Тележка Ньютона не была первым в мире реактивным двигателем. Примеры реактивного движения ученые наблюдали и исследовали еще до опытов Ньютона и вплоть до наших дней:
Реактивное движение самолетаЗа тысячу восемьсот лет до опытов Ньютона первый паровой реактивный двигатель сделал замечательный изобретатель Герон Александрийский—древнегреческий механик, его изобретение получило название вертушка Герона.
Герон Александрийский — древнегреческий механик, изобрел первую в мире паровую реактивную турбинуВ приборе, изобретенном Героном, пар из котла, под которым горел огонь, проходил по двум трубкам в железный шар. Трубки одновременно служили осью, вокруг которой этот шар мог вращаться. Две другие трубки, изогнутые наподобие буквы «Г», были приделаны к шару так, что позволяли выходить пару наружу из шара.
Когда под котлом разводили огонь, вода закипала и пар устремлялся в железный шар, а из него по изогнутым трубкам с силой вылетал наружу. Шар при этом вращался в сторону, противоположную той, в которую вылетали струи пара, это происходит согласно второго закона Ньютона.
Эту вертушку можно назвать первой в мире паровой реактивной турбиной.
Еще раньше, за много лет до Герона Александрийского, в Китае тоже изобрели реактивный двигатель несколько иного устройства, называемый ныне фейерверочной ракетой. Фейерверочные ракеты не следует смешивать с их тезками — сигнальными ракетами, которые применяют в армии и флоте, а также пускают в дни всенародных праздников под грохот артиллерийского салюта. Сигнальные ракеты — это просто пули, спрессованные из вещества, горящего цветным пламенем. Ими выстреливают из крупнокалиберных пистолетов — ракетниц.
Китайская ракета представляет собой картонную или металлическую трубку, закрытую с одного конца и наполненную пороховым составом. Когда эту смесь поджигают, струя газов, вырываясь с большой скоростью из открытого конца трубки, заставляет ракету лететь в сторону, противоположную направлению газовой струи. Взлетать такая ракета может без помощи пистолета-ракетницы. Палочка, привязанная к корпусу ракеты, делает ее полет более устойчивым и прямолинейным.
Фейерверк с использованием китайских ракетВ мире животных:
Здесь также встречается реактивное движение. Каракатицы, осьминоги и некоторые другие головоногие моллюски не имеют ни плавников, ни мощного хвоста, а плавают не хуже прочих обитателей моря. У этих мягкотелых существ в теле имеется довольно вместительный мешок или полость. В полость набирается вода, а затем животное с большой силой выталкивает эту воду наружу. Реакция выброшенной воды заставляет животное плыть в сторону, противоположную направлению струи.
Но самый интересный способ движения продемонстрировала обыкновенная кошка.
Лет сто пятьдесят назад известный французский физик Марсель Депре заявил:
— А знаете ли, законы Ньютона не совсем верны. Тело может двигаться с помощью внутренних сил, ни на что не опираясь и ни от чего не отталкиваясь.
— Где доказательства, где примеры? — протестовали слушатели.
— Хотите доказательств? Извольте. Кошка, нечаянно сорвавшаяся с крыши, — вот доказательство! Как бы кошка ни падала, хоть головой вниз, на землю она обязательно встанет всеми четырьмя лапками. Но ведь падающая кошка ни на что не опирается и ни от чего не отталкивается, а переворачивается быстро и ловко. (Сопротивлением воздуха можно пренебречь — оно слишком ничтожно.)
Действительно, это знают все: кошки, падая; ухитряются всегда становиться на ноги.
Падающая кошка становится на четыре лапыКошки это делают инстинктивно, а человек может сделать то же самое сознательно. Пловцы, прыгающие с вышки в воду, умеют выполнять сложную фигуру — тройное сальто, то есть трижды перевернуться в воздухе, а потом вдруг выпрямиться, приостановить вращение своего тела и уже по прямой линии нырнуть в воду.
Такие же движения, — без взаимодействия с каким-либо посторонним предметом, случается наблюдать в цирке во время выступления акробатов — воздушных гимнастов.
Выступление акробатов — воздушных гимнастовПадающую кошку сфотографировали киносъемочным аппаратом и потом на экране рассматривали кадр за кадром, что делает кошка, когда летит в воздухе. Оказалось, что кошка быстро вертит лапкой. Вращение лапки вызывает ответное движение— реакцию всего туловища, и оно поворачивается в сторону, противоположную движению лапки. Все происходит в строгом соответствии с законами Ньютона, и именно благодаря им кошка становится на ноги.
