Современные технологии и открытия выводят освоение космоса на совершенно иной уровень, однако межзвездные перелеты пока еще остаются мечтой. Но так ли она нереальна и недостижима? Что мы можем уже сейчас и чего ждать в ближайшем будущем?
Изучая данные полученные с телескопа "Кеплер" астрономы обнаружили 54 потенциально обитаемые экзопланеты. Эти далекие миры находятся в обитаемой зоне, т.е. на определенном расстоянии от центральной звезды, позволяющем поддерживать на поверхности планеты воду в жидком виде.
Однако ответ на главный вопрос, одиноки ли мы во Вселенной, получить затруднительно — из-за огромной дистанции, разделяющей Солнечную систему и наших ближайших соседей. Например, «перспективная» планета Gliese 581g находится на расстоянии в 20 световых лет – это достаточно близко по космическим меркам, но пока слишком далеко для земных инструментов.
Обилие экзопланет в радиусе 100 и менее световых лет от Земли и огромный научный и даже цивилизационный интерес, которые они представляют для человечества, заставляют по-новому взглянуть на доселе фантастическую идею межзвездных перелетов.
Полет к другим звездам — это, разумеется, вопрос технологий. Более того, существуют несколько возможностей для достижения столь далекой цели, и выбор в пользу того или иного способа еще не сделан.
Человечество уже отправляло в космос межзвездные аппараты: зонды Pioneer и Voyager. В настоящее время они покинули пределы Солнечной системы, однако их скорость не позволяет говорить о сколь-нибудь быстром достижении цели. Так, Voyager 1, движущийся со скоростью около 17 км/с, даже к ближайшей к нам звезде Проксима Центавра (4,2 световых года) будет лететь невероятно долгий срок — 17 тысяч лет.
Очевидно, что с современными ракетными двигателями мы никуда дальше Солнечной системы не выберемся: для транспортировки 1 кг груза даже к недалекой Проксиме Центавра нужны десятки тысяч тонн топлива. При этом с ростом массы корабля увеличивается количество необходимого топлива, и для его транспортировки нужно дополнительное горючее. Замкнутый круг, ставящий крест на баках с химическим топливом — постройка космического судна весом в миллиарды тонн представляется совершенно невероятной затеей. Простые вычисления по формуле Циолковского демонстрируют, что для ускорения космических аппаратов с ракетным двигателем на химическом топливе до скорости примерно в 10% скорости света потребуется больше горючего, чем доступно в известной вселенной.
Реакция термоядерного синтеза производит энергии на единицу массы в среднем в миллион раз больше, чем химические процессы сгорания. Именно поэтому в 1970-х годах в НАСА обратили внимание на возможность применения термоядерных ракетных двигателей. Проект беспилотного космического корабля Дедал предполагал создание двигателя, в котором небольшие гранулы термоядерного топлива будут подаваться в камеру сгорания и поджигаться пучками электронов. Продукты термоядерной реакции вылетают из сопла двигателя и придают кораблю ускорение.
Космический корабль Дедал в сравнении с небоскребом Эмпайр стейт Билдинг
Дедал должен был взять на борт 50 тыс. тонн топливных гранул диаметром 4 и 2 мм. Гранулы состоят из ядра с дейтерием и тритием и оболочки из гелия-3. Последний составляет лишь 10-15 % от массы топливной гранулы, но, собственно, и является топливом. Гелия-3 в избытке на Луне, а дейтерий широко используется в атомной промышленности. Дейтериевое ядро служит детонатором для зажигания реакции синтеза и провоцирует мощную реакцию с выбросом реактивной плазменной струи, которая управляется мощным магнитным полем. Основная молибденовая камера сгорания двигателя Дедала должна была иметь вес более 218 тонн, камера второй ступени – 25 тонн. Магнитные сверхпроводящие катушки тоже под стать огромному реактору: первая весом 124,7 т, а вторая — 43,6 т. Для сравнения: сухая масса шаттла менее 100 т.
Полет Дедала планировался двухэтапным: двигатель первой ступени должен был проработать более 2 лет и сжечь 16 млн топливных гранул. После отделения первой ступени почти два года работал двигатель второй ступени. Таким образом, за 3,81 года непрерывного ускорения Дедал достиг бы максимальной скорости в 12,2% скорости света. Расстояние до звезды Барнарда (5,96 световых лет) такой корабль преодолеет за 50 лет и сможет, пролетая сквозь далекую звездную систему, передать по радиосвязи на Землю результаты своих наблюдений. Таким образом, вся миссия займет около 56 лет.
Несмотря на большие сложности с обеспечением надежности многочисленных систем Дедала и его огромной стоимостью, этот проект реализуем на современном уровне технологий. Более того, в 2009 году команда энтузиастов возродила работу над проектом термоядерного корабля. В настоящее время проект Икар включает 20 научных тем по теоретической разработке систем и материалов межзвездного корабля.
Таким образом, уже сегодня возможны беспилотные межзвездные полеты на расстояние до 10 световых лет, которые займут около 100 лет полета плюс время на путешествие радиосигнала обратно на Землю. В этот радиус укладываются звездные системы Альфа Центавра, Звезда Барнарда, Сириус, Эпсилон Эридана, UV Кита, Росс 154 и 248, CN Льва, WISE 1541-2250. Как видим, рядом с Землей достаточно объектов для изучения с помощью беспилотных миссий. Но если роботы найдут что-то действительно необычное и уникальное, например, сложную биосферу? Сможет ли отправиться к далеким планетам экспедиция с участием людей?
Если беспилотный корабль мы можем начинать строить уже сегодня, то с пилотируемым дело обстоит сложнее. Прежде всего остро стоит вопрос времени полета. Возьмем ту же звезду Барнарда. К пилотируемому полету космонавтов придется готовить со школьной скамьи, поскольку даже если старт с Земли состоится в их 20-летие, то цели полета корабль достигнет к 70-летию или даже 100-летию (учитывая необходимость торможения, в котором нет нужды в беспилотном полете). Подбор экипажа в юношеском возрасте чреват психологической несовместимостью и межличностными конфликтами, а возраст в 100 не дает надежду на плодотворную работу на поверхности планеты и на возвращение домой.
Однако есть ли смысл возвращаться? Многочисленные исследования НАСА приводят к неутешительному выводу: длительное пребывание в невесомости необратимо разрушит здоровье космонавтов. Так, работа профессора биологии Роберта Фиттса с космонавтами МКС показывает, что даже несмотря на активные физические упражнения на борту космического корабля, после трехлетней миссии на Марс крупные мышцы, например икроножные, станут на 50% слабее. Аналогично снижается и минеральная плотность костной ткани. В результате трудоспособность и выживаемость в экстремальных ситуациях уменьшается в разы, а период адаптации к нормальной силе тяжести составит не менее года. Полет же в невесомости на протяжении десятков лет поставит под вопрос сами жизни космонавтов. Возможно, человеческий организм сможет восстановиться, например, в процессе торможения с постепенно нарастающей гравитацией. Однако риск гибели все равно слишком высок и требует радикального решения.
Тор Стенфорда – колоссальное сооружение с целыми городами внутри вращающегося обода.
К сожалению, решить проблему невесомости на межзвездном корабле не так просто. Доступная нам возможность создания искусственной силы тяжести при помощи вращения жилого модуля имеет ряд сложностей. Чтобы создать земную гравитацию, даже колесо диаметром 200 м придется вращать со скоростью 3 оборота в минуту. При таком быстром вращении сила Кариолиса будет создавать совершенно непереносимые для вестибулярного аппарата человека нагрузки, вызывая тошноту и острые приступы морской болезни. Единственное решение этой проблемы — Тор Стенфорда, разработанный учеными Стенфордского университета в 1975 году. Это — огромное кольцо диаметром 1,8 км, в котором могли бы жить 10 тыс. космонавтов. Благодаря своим размерам оно обеспечивает силу тяжести на уровне 0.9-1,0 g и вполне комфортное проживание людей. Однако даже на скорости вращения ниже, чем один оборот в минуту, люди все равно будут испытывать легкий, но ощутимый дискомфорт. При этом если подобный гигантский жилой отсек будет построен, даже небольшие сдвиги в развесовке тора повлияют на скорость вращения и вызовут колебания всей конструкции.
