ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Первый в мире детонационный ракетный двигатель. Реактивный детонационный двигатель


Первый в мире детонационный ракетный двигатель

Взрывной эффект Взрыв; Россия, факты

Что на самом деле стоит за сообщениями о первом в мире детонационном ракетном двигателе, испытанном в России

В конце августа 2016 года мировые информационные агентства облетела новость: на одном из стендов НПО «Энергомаш» в подмосковных Химках заработал первый в мире полноразмерный жидкостный ракетный двигатель (ЖРД) с использованием детонационного горения топлива. К этому событию отечественная наука и техника шла 70 лет. Идея детонационного двигателя была предложена советским физиком Я. Б. Зельдовичем в статье «Об энергетическом использовании детонационного сгорания», опубликованной в «Журнале технической физики» еще в 1940 году. С тех пор во всем мире шли исследования и эксперименты по практической реализации перспективной технологии. В этой гонке умов вперед вырывались то Германия, то США, то СССР. И вот важный приоритет в мировой истории техники закрепила за собой Россия. В последние годы чем-то подобным нашей стране удается похвастать не часто.

Взрывной эффект Взрыв; Россия, факты

На гребне волны

В чем же состоят преимущества детонационного двигателя? В традиционных ЖРД, как, впрочем, и в обычных поршневых или турбореактивных авиадвигателях, используется энергия, которая выделяется при сжигании топлива. В камере сгорания ЖРД при этом образуется стационарный фронт пламени, горение в котором происходит при неизменном давлении. Этот процесс обычного горения называется дефлаграцией. В результате взаимодействия горючего и окислителя температура газовой смеси резко возрастает и из сопла вырывается огненный столб продуктов сгорания, которые и образуют реактивную тягу.

Детонация — это тоже горение, но происходит оно в 100 раз быстрее, чем при обычном сжигании топлива. Этот процесс идет так быстро, что детонацию часто путают со взрывом, тем более что при этом выделяется столько энергии, что, к примеру, автомобильный мотор при возникновении этого явления в его цилиндрах и в самом деле может разрушиться. Однако детонация — это не взрыв, а вид горения столь стремительного, что продукты реакции даже не успевают расшириться, поэтому этот процесс, в отличие от дефлаграции, идет при постоянном объеме и резко возрастающем давлении.

На практике это выглядит следующим образом: вместо стационарного фронта пламени в топливной смеси внутри камеры сгорания формируется детонационная волна, которая движется со сверхзвуковой скоростью. В этой волне сжатия и происходит детонация смеси горючего и окислителя, а это процесс с термодинамической точки зрения куда более эффективный, чем обычное сжигание топлива. КПД детонационного сгорания на 25–30% больше, то есть при сжигании одинакового количества топлива получается больше тяги, а благодаря компактности зоны горения детонационный двигатель по мощности, снимаемой с единицы объема, теоретически на порядок превосходит обычные ЖРД.

Уже одного этого оказалось достаточно, чтобы привлечь самое пристальное внимание специалистов к этой идее. Ведь тот застой, который сейчас возник в развитии мировой космонавтики, на полвека застрявшей на околоземной орбите, в первую очередь связан с кризисом ракетного двигателестроения. В кризисе, кстати, находится и авиация, не способная перешагнуть порог трех скоростей звука. Этот кризис можно сравнить с ситуацией в поршневой авиации в конце 1930-х годов. Винт и двигатель внутреннего сгорания исчерпали свой потенциал, и только появление реактивных двигателей позволило выйти на качественно новый уровень высот, скоростей и дальности полетов.

Взрывной эффект Взрыв; Россия, факты

Конструкции классических ЖРД за последние десятилетия были вылизаны до совершенства и практически подошли к пределу своих возможностей. Увеличить их удельные характеристики в будущем возможно лишь в очень незначительных пределах — на считаные проценты. Поэтому мировая космонавтика вынуждена идти по экстенсивному пути развития: для пилотируемых полетов на Луну приходится строить гигантские ракеты-носители, а это очень сложно и безумно дорого, во всяком случае для России. Попытка преодолеть кризис с помощью ядерных двигателей наткнулась на экологические проблемы. Появление детонационных ЖРД, быть может, и рано сравнивать с переходом авиации на реактивную тягу, но ускорить процесс освоения космоса они вполне способны. Тем более что у этого типа реактивных двигателей есть еще одно очень важное преимущество.