То же самое происходит во всех случаях, когда живое существо без всякой видимой причины изменяет свое движение в воздухе.
У изобретателей появилась мысль, а почему бы не перенять у каракатиц их способ плавания. Они решили построить самоходное судно с водно-реактивным двигателем. Идея безусловно осуществимая. Правда, уверенности в удаче не было: изобретатели сомневались, получится ли такой водометный катер лучше обычного винтового. Надо было сделать опыт.
Водометный катер — самоходное судно с водно-реактивным двигателемВыбрали старый буксирный пароход, починили его корпус, сняли гребные винты, а в машинном отделении поставили насос-водомет. Этот насос качал забортную воду и через трубу выталкивал ее за корму сильной струей. Пароход плыл, но двигался он все же медленнее винтового парохода. И это объясняется просто: обычный гребной винт вращается за кормой ничем не стесненный, вокруг него только вода; воду в водометном насосе приводил в движение почти точно такой же винт, но вращался он уже не на воде, а в тесной трубе. Возникало трение водяной струи о стенки. Трение ослабляло напор струи. Пароход с водометным движителем плыл медленнее винтового и топлива расходовал больше.
Однако от постройки таких пароходов не отказались: у них нашлись важные преимущества. Судно, снабженное гребным винтом, должно сидеть в воде глубоко, иначе винт будет без толку пенить воду или вертеться в воздухе. Поэтому винтовые пароходы боятся отмелей и перекатов, они не могут плавать по мелководью. А водометные пароходы можно строить мелкосидящими и плоскодонными: им глубина не нужна — где пройдет лодка, там пройдет и водометный пароход.
Первые водометные катера в Советском Союзе построены в 1953 году на Красноярской судостроительной верфи. Они предназначены для малых рек, где обычные пароходы не могут плавать.
Особенно прилежно инженеры, изобретатели и ученые занялись исследованием реактивного движения при появлении огнестрельного оружия. Первые ружья — всевозможные пистоли, мушкеты и самопалы — при каждом выстреле сильно ударяли человека в плечо. После нескольких десятков выстрелов плечо начинало так болеть, что солдат уже не мог целиться. Первые пушки — пищали, единороги, кулеврины и бомбарды — при выстреле отпрыгивали назад, так что, случалось, калечили пушкарей-артиллеристов, если они не успевали увернуться и отскочить в сторону.
Отдача орудия мешала меткой стрельбе, потому что пушка вздрагивала раньше, чем ядро или граната вылетали из ствола. Это сбивало наводку. Стрельба получалась неприцельной.
Стрельба с огнестрельного оружияИнженеры-артиллеристы начали борьбу с отдачей более четырехсот пятидесяти лет назад. Сначала лафет снабдили сошником, который врезался в землю и служил прочным упором для пушки. Тогда думали, что если хорошенько подпереть пушку сзади, так чтобы ей некуда было откатываться, то отдача исчезнет. Но это была ошибка. Не был принят во внимание закон сохранения количества движения. Пушки ломали все подпорки, а лафеты так расшатывались, что орудие становилось непригодным для боевой работы. Тогда изобретатели поняли, что законы движения, как и всякие законы природы, нельзя переделать по-своему, их можно только «перехитрить» с помощью науки — механики.
У лафета они оставили сравнительно небольшой сошник для упора, а ствол пушки положили на «салазки» так, чтобы откатывался только один ствол, а не все орудие целиком. Ствол соединили с поршнем компрессора, который ходит в своем цилиндре точно так же, как поршень паровой машины. Но в цилиндре паровой машины — пар, а в орудийном компрессоре — масло и пружина (или сжатый воздух).
Когда ствол пушки откатывается назад, поршень сжимает пружину. Масло же в это время сквозь мелкие отверстия в поршне продавливается по другую сторону поршня. Возникает сильное трение, которое частично поглощает движение откатывающегося ствола, делает его более медленным и плавным. Потом сжатая пружина расправляется и возвращает поршень, а вместе с ним и ствол орудия на прежнее место. Масло нажимает на клапан, открывает его и свободно перетекает снова под поршень. Во время беглого огня ствол орудия почти непрерывно движется вперед и назад.
В орудийном компрессоре отдача поглощается трением.