Сложной остается и проблема радиации. Даже вблизи Земли (на борту МКС) космонавты находятся не более полугода из-за опасности радиационного облучения. Межпланетный корабль придется оснастить тяжелой защитой, но и при этом остается вопрос влияния радиации на организм человека. В частности, на риск онкологических заболеваний, развитие которых в невесомости практически не изучено. В начале этого года ученый Красимир Иванов из Германского аэрокосмического центра в Кельне опубликовал результаты интересного исследования поведения клеток меланомы (самой опасной формы рака кожи) в невесомости. По сравнению с раковыми клетками, выращенными при нормальной силе тяжести, клетки, проведшие в невесомости 6 и 24 часа, менее склонны к метастазам. Это вроде бы хорошая новость, но только на первый взгляд. Дело в том, что такой «космический» рак способен находиться в состоянии покоя десятилетия, и неожиданно масштабно распространяться при нарушении работы иммунной системы. Кроме этого, исследование дает понять, что мы еще мало знаем о реакции человеческого организма на длительное пребывание в космосе. Сегодня космонавты, здоровые сильные люди, проводят там слишком мало времени, чтобы переносить их опыт на длительный межзвездный перелет.
В любом случае корабль на 10 тыс. человек – сомнительная затея. Для создания надежной экосистемы для такого числа людей нужно огромное количество растений, 60 тыс. кур, 30 тыс. кроликов и стадо крупного рогатого скота. Только это может обеспечить диету на уровне 2400 калорий в день. Однако все эксперименты по созданию таких замкнутых экосистем неизменно заканчиваются провалом. Так, в ходе крупнейшего эксперимента «Биосфера-2» компании Space Biosphere Ventures была построена сеть герметичных зданий общей площадью 1,5 га с 3 тыс. видами растений и животных. Вся экосистема должна была стать самоподдерживающейся маленькой «планетой», в которой жили 8 человек. Эксперимент длился 2 года, но уже после нескольких недель начались серьезные проблемы: микроорганизмы и насекомые стали неконтролируемо размножаться, потребляя кислород и растения в слишком больших количествах, также оказалось, что без ветра растения стали слишком хрупкими. В результате локальной экологической катастрофы люди начали терять вес, количество кислорода снизилось с 21% до 15%, и ученым пришлось нарушить условия эксперимента и поставлять восьмерым «космонавтам» кислород и продукты.
Таким образом, создание сложных экосистем представляется ошибочным и опасным путем обеспечения экипажа межзвездного корабля кислородом и питанием. Для решения этой проблемы понадобятся специально сконструированные организмы с измененными генами, способные питаться светом, отходами и простыми веществами. Например, большие современные цеха по производству пищевой водоросли хлореллы могут производить до 40 т суспензии в сутки. Один полностью автономный биореактор весом несколько тонн может производить до 300 л суспензии хлореллы в сутки, чего достаточно для питания экипажа в несколько десятков человек. Генетически модифицированная хлорелла могла бы не только удовлетворять потребности экипажа в питательных веществах, но и перерабатывать отходы, включая углекислый газ. Сегодня процесс генетического инжиниринга микроводорослей стал обычным делом, и существуют многочисленные образцы, разработанные для очистки сточных вод, выработки биотоплива и т.д.
Практически все вышеперечисленные проблемы пилотируемого межзвездного полета могла бы решить одна очень перспективная технология – анабиоз или как его еще называют криостазис. Анабиоз — это замедление процессов жизнедеятельности человека как минимум в несколько раз. Если удастся погрузить человека в такую искусственную летаргию, замедляющую обмен веществ в 10 раз, то за 100-летний полет он постареет во сне всего на 10 лет. При этом облегчается решение проблем питания, снабжения кислородом, психических расстройств, разрушения организма в результате воздействия невесомости. Кроме того, защитить отсек с анабиозными камерами от микрометеоритов и радиации проще, чем обитаемую зону большого объема.
К сожалению, замедление процессов жизнедеятельности человека – это чрезвычайно сложная задача. Но в природе существуют организмы, способные впадать в спячку и увеличивать продолжительность своей жизни в сотни раз. Например, небольшая ящерица под названием сибирский углозуб способна впадать в спячку в тяжелые времена и десятилетиями оставаться в живых, даже будучи вмороженной в глыбу льда с температурой минус 35-40°С. Известны случаи, когда углозубы проводили в спячке около 100 лет и, как ни в чем не бывало, оттаивали и убегали от удивленных исследователей. При этом обычная «непрерывная» продолжительность жизни ящерицы не превышает 13 лет. Удивительная способность углозуба объясняется тем, что его печень синтезирует большое количество глицерина, почти 40 % от веса тела, что защищает клетки от низких температур.
Главное препятствие для погружения человека в криостазис – вода, из которой на 70% состоит наше тело. При замерзании она превращается в кристаллики льда, увеличиваясь в объеме на 10%, из-за чего разрывается клеточная мембрана. Кроме того, по мере замерзания растворенные внутри клетки вещества мигрируют в оставшуюся воду, нарушая внутриклеточные ионообменные процессы, а также организацию белков и других межклеточных структур. В общем, разрушение клеток во время замерзания делают невозможным возвращение человека к жизни.
Однако существует перспективный путь решения этой проблемы — клатратные гидраты. Они были обнаружены в далеком 1810 году, когда британский ученый сэр Хэмфри Дэви подал в воду хлор под высоким давлением и стал свидетелем образования твердых структур. Это и были клатратные гидраты – одна из форм водяного льда, в который включен посторонний газ. В отличие от кристаллов льда, клатратные решетки менее твердые, не имеют острых граней, зато имеют полости, в которые могут «спрятаться» внутриклеточные вещества. Технология клатратного анабиоза была бы проста: инертный газ, например, ксенон или аргон, температура чуть ниже нуля, и клеточный метаболизм начинает постепенно замедляться, пока человек не впадает в криостазис. К сожалению, для образования клатратных гидратов требуется высокое давление (около 8 атмосфер) и весьма высокая концентрация газа, растворенного в воде. Как создать такие условия в живом организме, пока неизвестно, хотя некоторые успехи в этой области есть. Так, клатраты способны защитить ткани сердечной мышцы от разрушения митохондрий даже при криогенных температурах (ниже 100 градусов Цельсия), а также предотвратить повреждение клеточных мембран. Об экспериментах по клатратному анабиозу на людях речь пока не идет, поскольку коммерческий спрос на технологии криостазиса невелик и исследования на эту тему проводятся в основном небольшими компаниями, предлагающими услуги по заморозке тел умерших.
В 1960 году физик Роберт Бассард предложил оригинальную концепцию прямоточного термоядерного двигателя, который решает многие проблемы межзвездного перелета. Суть заключается в использовании водорода и межзвездной пыли, присутствующих в космическом пространстве. Космический корабль с таким двигателем сначала разгоняется на собственном горючем, а затем разворачивает огромную, диаметром тысячи километров воронку магнитного поля, которое захватывает водород из космического пространства. Этот водород используется в качестве неисчерпаемого источника топлива для термоядерного ракетного двигателя.
Применение двигателя Бассарда сулит огромные преимущества. Прежде всего за счет «дармового» топлива есть возможность двигаться с постоянным ускорением в 1 g, а значит — отпадают все проблемы, связанные с невесомостью. Кроме того двигатель позволяет разогнаться до огромной скорости — в 50% от скорости света и даже больше. Теоретически, двигаясь с ускорением в 1 g, расстояние в 10 световых лет корабль с двигателем Бассарда может преодолеть примерно за 12 земных лет, причем для экипажа из-за релятивистских эффектов прошло бы всего 5 лет корабельного времени.
К сожалению, на пути создания корабля с двигателем Бассарда стоит ряд серьезных проблем, которые нельзя решить на современном уровне технологий. Прежде всего необходимо создать гигантскую и надежную ловушку для водорода, генерирующую магнитные поля гигантской силы. При этом она должна обеспечивать минимальные потери и эффективную транспортировку водорода в термоядерный реактор. Сам процесс термоядерной реакции превращения четырех атомов водорода в атом гелия, предложенный Бассардом, вызывает немало вопросов. Дело в том, что эта простейшая реакция трудноосуществима в прямоточном реакторе, поскольку она слишком медленно идет и, в принципе, возможна только внутри звезд.
Однако прогресс в изучении термоядерного синтеза позволяет надеяться, что проблема может быть решена, например, использованием «экзотических» изотопов и антиматерии в качестве катализатора реакции.
Пока изыскания на тему двигателя Бассарда лежат исключительно в теоретической плоскости. Необходимы расчеты, базирующиеся на реальных технологиях. Прежде всего, нужно разработать двигатель, способный произвести энергию, достаточную для питания магнитной ловушки и поддержания термоядерной реакции, производства антиматерии и преодоления сопротивления межзвездной среды, которая будет тормозить огромный электромагнитный «парус».
Возможно, это звучит странно, но сегодня человечество ближе к созданию двигателя, работающего на антиматерии, чем к интуитивно понятному и простому на первый взгляд прямоточному двигателю Бассарда.
