ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

морской реактивный двигатель. Реактивный двигатель морской


морской реактивный двигатель YouTube

Морской реактивный двигатель

3 г. назад

Драка двух людей,закончилась накаутом. Больше видио на моем канале. Заходите и смотрите.

Запуск дизельного двигателя на морском буксире

7 мес. назад

Старенький буксир и его дизель 1960 года выпуска и сегодня уверенно выполняют свои функции. Не смотря на свой...

🌑 РЕАКТИВНЫЙ ДВИГАТЕЛЬ ЗА 5 МИНУТ ПуВРД JAM JAR PULSE JET ENGINE Reynst Pulsejet Car ИГОРЬ БЕЛЕЦКИЙ

3 г. назад

Как сделать самодельный пульсирующий воздушно-реактивный двигатель Рейнста PULSE JET ENGINE Pulse Jet Car. Как Вам...

✅Разработка самодельного РЕАКТИВНОГО двигателя! Из сахара и селитры реактивное топливо своими руками

1 г. назад

Пройдите бесплатный урок английского в Skyeng — http://skyeng.ru/go/krs ◇ Инструменты с алиэкспрес, которые я использ...

ЧТО БУДЕТ ЕСЛИ В ДВИГАТЕЛЬ САМОЛЕТА ПОПАДЕТ ПТИЦА

2 г. назад

Посмотрите ▻5 САМЫХ БОЛЬШИХ ДИНОЗАВРОВ - ХИЩНИКОВ https://www.youtube.com/watch?v=6YdfLuyn4ao ПОДПИШИСЬ НА НОВЫЕ ВИДЕО ...

ЗВУКОВАЯ ПУШКА ТЕРМОАКУСТИКА РЕЗОНАНС ИГОРЬ БЕЛЕЦКИЙ

2 г. назад

Термоакустический эксперимент по достижению резонансной частоты бокала. Как Вам это видео? Поставьте...

Гоночный катер с ракетными двигателями за 2,5 млн $: Mystic Powerboats C5000

3 г. назад

Гоночный катер с ракетными двигателями за 2,5 млн $: Mystic Powerboats C5000. Развивает скорость до 338 км/час. Серия С5000...

Российские морские двигатели сравнили с украинскими Оружие Наука и техника

4 мес. назад

Российские морские двигатели сравнили с украинскими Оружие Наука и техника 17 46, 27 февраля 2018 Российские...

Шок Атомный самолет с ядерным двигателем создан в России еще в 1959 году фантастика видео

2 г. назад

Шок Атомный самолет с ядерным двигателем создан в России еще в 1959 году фантастика видео. На современных...

Пламенный мотор: первые турбореактивные двигатели СССР – Cергей Иванов

10 мес. назад

Cергей Иванов - Инженер-математик, главный администратор паблика "Суровый технарь" Тема: "Пламенный мотор:...

Бионика. Подводный мир

3 г. назад

Бионика. Подводный мир. Какие научные открытия могут быть глубоко под водой? Подпишись на "Наука 2.0": https://www.you...

Техническое обслуживание двигателей истребителя F/A-18 на базе Морской пехоты США в Японии

4 г. назад

https://www.facebook.com/MIL3010 Двигатель F404 - двухвальный турбореактивный двигатель производства компании Дженерал...

Глазами очевидцев: двигатель самолёта Tez Jet разваливается на высоте

4 мес. назад

Подробнее читайте на https://ru.rt.com/ahbb Подписывайтесь на RT Russian - http://www.youtube.com/subscription_center?add_user=rtrussian RT на ...

✅Самодельный электрический велосипед из Болгарки😄Электро Байк своими руками

11 мес. назад

Подпишись на Вильнюсова!: https://goo.gl/Yj5xYL ◇ Аккумуляторы для эксперимента покупал тут: http://ali.pub/1rrpag ◇ Мощная...

🌑 ЭЛЕКТРИЧЕСТВО ИЗ ВОДЫ ВЕЧНЫЙ ФОНАРИК ГАЛЬВАНИЧЕСКИЙ ТОПЛИВНЫЙ ЭЛЕМЕНТ ИГОРЬ БЕЛЕЦКИЙ

2 г. назад

Халявное электричество из воды, древнейшая технология вполне работоспособна и сегодня. Простейший гальван...

ТОП САМЫХ НЕВЕРОЯТНЫХ МОТОРОВ в Мире

2 г. назад

топ ИСТОРИЯ НЕВЕРОЯТНЫХ МОТОРОВ ▻▻▻ЮТУБЕРЫ которые РАНИЛИ себя ради ПРОСМОТРОВ (ТОП) https://youtu.be/hcrhAA_1Dp8...