Когда мощность и дальнобойность пушек возросла, компрессора оказалось недостаточно, чтобы обезвредить отдачу. В помощь ему был изобретен дульный тормоз.
Дульный тормоз — это всего лишь короткая стальная труба, укрепленная на срезе ствола и служащая как бы его продолжением. Диаметр ее больше диаметра канала ствола, и поэтому она нисколько не мешает снаряду вылетать из дула. В стенках трубки по окружности прорезано несколько продолговатых отверстий.
Дульный тормоз — уменьшает отдачу огнестрельного оружияПороховые газы, вылетающие из ствола орудия вслед за снарядом, сразу же расходятся в стороны, и часть их попадает в отверстия дульного тормоза. Эти газы с большой силой ударяются о стенки отверстий, отталкиваются от них и вылетают наружу, но уже не вперед, а немного вкось и назад. При этом они давят на стенки вперед и толкают их, а вместе с ними и весь ствол орудия. Они помогают лафетной пружине потому, что стремятся вызвать откат ствола вперед. А в то время, пока они находились в стволе, они толкали орудие назад. Дульный тормоз значительно уменьшает и ослабляет отдачу.
Другие изобретатели пошли иным путем. Вместо того чтобы бороться с реактивным движением ствола и стараться его погасить, они решили применить откат орудия с пользой для дела. Эти изобретатели создали много образцов автоматического оружия: винтовок, пистолетов, пулеметов и пушек, в которых отдача служит для того, чтобы выбрасывать использованную гильзу и перезаряжать оружие.
Можно совсем не бороться с отдачей, а использовать ее: ведь действие и реакция (отдача) равносильны, равноправны, равновелики, так пусть же реактивное действие пороховых газов, вместо того чтобы отталкивать назад ствол орудия, посылает снаряд вперед в цель. Так была создана реактивная артиллерия. В ней струя газов бьет не вперед, а назад, создавая в снаряде направленную вперед реакцию.
Для реактивного орудия оказывается ненужным дорогой и тяжелый ствол. Для направления полета снаряда прекрасно служит более дешевая, простая железная труба. Можно обойтись вовсе без трубы, а заставить снаряд скользить по двум металлическим рейкам.
По своему устройству реактивный снаряд подобен фейерверочной ракете, он только размерами побольше. В его головной части вместо состава для цветного бенгальского огня помещается разрывной заряд большой разрушительной силы. Середина снаряда наполняется порохом, который при горении создает мощную струю горячих газов, толкающих снаряд вперед. При этом сгорание пороха может длиться значительную часть времени полета, а не только тот короткий промежуток времени, пока обычный снаряд продвигается в стволе обычной пушки. Выстрел не сопровождается таким громким звуком.
Реактивная артиллерия не моложе обыкновенной артиллерии, а может быть, даже старше ее: о боевом применении ракет сообщают старинные китайские и арабские книги, написанные более тысячи лет назад.
В описаниях сражений более поздних времен нет-нет, да и промелькнет упоминание о боевых ракетах. Когда английские войска покоряли Индию, индийские воины-ракетчики своими огнехвостыми стрелами наводили ужас на захватчиков-англичан, порабощавших их родину. Для англичан в то время реактивное оружие было в диковинку.
Ракетными гранатами, изобретенными генералом К. И. Константиновым, мужественные защитники Севастополя в 1854—1855 годах отбивали атаки англо-французских войск.
Огромное преимущество перед обыкновенной артиллерией — отпадала необходимость возить за собой тяжелые пушки — привлекло к реактивной артиллерии внимание военачальников. Но столь же крупный недостаток мешал ее усовершенствованию.
Дело в том, что метательный, или, как раньше говорили, форсовый, заряд умели делать только из черного пороха. А черный порох опасен в обращении. Случалось, что при изготовлении ракет метательный заряд взрывался, и гибли рабочие. Иногда ракета взрывалась при запуске, и гибли артиллеристы. Изготовлять и употреблять такое оружие было опасно. Поэтому оно и не получило широкого распространения.
Начатые успешно работы, однако, не привели к постройке межпланетного корабля. Немецкие фашисты подготовили и развязали кровопролитную мировую войну.
Недостаток при изготовлении ракет устранили советские конструкторы и изобретатели. В годы Великой Отечественной войны они дали нашей армии превосходное реактивное оружие. Были построены гвардейские минометы — «катюши» и изобретены РС («эрэс») — реактивные снаряды.
