальнейшем была создана крупнейшая лазерная установка в мире «Искра-5», и в настоящее время создаётся мощнейшая в мире установка «Искра-6», мощность которой достаточно велика для создания практического лазерного термоядерного реактора или двигателя для космических полётов. В этом направлении достигнуты весьма значительные успехи, и на сегодняшний день ЛТЯРД может быть создан, хотя стоимость его будет очень высока (свыше 1 млрд.долл) по оценке американских специалистов.

Работы в США:

В Соединённых Штатах Америки работы по ЛТС и возможности создания ТЯРД начались практически сразу после положительных результатов экспериментов полученных на лазерных установках в Советском Союзе. В середине 60-х г.г фирма «Аэроджет-дженерал нуклеоникс» по контракту с ВВС США начала исследования под руководством доктора Джона Льюиса по осуществлению управляемой термоядерной реакции. Конечной целью этих исследований было обеспечение условий протекания самоподдерживающейся термоядерной реакции для получения энергии и ее использования в ракетных двигателях. Термоядерная реакция в этих случаях должна происходить в стационарных условиях, включая протекание ядерной реакции в «камере сгорания» термоядерного ракетного двигателя. Такой переход от внешнего цикла действия, как в случае импульсного ЯРД, к внутреннему циклу без упомянутых выше ограничений достижимого удельного импульса оказался возможен благодаря повышению температуры реакции приблизительно до 100 млн К. При такой температуре газ превращается в полностью ионизированную электропроводную плазму, которая может быть удержана магнитным полем в заданном пространстве. При значительном финансировании и поддержке правительства были созданы мощные установки: в 70-е годы «Янус», «Аргус», в дальнейшем «Шива», «Гелиос», при Рочестерском университете установка «OMEGA», и в апреле 1985 года в Ливерморской национальной лаборатории им. Лоуренса установка «NOVA». Также были созданы установки «Антарес», «Аврора» при Лос-Аламосской лаборатории которые вплотную приблизились к порогу положительного выхода энергии термоядерных реакций. В настоящее время в США строится новая мощная установка «NIF».

Работы в других странах:

Эксперименты и создания установок ЛТС проводились и проводятся в Германии «Астерикс», Японии по программе «KONGO» установки «LЕККО-VIII» и «GЕККО ХП», Франции «PHEBUS» и ряде других стран, но ощутимого успеха и оправданных практических результатов на сегодняшний день они не получили.

Основные теоретические характеристики двигателя[править]

Использование тепловой энергии термоядерных реакций позволяет реализовать предельные возможности внутриядерной энергии в достижении максимальных характеристик ракетного двигателя по удельному импульсу и тяге. Так например при подсчёте энергии выделяющейся при образовании 1 кг гелия в ходе термоядерных реакций оказывается что она эквивалентна 60 300 тонн обычного ракетного топлива смеси керосина с кислородом, и в 7,1 раза больше чем деление 1 кг урана-235 (экв 8500 т керосино-кислородной смеси, экв 6161 тонн кислородно-водородной смеси). Скорости разлёта термоядерной плазмы достигают значения 25 000 — 30 000 км/сек, и соответственно достижимый в термоядерном двигателе удельный импульс примерно равен 2 500 000 — 3 000 000 сек.

Устройство и принцип работы ЛТЯРД[править]

Условия практического осуществления:

Практическое осуществление такого ЛТЯРД возможно при удовлетворении трех основных требований:

  1. Получение плазмы в процессе устойчивой самоподдерживающейся ядерной реакции, при которой лишь незначительная доля энергии всей системы выделяется в виде нейтронов.
  2. Создание сверхсильного магнитного поля соответствующей конфигурации, позволяющей обеспечить условия устойчивой самоподдерживающейся реакции, и удержания плазмы в заданном ограниченном объёме камеры сгорания двигателя.
  3. Конструктивная разработка устройства с минимальными весовыми характеристиками, обеспечивающего получение и стабилизацию сверхмощного магнитного поля для удержания высокотемпературной плазмы; требование «минимальных весовых характеристик» подразумевает также и требование низких расходных мощностей на поддержание и инициирование термоядерных реакций.
Принципиальная схема Лазерного термоядерного ракетного двигателя: (1- подвод энергии к лазеру, 2- ввод облучённого лития-6 с наработанным тритием, 3- подвод энергии к холодильной станции, 4- подвод энергии, трития, дейтерия, и вспомогательных веществ к фабрике мишеней, 5- криогенная холодильная станция, 6- лазер, 7- сепаратор-отделитель трития от облучённого лития-6, 8- фабрика мишеней, 9-электромагнитная пушка для введения мишеней, 10- корпусные сверхпроводящие электромагниты, 11- волноводы лазерного излучения,12- сопловая фокусирующая электромагнитная система,13- криогенная система охлаждения электромагнитов,14- продукты реакций (поток заряженных частиц и излучения),15- отражатель нейтронов,16- вторичный охлаждающий контур,17- охлаждающе-регенерационный контур с литием-6,18- сфокусированный лазерный луч, 19- лазерное окно, 20- термоядерный микровзрыв, 21- сверхпроводящие обмотки электромагнитной системы, 22- летящие в эпицентр мишени)

Принцип работы двигателя:

Принцип работы ЛТЯРД достаточно прост. В центр рабочей полости двигателя, посредством электромагнитной пушки подаются сферические лазерные термоядерные мишени наполненные смесью дейтерия с тритием, и оказавшись в эпицентре полости они облучаются со всех сторон мощным импульсным лазерным излучением. При мощном сжатии мишень разогревается свыше 100—1000 млн К и в ней происходит быстрая термоядерная реакция (термоядерный микровзрыв). Продукты реакций — гелий, остатки оболочки мишени, и непрореагировавший дейтерий и тритий, рентгеновское излучение, разлетаются во все стороны, но так как в камере двигателя создано сверхсильное магнитное поле сферической конфигурации, а в сопле продольное магнитное поле, то образующийся поток сверхгорячих газов не соприкасаясь со стенками полости вытекает в наружное пространство (в космос). Таким образом в конструкции двигателя обеспечивается управление потоком газов и выбрасывание их в определённом направлении (через сопло). Для возможности регулирования тяги в конструкции двигателя предусматривается форсажная камера (на рисунке не показана) в которую вводится дополнительное количество рабочего тела (водород).

Устройство двигателя:

Лазерный термоядерный двигатель является очень сложным сооружением, выполняемым с наиболее высокой степенью точности сборки, и применением нескольких взаимозависимых систем для обеспечения работы этого двигателя. В целом он состоит из следующих основных систем:

Помимо основных систем обеспечивающих равномерную работу двигателя, также имеются такие системы как:

Топливо. Термоядерные реакции. Мишени[править]

Термоядерная мишень (1- оболочка, 2- сжатое горючее, 3- волна термоядерного горения)

Простая термоядерная мишень используемая в ЛТЯРД представляет собой правильную полую сферу изготовляемую с высочайшей степенью точности, и состоящую из двух частей: тонкую полую сферу (баллон, оболочку) из боросиликатного стекла и топливную смесь заполняющую оболочку. Мишень может иметь и более сложную структуру (многослойную) в зависимости от планируемой скорости термоядерных реакций и их направления. В простейшем случае полая оболочка заполняется смесью дейтерия с тритием в жидком виде, или газообразном с дальнейшим намораживанием смеси на стенку оболочки. Принципиально применение мишени достаточно простое: мишень выстреливается с большой скоростью в центр камеры двигателя, где обжимается со всех сторон действием импульса лазерных лучей. При импульсном сжатии достигаются необходимые условия для нормального протекания термоядерной реакции (критерий Лоусона). Размеры мишеней могут варьироваться в зависимости от планируемого режима работы двигателя (реактора), и его расчётной мощности.