Зонд разработки Hbar Technologies будет иметь тонкий парус из углеродного волокна, покрытого ураном 238. Врезаясь в парус, антиводород будет аннигилировать и создавать реактивную тягу.
В результате аннигиляции водорода и антиводорода образуется мощный поток фотонов, скорость истечения которого достигает максимума для ракетного двигателя, т.е. скорости света. Это идеальный показатель, который позволяет добиться очень высоких околосветовых скоростей полета космического корабля с фотонным двигателем. К сожалению, применить антиматерию в качестве ракетного топлива очень непросто, поскольку во время аннигиляции происходят вспышки мощнейшего гамма-излучения, которое убьет космонавтов. Также пока не существует технологий хранения большого количества антивещества, да и сам факт накопления тонн антиматерии, даже в космосе далеко от Земли, является серьезной угрозой, поскольку аннигиляция даже одного килограмма антиматерии эквивалентна ядерному взрыву мощностью 43 мегатонны (взрыв такой силы способен превратить в пустыню треть территории США). Стоимость антивещества является еще одним фактором, осложняющим межзвездный полет на фотонной тяге. Современные технологии производства антивещества позволяют изготовить один грамм антиводорода по цене в десяток триллионов долларов.
Однако большие проекты по исследованию антиматерии приносят свои плоды. В настоящее время созданы специальные хранилища позитронов, «магнитные бутылки», представляющие собой охлажденные жидким гелием емкости со стенками из магнитных полей. В июне этого года ученым ЦЕРНа удалось сохранить атомы антиводорода в течение 2000 секунд. В Университете Калифорнии (США) строится крупнейшее в мире хранилище антивещества, в котором можно будет накапливать более триллиона позитронов. Одной из целей ученых Калифорнийского университета является создание переносных емкостей для антивещества, которые можно использовать в научных целях вдали от больших ускорителей. Этот проект пользуется поддержкой Пентагона, который заинтересован в военном применении антиматерии, так что крупнейший в мире массив магнитных бутылок вряд ли будет ощущать недостаток финансирования.
Современные ускорители смогут произвести один грамм антиводорода за несколько сотен лет. Это очень долго, поэтому единственный выход: разработать новую технологию производства антиматерии или объединить усилия всех стран нашей планеты. Но даже в этом случае при современных технологиях нечего и мечтать о производстве десятков тонн антиматерии для межзвездного пилотируемого полета.
Однако все не так уж печально. Специалисты НАСА разработали несколько проектов космических аппаратов, которые могли бы отправиться в глубокий космос, имея всего один микрограмм антивещества. В НАСА полагают, что совершенствование оборудования позволит производить антипротоны по цене примерно 5 млрд долл. за 1 грамм.
Американская компания Hbar Technologies при поддержке НАСА разрабатывает концепцию беспилотных зондов, приводимых в движение двигателем, работающем на антиводороде. Первой целью этого проекта является создание беспилотного космического аппарата, который смог бы менее чем за 10 лет долететь к поясу Койпера на окраине Солнечной системы. Сегодня долететь в такие удаленные точки за 5-7 лет невозможно, в частности, зонд НАСА New Horizons пролетит сквозь пояс Койпера через 15 лет после запуска.
Зонд, преодолевающий расстояние в 250 а.е. за 10 лет, будет очень маленьким, с полезной нагрузкой всего 10 мг, но ему и антиводорода потребуется немного – 30 мг. Теватрон выработает такое количество за несколько десятилетий, и ученые смогли бы протестировать концепцию нового двигателя в ходе реальной космической миссии.
Предварительные расчеты также показывают, что подобным образом можно отправить небольшой зонд к Альфе Центавра. На одном грамме антиводорода он долетит к далекой звезде за 40 лет.
Может показаться, что все вышеописанное — фантастика и не имеет отношения к ближайшему будущему. К счастью, это не так. Пока внимание общественности приковано к мировым кризисам, провалам поп-звезд и прочим актуальным событиям, остаются в тени эпохальные инициативы. Космическое агентство НАСА запустило грандиозный проект 100 Year Starship, который предполагает поэтапное и многолетнее создание научного и технологического фундамента для межпланетных и межзвездных полетов. Эта программа не имеет аналогов в истории человечества и должна привлечь ученых, инженеров и энтузиастов других профессий со всего мира. С 30 сентября по 2 октября 2011 года в Орландо (штат Флорида) состоится симпозиум, на котором будут обсуждаться различные технологии космических полетов. На основании результатов таких мероприятий специалисты НАСА будут разрабатывать бизнес-план по оказанию помощи определенным отраслям и компаниям, которые разрабатывают пока отсутствующие, но необходимые для будущего межзвездного перелета технологии. Если амбициозная программа НАСА увенчается успехом, уже через 100 лет человечество будет способно построить межзвездный корабль, а по Солнечной системе мы будем перемещаться с такой же легкостью, как сегодня перелетаем с материка на материк.
Интересные материалы:
Открылся первый частный космопорт - Spaceport America (6 фото) Атомные автомобили станут реальностьюnlo-mir.ru
Переименовать в Двигатель Бассарда
Межзвёздный прямоточный двигатель Бассарда (поле коллектора показано видимым) в представлении художникаМежзвёздный прямоточный двигатель Бассарда (англ. Bussard ramjet) — концепция ракетного двигателя для межзвёздных полётов, предложенная в 1960 году физиком Робертом Бассардом (Robert W. Bussard (англ.)русск.).
Основой концепции является захват вещества межзвёздной среды (водорода и пыли) идущим на высокой скорости космическим кораблём и использование этого вещества в качестве рабочего тела (либо непосредственно топлива) в термоядерном ракетном двигателе корабля. Захват вещества межзвёздной среды осуществляется мощным электромагнитным полем, в приближении имеющим конфигурацию широкой воронки, направленной вперёд по вектору скорости корабля. Предположительно, диаметр собирающего поля должен составлять тысячи или десятки тысяч километров. Существенной особенностью такой схемы будет являться практически полная топливная автономность корабля: будучи разогнанным имеющимся на борту запасом топлива до некоторой скорости, обеспечивающей достаточный приток межзвёздного водорода во входной коллектор, то есть после входа в «прямоточный режим», корабль сможет двигаться далее с постоянным ускорением, не выключая привода и не переходя на инерционный полёт.
Предложены два основных варианта использования захваченного межзвёздного водорода:
Межзвёздная среда содержит вещество в количестве порядка 10−21 кг/м³, в основной массе — ионизированный и неионизированный водород, небольшое количество гелия и практически никаких других газов в заметном количестве. Соответственно, через коллектор корабля должен пропускаться объём пространства порядка 1018 м³ для сбора одного грамма водорода. Подобный объём требует огромного диаметра электромагнитного (электростатического ионного) собирающего коллектора и чрезвычайно большой напряжённости поля.
Пример расчёта сбора межзвездного газа для случая радиуса поля захвата 50 км. Тогда R=50 000 м Площадь захвата=7 853 981 633,97 м2 Скорость (берем максимальную из раздела Ограничение на скорость) = 35 700 000 м/с Время = 1 сек Просеянный объем = 280 387 144 332 889 000 м3 Плотность среды = 1E-21 кг/м3 Полученная масса = 0,000 280 387 144 332 890 кгТо есть идеально работающее поле радиусом 50 км при максимальной скорости будет захватывать в среднем 0,28 грамма межзвездного газа за секунду (релятивистским замедлением времени пренебрегаем). |
Исходя из состава межзвёздной среды (в основном водород), именно термоядерный синтез на водородной реакции был предложен Бассардом в первоначальной концепции двигателя. К сожалению, протон-протонный цикл непригоден для использования в силу исключительной трудности его осуществления в термоядерном реакторе. Соответственно, более пригодны термоядерные реакции других типов, в частности 2H + 2H → 3He + 1n + 18 МэВ, или 2H + 3H → 4He + 1n + 20 МэВ, но требуемые для них изотопы чрезвычайно редки в составе межзвёздной среды.
Выход, в принципе, был предложен в использовании термоядерных реакций CNO-цикла, где углерод является катализатором термоядерного горения водорода. Тем не менее в любом т. н. каталитическом цикле ядерного синтеза реакции протекают крайне медленно, и плотность мощности ничтожна (для сравнения: в центре Солнца энерговыделение составляет всего лишь порядка 1 ватта на кубический сантиметр). За время пролёта вещества даже при самых оптимистичных предположениях может прогореть лишь ничтожная его доля.