МАКС-2011 - НПО Сатурн, морской газотурбинный двигатель

7 г. назад

М70ФРУ -- морской газотурбинный двигатель мощностью 14000 л.с. для силовых установок кораблей и судов, а также...

syoutube.ru

Реактивный двигатель. 100 знаменитых изобретений

Реактивный двигатель

В реактивном двигателе сила тяги, необходимая для движения, создается путем преобразования исходной энергии в кинетическую энергию рабочего тела. В результате истечения рабочего тела из сопла двигателя образуется реактивная сила в виде отдачи (струи). Отдача перемещает в пространстве двигатель и конструктивно связанный с ним аппарат. Перемещение происходит в направлении, противоположном истечению струи. В кинетическую энергию реактивной струи могут преобразовываться различные виды энергии: химическая, ядерная, электрическая, солнечная. Реактивный двигатель обеспечивает собственное движение без участия промежуточных механизмов.

Для создания реактивной тяги необходимы источник исходной энергии, которая преобразуется в кинетическую энергию реактивной струи, рабочее тело, выбрасываемое из двигателя в виде реактивной струи, и сам реактивный двигатель, преобразующий первый вид энергии во второй.

Основной частью реактивного двигателя является камера сгорания, в которой создается рабочее тело.

Все реактивные двигатели делятся на два основных класса, в зависимости от того, используется в их работе окружающая среда или нет.

Первый класс – воздушно-реактивные двигатели (ВРД). Все они тепловые, в которых рабочее тело образуется при реакции окисления горючего вещества кислородом окружающего воздуха. Основную массу рабочего тела составляет атмосферный воздух.

В ракетном двигателе все компоненты рабочего тела находятся на борту оснащенного им аппарата.

Существуют также комбинированные двигатели, сочетающие в себе оба вышеназванные типа.

Впервые реактивное движение было использовано в шаре Герона – прототипе паровой турбины. Реактивные двигатели на твердом топливе появились в Китае в X в. н. э. Такие ракеты применялись на Востоке, а затем в Европе для фейерверков, сигнализации, а затем как боевые.

Важным этапом в развитии идеи реактивного движения была идея применения ракеты в качестве двигателя для летательного аппарата. Ее впервые сформулировал русский революционер-народоволец Н. И. Кибальчич, который в марте 1881 г., незадолго до казни, предложил схему летательного аппарата (ракетоплана) с использованием реактивной тяги от взрывных пороховых газов.

H. Е. Жуковский в работах «О реакции вытекающей и втекающей жидкости» (1880-е годы) и «К теории судов, приводимых в движение силой реакции вытекающей воды» (1908 г.) впервые разработал основные вопросы теории реактивного двигателя.

Интересные работы по исследованию полета ракеты принадлежат также известному русскому ученому И. В. Мещерскому, в частности в области общей теории движения тел переменной массы.

В 1903 г. К. Э. Циолковский в своей работе «Исследование мировых пространств реактивными приборами» дал теоретическое обоснование полета ракеты, а также принципиальную схему ракетного двигателя, предвосхищавшую многие принципиальные и конструктивные особенности современных жидкостно-ракетных двигателей (ЖРД). Так, Циолковский предусматривал применение для реактивного двигателя жидкого топлива и подачу его в двигатель специальными насосами. Управление полетом ракеты он предлагал осуществить посредством газовых рулей – специальных пластинок, помещаемых в струе вылетающих из сопла газов.

Особенность жидкостно-реактивного двигателя в том, что в отличие от других реактивных двигателей он несет с собой вместе с топливом весь запас окислителя, а не забирает необходимый для сжигания горючего воздух, содержащий кислород, из атмосферы. Это единственный двигатель, который может быть применен для сверхвысотного полета вне земной атмосферы.

Первую в мире ракету с жидкостным ракетным двигателем создал и запустил 16 марта 1926 г. американец Р. Годдард. Она весила около 5 килограммов, а ее длина достигала 3 м. Топливом в ракете Годдарда служили бензин и жидкий кислород. Полет этой ракеты продолжался 2,5 секунды, за которые она пролетела 56 м.

Систематические экспериментальные работы над этими двигателями начались в 30-х годах XX века.

Первые советские ЖРД были разработаны и созданы в 1930–1931 гг. в ленинградской Газодинамической лаборатории (ГДЛ) под руководством будущего академика В. П. Глушко. Эта серия называлась ОРМ – опытный ракетный мотор. Глушко применил некоторые новинки, например охлаждение двигателя одним из компонентов топлива.

Параллельно разработка ракетных двигателей велась в Москве Группой изучения реактивного движения (ГИРД). Ее идейным вдохновителем был Ф. А. Цандер, а организатором – молодой С. П. Королев. Целью Королева была постройка нового ракетного аппарата – ракетоплана.

В 1933 г. Ф. А. Цандер построил и успешно испытал ракетный двигатель ОР-1, работавший на бензине и сжатом воздухе, а в 1932–1933 гг. – двигатель ОР-2, на бензине и жидком кислороде. Этот двигатель был спроектирован для установки на планере, который должен был совершить полет в качестве ракетоплана.

В 1933 г. в ГИРДе создана и испытана первая советская ракета на жидком топливе.