ГРЭС в миниатюре

Обычный ЖРД — это, в принципе, большая горелка. Для увеличения его тяги и удельных характеристик нужно поднимать давление в камере сгорания. При этом топливо, которое впрыскивается в камеру через форсунки, должно подаваться при большем давлении, чем реализуется в процессе сгорания, иначе струя топлива просто не сможет проникнуть в камеру. Поэтому самым сложным и дорогим агрегатом в ЖРД является вовсе не камера с соплом, которое у всех на виду, а топливный турбонасосный агрегат (ТНА), спрятанный в недрах ракеты среди хитросплетения трубопроводов.

К примеру, у самого мощного в мире ЖРД РД-170, созданного для первой ступени советской сверхтяжелой ракеты-носителя «Энергия» тем же НПО «Энергия», давление в камере сгорания составляет 250 атмосфер. Это очень много. Но давление на выходе из кислородного насоса, качающего окислитель в камеру сгорания, достигает величины 600 атм. Для привода этого насоса используется турбина мощностью 189 МВт! Только представьте себе это: колесо турбины диаметром 0,4 м развивает мощность, в четыре раза большую, чем атомный ледокол «Арктика» с двумя ядерными реакторами! При этом ТНА — это сложное механическое устройство, вал которого совершает 230 оборотов в секунду, а работать ему приходится в среде жидкого кислорода, где малейшая не искра даже, а песчинка в трубопроводе приводит к взрыву. Технологии создания такого ТНА и есть главное ноу-хау «Энергомаша», обладание которым позволяет российской компании и сегодня продавать свои двигатели для установки на американских ракетах-носителях Atlas V и Antares. Альтернативы российским двигателям в США пока нет.

Для детонационного двигателя такие сложности не нужны, поскольку давление для более эффективного сгорания обеспечивает сама детонация, которая и представляет собой бегущую в топливной смеси волну сжатия. При детонации давление увеличивается в 18–20 раз без всякого ТНА.

Чтобы получить в камере сгорания детонационного двигателя условия, эквивалентные, к примеру, условиям в камере сгорания ЖРД американского «Шаттла» (200 атм), достаточно подавать топливо под давлением… 10 атм. Агрегат, необходимый для этого, по сравнению с ТНА классического ЖРД — все равно что велосипедный насос рядом Саяно-Шушенской ГРЭС.

То есть детонационный двигатель будет не только мощнее и экономичнее обычного ЖРД, но и на порядок проще и дешевле. Так почему же эта простота в течение 70 лет не давалась в руки конструкторам?

Взрывной эффект Взрыв; Россия, факты

Пульс прогресса

Главная проблема, которая встала перед инженерами, — как совладать с детонационной волной. Дело ведь не только в том, чтобы сделать двигатель прочнее, чтобы он выдержал повышенные нагрузки. Детонация — это не просто взрывная волна, а кое-что похитрее. Взрывная волна распространяется со скоростью звука, а детонационная со сверхзвуковой скоростью — до 2500 м/с. Она не образует стабильного фронта пламени, поэтому работа такого двигателя носит пульсирующий характер: после каждой детонации необходимо обновить топливную смесь, после чего запустить в ней новую волну.

Попытки создать пульсирующий реактивный двигатель предпринимались задолго до идеи с детонацией. Именно в применении пульсирующих реактивных двигателей пытались найти альтернативу поршневым моторам в 1930-е годы. Привлекала опять же простота: в отличие от авиационной турбины для пульсирующего воздушно-реактивного двигателя (ПуВРД) не нужны были ни вращающийся со скоростью 40 000 оборотов в минуту компрессор для нагнетания воздуха в ненасытное чрево камеры сгорания, ни работающая при температуре газа свыше 1000˚С турбина. В ПуВРД давление в камере сгорания создавали пульсации в горении топлива.

Первые патенты на пульсирующий воздушно-реактивный двигатель были получены независимо друг от друга в 1865 году Шарлем де Луврье (Франция) и в 1867 году Николаем Афанасьевичем Телешовым (Россия). Первую работоспособную конструкцию ПуВРД запатентовал в 1906 году русский инженер В.В. Караводин, годом позже построивший модельную установку. Установка Караводина вследствие ряда недостатков не нашла применения на практике. Первым ПуВРД, работавшим на реальном летательном аппарате, стал немецкий Argus As 014, основанный на патенте 1931 года мюнхенского изобретателя Пауля Шмидта. Argus создавался для «оружия возмездия» — крылатой бомбы «Фау-1». Аналогичную разработку создал в 1942 году советский конструктор Владимир Челомей для первой советской крылатой ракеты 10Х.

Конечно, эти двигатели еще не были детонационными, поскольку в них использовались пульсации обычного горения. Частота этих пульсаций была невелика, что порождало характерный пулеметный звук при работе. Удельные характеристики ПуВРД из-за прерывистого режима работы в среднем были невысоки и после того, как конструкторы к концу 1940-х годов справились со сложностями создания компрессоров, насосов и турбин, турбореактивные двигатели и ЖРД стали королями неба, а ПуВРД остались на периферии технического прогресса.