Некоторые наиболее предпочтительные реакции синтеза для обеспечения термоядерных двигателей энергией:

Термоядерная реакция Энергия, Мэв Энергия, ккал/кг Плотность топл, г/см3 Эквивалент (h3+O2), тонн/кг Температура синтеза, °К Удельный импульс, сек
D + D = T + p + 4,0 Мэв ~ 2,306•1010 ~ 7 439 тонн ~ 108
D + D = ³He + n + 3,25 Мэв ~ 1,874•1010 ~ 6 045 тонн ~ 108
³He + D = 4He + p + 18,3 Мэв ~ 8,442•1010 ~ 27 232 тонн ~ 108
D + T = 4He + n + 17,6 Мэв ~ 8,112•1010 ~ 26 167 тонн ~ 108
p + 11B = 34He + 8,7 Мэв ~ 1,672•1010 ~ 5 394 тонн ~ 109
p + 6Li = 4He + ³He + 4 Мэв ~ 1,318•1010 ~ 4 252 тонн ~ 109
p + 9B = 4He + 6Li + 2,1 Мэв ~ 0,484•1010 ~ 1 562 тонн ~ 109
p + 9Be = D + 7Li + 0,6 Мэв ~ 0,154•1010 ~ 497 тонн ~ 109
D + 6Li = 24He + 22,3 Мэв ~ 6,43•1010 ~ 20 742 тонн ~ 109
D + 6Li = p + 7Li + 5 Мэв ~ 1,441•1010 ~ 4 648 тонн ~ 109
D + 6Li = T + 5Li + 0,6 Мэв ~ 0,173•1010 ~ 558 тонн ~ 109
p + 7Li = 24He + ~ 0,4•1010 ~ 1 290 тонн ~ 109

(Примечание: Энергия деления 1 кг 235U равна ~ 1,91•1010 ккал)

Преимущества перед ядерными двигателями на основе реакций деления[править]

Сравнительные расходы масс топлива ядерных и термоядерных двигателей при полётах к объектам Солнечной системы Цель полёта (Планета) Отношение начальной и конечной массы ракеты (М0/М) Движитель на основе реакций деления Термоядерный двигатель на основе ЛТС
Луна 1,4 1,02
Венера 6 1,17
Марс 5 1,15
Меркурий 42 1,37

Основные недостатки[править]

Основными недостатками ЛТЯРД могут являться:

Основной комплекс базовых задач выполняемый с помощью ЛТЯРД[править]

Полёты в Солнечной системе[править]

Использование термоядерных двигателей позволяет резко сократить сроки доставки научного оборудования или экипажей к любым планетам Солнечной системы, и в значительной степени ускорить изучение её объектов. Громадный энергозапас термоядерного топлива позволяет более гибко производить маневрирование, легко изменять курс космического корабля и выполнять важные полёты за короткий срок (доставка вооружений, спасение экипажей в глубоком космосе и др).

Грузоперевозки в Солнечной системе[править]

Значительные скорости и тяги ЛТЯРД позволяют наладить межпланетные грузопотоки. В частности доставку добываемых руд и минералов к Земле, Луне, Марсу, буксировку ледяных астероидов для терраформирования планет, корректировку орбит опасных астероидов и др.

Задачи военного характера[править]

Скорость обеспечиваемая ракете с помощью ЛТЯРД позволяет осуществлять быструю доставку необходимых вооружений в пределах Солнечной системы, а так же выполнять второстепенные военные задачи (охрана, патрулирование, снабжение военных объектов).

Межзвёздные полёты автоматических зондов[править]

Термоядерный ракетный двигатель — единственное известное науке на сегодняшний день средство позволяющее ускорять космические аппараты до скоростей меньших но близких к скорости света, и соответственно позволяющее обеспечить разгон межзвёздных зондов. Простые расчёты проведённые в США и СССР показали что при соответствующей концентрации экономических усилий и научно-производственного потенциала уже в наше время осуществление межзвёздного перелёта научно-исследовательской станции небольшой массы (до 1 тонны) возможно практически, и за приемлемый срок (50-70 лет).

traditio.wiki

Термоядерный ракетный двигатель — википедия фото

В настоящее время предложены 2 варианта конструкции ТЯРД :