В 1974 году Алан Бонд предложил концепцию RAIR (ram-augmented interstellar rocket), разрешающую проблему трудноосуществимого термоядерного синтеза на протон-протонном цикле. В этой схеме входящий в коллектор протонный поток тормозится до энергии порядка 1 МэВ и бомбардирует мишень из изотопов литий-6 или бор-11. Реакция литий-протон или бор-протон осуществляется проще протон-протонной и даёт значительный выход энергии, которая увеличивает скорость истечения рабочего тела из сопла двигателя. Такая термоядерная реакция может проходить и с использованием малых количеств антиматерии в качестве катализатора.
В концепции двигателя Бассарда, в то же время, существуют значительные теоретические проблемы из-за фактора сопротивления межзвёздной среды — передача импульса от встречного потока вещества на коллектор и далее корабль, что требует превышения тяги двигателя над показателем сопротивления.
В настоящее время работа над концепцией производится в рамках теоретических изысканий.
Ключевая проблема «прямоточника» также в том, что «магнитная воронка» отнюдь не будет выполнять функцию массозаборника так, как предполагалось автором концепции. Скорее, она будет вести себя как «тормоз» (см. «Магнитная пробка», «Пробкотрон», «Адиабатический инвариант»).
Ещё одним недостатком термоядерного прямоточного двигателя (даже на наиболее эффективном протон-протонном цикле) является ограниченность скорости, которой может достичь оснащённый им корабль (не более 0,119c = 35,7 тыс. км/с). Это связано с тем, что при улавливании каждого атома водорода (который можно в первом приближении считать неподвижным относительно звёзд) корабль теряет определённый импульс, который удастся компенсировать тягой двигателя только если скорость не превышает некоторого предела. Для преодоления этого ограничения необходимо как можно более полное использование кинетической энергии улавливаемых атомов, что представляется достаточно трудной задачей.
Вывод
Допустим, экран уловил 4 атома водорода. При работе термоядерного реактора четыре протона превращаются в одну альфа-частицу, два позитрона и два нейтрино. Для простоты пренебрежём нейтрино (учёт нейтрино потребует точного расчёта всех стадий реакции, а потери на нейтрино составляют около процента), а позитроны проаннигилируем с 2 электронами, оставшимися от атомов водорода после изъятия из них протонов. Ещё 2 электрона пойдут на то, чтобы превратить альфа-частицу в нейтральный атом гелия, который благодаря полученной от реакции энергии будет ускорен в сопле двигателя.
Итоговое уравнение реакции без учёта нейтрино:
411H → 42He + (4mH − mHe)c² (≈27 МэВ)Пусть корабль летит со скоростью v. При улавливании четырёх атомов водорода в системе отсчёта корабля теряется импульс:
P1=4mHv1−v2/c2.{\displaystyle P_{1}={\frac {4m_{\text{H}}v}{\sqrt {1-v^{2}/c^{2}}}}.}Теоретически достижимый импульс, с которым корабль может запустить атом гелия, можно получить из известного релятивистского соотношения между массой, энергией и импульсом:
EHe2/c2−P22=mHe2c2.{\displaystyle E_{\text{He}}^{2}/c^{2}-P_{2}^{2}=m_{\text{He}}^{2}c^{2}.}Энергия атома гелия (включая энергию покоя) не может превышать сумму масс четырёх атомов водорода, умноженную на квадрат скорости света:
maxEHe=4mHc2.{\displaystyle \max E_{\text{He}}=4m_{\text{H}}c^{2}.}Отсюда квадрат максимально достижимого импульса атома гелия:
P22=(4mH)2c2−mHe2c2.{\displaystyle P_{2}^{2}=(4m_{\text{H}})^{2}c^{2}-m_{\text{He}}^{2}c^{2}.}Если корабль в результате улавливания и использования четырёх атомов водорода не ускорился и не замедлился, значит, импульс, потерянный при их улавливании, равен импульсу, приобретённому в результате выброса атома гелия из сопла:
P1=P2,{\displaystyle P_{1}=P_{2},} P12=P22,{\displaystyle P_{1}^{2}=P_{2}^{2},} (4mH)2v21−v2/c2=(4mH)2c2−mHe2c2,{\displaystyle {\frac {(4m_{\text{H}})^{2}v^{2}}{1-v^{2}/c^{2}}}=(4m_{\text{H}})^{2}c^{2}-m_{\text{He}}^{2}c^{2},} v2/c21−v2/c2=1−(mHe4mH)2,{\displaystyle {\frac {v^{2}/c^{2}}{1-v^{2}/c^{2}}}=1-\left({\frac {m_{\text{He}}}{4m_{\text{H}}}}\right)^{2},} vc=1−(mHe4mH)22−(mHe4mH)2≈0,119.{\displaystyle {\frac {v}{c}}={\sqrt {\frac {1-\left({\frac {m_{\text{He}}}{4m_{\text{H}}}}\right)^{2}}{2-\left({\frac {m_{\text{He}}}{4m_{\text{H}}}}\right)^{2}}}}\approx 0{,}119.}Проблема торможения бассардовского корабля встречным потоком вещества привела к появлению концепции магнитного паруса (англ.)русск. (или парашюта). В этом случае электромагнитное поле коллектора поглощает энергию встречного звёздного ветра (либо межзвёздной среды) и передаёт тормозящий импульс на корабль. Таким образом, уменьшаются требования к расходу топлива на торможение в системе звезды — цели межзвёздного полёта. Концепция предложена Робертом Зубриным (Robert Zubrin) в конце 1980-х годов.[1][2]
Соответственно, магнитный парус может быть использован и для разгона корабля в направлении от звезды, на потоке звёздного корпускулярного ветра.
Развитие этой идеи — ускорение (торможение) корабля с магнитным парусом с помощью мощного потока частиц, разогнанных стационарным планетарным (орбитальным) ускорителем. В данной схеме уменьшаются требования к запасу бортового топлива, используемого для разгона корабля.
Также предложена концепция «подготовленной трассы», в которой на траекторию будущего полёта прямоточного корабля заблаговременно (посредством стационарных установок) выводится поток мелкодисперсного термоядерного горючего.
Эта концепция нашла широкое распространение в фантастической литературе, в частности, на ней построен сюжет романа Пола Андерсона «Тау Ноль».
Принцип двигателя Бассарда используют инопланетяне в повести Тома Лигона «Эльдорадо». Их снаряд, «Всасывающий водород преследователь света», направляется точно на Солнце чтобы ударить в него и вызвать взрыв, аналогичный взрыву сверхновой. Обложка журнала «Если», где опубликована «Эльдорадо», демонстрирует один из вариантов дизайна двигателя Бассарда.[3]
Практически все корабли Федерации из вселенной «Звездного пути» используют коллекторы Бассарда для сбора межзвездного газа с целью последующего использования в двигательно-энергетической системе корабля.
Двигатели космических кораблей во вселенной Рейнольдса «Космический Апокалипсис» (в романах они названы прямоточными Конджойнерскими двигателями) используют межзвездный водород в качестве топлива.
Космический корабль «Тезей» в романе Питера Уоттса «Ложная слепота» использует двигатель Бассарда.
Двигатель Бассарда многократно упоминается в серии «Известный космос» Ларри Нивена. В некоторых произведениях используется название «прямоточный двигатель» (ramjet).
Двигатель, «поглощающий межзвёздное вещество», используется у братьев Стругацких в рассказе «Частные предположения» на фотонном звездолёте «Муромец».
В романе «Фиаско» писателя Станислава Лема звездолет «Эвридика» использует двигатели, работающие на основе реакции термоядерного синтеза, топливом для которых служит водород космического пространства.
http-wikipediya.ru
Переименовать в Двигатель Бассарда
Межзвёздный прямоточный двигатель Бассарда (поле коллектора показано видимым) в представлении художникаМежзвёздный прямоточный двигатель Бассарда (англ. Bussard ramjet) — концепция ракетного двигателя для межзвёздных полётов, предложенная в 1960 году физиком Робертом Бассардом (Robert W. Bussard (англ.)русск.).
Основой концепции является захват вещества межзвёздной среды (водорода и пыли) идущим на высокой скорости космическим кораблём и использование этого вещества в качестве рабочего тела (либо непосредственно топлива) в термоядерном ракетном двигателе корабля. Захват вещества межзвёздной среды осуществляется мощным электромагнитным полем, в приближении имеющим конфигурацию широкой воронки, направленной вперёд по вектору скорости корабля. Предположительно, диаметр собирающего поля должен составлять тысячи или десятки тысяч километров. Существенной особенностью такой схемы будет являться практически полная топливная автономность корабля: будучи разогнанным имеющимся на борту запасом топлива до некоторой скорости, обеспечивающей достаточный приток межзвёздного водорода во входной коллектор, то есть после входа в «прямоточный режим», корабль сможет двигаться далее с постоянным ускорением, не выключая привода и не переходя на инерционный полёт.