Развивая начатые работы, советские инженеры в последующем продолжали работать над созданием жидкостных реактивных двигателей. Всего с 1932 по 1941 г. в СССР было разработано 118 конструкций жидкостных реактивных двигателей.

В Германии в 1931 г. состоялись испытания ракет И. Винклера, Риделя и др.

Первый полет на самолете-ракетоплане с жидкостно-реактивным двигателем был совершен в Советском Союзе в феврале 1940 г. В качестве силовой установки самолета был применен ЖРД. В 1941 г. под руководством советского конструктора В. Ф. Болховитинова был построен первый реактивный самолет – истребитель с жидкостно-ракетным двигателем. Его испытания были проведены в мае 1942 г. летчиком Г. Я. Бахчиваджи.

В это же время состоялся первый полет немецкого истребителя с таким двигателем. В 1943 г. в США провели испытания первого американского реактивного самолета, на котором был установлен жидкостно-реактивный двигатель. В Германии в 1944 г. были построены несколько истребителей с этими двигателями конструкции Мессершмитта и в том же году применены в боевой обстановке на Западном фронте.

Кроме того, ЖРД применялись на немецких ракетах Фау-2, созданных под руководством В. фон Брауна.

В 1950-е годы жидкостно-ракетные двигатели устанавливались на баллистических ракетах, а затем на искусственных спутниках Земли, Солнца, Луны и Марса, автоматических межпланетных станциях.

ЖРД состоит из камеры сгорания с соплом, турбонасосного агрегата, газогенератора или парогазогенератора, системы автоматики, органов регулирования, системы зажигания и вспомогательных агрегатов (теплообменники, смесители, приводы).

Идея воздушно-реактивных двигателей не раз выдвигалась в разных странах. Наиболее важными и оригинальными работами в этом отношении являются исследования, проведенные в 1908–1913 гг. французским ученым Р. Лореном, который, в частности, в 1911 г. предложил ряд схем прямоточных воздушно-реактивных двигателей. Эти двигатели используют в качестве окислителя атмосферный воздух, а сжатие воздуха в камере сгорания обеспечивается за счет динамического напора воздуха.

В мае 1939 г. в СССР впервые состоялось испытание ракеты с прямоточным воздушно-реактивным двигателем конструкции П. А. Меркулова. Это была двухступенчатая ракета (первая ступень – пороховая ракета) с взлетным весом 7,07 кг, причем вес топлива для второй ступени прямоточного воздушно-реактивного двигателя составлял лишь 2 кг. При испытании ракета достигла высоты 2 км.

В 1939–1940 гг. впервые в мире в Советском Союзе проводились летние испытания воздушно-реактивных двигателей, установленных в качестве дополнительных двигателей на самолете конструкции Н. П. Поликарпова. В 1942 г. в Германии испытывались прямоточные воздушно-реактивные двигатели конструкции Э. Зенгера.

Воздушно-реактивный двигатель состоит из диффузора, в котором за счет кинетической энергии набегающего потока воздуха происходит сжатие воздуха. В камеру сгорания через форсунку впрыскивается топливо и происходит воспламенение смеси. Реактивная струя выходит через сопло.

Процесс работы ВРД непрерывен, поэтому в них отсутствует стартовая тяга. В связи с этим при скоростях полета меньше половины скорости звука воздушно-реактивные двигатели не применяются. Наиболее эффективно применение ВРД на сверхзвуковых скоростях и больших высотах. Взлет самолета с воздушно-реактивным двигателем происходит при помощи ракетных двигателей на твердом или жидком топливе.

Большее развитие получила другая группа воздушно-реактивных двигателей – турбокомпрессорные двигатели. Они подразделяются на турбореактивные, в которых тяга создается струей газов, вытекающих из реактивного сопла, и турбовинтовые, в которых основная тяга создается воздушным винтом.

В 1909 г. проект турбореактивного двигателя был разработан инженером Н. Герасимовым. В 1914 г. лейтенант русского морского флота М. Н. Никольской сконструировал и построил модель турбовинтового авиационного двигателя. Рабочим телом для приведения в действие трехступенчатой турбины служили газообразные продукты сгорания смеси скипидара и азотной кислоты. Турбина работала не только на воздушный винт: отходящие газообразные продукты сгорания, направленные в хвостовое (реактивное) сопло, создавали реактивную тягу дополнительно к силе тяги винта.

В 1924 г. В. И. Базаров разработал конструкцию авиационного турбокомпрессорного реактивного двигателя, состоявшую из трех элементов: камеры сгорания, газовой турбины, компрессора. Поток сжатого воздуха здесь впервые делился на две ветви: меньшая часть шла в камеру сгорания (к горелке), а большая подмешивалась к рабочим газам для понижения их температуры перед турбиной. Тем самым обеспечивалась сохранность лопаток турбины. Мощность многоступенчатой турбины расходовалась на привод центробежного компрессора самого двигателя и отчасти на вращение воздушного винта. Дополнительно к винту тяга создавалась за счет реакции струи газов, пропускаемых через хвостовое сопло.