Любопытно, что первые ПуВРД немецкие и советские конструкторы создали независимо друг от друга. Кстати, и идея детонационного двигателя в 1940 году пришла в голову не одному только Зельдовичу. Одновременно с ним те же мысли высказали Фон Нейман (США) и Вернер Деринг (Германия), так что в международной науке модель использования детонационного горения назвали ZND.

Идея объединить ПуВРД с детонационным горением была очень заманчивой. Но фронт обычного пламени распространяется со скоростью 60–100 м/с и частота его пульсаций в ПуВРД не превышает 250 в секунду. А детонационный фронт движется со скоростью 1500‒2500 м/с, таким образом частота пульсаций должна составлять тысячи в секунду. Реализовать такую скорость обновления смеси и инициации детонации на практике было затруднительно.

Тем не менее попытки создания работоспособных пульсирующих детонационных двигателей продолжались. Работа специалистов ВВС США в этом направлении увенчалась созданием двигателя-демонстратора, который 31 января 2008 года впервые поднялся в небо на экспериментальном самолете Long-EZ. В историческом полете двигатель проработал… 10 секунд на высоте 30 метров. Тем не менее приоритет в данном случае остался за Соединенными Штатами, а самолет по праву занял место в Национальном музее ВВС США.

Между тем уже давно была придумана другая, гораздо более перспективная схема детонационного двигателя.

Как белка в колесе

Мысль закольцевать детонационную волну и заставить ее бегать в камере сгорания как белка в колесе родилась у ученых в начале 1960-х годов. Явление спиновой (вращающейся) детонации теоретически предсказал советский физик из Новосибирска Б. В. Войцеховский в 1960 году. Почти одновременно с ним, в 1961 году, ту же идею высказал американец Дж. Николлс из Мичиганского университета.

Ротационный, или спиновый, детонационный двигатель конструктивно представляет собой кольцевую камеру сгорания, топливо в которую подается с помощью радиально расположенных форсунок. Детонационная волна внутри камеры движется не в осевом направлении, как в ПуВРД, а по кругу, сжимая и выжигая топливную смесь перед собой и в конце концов выталкивая продукты сгорания из сопла точно так же, как винт мясорубки выталкивает наружу фарш. Вместо частоты пульсаций мы получаем частоту вращения детонационной волны, которая может достигать нескольких тысяч в секунду, то есть практически двигатель работает не как пульсирующий, а как обычный ЖРД со стационарным горением, но куда более эффективно, поскольку на самом деле в нем происходит детонация топливной смеси.

В СССР, как и в США, работы над ротационным детонационным двигателем шли с начала 1960-х годов, но опять же при кажущейся простоте идеи ее реализация потребовала решения головоломных теоретических вопросов. Как организовать процесс так, чтобы волна не затухала? Необходимо было понимание сложнейших физико-химических процессов, происходящих в газовой среде. Тут расчет велся уже не на молекулярном, а на атомарном уровне, на стыке химии и квантовой физики. Процессы эти более сложны, чем те, что происходят при генерации луча лазера. Именно поэтому лазер уже давно работает, а детонационный двигатель — нет. Для понимания этих процессов потребовалось создать новую фундаментальную науку — физико-химическую кинетику, которой 50 лет назад еще не существовало. А для практического расчета условий, при которых детонационная волна не будет затухать, а станет самоподдерживающейся, потребовались мощные ЭВМ, появившиеся лишь в последние годы. Вот какой фундамент необходимо было положить в основание практических успехов по укрощению детонации.

Активные работы в этом направлении ведутся в Соединенных Штатах. Этими исследованиями занимаются Pratt & Whitney, General Electric, NASA. К примеру, в научно-исследовательской лаборатории ВМФ США разрабатываются спиновые детонационные газотурбинные установки для флота. В ВМФ США используется 430 газотурбинных установок на 129 кораблях, в год они потребляют топлива на три миллиарда долларов. Внедрение более экономных детонационных газотурбинных двигателей (ГТД) позволит сберечь гигантские средства.

В России над детонационными двигателями работали и продолжают работать десятки НИИ и КБ. В их числе и НПО «Энергомаш» — ведущая двигателестроительная компания российской космической промышленности, со многим предприятиями которой сотрудничает банк ВТБ. Разработка детонационного ЖРД велась не один год, но для того чтобы вершина айсберга этой работы засверкала под солнцем в виде успешного испытания, потребовалось организационное и финансовое участие небезызвестного Фонда перспективных исследований (ФПИ). Именно ФПИ выделил необходимые средства для создания в 2014 году специализированной лаборатории «Детонационные ЖРД». Ведь несмотря на 70 лет исследований, эта технология до сих пор остается в России «слишком перспективной», чтобы ее финансировали заказчики вроде Министерства обороны, которым нужен, как правило, гарантированный практический результат. А до него еще очень далеко.