Реактивный снарядПо своему качеству советская реактивная артиллерия превзошла все иностранные образцы и причиняла врагам громадный урон.
Защищая Родину, советский народ был вынужден поставить все достижения ракетной техники на службу обороны.
В фашистских государствах многие ученые и инженеры еще до войны усиленно разрабатывали проекты бесчеловечных орудий разрушения и массовых убийств. Это они считали целью науки.
Во время войны гитлеровские инженеры построили несколько сот самоуправляющихся самолетов: снарядов «ФАУ-1» и реактивных снарядов «ФАУ-2». То были сигарообразные снаряды, имевшие в длину 14 метров и в диаметре 165 сантиметров. Весила смертоносная сигара 12 тонн; из них 9 тонн — топливо, 2 тонны — корпус и 1 тонна — взрывчатое вещество. «ФАУ-2» летели со скоростью до 5500 километров в час и могли подниматься в высоту на 170—180 километров.
Точностью попадания эти средства разрушения не отличались и были пригодны только для обстрела таких крупных мишеней, как большие и густонаселенные города. Немецкие фашисты выпускали «ФАУ-2» за 200—300 километров от Лондона в расчете, что город велик, — куда-нибудь да попадет!
Вряд ли Ньютон мог предполагать, что его остроумный опыт и открытые им законы движения лягут в основу оружия, созданного звериной злобой к людям, и целые кварталы Лондона обратятся в развалины и станут могилами людей, захваченных налетом слепых «ФАУ».
Уже много веков люди лелеяли мечту о полетах в межпланетном пространстве, о посещении Луны, загадочного Марса и облачной Венеры. На эту тему было написано множество научно-фантастических романов, повестей и рассказов. Писатели отправляли своих героев в заоблачные дали на дрессированных лебедях, на воздушных шарах, в пушечных снарядах или еще каким-нибудь невероятным образом. Однако все эти способы полета основывались на выдумках, не имевших опоры в науке. Люди только верили, что они когда-нибудь сумеют покинуть нашу планету, но не знали, как это им удастся осуществить.
Замечательный ученый Константин Эдуардович Циолковский в 1903 году впервые дал научную основу идее космических путешествий. Он доказал, что люди могут покинуть земной шар и транспортным средством для этого послужит ракета, потому что ракета — единственный двигатель, который не нуждается для своего движения в какой-либо внешней опоре. Поэтому ракета способна летать в безвоздушном пространстве.
Ученый Константин Эдуардович Циолковский — доказал, что люди могут покинуть земной шар на ракетеПо своему устройству космический корабль должен быть подобен реактивному снаряду, только в его головной части поместится кабина для пассажиров и приборов, а все остальное пространство будет занято запасом горючей смеси и двигателем.
Чтобы придать кораблю нужную скорость, требуется подходящее топливо. Порох и другие взрывчатые вещества ни в коем случае не пригодны: они и опасны и слишком быстро сгорают, не обеспечивая длительного движения. К. Э. Циолковский рекомендовал применять жидкое топливо: спирт, бензин или сжиженный водород, горящие в струе чистого кислорода или какого-либо другого окислителя. Правильность этого совета признали все, потому что лучшего топлива тогда не знали.
Первая ракета с жидким горючим, весившая шестнадцать килограммов, была испытана в Германии 10 апреля 1929 года. Опытная ракета взлетела в воздух и скрылась из вида раньше, чем изобретатель и все присутствующие сумели проследить, куда она полетела. Найти ракету после опыта не удалось. На следующий раз изобретатель решил «перехитрить» ракету и привязал к ней веревку длиной четыре километра. Ракета взвилась, волоча за собой веревочный хвост. Она вытянула два километра веревки, оборвала ее и последовала за своей предшественницей в неизвестном направлении. И эту беглянку также не удалось найти.
Первый успешный полет ракеты с жидким топливом состоялся в СССР 17 августа 1933 года. Ракета поднялась, пролетела положенное ей расстояние и благополучно приземлилась. Все эти открытия и изобретения основаны на законах Ньютона.
libtime.ru
Содержание:
У многих людей само понятие «реактивного движения» крепко ассоциируется с современными достижениями науки и техники, в особенности физики, а в голове появляются образы реактивных самолетов или даже космических кораблей, летающих на сверхзвуковых скоростях с помощью пресловутых реактивных двигателей. На самом же деле явление реактивного движения намного более древнее, чем даже сам человек, ведь оно появилось задолго до нас, людей. Да, реактивное движение активно представлено в природе: медузы, осьминоги, каракатицы вот уже миллионы лет плавают в морских пучинах по тому же самому принципу, по которому сегодня летают современные сверхзвуковые реактивные самолеты.