Предложены два основных варианта использования захваченного межзвёздного водорода:
Межзвёздная среда содержит вещество в количестве порядка 10−21 кг/м³, в основной массе — ионизированный и неионизированный водород, небольшое количество гелия и практически никаких других газов в заметном количестве. Соответственно, через коллектор корабля должен пропускаться объём пространства порядка 1018 м³ для сбора одного грамма водорода. Подобный объём требует огромного диаметра электромагнитного (электростатического ионного) собирающего коллектора и чрезвычайно большой напряжённости поля.
Пример расчёта сбора межзвездного газа для случая радиуса поля захвата 50 км. Тогда R=50 000 м Площадь захвата=7 853 981 633,97 м2 Скорость (берем максимальную из раздела Ограничение на скорость) = 35 700 000 м/с Время = 1 сек Просеянный объем = 280 387 144 332 889 000 м3 Плотность среды = 1E-21 кг/м3 Полученная масса = 0,000 280 387 144 332 890 кгТо есть идеально работающее поле радиусом 50 км при максимальной скорости будет захватывать в среднем 0,28 грамма межзвездного газа за секунду (релятивистским замедлением времени пренебрегаем). |
Исходя из состава межзвёздной среды (в основном водород), именно термоядерный синтез на водородной реакции был предложен Бассардом в первоначальной концепции двигателя. К сожалению, протон-протонный цикл непригоден для использования в силу исключительной трудности его осуществления в термоядерном реакторе. Соответственно, более пригодны термоядерные реакции других типов, в частности 2H + 2H → 3He + 1n + 18 МэВ, или 2H + 3H → 4He + 1n + 20 МэВ, но требуемые для них изотопы чрезвычайно редки в составе межзвёздной среды.
Выход, в принципе, был предложен в использовании термоядерных реакций CNO-цикла, где углерод является катализатором термоядерного горения водорода. Тем не менее в любом т. н. каталитическом цикле ядерного синтеза реакции протекают крайне медленно, и плотность мощности ничтожна (для сравнения: в центре Солнца энерговыделение составляет всего лишь порядка 1 ватта на кубический сантиметр). За время пролёта вещества даже при самых оптимистичных предположениях может прогореть лишь ничтожная его доля.
В 1974 году Алан Бонд предложил концепцию RAIR (ram-augmented interstellar rocket), разрешающую проблему трудноосуществимого термоядерного синтеза на протон-протонном цикле. В этой схеме входящий в коллектор протонный поток тормозится до энергии порядка 1 МэВ и бомбардирует мишень из изотопов литий-6 или бор-11. Реакция литий-протон или бор-протон осуществляется проще протон-протонной и даёт значительный выход энергии, которая увеличивает скорость истечения рабочего тела из сопла двигателя. Такая термоядерная реакция может проходить и с использованием малых количеств антиматерии в качестве катализатора.
В концепции двигателя Бассарда, в то же время, существуют значительные теоретические проблемы из-за фактора сопротивления межзвёздной среды — передача импульса от встречного потока вещества на коллектор и далее корабль, что требует превышения тяги двигателя над показателем сопротивления.
В настоящее время работа над концепцией производится в рамках теоретических изысканий.
Ключевая проблема «прямоточника» также в том, что «магнитная воронка» отнюдь не будет выполнять функцию массозаборника так, как предполагалось автором концепции. Скорее, она будет вести себя как «тормоз» (см. «Магнитная пробка», «Пробкотрон», «Адиабатический инвариант»).
Ещё одним недостатком термоядерного прямоточного двигателя (даже на наиболее эффективном протон-протонном цикле) является ограниченность скорости, которой может достичь оснащённый им корабль (не более 0,119c = 35,7 тыс. км/с). Это связано с тем, что при улавливании каждого атома водорода (который можно в первом приближении считать неподвижным относительно звёзд) корабль теряет определённый импульс, который удастся компенсировать тягой двигателя только если скорость не превышает некоторого предела. Для преодоления этого ограничения необходимо как можно более полное использование кинетической энергии улавливаемых атомов, что представляется достаточно трудной задачей.
Вывод
Допустим, экран уловил 4 атома водорода. При работе термоядерного реактора четыре протона превращаются в одну альфа-частицу, два позитрона и два нейтрино. Для простоты пренебрежём нейтрино (учёт нейтрино потребует точного расчёта всех стадий реакции, а потери на нейтрино составляют около процента), а позитроны проаннигилируем с 2 электронами, оставшимися от атомов водорода после изъятия из них протонов. Ещё 2 электрона пойдут на то, чтобы превратить альфа-частицу в нейтральный атом гелия, который благодаря полученной от реакции энергии будет ускорен в сопле двигателя.
Итоговое уравнение реакции без учёта нейтрино:
411H → 42He + (4mH − mHe)c² (≈27 МэВ)Пусть корабль летит со скоростью v. При улавливании четырёх атомов водорода в системе отсчёта корабля теряется импульс:
P1=4mHv1−v2/c2.{\displaystyle P_{1}={\frac {4m_{\text{H}}v}{\sqrt {1-v^{2}/c^{2}}}}.}Теоретически достижимый импульс, с которым корабль может запустить атом гелия, можно получить из известного релятивистского соотношения между массой, энергией и импульсом:
EHe2/c2−P22=mHe2c2.{\displaystyle E_{\text{He}}^{2}/c^{2}-P_{2}^{2}=m_{\text{He}}^{2}c^{2}.}Энергия атома гелия (включая энергию покоя) не может превышать сумму масс четырёх атомов водорода, умноженную на квадрат скорости света:
maxEHe=4mHc2.{\displaystyle \max E_{\text{He}}=4m_{\text{H}}c^{2}.}Отсюда квадрат максимально достижимого импульса атома гелия:
P22=(4mH)2c2−mHe2c2.{\displaystyle P_{2}^{2}=(4m_{\text{H}})^{2}c^{2}-m_{\text{He}}^{2}c^{2}.}Если корабль в результате улавливания и использования четырёх атомов водорода не ускорился и не замедлился, значит, импульс, потерянный при их улавливании, равен импульсу, приобретённому в результате выброса атома гелия из сопла:
P1=P2,{\displaystyle P_{1}=P_{2},} P12=P22,{\displaystyle P_{1}^{2}=P_{2}^{2},} (4mH)2v21−v2/c2=(4mH)2c2−mHe2c2,{\displaystyle {\frac {(4m_{\text{H}})^{2}v^{2}}{1-v^{2}/c^{2}}}=(4m_{\text{H}})^{2}c^{2}-m_{\text{He}}^{2}c^{2},} v2/c21−v2/c2=1−(mHe4mH)2,{\displaystyle {\frac {v^{2}/c^{2}}{1-v^{2}/c^{2}}}=1-\left({\frac {m_{\text{He}}}{4m_{\text{H}}}}\right)^{2},} vc=1−(mHe4mH)22−(mHe4mH)2≈0,119.{\displaystyle {\frac {v}{c}}={\sqrt {\frac {1-\left({\frac {m_{\text{He}}}{4m_{\text{H}}}}\right)^{2}}{2-\left({\frac {m_{\text{He}}}{4m_{\text{H}}}}\right)^{2}}}}\approx 0{,}119.}Проблема торможения бассардовского корабля встречным потоком вещества привела к появлению концепции магнитного паруса (англ.)русск. (или парашюта). В этом случае электромагнитное поле коллектора поглощает энергию встречного звёздного ветра (либо межзвёздной среды) и передаёт тормозящий импульс на корабль. Таким образом, уменьшаются требования к расходу топлива на торможение в системе звезды — цели межзвёздного полёта. Концепция предложена Робертом Зубриным (Robert Zubrin) в конце 1980-х годов.[1][2]
Соответственно, магнитный парус может быть использован и для разгона корабля в направлении от звезды, на потоке звёздного корпускулярного ветра.
Развитие этой идеи — ускорение (торможение) корабля с магнитным парусом с помощью мощного потока частиц, разогнанных стационарным планетарным (орбитальным) ускорителем. В данной схеме уменьшаются требования к запасу бортового топлива, используемого для разгона корабля.
Также предложена концепция «подготовленной трассы», в которой на траекторию будущего полёта прямоточного корабля заблаговременно (посредством стационарных установок) выводится поток мелкодисперсного термоядерного горючего.
Эта концепция нашла широкое распространение в фантастической литературе, в частности, на ней построен сюжет романа Пола Андерсона «Тау Ноль».