Укрощение строптивой

Хочется верить, что после всего сказанного выше становится понятна та титаническая работа, которая проглядывает между строк краткого сообщения об испытаниях, прошедших на «Энергомаше» в Химках в июле — августе 2016 года: «Впервые в мире был зарегистрирован установившийся режим непрерывной спиновой детонации поперечных детонационных волн частотой около 20 кГц (частота вращения волны — 8 тысяч оборотов в секунду) на топливной паре „кислород — керосин“. Удалось добиться получения нескольких детонационных волн, уравновешивавших вибрационные и ударные нагрузки друг друга. Специально разработанные в центре имени М. В. Келдыша теплозащитные покрытия помогли справиться с высокими температурными нагрузками. Двигатель выдержал несколько пусков в условиях экстремальных вибронагрузок и сверхвысоких температур при отсутствии охлаждения пристеночного слоя. Особую роль в этом успехе сыграло создание математических моделей и топливных форсунок, позволявших получать смесь необходимой для возникновения детонации консистенции».

Разумеется, не стоит преувеличивать значение достигнутого успеха. Создан лишь двигатель-демонстратор, который проработал относительно недолго, и о его реальных характеристиках ничего не сообщается. По информации НПО «Энергомаш», детонационный ЖРД позволит поднять тягу на 10% при сжигании того же количества топлива, что и в обычном двигателе, а удельный импульс тяги должен увеличиться на 10–15%.

Но главный результат состоит в том, что практически подтверждена возможность организации детонационного горения в ЖРД. Однако путь до использования этой технологии в составе реальных летательных аппаратов предстоит еще долгий. Другой важный аспект заключается в том, что еще один мировой приоритет в области высоких технологий отныне закреплен за нашей страной: впервые в мире полноразмерный детонационный ЖРД заработал именно в России, и этот факт останется в истории науки и техники.

Другие статьи:

nlo-mir.ru

Реактивный двигатель детонационного сгорания

 

Изобретение относится к области машиностроения и может быть применено на наземном и водном транспорте, а также на летательных аппаратах. Технический результат заключается в возможности создания экологически чистого двигателя, работающего на бедных смесях. Согласно изобретению двигатель включает в себя гильзы цилиндров, поршни, нагнетатель воздуха объемного типа, насос-форсунки, автономную камеру сгорания, кожух, зарядный механизм, кулисный барабан, турбину, мотор-генератор, зубчатый венец, топливный и масляный насосы, механизм изменения степени сжатия и систему охлаждения. В автономной камере сгорания, в которую подается воздух при помощи нагнетателя воздуха объемного типа, происходит детонационное сгорание топлива при постоянном объеме. При этом нагнетатель воздуха представляет собой двухступенчатый поршневой нагнетатель, который состоит из несущего цилиндра с поршнем второй ступени и установленной на несущем цилиндре воздушной камеры с кольцевым поршнем первой ступени. Плоскость балки поршня второй ступени и плоскость шаровых пальцев кольцевого поршня первой ступени расположены под углом 90° друг к другу. Указанные поршни движутся в разные стороны, в результате чего их силы инерции взаимно уравновешиваются. Полости второй и первой ступеней соединены каналами, а объем воздушной камеры в два раза больше объема полости второй ступени. Несущий цилиндр является опорой двигателя и состоит из двух гильз, запрессованных одна на другую. В гильзах выполнены каналы, окна и отверстия, составляющие систему коммуникаций двигателя. Зарядный механизм состоит из камеры сгорания, фазовых колец с шаровыми пальцами, каналов и сопел. Камера сгорания крепится фланцем к несущему цилиндру и соединена впускными каналами с полостью второй ступени нагнетателя воздуха, эти каналы закрываются фазовым кольцом или шариками со сферическими седлами, выполняющими функции затвора. Выпускные каналы камеры сгорания также открываются фазовым кольцом. В стенке камеры сгорания выполнена рубашка жидкостного охлаждения. Кулисный барабан выполнен цилиндрическим, разъемным и установлен на несущем цилиндре на двух подшипниках. Обе части барабана фиксируются штифтами по периметру, а внутри барабана выполнены осевая сферическая кулиса привода поршней нагнетателя воздуха и две радиальные съемные кулисы привода топливных насос-форсунок, масляных насосов и прерывателя зажигания. Снаружи кулисного барабана установлена турбина привода двигателя, которая приводится в действие давлением выпускных газов через несколько каналов и сопел. При этом двигатель оборудован механизмом изменения степени сжатия, который состоит из двух гаек, навернутых на кулисный барабан и несущий цилиндр, и упорного кольца. 2 ил.