В 1939 г. на Кировском заводе в Ленинграде началась постройка турбореактивных двигателей конструкции А. М. Люльки. Его испытаниям помешала война.

В 1941 г. в Англии был впервые осуществлен полет на экспериментальном самолете-истребителе, оснащенном турбореактивным двигателем конструкции Ф. Уиттла. На нем был установлен двигатель с газовой турбиной, которая приводила в действие центробежный компрессор, подающий воздух в камеру сгорания. Продукты сгорания использовались для создания реактивной тяги.

В турбореактивном двигателе воздух, поступающий при полете, сжимается сначала в воздухозаборнике, а затем в турбокомпрессоре. Сжатый воздух подается в камеру сгорания, куда впрыскивается жидкое топливо (чаще всего – авиационный керосин). Частичное расширение газов, образовавшихся при сгорании, происходит в турбине, вращающей компрессор, а окончательное – в реактивном сопле. Между турбиной и реактивным двигателем может быть установлена форсажная камера, предназначенная для дополнительного сгорания топлива.

Сейчас турбореактивными двигателями оснащено большинство военных и гражданских самолетов, а также некоторые вертолеты.

В турбовинтовом двигателе основная тяга создается воздушным винтом, а дополнительная (около 10 %) – струей газов, вытекающих из реактивного сопла. Принцип действия турбовинтового двигателя схож с турбореактивным, с той разницей, что турбина вращает не только компрессор, но и воздушный винт. Эти двигатели применяются в дозвуковых самолетах и вертолетах, а также для движения быстроходных судов и автомобилей.

Наиболее ранние реактивные твердотопливные двигатели использовались в боевых ракетах. Их широкое применение началось в XIX в., когда во многих армиях появились ракетные части. В конце XIX в. были созданы первые бездымные порохи, с более устойчивым горением и большей работоспособностью.

В 1920–1930-е годы велись работы по созданию реактивного оружия. Это привело к появлению реактивных минометов – «катюш» в Советском Союзе, шестиствольных реактивных минометов в Германии.

Получение новых видов пороха позволило применять реактивные твердотопливные двигатели в боевых ракетах, включая баллистические. Кроме этого они применяются в авиации и космонавтике как двигатели первых ступеней ракет-носителей, стартовые двигатели для самолетов с прямоточными воздушно-реактивными двигателями и тормозные двигатели космических аппаратов.

Реактивный твердотопливный двигатель состоит из корпуса (камеры сгорания), в котором находится весь запас топлива и реактивного сопла. Корпус выполняется из стали или стеклопластика. Сопло – из графита, тугоплавких сплавов, графита.

Зажигание топлива производится воспламенительным устройством.

Регулирование тяги производится изменением поверхности горения заряда или площади критического сечения сопла, а также впрыскиванием в камеру сгорания жидкости.

Направление тяги может меняться газовыми рулями, отклоняющейся насадкой (дефлектором), вспомогательными управляющими двигателями и т. п.

Реактивные твердотопливные двигатели очень надежны, могут долго храниться, а следовательно, постоянно готовы к запуску.

Поделитесь на страничке

Следующая глава >

public.wikireading.ru

Реактивный двигатель / Приматы моря / Моря СССР

Мы переходим теперь к описанию самого интересного органа головоногих моллюсков — реактивного двигателя. Обратите внимание, как просто, с какой минимальной затратой материала решила природа сложную задачу.

Снизу, у «шеи» кальмара (рассмотрим в качестве примера этого моллюска), заметна узкая щель — мантийное отверстие. Из неё, словно пушка из амбразуры, торчит наружу какая-то трубка. Это воронка, или сифон, — «сопло» реактивного двигателя.

И щель, и воронка ведут в обширную полость в «животе» у кальмара: то мантийная полость — «камера сгорания» живой ракеты. Всасывая в неё воду через широкую мантийную щель, моллюск с силой выталкивает её затем через воронку. Чтобы вода не вытекала обратно через щель, кальмар её плотно замыкает при помощи особых «застёжек-кнопок», когда «камера сгорания» наполнится забортной водой. По краю мантийного отверстия расположены хрящевые грибовидные бугорки. На противоположной стороне щели им соответствуют углубления. Бугорки входят в углубления и прочно запирают все выходы из камеры, кроме одного — через воронку.

Когда моллюск сокращает брюшную мускулатуру, сильная струя воды бьёт из сифона. Отдача толкает кальмара в противоположную сторону.

Воронка направлена к концам щупалец, поэтому головоногий моллюск плывёт хвостом вперёд. Вот почему каракатица в «Тараканище» Корнея Чуковского «так и пятится, так и пятится» — обстоятельство, которое, помню, очень смущало меня в детстве.