С древних времен различные ученые наблюдали явления реактивного движения в природе, так раньше всех о нем писал древнегреческий математик и механик Герон, правда, дальше теории он так и не зашел.
Если же говорить о практическом применении реактивного движения, то первыми здесь были изобретательные китайцы. Примерно в XIII веке они догадались позаимствовать принцип движения осьминогов и каракатиц при изобретении первых ракет, которые они начали использовать, как для фейерверков, так и для боевых действий (в качестве боевого и сигнального оружия). Чуть позднее это полезное изобретение китайцев переняли арабы, а от них уже и европейцы.
Разумеется, первые условно реактивные ракеты имели сравнительно примитивную конструкцию и на протяжении нескольких веков они практически никак не развивались, казалось, что история развития реактивного движения замерла. Прорыв в этом деле произошел только в XIX веке.
Пожалуй, лавры первооткрывателя реактивного движения в «новом времени» можно присудить Николаю Кибальчичу, не только талантливому российскому изобретателю, но и по совместительству революционеру-народовольцу. Свой проект реактивного двигателя и летательного аппарата для людей он создал сидя в царской тюрьме. Позднее Кибальчич был казнен за свою революционную деятельность, а его проект так и остался пылиться на полках в архивах царской охранки.
Позднее работы Кибальчича в этом направлении были открыты и дополнены трудами еще одного талантливого ученого К. Э. Циолковского. С 1903 по 1914 год им было опубликовано ряд работ, в которых убедительно доказывалась возможность использования реактивного движения при создании космических кораблей для исследования космического пространство. Им же был сформирован принцип использования многоступенчатых ракет. И по сей день многие идеи Циолковского применяются в ракетостроении.
Наверняка купаясь в море, Вы видели медуз, но вряд ли задумывались, что передвигаются эти удивительные (и к тому же медлительные) существа как раз таки с благодаря реактивному движению. А именно с помощью сокращения своего прозрачного купола они выдавливают воду, которая служит своего рода «реактивных двигателем» медуз.
Похожий механизм движения имеет и каракатица – через особую воронку впереди тела и через боковую щель она набирает воду в свою жаберную полость, а затем энергично выбрасывает ее через воронку, направленную взад либо в бок (в зависимости от направления движения нужного каракатице).
Но самый интересный реактивный двигатель созданный природой имеется у кальмаров, которых вполне справедливо можно назвать «живыми торпедами». Ведь даже тело этих животных по своей форме напоминает ракету, хотя по правде все как раз с точностью наоборот – это ракета своей конструкцией копирует тело кальмара.
Если кальмару необходимо совершить быстрый бросок, он использует свой природный реактивный двигатель. Тело его окружено мантией, особой мышечной тканью и половина объема всего кальмара приходится на мантийную полость, в которую тот всасывает воду. Потом он резко выбрасывает набранную струю воды через узкое сопло, при этом складывая все свои десть щупалец над головой таким образом, чтобы приобрести обтекаемую форму. Благодаря столь совершенной реактивной навигации кальмары могут достигать впечатляющей скорости – 60-70 км в час.
Среди обладателей реактивного двигателя в природе есть и растения, а именно так званный «бешеный огурец». Когда его плоды созревают, в ответ на самое легкое прикосновение он выстреливает клейковиной с семенами
Кальмары, «бешеные огурцы», медузы и прочие каракатицы издревле пользуются реактивным движением, не задумываясь о его физической сути, мы же попробуем разобрать, в чем суть реактивного движения, какое движение называют реактивным, дать ему определение.
Для начала можно прибегнуть к простому опыту – если обычный воздушный шарик надуть воздухом и, не завязывая отпустить в полет, он будет стремительно лететь, пока у него не израсходуется запас воздуха. Такое явление поясняет третий закон Ньютона, говорящий, что два тела взаимодействуют с силами равными по величине и противоположными по направлению.
То есть сила воздействия шарика на вырывающиеся из него потоки воздуха равна силе, которой воздух отталкивает от себя шарик. По схожему с шариком принципу работает и ракета, которая на огромной скорости выбрасывает часть своей массы, при этом получая сильное ускорение в противоположном направлении.