Изобретение относится к машиностроению и может быть применено на наземном, водном транспорте, летательных аппаратах.

Известны двухтактные двигатели внутреннего сгорания, в которых использованы кинематические схемы с кривошипно-шатунным механизмом и продувкой цилиндров воздухом через продувочные окна. (Устройство и ремонт автомобилей. М.: Высшая школа, 1987).

В современных двигателях внутреннего сгорания повышение мощностных характеристик связано с совершенствованием электронных систем подготовки и подачи воздуха и топлива в цилиндры двигателя, очистки цилиндров от продуктов сгорания, увеличения степени сжатия и т.п. Основной проблемой является использование внутренней энергии применяемого топлива, сгорание которого в различных условиях давления и температуры может происходить плавно или носить взрывной ударный детонационный характер с выделением дополнительной тепловой энергии, появление которой в процессе работы обычного двигателя внутреннего сгорания считается вредным и приводящим к разрушению деталей кривошипно-шатунного механизма. В результате в топливо добавляются антидетонационные присадки, в конструкции двигателей применяют различные совмещенные с цилиндром камеры сгорания предкамеры, уменьшающие детонацию и жесткость работы двигателей. Тем самым внутренняя энергия топлива используется только в первоначальной стадии цепной реакции входящих в него молекул.

В предлагаемом реактивном двигателе детонационного сгорания применяется топливо (бензин, керосин, дизельное топливо, нефть, газ) без антидетонационных присадок. Сгорание топлива происходит при постоянном объеме в автономной камере сгорания, предварительно заряженной воздухом и топливом и отключенной от полости цилиндра, носит взрывной, детонационный характер. При детонационном сгорании цепная реакция молекул топлива и воздуха происходит быстрее и в более глубокой стадии с выделением дополнительной тепловой энергии. Согласно изобретению двигатель включает в себя гильзы цилиндров, поршни, нагнетатель воздуха объемного типа, насос-форсунки, автономную камеру сгорания, в которой происходит детонационное сгорание топлива при постоянном объеме, кожух, зарядный механизм, кулисный барабан, турбину, мотор-генератор, зубчатый венец, топливный и масляный насосы, механизм изменения степени сжатия и систему охлаждения. Воздух в автономную камеру сгорания подается при помощи нагнетателя воздуха объемного типа, который представляет собой двухступенчатый поршневой нагнетатель, состоящий из несущего цилиндра с поршнем второй ступени и установленной на несущем цилиндре воздушной камеры с кольцевым поршнем первой ступени. Полости второй и первой ступеней соединены каналами, а объем воздушной камеры в два раза больше объема полости второй ступени. Несущий цилиндр является опорой двигателя и состоит из двух гильз, запрессованных одна на другую, а в гильзах выполнены каналы, окна и отверстия, составляющие систему коммуникаций двигателя. Зарядный механизм состоит из камеры сгорания, фазовых колец с шаровыми пальцами, каналов и сопел. Камера сгорания полусферическая крепится фланцем к несущему цилиндру и соединена впускными каналами с полостью второй ступени нагнетателя воздуха. Впускные каналы закрываются впускным фазовым кольцом или шариками со сферическими седлами, выполняющими функции затвора. Выпускные каналы камеры сгорания открываются выпускным фазовым кольцом. В стенке камеры сгорания выполнена рубашка жидкостного охлаждения. Кулисный барабан выполнен цилиндрическим, разъемным и установлен на несущем цилиндре на двух подшипниках. Обе части барабана фиксируются штифтами по периметру, а внутри барабана выполнены осевая сферическая кулиса привода поршней нагнетателя воздуха и две радиальные съемные кулисы привода топливных насос-форсунок, масляных насосов и прерывателя зажигания. Снаружи кулисного барабана установлена турбина привода двигателя, которая приводится в действие давлением выпускных газов через несколько каналов и сопел. Двигатель оборудован механизмом изменения степени сжатия, который состоит из двух гаек, навернутых на кулисный барабан и несущий цилиндр, и упорного кольца. Плоскость балки поршня второй ступени и плоскость шаровых пальцев кольцевого поршня первой ступени расположены под углом 90° друг к другу. Поршни второй и первой ступени движутся в разные стороны, в результате чего их силы инерции взаимно уравновешиваются.

Устройство реактивного двигателя детонационного сгорания поясняется чертежами фиг.1 и фиг.2. На фиг.1 показан разрез двигателя, а на фиг.2 - вариант исполнения запорного органа для впускных каналов камеры сгорания.