Реактивные толчки и всасывание воды в мантийную полость с неуловимой быстротой следуют одно за другим, и кальмар ракетой проносится в синеве океана.

Если бы толчки были отделены друг от друга значительными промежутками времени, как у гребешка или эшны, то животное не получило бы особых преимуществ от такого передвижения. Чтобы ускорить темп реактивных «взрывов» и довести его до бешеной скорости, необходима, очевидно, повышенная проводимость нервов, которые возбуждают сокращение мышц, обслуживающих реактивный двигатель.

Проводимость же нерва, при прочих равных условиях, тем выше, чем больше его диаметр. И действительно, у кальмаров мы находим самые крупные в животном царстве нервные волокна.

Диаметр их достигает целого миллиметра — в пятьдесят раз больше, чем у большинства млекопитающих, — и проводят возбуждение они со скоростью двадцать пять метров в секунду.

У трёхметрового кальмара дозидикуса (он обитает у берегов Чили) толщина нервов фантастически велика — восемнадцать миллиметров. Нервы толстые, как верёвки!

Сигналы мозга — возбудители сокращений — мчатся по нервной «автостраде» кальмара со скоростью легкового автомобиля — девяносто километров в час!

Когда в начале нашего века были открыты эти сверх-гигантские нервы, ими тотчас заинтересовались физиологи. Наконец-то нашли они подопытное животное, у которого в живые нервы можно было вставлять игольчатые электроды. Исследование жизнедеятельности нервов сразу продвинулось вперёд. «И кто знает, — пишет британский натуралист Фрэнк Лейн, — может быть, есть сейчас люди, обязанные кальмару тем, что их нервная система находится в нормальном состоянии».

www.bruo.ru

Водяной реактивный двигатель | Банк патентов

Изобретение относится к водному транспорту и может быть использовано для обеспечения движения наводных и подводных транспортных средств. Водяной реактивный двигатель находится под микропроцессорным управлением и содержит соосно горизонтально расположенные входное устройство, сопло, на одном валу установленные насос высокого давления, насос низкого давления и турбину. Водяной реактивный двигатель состоит из камеры высокого давления воды шарообразной формы. В верхней части камеры выполнен гофрированный расширительный элемент, соединенный с одной стороны вертикально расположенной трубой с насосом высокого давления, а в нижней части через электромагнитные клапаны с несколькими камерами сгорания, каждая из которых представляет собой сосуд яйцевидной формы, который имеет в верхней части на оси рядом расположенные два электрода электроразрядника и с некоторым смещением от оси через электромагнитный клапан трубчатое соединение с атмосферой, а выход в нижней части выполнен в виде вертикальной трубы с инжектором, внутренняя полость которого через односторонний клапан соединена с внешним контуром, плавно переходящей в горизонтальную и после одностороннего клапана соединенной с выходящим во внешнюю воду общим соплом. Внутри сопла установлены турбина и внешний контур. В верхней части каждой из камер сгорания рядом с двумя электродами электроразрядника выполнены два входа, перекрытые игольчатыми электромагнитными клапанами. Один из них имеет соединение с баллоном природного газа, а другой – с баллоном сжатого воздуха, контактирующего с атмосферой через компрессор. Достигается создание реактивной тяги в водной окружающей среде. 1 ил.

Изобретение относится к водному транспорту и может быть использовано для обеспечения движения наводных и подводных транспортных средств.

Известен водяной реактивный двигатель для водных транспортных систем, состоящий из соосно расположенных входного устройства, водяного насоса, камеры парообразования, турбины и сопла (Arthur Paul Pedrick. Improvements in flash boiling, steam jet reactive, marine propulsion systems. Патент Великобритании №1334497, заявка №32083/72, приоритет 8 июля 1972 г., опубликован 17 октября 1973 г.). В этом двигателе благодаря удлиненной сигарообразной форме камеры парообразования поступающая в нее от водяного насоса и перемещающаяся к соплу внешняя вода нагревается сжигаемым топливом. Форма топки, внутри которой расположена камера парообразования, и где сжигается топливо, количество топлива выбираются так, что нагреваемая вода достигает температуры кипения непосредственно около сопла. В результате взрывного характера момента парообразования образовавшийся пар и некоторая часть нагретой до кипения воды выбрасываются в сопло, создавая реактивную тягу. Недостатком этого двигателя являются его низкие технико-экономические характеристики.