Физика поясняет процесс реактивного движения законом сохранения импульса. Импульс это произведение массы тела на его скорость (mv). Когда ракета находится в состоянии покоя ее импульс и скорость равны нулю. Когда же из нее начинает выбрасываться реактивная струя, то остальная часть согласно закону сохранения импульса, должна приобрести такую скорость, при которой суммарный импульс будет по прежнему равен нулю.
В целом реактивное движение можно описать следующей формулой:msvs+mрvр=0msvs=-mрvр
где msvs импульс создаваемой струей газов, mрvр импульс, полученный ракетой.
Знак минус показывает, что направление движения ракеты и сила реактивного движения струи противоположны.
В современной технике реактивное движение играет очень важную роль, так реактивные двигатели приводят в движение самолеты, космические корабли. Само устройство реактивного двигателя может отличаться в зависимости от его размера и назначения. Но так или иначе в каждом из них есть
Так выглядит реактивный двигатель.
И в завершение занимательное видео о физических экспериментах с реактивным движением.
www.poznavayka.org
В мире существуют различные типы движения как способа перемещения тел из одной точки пространства в другую. Реактивное движение в природе и технике, возникающее при отделении от тела его части с какой-либо скоростью, безусловно, менее распространено, но все же занимает свое законное место. А в технике реактивное движение ученые прямо-таки «подсмотрели» у живой природы. И использовали довольно успешно в своих изобретениях. Об этом и о многом другом, не менее интересном, расскажет наш материал.
К примеру, купаясь в морской волне, многие люди часто сталкивались «лицом к лицу» с представителями водной фауны – медузами. Но мало кто думал о том, что эти животные используют для передвижения реактивный тип. Также и морской планктон, и личинки некоторых видов насекомых передвигаются, используя реактивность. И, кстати, в технике реактивное движение, вернее его КПД, иногда гораздо ниже, чем у этих творений природы.
Многие моллюски также его применяют. А морские гребешки движутся, например, за счет реактивности струи воды, выпускаемой из раковины животного при сжатии створок. У кальмара так и вовсе присутствует мини-реактивный двигатель, умело разработанный природой. За счет этого происходит резкое перемещение его в водной среде, а иногда этот морской обитатель даже взлетает в воздух!
Большое применение такой способ находит и в современную эпоху. Следует отметить, что в технике реактивное движение во многом копирует природную реактивность. Еще в древности в Китае (первое тысячелетие нашей эры) были изобретены бамбуковые трубы, начиняемые порохом, которые использовались, в основном, для забав. В их основе лежал реактивный принцип. А Ньютон в свое время придумал не только одноименный закон всемирного тяготения, но и прообраз автомобиля, который был оснащен реактивным двигателем.
Люди осознали, что в технике реактивное движение может быть использовано для полетов. Первым автором подобного проекта считается народоволец Кибальчич, который буквально за несколько дней до своей смерти (ему был вынесен смертный приговор как участнику покушения на царя) разработал и записал научные данные. Циолковский развил идеи Кибальчича, разработал важное для космонавтики математическое уравнение, позволяющее использовать принцип реактивности. Именно он описал в своих трудах принципы работы реактивных агрегатов на жидком виде топлива.
В своей конструкции он преобразует топливную химическую энергию в кинетическую – уже газовой струи. При этом приобретается скорость обратного направления. Идеи Циолковского были развиты Королевым, и запуск первого спутника, использующего реактивную тягу, был осуществлен в 1957 в СССР. А первым человеком, преодолевшим земное притяжение при помощи реактивного движения, стал советский летчик Гагарин в 1961-м. Он облетел планету на космическом корабле «Восток».
Если говорить упрощенно, современный ракетоноситель состоит из оболочки и топлива (плюс окислитель). Оболочка содержит полезный груз – космическую капсулу, которая выводится на орбиту Земли. Здесь же находятся приборы для управления и двигатель. Всю остальную полезную площадь ракеты занимает топливо и окислитель, предназначенный для поддержки процесса горения (ведь в космосе кислород отсутствует).
В камере сгорания топливо преобразуется в газ под высоким давлением и очень высоких температурах. Благодаря разности давлений за бортом космического корабля и в камерах сгорания газ устремляется наружу, за счет чего и происходит движение ракеты.
fb.ru