Реактивный двигатель детонационного сгорания согласно изобретению состоит из кожуха, двухступенчатого поршневого нагнетателя воздуха, зарядного механизма, кулисного барабана, турбины, мотор-генератора, зубчатого венца, топливных и масляных насосов, форсунок, механизма изменения степени сжатия, системы охлаждения.

Нагнетатель воздуха состоит из несущего цилиндра 1 с системой коммуникаций, поршня 2 второй ступени, поршневой балки 3 с шаровыми пальцами 21 и наконечниками 22, воздушной камеры 7 с кольцевым поршнем 8 первой ступени с уплотнительными кольцами 18, штангами 15 и пальцами 16, шаровыми наконечниками 17. При этом полости второй и первой ступеней соединены каналами "а". Несущий цилиндр 1 является опорой двигателя и состоит из двух гильз 1а и 1д, запрессованных одна на другую, в гильзах выполнены каналы, окна и отверстия, составляющие систему коммуникаций двигателя. Воздушная камера 7 установлена на несущем цилиндре 1.

Зарядный механизм состоит из камеры сгорания 5, фазового кольца 6 впуска воздуха с шаровыми пальцами 9, впускных каналов "вп", выпускных каналов "вып" и сопел 10. Камера сгорания 5 полусферическая, прикрепленная фланцем 11 к несущему цилиндру 1, соединена впускными каналами "вп" с полостью "В" второй ступени нагнетателя воздуха. Вместо фазового кольца 6 в каналах "в" могут устанавливаться сферические седла 34 с шариками 33, выполняющими функции затвора при перепадах давления в полости "В" и камере сгорания 5 (см. фиг.2). Выпускные каналы "вып" открываются фазовым кольцом 12 с шаровыми пальцами 13 и соединены с соплами 10. В стенке камеры сгорания 5 выполнена рубашка "Н" жидкостного охлаждения.

Кулисный барабан 4 цилиндрический, разъемный установлен на несущем цилиндре 1 на шариковых подшипниках 14, обе части барабана 4 фиксируются штифтами 19 по периметру. Внутри барабана 5 выполнена осевая сферическая кулиса К1 привода поршня 2 и кольцевого поршня 8, а также установлены радиальные съемные кулисы КЗ привода топливных насосов-форсунок 20 и К2 привода масляных насосов 23 и прерывателя распределителя 24 системы зажигания.

Турбина 25 привода двигателя установлена снаружи кулисного барабана 4 и приводится в действие давлением выпускных газов через несколько каналов "вып" и сопел 10, снаружи также установлен зубчатый венец 26.

Механизм изменения степени сжатия состоит из гаек 27 и 28, навернутых на кулисный барабан 4 и несущий цилиндр 1, и упорного кольца 29.

Мотор-генератор состоит из катушек 30 и магнита NS и выполняет функции стартера и генератора.

Степень сжатия в полости "В" второй ступени в два раза больше степени сжатия воздушной полости "А" первой ступени, а объем полости "А" больше объема полости "В" в два раза.

Реактивный двигатель детонационного сгорания работает следующим образом.

В исходном положении поршень 2 второй ступени находится возле НМТ, продувочные окна "ПО" открыты, кольцевой поршень 8 первой ступени находится возле ВМТ, сжатый воздух из полости "А" по каналам "а" переходит в полость "В", в камере сгорания 5 впускные "вп" и выпускные "вып" каналы открыты, происходит продувка камеры сгорания 5 избыточным давлением воздуха. Далее поршень 2 движется к ВМТ, перекрывает продувочные окна "ПО", в камере сгорания 5 закрываются выпускные каналы "вып", происходит зарядка камеры сгорания 5 сжатым воздухом. Одновременно в камеру сгорания 5 впрыскивается топливо, которое смешивается с воздухом и проходит физико-химическую подготовку. Электрическая искра подается в камеру сгорания 5 так, чтобы период индукции горючей смеси закончился в момент прихода поршня 2 в ВМТ и впускные каналы "вп" закрылись фазовым кольцом 8, или шариками 33 седел 34, выполняющих функции затвора. Воздушная полость "В" отключена от камеры сгорания 5, последняя работает в автономном режиме и не зависит от положения поршня 2 нагнетателя воздуха. Начался процесс сгорания горючей смеси при постоянном объеме, который сопровождается взрывной, ударной волной и носит детонационный характер, приводящий к резкому увеличению температуры и давления и дополнительному выделению тепловой энергии. В конце сгорания открываются выпускные каналы "вып" и происходит процесс расширения газов, в процессе которого газы с большой скоростью мгновенно вылетают-выстреливают через сопла, импульсы силы реакции газов вызывают силу тяги и прямолинейное движение двигателя. Часть газов устремляется к турбине 25, которая вращает барабан 4 и рабочий цикл повторяется.