Известен также водяной реактивный двигатель (выбран в качестве прототипа), находящийся под микропроцессорным управлением и содержащий соосно горизонтально расположенные входное устройство, сопло, на одном валу установленные насос высокого давления, насос низкого давления и турбину, имеет внутренний контур, состоящий из камеры высокого давления воды шарообразной формы, имеющей в верхней части гофрированный расширительный элемент, соединенный с одной стороны вертикально расположенной трубой с насосом высокого давления, а с другой через электромагнитные клапаны с несколькими камерами сгорания, каждая из которых представляет собой сосуд яйцевидной формы, имеющий в боковых стенках два электрода электроразрядника, в верхней части через электромагнитный клапан трубчатое соединение с внешней водой, а выход в нижней части выполнен в виде вертикальной трубы с инжектором, внутренняя полость которого через односторонний клапан соединена с внешним контуром, плавно переходящей в горизонтальную и после одностороннего клапана соединенной с выходящим во внешнюю воду общим соплом, внутри которого установлена турбина, а внешний контур охватывает горизонтальные части выходов камер парообразования и общее сопло (Климович А.В., Климович М.А., Климович С.А. Водяной реактивный двигатель. Патент РФ №2573066, заявка №2014124614, приоритет 17.06.2014, зарегистрирован 16.12.2015, опубликован 20.01.2016. Бюл. №2). В этом двигателе внешняя вода, нагнетаемая из внешнего контура насосом высокого давления в камеру предварительного нагрева, доводится до кипения установленным в нижней части последней магнетроном, излучающий элемент которого направлен на основной объем камеры. Далее разогретая вода через электромагнитные клапаны в некоторой последовательности, регулируемой микропроцессорной системой управления, поступает в камеры парообразования, где после электрического разряда между двумя электродами электроразрядника частично испаряется. Благодаря взрывному характеру испарения вода, расположенная в вертикальной трубе с инжектором, интенсивно выбрасывается через общее сопло во внешнюю воду, создавая реактивную тягу. Причем объем выбрасываемой воды существенно увеличивается благодаря инжектору, внутренняя полость которого через односторонний клапан соединена с внешним контуром. Расчетные технико-экономические показатели этого двигателя ожидаются ощутимо выше указанного ранее. Однако для работы этого двигателя требуется наличие на борту водного транспортного средства мощного источника электрической энергии, например ядерного реактора. На судах малого водоизмещения мощные источники электрической энергии обычно отсутствуют.

Изобретение направлено на создание водяного реактивного двигателя, который можно использовать на водных транспортных средствах, как имеющих, так и не имеющих мощный источник электрической энергии.

Указанная цель достигается тем, что в водяном реактивном двигателе, находящемся под микропроцессорным управлением и содержащем соосно горизонтально расположенные входное устройство, сопло, на одном валу установленные насос высокого давления, насос низкого давления и турбину, имеющем внутренний контур, состоящий из камеры высокого давления воды шарообразной формы, в верхней части которой выполнен гофрированный расширительный элемент, соединенной с одной стороны вертикально расположенной трубой с насосом высокого давления, а в нижней части через электромагнитные клапаны с несколькими камерами сгорания, каждая из которых представляет собой сосуд яйцевидной формы, имеющий в верхней части на оси рядом расположенные два электрода электроразрядника и с некоторым смещением от оси через электромагнитный клапан трубчатое соединение с атмосферой, а выход в нижней части выполнен в виде вертикальной трубы с инжектором, внутренняя полость которого через односторонний клапан соединена с внешним контуром, плавно переходящей в горизонтальную и после одностороннего клапана соединенную с выходящим во внешнюю воду общим соплом, внутри которого установлена турбина, и внешний контур, охватывающий горизонтальные части выходов камер сгорания и общее сопло, в верхней части каждой из камер сгорания рядом с двумя электродами электроразрядника выполнены два входа, перекрытые игольчатыми электромагнитными клапанами. Один из них имеет соединение с баллоном природного газа, а другой – с баллоном сжатого воздуха, контактирующего с атмосферой через компрессор.

На чертеже изображена принципиальная схема водяного реактивного двигателя. Он находится под микропроцессорным управлением и содержит соосно горизонтально расположенные входное устройство 1, сопло 2, на одном валу установленные насос высокого давления 3, насос низкого давления 4 и турбину 5. Внутренний контур двигателя состоит из камеры высокого давления воды 6 шарообразной формы, в верхней части которой выполнен гофрированный расширительный элемент 7. Эта камера соединена с одной стороны вертикально расположенной трубой 8 с насосом высокого давления, а с другой через электромагнитные клапаны 9 с несколькими камерами сгорания 10. Каждая из камер сгорания представляет собой сосуд яйцевидной формы, имеющий в верхней части на оси рядом расположенные два электрода электроразрядника 11 и с некоторым смещением от оси через электромагнитный клапан 12 трубчатое соединение с атмосферой 13. Выход в нижней части камеры сгорания выполнен в виде вертикальной трубы с инжектором 14, внутренняя полость которого через односторонний клапан 15 соединена с внешним контуром. Указанная вертикальная труба плавно переходит в горизонтальную и после одностороннего клапана 16 соединяется с выходящим во внешнюю воду общим соплом, внутри которого установлена турбина 5. Внешний контур охватывает горизонтальные части выходов камер парообразования и общее сопло. В верхней части каждой из камер сгорания рядом с двумя электродами электроразрядника выполнены два входа, перекрытые игольчатыми электромагнитными клапанами 17. Один из них имеет соединение с баллоном природного газа 18, а другой – с баллоном сжатого воздуха 19, контактирующего с атмосферой через компрессор 20.