ТЯРД на основе термоядерного реактора с магнитным удержанием плазмы

В первом случае принцип действия и устройство ТЯРД выглядят следующим образом: основной частью двигателя является реактор, в котором происходит управляемая реакция термоядерного синтеза. Реактор представляет собой полую «камеру» цилиндрической формы, открытую с одной стороны, т. н. установку термоядерного синтеза схемы «открытая ловушка» (также именуемую «магнитная бутылка» или пробкотрон). «Камера» реактора вовсе не обязательно (и даже нежелательно) должна быть цельно-герметичной, скорее всего она будет представлять собой легкую размеростабильную ферму, несущую катушки магнитной системы. В настоящее время наиболее перспективной считается схема т. н. «амбиполярного удержания» или «магнитных зеркал» (англ. tandem mirrors), хотя возможны и другие схемы удержания: газодинамические ловушки, центробежное удержание, обращенное магнитное поле (FRC). По современным оценкам, длина реакционной «камеры» составит от 100 до 300 м при диаметре 1-3 м. В камере реактора создаются условия, достаточные для начала термоядерного слияния компонентов выбранной топливной пары (температуры порядка сотен миллионов градусов, факторы критерия Лоусона). Термоядерное топливо — предварительно нагретая плазма из смеси топливных компонентов — подаётся в камеру реактора, где и происходит постоянная реакция синтеза. Генераторы магнитных полей (магнитные катушки той или иной конструкции), окружающие активную зону, создают в камере реактора поля большой напряжённости и сложной конфигурации, которые удерживают высокотемпературную термоядерную плазму от соприкосновения с конструкцией реактора и стабилизируют происходящие в ней процессы. Зона термоядерного «горения» (плазменный факел) формируется по продольной оси реактора. Полученная плазма, направляемая магнитными управляющими системами, истекает из реактора через сопло, создавая реактивную тягу.

Следует отметить возможность многорежимности ТЯРД. Путём впрыска в струю плазменного факела относительно холодного вещества можно резко повысить общую тягу двигателя (за счет снижения удельного импульса), что позволит кораблю с ТЯРД эффективно маневрировать в гравитационных полях массивных небесных тел (например больших планет) где зачастую требуется большая общая тяга двигателя. По общим оценкам, ТЯРД такой схемы может развивать тягу от нескольких килограммов вплоть до десятков тонн при удельном импульсе от 10 тыс. сек до 4 млн. сек. Для сравнения, показатель удельного импульса наиболее совершенных химических ракетных двигателей — порядка 450 сек.

ТЯРД на основе систем инерционного синтеза (импульсный термоядерный реактор)

Двигатель второго типа — инерционный импульсный термоядерный двигатель. В реакторе такого двигателя управляемая термоядерная реакция проходит в импульсном режиме (доли мкс с частотой 1-10Гц), при периодическом обжатии и разогреве микромишеней (топливных «таблеток»), содержащих термоядерное топливо. Первоначально предполагалось использовать лазерно-термоядерный двигатель (ЛТЯРД). Такой ЛТЯРД предлагался, в частности, для межзвёздного автоматического зонда в проекте «Дедал». Его основой и был реактор, работающий в импульсном режиме. В сферическую камеру реактора подаётся топливная таблетка с термоядерным топливом (например, дейтерий и тритий) — сложная конструкция сфер из смеси замороженных топливных компонентов в оболочке диаметром несколько миллиметров. На внешней части камеры находятся мощные — порядка сотен тераватт — лазеры, наносекундный импульс излучения которых через оптически прозрачные окна в стенах камеры попадает на топливную таблетку. При этом на поверхности топливной таблетки создается зона с температурой более 100 млн. градусов при давлении в миллионы атмосфер — условия, достаточные для начала термоядерной реакции. Происходит термоядерный микровзрыв мощностью в несколько сотен килограммов в тротиловом эквиваленте. Частота таких взрывов в камере в проекте «Дедал» — порядка 250 в секунду, что требовало подачи топливных мишеней со скоростью более 10 км/с при помощи электромагнитной пушки. Расширяющаяся плазма вытекает из открытой части камеры реактора через сопло соответствующей конструкции, создавая реактивную тягу. На сегодняшний день уже теоретически и практически доказано, что лазерный метод обжатия/разогрева топливных таблеток — тупиковый путь: невозможно построить лазеры такой мощности с достаточным ресурсом. Поэтому в настоящее время для инерциального синтеза рассматривается вариант с ионно-пучковым обжатием/нагревом топливных таблеток, как более эффективный, компактный и с гораздо большим физическим ресурсом. Тем не менее, в Ливерморской национальной лаборатории имени Эрнеста Лоуренса с 2013 года более четырёх раз в процессе экспериментов на 192 лазерной установке National Ignition Facility получили энергии больше, чем было затрачено для инициации реакции [1].