Реактивный двигатель детонационного сгорания работает в реактивном и турбинном режимах на бедных смесях, экологически чистый и может быть применен как двигатель-модуль в кассетном исполнении для получения более мощного двигателя.

Формула изобретения

Двигатель, включающий в себя гильзы цилиндров, поршни, нагнетатель воздуха объемного типа, насос-форсунки, отличающийся тем, что он также включает в себя автономную камеру сгорания, в которой происходит детонационное сгорание топлива при постоянном объеме и в которую подается воздух при помощи нагнетателя воздуха объемного типа, кожух, зарядный механизм, кулисный барабан, турбину, мотор-генератор, зубчатый венец, топливный и масляный насосы, механизм изменения степени сжатия и систему охлаждения, при этом нагнетатель воздуха представляет собой двухступенчатый поршневой нагнетатель, который состоит из несущего цилиндра с поршнем второй ступени и установленной на несущем цилиндре воздушной камеры с кольцевым поршнем первой ступени, полости второй и первой ступеней соединены каналами, а объем воздушной камеры в два раза больше объема полости второй ступени, несущий цилиндр является опорой двигателя и состоит из двух гильз, запрессованных одна на другую, в гильзах выполнены каналы, окна и отверстия, составляющие систему коммуникаций двигателя, зарядный механизм состоит из камеры сгорания, фазовых колец с шаровыми пальцами, каналов и сопел, камера сгорания крепится фланцем к несущему цилиндру и соединена впускными каналами с полостью второй ступени нагнетателя воздуха, эти каналы закрываются фазовым кольцом или шариками со сферическими седлами, выполняющими функции затвора, выпускные каналы камеры сгорания открываются фазовым кольцом, в стенке камеры сгорания выполнена рубашка жидкостного охлаждения, кулисный барабан выполнен цилиндрическим, разъемным и установлен на несущем цилиндре на двух подшипниках, обе части барабана фиксируются штифтами по периметру, внутри барабана выполнены осевая сферическая кулиса привода поршней нагнетателя воздуха и две радиальные съемные кулисы привода топливных насос-форсунок, масляных насосов и прерывателя зажигания, снаружи кулисного барабана установлена турбина привода двигателя, которая приводится в действие давлением выпускных газов через несколько каналов и сопел, двигатель оборудован механизмом изменения степени сжатия, который состоит из двух гаек, навернутых на кулисный барабан и несущий цилиндр и упорного кольца, плоскость балки поршня второй ступени и плоскость шаровых пальцев кольцевого поршня первой ступени расположены под углом 90° друг к другу, указанные поршни движутся в разные стороны, в результате чего их силы инерции взаимно уравновешиваются.

РИСУНКИ

www.findpatent.ru

Детонационная камера пульсирующего воздушно-реактивного двигателя

 

Изобретение относится к пульсирующим воздушно-реактивным двигателям с резонансными камерами сгорания. Детонационная камера состоит из корпуса 1 и инициаторов детонации 2. Корпус представляет собой желоб 3, расширяющийся от дна к открытому краю и разделенный перегородками 4 на множество секций, каждая из которых снабжена инициатором детонации. Форма перегородок выбирается такой, что секция имеет вид четырехгранного раструба 5, расширяющегося в направлении движения потока, а в перегородках и стенках камеры выполнены отверстия 6 для прохода воздуха и горючей смеси. Управление работой двигателя осуществляется электронной системой управления 9, связанной с инициаторами детонации. Конструкция камеры позволяет управлять как величиной, так и направлением вектора тяги двигателя, как ступенчато, так и плавно, как в узлах, так и в широких пределах. Это достигается или изменением количества рабочих секций камеры, или изменением частоты детонационных процессов, или асимметричным включением рабочих секций. 1 ил.

Изобретение относится к пульсирующим воздушно-реактивным двигателям детонационного горения (ПДГГ).