Работает конструкция следующим образом. Непосредственно перед запуском водяного реактивного двигателя должно быть установлено требуемое давление сжатого воздуха в баллоне 19 соответствующим включением компрессора 20. В дальнейшем это давление постоянно поддерживается микропроцессорным управлением (МСУ). Кроме того, вращением оси, на которой установлен насос высокого давления 3, вручную (или при помощи стартера) должна быть полностью заполнена внешней водой камера высокого давления воды 6.

Далее осуществляется запуск водяного реактивного двигателя. Для этого при открытых электромагнитных клапанах 9 и 12 первой камеры сгорания выполняется ее заполнение внешней водой из камеры высокого давления 6. Благодаря некоторому смещению от оси камеры сгорания электромагнитного клапана 12 и трубчатого соединения с атмосферой 13 в верхней части камеры будет оставаться воздушное пространство. Заполнение водой камеры сгорания выполняется до тех пор, пока вода не появится в нижней части трубчатого соединения с атмосферой 13. После этого электромагнитные клапаны 9 и 12 закрываются, открываются игольчатые электромагнитные клапаны 17, через которые в камеру сгорания из соответствующих баллонов 18 и 19 поступают природный газ и воздух. Время открытия игольчатых электромагнитных клапанов МСУ выбирает так, чтобы в камере сгорания образовалась смесь природного газа с воздухом, содержащая примерно от 5-6% (минимальный тяговый режим) до 14-15% газа. Воспламенение такой смеси воздуха и газа имеет характер взрыва. Поэтому после электрического разряда между двумя электродами электроразрядника 11 вода, расположенная в вертикальной трубе с инжектором 14, интенсивно выбрасывается через общее сопло во внешнюю воду, создавая реактивную тягу. Причем объем выбрасываемой воды существенно увеличивается благодаря инжектору, внутренняя полость которого через односторонний клапан 15 соединена с внешним контуром. Некоторая часть кинетической энергии, выбрасываемой через сопло 2 воды, приводит во вращение установленные на одном валу насос высокого давления 3, насос низкого давления 4 благодаря установленной внутри сопла турбине 5. Технические характеристики насосов выбираются так, чтобы водяное давление воды во внутреннем контуре поддерживалось в несколько раз больше, чем во внешнем. Большее давление в камере высокого давления воды 6 поддерживается благодаря гофрированному расширительному элементу 7, выполненному в верхней части камеры.

МСУ определяет время открытия игольчатых электромагнитных клапанов так, чтобы объем смеси природного газа с воздухом в камере сгорания был таковым, чтобы после ее воспламенения объем образовавшихся продуктов сгорания был достаточным для выбрасывания всей воды (или необходимой ее части в зависимости от требуемой скорости движения транспортного средства), заполняющей вертикальную трубу с инжектором, в горизонтальную часть последней. Когда энергия, выделившаяся при сгорании смеси природного газа с воздухом, будет полностью израсходована, движение воды прекратится, давление в выходной трубе существенно упадет. В этот момент должны вновь открыться электромагнитные клапаны 9 и 12 первой камеры сгорания, вновь начнется ее заполнение внешней водой из камеры высокого давления 6.

С некоторым смещением во времени абсолютно аналогично подготавливаются к срабатыванию вторая, третья и последующие камеры сгорания. Общее их количество выбирается таким образом, чтобы описанный выше процесс происходил последовательно в каждой из них, образуя в общем сопле постоянный несколько пульсирующий по интенсивности поток выбрасываемой воды. Сила тяги водяного реактивного двигателя, а следовательно и скорость движения водного транспортного средства, регулируется МСУ общим объемом горючей смеси в камерах сгорания и процентным содержанием в ней природного газа.

Формула изобретения

Водяной реактивный двигатель, находящийся под микропроцессорным управлением и содержащий соосно горизонтально расположенные входное устройство, сопло, на одном валу установленные насос высокого давления, насос низкого давления и турбину, имеющий внутренний контур, состоящий из камеры высокого давления воды шарообразной формы, в верхней части которой выполнен гофрированный расширительный элемент, соединенный с одной стороны вертикально расположенной трубой с насосом высокого давления, а в нижней части через электромагнитные клапаны с несколькими камерами сгорания, каждая из которых представляет собой сосуд яйцевидной формы, имеющий в верхней части на оси рядом расположенные два электрода электроразрядника и с некоторым смещением от оси через электромагнитный клапан трубчатое соединение с атмосферой, а выход в нижней части выполнен в виде вертикальной трубы с инжектором, внутренняя полость которого через односторонний клапан соединена с внешним контуром, плавно переходящей в горизонтальную и после одностороннего клапана соединенной с выходящим во внешнюю воду общим соплом, внутри которого установлены турбина и внешний контур, охватывающий горизонтальные части выходов камер сгорания и общее сопло, отличающийся тем, что в верхней части каждой из камер сгорания рядом с двумя электродами электроразрядника выполнены два входа, перекрытые игольчатыми электромагнитными клапанами, причем один из них имеет соединение с баллоном природного газа, а другой – с баллоном сжатого воздуха, контактирующего с атмосферой через компрессор.

bankpatentov.ru

Морской реактивный двигатель

Водный реактивный двигатель ( "Из чего это сделано" )Нажми для просмотра
Драка двух людей,зако чилась накаутом. Больше видио на моем канале. Заходите и смотрите.
 