Однако есть мнение, что инерционно-импульсный ТЯРД получится слишком громоздким из-за очень больших циркулирующих в нём мощностей при худших, чем у ТЯРД с магнитным удержанием, удельном импульсе и тяге, что вызвано импульсно-периодическим характером его действия. Идеологически к ТЯРД на инерционно-импульсном принципе примыкают взрыволёты на термоядерных зарядах типа проекта «Орион».

ТЯРД может использовать различные виды термоядерных реакций в зависимости от вида применяемого топлива. В частности, на настоящее время принципиально осуществимы следующие типы реакций:

Реакция дейтерий + тритий (Топливо D-T)

2H + 3H = 4He + n при энергетическом выходе 17,6 МэВ

Такая реакция наиболее легко осуществима с точки зрения современных технологий, даёт значительный выход энергии, топливные компоненты относительно дёшевы. Недостаток её — весьма большой выход нежелательной (и бесполезной для прямого создания тяги) нейтронной радиации, уносящей большую часть выходной энергии реакции и, как следствие, резко снижающей КПД двигателя. Тритий радиоактивен, период его полураспада — около 12 лет. То есть долговременное хранение трития невозможно. В то же время, возможно окружить дейтериево-тритиевый реактор оболочкой, содержащей литий: последний, облучаясь нейтронным потоком, превращается в тритий, что в известной степени замыкает топливный цикл, поскольку реактор работает в режиме размножителя (бридера). Таким образом, топливом для D-T-реактора фактически служат дейтерий и литий.

Реакция дейтерий + гелий-3

2H + 3He = 4He + p. при энергетическом выходе 18,3 МэВ

Условия её достижения значительно сложнее. Гелий-3, кроме того, редкий и чрезвычайно дорогой изотоп. В промышленных масштабах на настоящее время не производится. Кроме того, что энергетический выход этой реакции выше, чем у D-T-реакции, она имеет следующие дополнительные преимущества:

При реакции D-3He в форме нейтронов выделяется всего около 5% мощности (против 80% для D-T). Около 20% выделяется в форме рентгеновского излучения. Вся остальная энергия может быть непосредственно использована для создания реактивной тяги. Таким образом, реакция D-3He намного более перспективна для применения в реакторе ТЯРД.

Другие виды реакций

Реакция между ядрами дейтерия (D-D, монотопливо) D + D —> 3He + n при энергетическом выходе 3,3 МэВ, и

D + D —> T + p+ при энергетическом выходе 4 МэВ. Нейтронный выход в этой реакции весьма значителен.

Возможны и некоторые другие типы реакций:

p + 6Li → 4He (1,7 MeV) + 3He (2,3 MeV) 3He + 6Li → 2 4He + p + 16,9 MeV p + 11B → 3 4He + 8,7 MeV

Нейтронный выход в указанных выше реакциях отсутствует.

Выбор топлива зависит от многих факторов — его доступность и дешевизна, энергетический выход, лёгкость достижения потребных для реакции термоядерного синтеза условий (в первую очередь, температуры), необходимых конструктивных характеристик реактора и прочее. Наиболее перспективны для осуществления ТЯРД так называемые «безнейтронные» реакции, так как порождаемый термоядерным синтезом нейтронный поток (например, в реакции дейтерий-тритий) уносит значительную часть мощности и не может быть использован для создания тяги. Кроме того, нейтронная радиация порождает наведённую радиоактивность в конструкции реактора и корабля, создавая ещё одну опасность для экипажа. Реакция дейтерий-гелий-3 является перспективной в том числе и по причине отсутствия нейтронного выхода.В настоящее время предложена ещё одна концепция ТЯРД — с использованием малых количеств антиматерии в качестве катализатора термоядерной реакции.

org-wikipediya.ru


Смотрите также