Принцип двигателя Бассарда используют инопланетяне в повести Тома Лигона «Эльдорадо». Их снаряд, «Всасывающий водород преследователь света», направляется точно на Солнце чтобы ударить в него и вызвать взрыв, аналогичный взрыву сверхновой. Обложка журнала «Если», где опубликована «Эльдорадо», демонстрирует один из вариантов дизайна двигателя Бассарда.[3]
Практически все корабли Федерации из вселенной «Звездного пути» используют коллекторы Бассарда для сбора межзвездного газа с целью последующего использования в двигательно-энергетической системе корабля.
Двигатели космических кораблей во вселенной Рейнольдса «Космический Апокалипсис» (в романах они названы прямоточными Конджойнерскими двигателями) используют межзвездный водород в качестве топлива.
Космический корабль «Тезей» в романе Питера Уоттса «Ложная слепота» использует двигатель Бассарда.
Двигатель Бассарда многократно упоминается в серии «Известный космос» Ларри Нивена. В некоторых произведениях используется название «прямоточный двигатель» (ramjet).
Двигатель, «поглощающий межзвёздное вещество», используется у братьев Стругацких в рассказе «Частные предположения» на фотонном звездолёте «Муромец».
В романе «Фиаско» писателя Станислава Лема звездолет «Эвридика» использует двигатели, работающие на основе реакции термоядерного синтеза, топливом для которых служит водород космического пространства.
org-wikipediya.ru
Переименовать в Двигатель Бассарда
Межзвёздный прямоточный двигатель Бассарда (поле коллектора показано видимым) в представлении художникаМежзвёздный прямоточный двигатель Бассарда (англ. Bussard ramjet) — концепция ракетного двигателя для межзвёздных полётов, предложенная в 1960 году физиком Робертом Бассардом (Robert W. Bussard (англ.)русск.).
Основой концепции является захват вещества межзвёздной среды (водорода и пыли) идущим на высокой скорости космическим кораблём и использование этого вещества в качестве рабочего тела (либо непосредственно топлива) в термоядерном ракетном двигателе корабля. Захват вещества межзвёздной среды осуществляется мощным электромагнитным полем, в приближении имеющим конфигурацию широкой воронки, направленной вперёд по вектору скорости корабля. Предположительно, диаметр собирающего поля должен составлять тысячи или десятки тысяч километров. Существенной особенностью такой схемы будет являться практически полная топливная автономность корабля: будучи разогнанным имеющимся на борту запасом топлива до некоторой скорости, обеспечивающей достаточный приток межзвёздного водорода во входной коллектор, то есть после входа в «прямоточный режим», корабль сможет двигаться далее с постоянным ускорением, не выключая привода и не переходя на инерционный полёт.
Предложены два основных варианта использования захваченного межзвёздного водорода:
Межзвёздная среда содержит вещество в количестве порядка 10−21 кг/м³, в основной массе — ионизированный и неионизированный водород, небольшое количество гелия и практически никаких других газов в заметном количестве. Соответственно, через коллектор корабля должен пропускаться объём пространства порядка 1018 м³ для сбора одного грамма водорода. Подобный объём требует огромного диаметра электромагнитного (электростатического ионного) собирающего коллектора и чрезвычайно большой напряжённости поля.
Пример расчёта сбора межзвездного газа для случая радиуса поля захвата 50 км. Тогда R=50 000 м Площадь захвата=7 853 981 633,97 м2 Скорость (берем максимальную из раздела Ограничение на скорость) = 35 700 000 м/с Время = 1 сек Просеянный объем = 280 387 144 332 889 000 м3 Плотность среды = 1E-21 кг/м3 Полученная масса = 0,000 280 387 144 332 890 кгТо есть идеально работающее поле радиусом 50 км при максимальной скорости будет захватывать в среднем 0,28 грамма межзвездного газа за секунду (релятивистским замедлением времени пренебрегаем). |
Исходя из состава межзвёздной среды (в основном водород), именно термоядерный синтез на водородной реакции был предложен Бассардом в первоначальной концепции двигателя. К сожалению, протон-протонный цикл непригоден для использования в силу исключительной трудности его осуществления в термоядерном реакторе. Соответственно, более пригодны термоядерные реакции других типов, в частности 2H + 2H → 3He + 1n + 18 МэВ, или 2H + 3H → 4He + 1n + 20 МэВ, но требуемые для них изотопы чрезвычайно редки в составе межзвёздной среды.
Выход, в принципе, был предложен в использовании термоядерных реакций CNO-цикла, где углерод является катализатором термоядерного горения водорода. Тем не менее в любом т. н. каталитическом цикле ядерного синтеза реакции протекают крайне медленно, и плотность мощности ничтожна (для сравнения: в центре Солнца энерговыделение составляет всего лишь порядка 1 ватта на кубический сантиметр). За время пролёта вещества даже при самых оптимистичных предположениях может прогореть лишь ничтожная его доля.
В 1974 году Алан Бонд предложил концепцию RAIR (ram-augmented interstellar rocket), разрешающую проблему трудноосуществимого термоядерного синтеза на протон-протонном цикле. В этой схеме входящий в коллектор протонный поток тормозится до энергии порядка 1 МэВ и бомбардирует мишень из изотопов литий-6 или бор-11. Реакция литий-протон или бор-протон осуществляется проще протон-протонной и даёт значительный выход энергии, которая увеличивает скорость истечения рабочего тела из сопла двигателя. Такая термоядерная реакция может проходить и с использованием малых количеств антиматерии в качестве катализатора.
В концепции двигателя Бассарда, в то же время, существуют значительные теоретические проблемы из-за фактора сопротивления межзвёздной среды — передача импульса от встречного потока вещества на коллектор и далее корабль, что требует превышения тяги двигателя над показателем сопротивления.
В настоящее время работа над концепцией производится в рамках теоретических изысканий.
Ключевая проблема «прямоточника» также в том, что «магнитная воронка» отнюдь не будет выполнять функцию массозаборника так, как предполагалось автором концепции. Скорее, она будет вести себя как «тормоз» (см. «Магнитная пробка», «Пробкотрон», «Адиабатический инвариант»).
Ещё одним недостатком термоядерного прямоточного двигателя (даже на наиболее эффективном протон-протонном цикле) является ограниченность скорости, которой может достичь оснащённый им корабль (не более 0,119c = 35,7 тыс. км/с). Это связано с тем, что при улавливании каждого атома водорода (который можно в первом приближении считать неподвижным относительно звёзд) корабль теряет определённый импульс, который удастся компенсировать тягой двигателя только если скорость не превышает некоторого предела. Для преодоления этого ограничения необходимо как можно более полное использование кинетической энергии улавливаемых атомов, что представляется достаточно трудной задачей.
Вывод
Допустим, экран уловил 4 атома водорода. При работе термоядерного реактора четыре протона превращаются в одну альфа-частицу, два позитрона и два нейтрино. Для простоты пренебрежём нейтрино (учёт нейтрино потребует точного расчёта всех стадий реакции, а потери на нейтрино составляют около процента), а позитроны проаннигилируем с 2 электронами, оставшимися от атомов водорода после изъятия из них протонов. Ещё 2 электрона пойдут на то, чтобы превратить альфа-частицу в нейтральный атом гелия, который благодаря полученной от реакции энергии будет ускорен в сопле двигателя.