 
 
Тэги:
 
Морской реактивный двигательНажми для просмотра
Получи до 40% c интернет покупок Придешь домой посмотришь телевизор вот тоска ...
 
 
 
Тэги:
 
ГАЗОТУРБИННЫЕ КАТЕРАНажми для просмотра
Менее чем за 60 секунд двухместны й снаряд, оснащенный 11-литровым «большим блоком», проходит трассу с 30 повор...
 
 
 
Тэги:
 
ЛОДОЧНЫЙ МОТОР МЕРКУРИЙ 135 на Катер BRP Sea Doo Часть 3 ЗаключительнаяНажми для просмотра
Реактивный двигатель который способен работать в воздухе,ко мосе,под водой,он не требует подсоса воздуха...
 
 
 
Тэги:
 
Jet sprinting - Реактивный спринт на катерахНажми для просмотра
Незабываем ые впечатлени я на лодке с установлен ным реактивным двигателем в Новой Зеландии. Сумасшедша я...
 
 
 
Тэги:
 
Водородный реактивный двигатель(HHO jet enginer)Нажми для просмотра
Как сделать самодельны й пульсирующ ий воздушно-р активный двигатель Рейнста PULSE JET ENGINE Pulse Jet Car.
 
 
 
Тэги:
 
Реактивный двигатель на лодке, Новая ЗеландияНажми для просмотра
Пройдите бесплатный урок английског о в Skyeng — ◇ Инструмент ы с алиэкспрес , которые я использ.
 
 
 
Тэги:
 
✅Разработка самодельного РЕАКТИВНОГО двигателя! Из сахара и селитры реактивное топливо своими рукамиНажми для просмотра
Перевод иностранно го ролика о работе Турбовенти ляторного реактивног о Авиационно го двигателя.
 
 
 
Тэги:
 
ЧТО БУДЕТ ЕСЛИ В ДВИГАТЕЛЬ САМОЛЕТА ПОПАДЕТ ПТИЦАНажми для просмотра
Небольшая подборка тестовых запусков различных реактивных двигателей для самолетов и ракеты. Запуск реак...
 
 
 
Тэги:
 
Реактивный двигатель (Rus) - Jet engineНажми для просмотра
Гоночный катер с ракетными двигателям и за 2,5 млн $: Mystic Powerboats C5000. Развивает скорость до 338 км/час. Серия ...
 
 
 
Тэги:
 
Запуск реактивных двигателейНажми для просмотра
Статически й тест японского ракетного двигателя для космическо й программы Interstellar Technologies Inc. Если кого-то...
 
 
 
Тэги:
 
Гоночный катер с ракетными двигателями за 2,5 млн $: Mystic Powerboats C5000Нажми для просмотра
Cергей Иванов - Инженер-ма ематик, главный администра тор паблика "Суровый технарь" Тема: "Пламенн ый мотор:...
 
 
 
Тэги:
 
Испытание ракетного двигателя на обжигНажми для просмотра
Заправка реактивног о двигателя зелёными водорослям и: миф или реальность ? В морской воде встречаютс я микро...
 
 
 
Тэги:
 
Пламенный мотор: первые турбореактивные двигатели СССР – Cергей ИвановНажми для просмотра
Авиалайнер Boeing 747-400 сдул зевак с пляжа Maho Beach на острове Сен-Мартен в Карибском море.
 
 
 
Тэги:
 
Дыхание жизни. Заправка реактивного двигателя зелёными водорослями: миф или реальность?Нажми для просмотра
Турбореакт ивный двигатель нового поколения. Без двигателя нет самолета, без самолета нет авиации, без авиа...
 
 
 
Тэги:
 
Самолет сдул людей с пляжаНажми для просмотра
В этом видео мы выясняем-с здает ли этот пульсирующ ий "движок&q uot; хоть какую-то тягу. Кстати, с прошлого раза...
 
 
 
Тэги:
 
Турбореактивный двигатель нового поколения. - New BestНажми для просмотра
ДВИГАТЕЛЬН ЫЙ ПРОРЫВ РОССИИ: ИЗОБРЕТЕНИ Е ДЕТОНАЦИОН НЫХ ДВИГАТЕЛЕЙ ДРУЗЬЯ, ПОДПИСЫВАЕ МСЯ НА ...
 
 
 
Тэги:
 

funer.ru


Смотрите также