Примером такого двигателя может служить известное устройство [1]. Наиболее близким к заявляемому устройству как по принципу действия, так и по техническому исполнению является камера двигателя, представляющая собой замкнутый желоб [2]. Недостаток двигателя, снабженного такой камерой, состоит в том, что ввиду сравнительно малой скорости заполнения камеры свежей горючей смесью длительность периода истечения продуктов детонации, когда двигатель создает тягу, мала по сравнению с продолжительностью всего цикла заполнение - детонация - истечение. По этой причине для получения достаточно высокого среднего уровня тяги (осредненного по времени) необходимы очень большие пиковые ее значения, что крайне неблагоприятно сказывается на летательном аппарате. Выходом могло бы служить использование известного принципа пакетирования, т. е. применение многокамерной конструкции, часто практикуемое в авиационных и ракетных двигателях. Такое решение позволяет за счет последовательного срабатывания камер, т.е. за счет увеличения частоты следования импульсов, значительно уменьшить их амплитуду при сохранении требуемого среднего уровня тяги. Одновременно уменьшение размеров камер облегчает решение задачи инициирования детонации в них, а наличие множества камер, смещенных относительно продольной оси летательного аппарата, позволяет создавать управляющие моменты, отключая какую-то часть камер и форсируя другую их часть. Однако многокамерная конструкция, состоящая из множества соединенных между собой цилиндрических детонационных камер, имела бы плохие массовые характеристики. Кроме того, в ней недостаточно эффективно используется площадь поперечного сечения двигателя, что приводит к увеличению его поперечных размеров и ухудшению экономичности. Задача изобретения состоит в улучшении тяговых массовых и габаритных характеристик двигателя. Решить данную задачу можно за счет изменения конструкции его детонационной камеры. Поставленная задача достигается применением детонационной камеры, корпус которой представляет собой желоб, разделенный перегородками на множество секций, причем форма перегородок такова, что секция имеет вид четырехгранного раструба, расширяющегося в направлении движения потока, в перегородках и стенках камеры выполнены отверстия для прохода воздуха и горючей смеси, а каждая секция снабжена инициатором детонации, электрически связанным с электронной системой управления двигателем и сообщающимся через запорный клапан с источником легко детонирующего газа. На чертеже показана предлагаемая камера. Детонационная камера двигателя состоит из двух основных частей: корпуса 1 и инициатора детонации 2. Корпус 1 является основным силовым элементом камеры. Он представляет собой желоб 3 кольцевой или другой формы, расширяющийся от дна к открытому краю. Внутренний объем желоба 3 разделен на автономные рабочие секции перегородками 4. Форма перегородок такова, что каждая секция имеет вид четырехгранного раструба 5, расширяющегося в направлении движения потока. Для прохода воздуха и горючей смеси как в перегородках, так и в стенках камеры выполнены отверстия 6. Каждая секция снабжена инициатором детонации 2, сообщающимся через запорный клапан 7 с источником легко детонирующего вещества, например ацетилена. Управление работой инициатора осуществляется посредством электронного блока 9 системы автоматического управления двигателем. Работает детонационная камера следующим образом. Для обеспечения заданной программы работы двигателя команда от системы автоматического управления 9 одновременно подается на систему подачи воздуха и горючей смеси (на чертеже показаны только отверстия для их подачи во внутренний объем камеры) и на запорный клапан 7 инициатора 2. Воздух и горючая смесь подаются или во все рабочие секции камеры или только в часть из них. При поступлении электрического сигнала в инициатор 2 в нем формируется детонационный импульс, который в свою очередь возбуждает детонацию в рабочей секции. Истечение из нее продуктов детонации происходит через четырехгранный расширяющийся раструб, что способствует увеличению скорости истечения, а следовательно, и силы тяги двигателя. После завершения истечения продуктов детонации из внутренней полости секции процесс повторяется вновь с заданной частотой. Достичь полученный эффект для данного типа двигателей за счет применения известных технических решений без ухудшения их массовых и габаритных характеристик не представляется возможным. Кроме того, оперативное управление работой двигателя позволяет изменять как величину, так и направление вектора тяги. Изменение величины тяги двигателя может осуществляться или за счет изменения количества одновременно работающих секций (ступенчатое изменение), или за счет изменения частоты детонационных процессов, проходящих в рабочих секциях камеры по команде системы автоматического управления 9. Изменение направления вектора тяги двигателя может осуществляться или за сет асимметричного включения рабочих секций, или за счет изменения частоты детонационных процессов в симметрично расположенных рабочих секциях камеры. Кроме того, введение обратных связей по угловому положению летательного аппарата позволит автоматически ликвидировать отклонения, возникающие под действием внешних возмущающих факторов.

Формула изобретения

Детонационная камера пульсирующего воздушно-реактивного двигателя, включающая корпус и инициаторы детонации, причем корпус представляет собой замкнутый желоб, отличающаяся тем, что желоб разделен перегородками на множество секций, каждая из которых снабжена инициатором детонации, электрически связанным с электронной системой управления двигателем и сообщающимся через запорный клапан с общим источником легко детонирующего вещества, причем форма перегородок такова, что секция имеет вид четырехгранного раструба, расширяющегося в направлении движения потока, а в перегородках и стенках камеры выполнены отверстия для прохода воздуха и горючей смеси.

РИСУНКИ

Рисунок 1

www.findpatent.ru