Итоговое уравнение реакции без учёта нейтрино:
411H → 42He + (4mH − mHe)c² (≈27 МэВ)Пусть корабль летит со скоростью v. При улавливании четырёх атомов водорода в системе отсчёта корабля теряется импульс:
P1=4mHv1−v2/c2.{\displaystyle P_{1}={\frac {4m_{\text{H}}v}{\sqrt {1-v^{2}/c^{2}}}}.}Теоретически достижимый импульс, с которым корабль может запустить атом гелия, можно получить из известного релятивистского соотношения между массой, энергией и импульсом:
EHe2/c2−P22=mHe2c2.{\displaystyle E_{\text{He}}^{2}/c^{2}-P_{2}^{2}=m_{\text{He}}^{2}c^{2}.}Энергия атома гелия (включая энергию покоя) не может превышать сумму масс четырёх атомов водорода, умноженную на квадрат скорости света:
maxEHe=4mHc2.{\displaystyle \max E_{\text{He}}=4m_{\text{H}}c^{2}.}Отсюда квадрат максимально достижимого импульса атома гелия:
P22=(4mH)2c2−mHe2c2.{\displaystyle P_{2}^{2}=(4m_{\text{H}})^{2}c^{2}-m_{\text{He}}^{2}c^{2}.}Если корабль в результате улавливания и использования четырёх атомов водорода не ускорился и не замедлился, значит, импульс, потерянный при их улавливании, равен импульсу, приобретённому в результате выброса атома гелия из сопла:
P1=P2,{\displaystyle P_{1}=P_{2},} P12=P22,{\displaystyle P_{1}^{2}=P_{2}^{2},} (4mH)2v21−v2/c2=(4mH)2c2−mHe2c2,{\displaystyle {\frac {(4m_{\text{H}})^{2}v^{2}}{1-v^{2}/c^{2}}}=(4m_{\text{H}})^{2}c^{2}-m_{\text{He}}^{2}c^{2},} v2/c21−v2/c2=1−(mHe4mH)2,{\displaystyle {\frac {v^{2}/c^{2}}{1-v^{2}/c^{2}}}=1-\left({\frac {m_{\text{He}}}{4m_{\text{H}}}}\right)^{2},} vc=1−(mHe4mH)22−(mHe4mH)2≈0,119.{\displaystyle {\frac {v}{c}}={\sqrt {\frac {1-\left({\frac {m_{\text{He}}}{4m_{\text{H}}}}\right)^{2}}{2-\left({\frac {m_{\text{He}}}{4m_{\text{H}}}}\right)^{2}}}}\approx 0{,}119.}Проблема торможения бассардовского корабля встречным потоком вещества привела к появлению концепции магнитного паруса (англ.)русск. (или парашюта). В этом случае электромагнитное поле коллектора поглощает энергию встречного звёздного ветра (либо межзвёздной среды) и передаёт тормозящий импульс на корабль. Таким образом, уменьшаются требования к расходу топлива на торможение в системе звезды — цели межзвёздного полёта. Концепция предложена Робертом Зубриным (Robert Zubrin) в конце 1980-х годов.[1][2]
Соответственно, магнитный парус может быть использован и для разгона корабля в направлении от звезды, на потоке звёздного корпускулярного ветра.
Развитие этой идеи — ускорение (торможение) корабля с магнитным парусом с помощью мощного потока частиц, разогнанных стационарным планетарным (орбитальным) ускорителем. В данной схеме уменьшаются требования к запасу бортового топлива, используемого для разгона корабля.
Также предложена концепция «подготовленной трассы», в которой на траекторию будущего полёта прямоточного корабля заблаговременно (посредством стационарных установок) выводится поток мелкодисперсного термоядерного горючего.
Эта концепция нашла широкое распространение в фантастической литературе, в частности, на ней построен сюжет романа Пола Андерсона «Тау Ноль».
Принцип двигателя Бассарда используют инопланетяне в повести Тома Лигона «Эльдорадо». Их снаряд, «Всасывающий водород преследователь света», направляется точно на Солнце чтобы ударить в него и вызвать взрыв, аналогичный взрыву сверхновой. Обложка журнала «Если», где опубликована «Эльдорадо», демонстрирует один из вариантов дизайна двигателя Бассарда.[3]
Практически все корабли Федерации из вселенной «Звездного пути» используют коллекторы Бассарда для сбора межзвездного газа с целью последующего использования в двигательно-энергетической системе корабля.
Двигатели космических кораблей во вселенной Рейнольдса «Космический Апокалипсис» (в романах они названы прямоточными Конджойнерскими двигателями) используют межзвездный водород в качестве топлива.
Космический корабль «Тезей» в романе Питера Уоттса «Ложная слепота» использует двигатель Бассарда.
Двигатель Бассарда многократно упоминается в серии «Известный космос» Ларри Нивена. В некоторых произведениях используется название «прямоточный двигатель» (ramjet).
Двигатель, «поглощающий межзвёздное вещество», используется у братьев Стругацких в рассказе «Частные предположения» на фотонном звездолёте «Муромец».
В романе «Фиаско» писателя Станислава Лема звездолет «Эвридика» использует двигатели, работающие на основе реакции термоядерного синтеза, топливом для которых служит водород космического пространства.
www-wikipediya.ru
Переименовать в Двигатель Бассарда
Межзвёздный прямоточный двигатель Бассарда (поле коллектора показано видимым) в представлении художникаМежзвёздный прямоточный двигатель Бассарда (англ. Bussard ramjet) — концепция ракетного двигателя для межзвёздных полётов, предложенная в 1960 году физиком Робертом Бассардом (Robert W. Bussard (англ.)русск.).
Основой концепции является захват вещества межзвёздной среды (водорода и пыли) идущим на высокой скорости космическим кораблём и использование этого вещества в качестве рабочего тела (либо непосредственно топлива) в термоядерном ракетном двигателе корабля. Захват вещества межзвёздной среды осуществляется мощным электромагнитным полем, в приближении имеющим конфигурацию широкой воронки, направленной вперёд по вектору скорости корабля. Предположительно, диаметр собирающего поля должен составлять тысячи или десятки тысяч километров. Существенной особенностью такой схемы будет являться практически полная топливная автономность корабля: будучи разогнанным имеющимся на борту запасом топлива до некоторой скорости, обеспечивающей достаточный приток межзвёздного водорода во входной коллектор, то есть после входа в «прямоточный режим», корабль сможет двигаться далее с постоянным ускорением, не выключая привода и не переходя на инерционный полёт.
Предложены два основных варианта использования захваченного межзвёздного водорода:
Межзвёздная среда содержит вещество в количестве порядка 10−21 кг/м³, в основной массе — ионизированный и неионизированный водород, небольшое количество гелия и практически никаких других газов в заметном количестве. Соответственно, через коллектор корабля должен пропускаться объём пространства порядка 1018 м³ для сбора одного грамма водорода. Подобный объём требует огромного диаметра электромагнитного (электростатического ионного) собирающего коллектора и чрезвычайно большой напряжённости поля.
Пример расчёта сбора межзвездного газа для случая радиуса поля захвата 50 км. Тогда R=50 000 м Площадь захвата=7 853 981 633,97 м2 Скорость (берем максимальную из раздела Ограничение на скорость) = 35 700 000 м/с Время = 1 сек Просеянный объем = 280 387 144 332 889 000 м3 Плотность среды = 1E-21 кг/м3 Полученная масса = 0,000 280 387 144 332 890 кгТо есть идеально работающее поле радиусом 50 км при максимальной скорости будет захватывать в среднем 0,28 грамма межзвездного газа за секунду (релятивистским замедлением времени пренебрегаем). |
Исходя из состава межзвёздной среды (в основном водород), именно термоядерный синтез на водородной реакции был предложен Бассардом в первоначальной концепции двигателя. К сожалению, протон-протонный цикл непригоден для использования в силу исключительной трудности его осуществления в термоядерном реакторе. Соответственно, более пригодны термоядерные реакции других типов, в частности 2H + 2H → 3He + 1n + 18 МэВ, или 2H + 3H → 4He + 1n + 20 МэВ, но требуемые для них изотопы чрезвычайно редки в составе межзвёздной среды.
Выход, в принципе, был предложен в использовании термоядерных реакций CNO-цикла, где углерод является катализатором термоядерного горения водорода. Тем не менее в любом т. н. каталитическом цикле ядерного синтеза реакции протекают крайне медленно, и плотность мощности ничтожна (для сравнения: в центре Солнца энерговыделение составляет всего лишь порядка 1 ватта на кубический сантиметр). За время пролёта вещества даже при самых оптимистичных предположениях может прогореть лишь ничтожная его доля.
В 1974 году Алан Бонд предложил концепцию RAIR (ram-augmented interstellar rocket), разрешающую проблему трудноосуществимого термоядерного синтеза на протон-протонном цикле. В этой схеме входящий в коллектор протонный поток тормозится до энергии порядка 1 МэВ и бомбардирует мишень из изотопов литий-6 или бор-11. Реакция литий-протон или бор-протон осуществляется проще протон-протонной и даёт значительный выход энергии, которая увеличивает скорость истечения рабочего тела из сопла двигателя. Такая термоядерная реакция может проходить и с использованием малых количеств антиматерии в качестве катализатора.
В концепции двигателя Бассарда, в то же время, существуют значительные теоретические проблемы из-за фактора сопротивления межзвёздной среды — передача импульса от встречного потока вещества на коллектор и далее корабль, что требует превышения тяги двигателя над показателем сопротивления.
В настоящее время работа над концепцией производится в рамках теоретических изысканий.
Ключевая проблема «прямоточника» также в том, что «магнитная воронка» отнюдь не будет выполнять функцию массозаборника так, как предполагалось автором концепции. Скорее, она будет вести себя как «тормоз» (см. «Магнитная пробка», «Пробкотрон», «Адиабатический инвариант»).
Ещё одним недостатком термоядерного прямоточного двигателя (даже на наиболее эффективном протон-протонном цикле) является ограниченность скорости, которой может достичь оснащённый им корабль (не более 0,119c = 35,7 тыс. км/с). Это связано с тем, что при улавливании каждого атома водорода (который можно в первом приближении считать неподвижным относительно звёзд) корабль теряет определённый импульс, который удастся компенсировать тягой двигателя только если скорость не превышает некоторого предела. Для преодоления этого ограничения необходимо как можно более полное использование кинетической энергии улавливаемых атомов, что представляется достаточно трудной задачей.
Вывод
Допустим, экран уловил 4 атома водорода. При работе термоядерного реактора четыре протона превращаются в одну альфа-частицу, два позитрона и два нейтрино. Для простоты пренебрежём нейтрино (учёт нейтрино потребует точного расчёта всех стадий реакции, а потери на нейтрино составляют около процента), а позитроны проаннигилируем с 2 электронами, оставшимися от атомов водорода после изъятия из них протонов. Ещё 2 электрона пойдут на то, чтобы превратить альфа-частицу в нейтральный атом гелия, который благодаря полученной от реакции энергии будет ускорен в сопле двигателя.
Итоговое уравнение реакции без учёта нейтрино:
411H → 42He + (4mH − mHe)c² (≈27 МэВ)Пусть корабль летит со скоростью v. При улавливании четырёх атомов водорода в системе отсчёта корабля теряется импульс:
P1=4mHv1−v2/c2.{\displaystyle P_{1}={\frac {4m_{\text{H}}v}{\sqrt {1-v^{2}/c^{2}}}}.}Теоретически достижимый импульс, с которым корабль может запустить атом гелия, можно получить из известного релятивистского соотношения между массой, энергией и импульсом:
EHe2/c2−P22=mHe2c2.{\displaystyle E_{\text{He}}^{2}/c^{2}-P_{2}^{2}=m_{\text{He}}^{2}c^{2}.}Энергия атома гелия (включая энергию покоя) не может превышать сумму масс четырёх атомов водорода, умноженную на квадрат скорости света:
maxEHe=4mHc2.{\displaystyle \max E_{\text{He}}=4m_{\text{H}}c^{2}.}Отсюда квадрат максимально достижимого импульса атома гелия:
P22=(4mH)2c2−mHe2c2.{\displaystyle P_{2}^{2}=(4m_{\text{H}})^{2}c^{2}-m_{\text{He}}^{2}c^{2}.}Если корабль в результате улавливания и использования четырёх атомов водорода не ускорился и не замедлился, значит, импульс, потерянный при их улавливании, равен импульсу, приобретённому в результате выброса атома гелия из сопла:
P1=P2,{\displaystyle P_{1}=P_{2},}P12=P22,{\displaystyle P_{1}^{2}=P_{2}^{2},}(4mH)2v21−v2/c2=(4mH)2c2−mHe2c2,{\displaystyle {\frac {(4m_{\text{H}})^{2}v^{2}}{1-v^{2}/c^{2}}}=(4m_{\text{H}})^{2}c^{2}-m_{\text{He}}^{2}c^{2},}v2/c21−v2/c2=1−(mHe4mH)2,{\displaystyle {\frac {v^{2}/c^{2}}{1-v^{2}/c^{2}}}=1-\left({\frac {m_{\text{He}}}{4m_{\text{H}}}}\right)^{2},}vc=1−(mHe4mH)22−(mHe4mH)2≈0,119.{\displaystyle {\frac {v}{c}}={\sqrt {\frac {1-\left({\frac {m_{\text{He}}}{4m_{\text{H}}}}\right)^{2}}{2-\left({\frac {m_{\text{He}}}{4m_{\text{H}}}}\right)^{2}}}}\approx 0{,}119.}Проблема торможения бассардовского корабля встречным потоком вещества привела к появлению концепции магнитного паруса (англ.)русск. (или парашюта). В этом случае электромагнитное поле коллектора поглощает энергию встречного звёздного ветра (либо межзвёздной среды) и передаёт тормозящий импульс на корабль. Таким образом, уменьшаются требования к расходу топлива на торможение в системе звезды — цели межзвёздного полёта. Концепция предложена Робертом Зубриным (Robert Zubrin) в конце 1980-х годов.[1][2]
Соответственно, магнитный парус может быть использован и для разгона корабля в направлении от звезды, на потоке звёздного корпускулярного ветра.
Развитие этой идеи — ускорение (торможение) корабля с магнитным парусом с помощью мощного потока частиц, разогнанных стационарным планетарным (орбитальным) ускорителем. В данной схеме уменьшаются требования к запасу бортового топлива, используемого для разгона корабля.
Также предложена концепция «подготовленной трассы», в которой на траекторию будущего полёта прямоточного корабля заблаговременно (посредством стационарных установок) выводится поток мелкодисперсного термоядерного горючего.
Эта концепция нашла широкое распространение в фантастической литературе, в частности, на ней построен сюжет романа Пола Андерсона «Тау Ноль».
Принцип двигателя Бассарда используют инопланетяне в повести Тома Лигона «Эльдорадо». Их снаряд, «Всасывающий водород преследователь света», направляется точно на Солнце чтобы ударить в него и вызвать взрыв, аналогичный взрыву сверхновой. Обложка журнала «Если», где опубликована «Эльдорадо», демонстрирует один из вариантов дизайна двигателя Бассарда.[3]
Практически все корабли Федерации из вселенной «Звездного пути» используют коллекторы Бассарда для сбора межзвездного газа с целью последующего использования в двигательно-энергетической системе корабля.
Двигатели космических кораблей во вселенной Рейнольдса «Космический Апокалипсис» (в романах они названы прямоточными Конджойнерскими двигателями) используют межзвездный водород в качестве топлива.
Космический корабль «Тезей» в романе Питера Уоттса «Ложная слепота» использует двигатель Бассарда.
Двигатель Бассарда многократно упоминается в серии «Известный космос» Ларри Нивена. В некоторых произведениях используется название «прямоточный двигатель» (ramjet).
Двигатель, «поглощающий межзвёздное вещество», используется у братьев Стругацких в рассказе «Частные предположения» на фотонном звездолёте «Муромец».
В романе «Фиаско» писателя Станислава Лема звездолет «Эвридика» использует двигатели, работающие на основе реакции термоядерного синтеза, топливом для которых служит водород космического пространства.
wikiredia.ru
Переименовать в Двигатель Бассарда
Межзвёздный прямоточный двигатель Бассарда (поле коллектора показано видимым) в представлении художникаМежзвёздный прямоточный двигатель Бассарда (англ. Bussard ramjet) — концепция ракетного двигателя для межзвёздных полётов, предложенная в 1960 году физиком Робертом Бассардом (Robert W. Bussard (англ.)русск.).
Основой концепции является захват вещества межзвёздной среды (водорода и пыли) идущим на высокой скорости космическим кораблём и использование этого вещества в качестве рабочего тела (либо непосредственно топлива) в термоядерном ракетном двигателе корабля. Захват вещества межзвёздной среды осуществляется мощным электромагнитным полем, в приближении имеющим конфигурацию широкой воронки, направленной вперёд по вектору скорости корабля. Предположительно, диаметр собирающего поля должен составлять тысячи или десятки тысяч километров. Существенной особенностью такой схемы будет являться практически полная топливная автономность корабля: будучи разогнанным имеющимся на борту запасом топлива до некоторой скорости, обеспечивающей достаточный приток межзвёздного водорода во входной коллектор, то есть после входа в «прямоточный режим», корабль сможет двигаться далее с постоянным ускорением, не выключая привода и не переходя на инерционный полёт.
Предложены два основных варианта использования захваченного межзвёздного водорода:
Межзвёздная среда содержит вещество в количестве порядка 10−21 кг/м³, в основной массе — ионизированный и неионизированный водород, небольшое количество гелия и практически никаких других газов в заметном количестве. Соответственно, через коллектор корабля должен пропускаться объём пространства порядка 1018 м³ для сбора одного грамма водорода. Подобный объём требует огромного диаметра электромагнитного (электростатического ионного) собирающего коллектора и чрезвычайно большой напряжённости поля.
Пример расчёта сбора межзвездного газа для случая радиуса поля захвата 50 км. Тогда R=50 000 м Площадь захвата=7 853 981 633,97 м2 Скорость (берем максимальную из раздела Ограничение на скорость) = 35 700 000 м/с Время = 1 сек Просеянный объем = 280 387 144 332 889 000 м3 Плотность среды = 1E-21 кг/м3 Полученная масса = 0,000 280 387 144 332 890 кгТо есть идеально работающее поле радиусом 50 км при максимальной скорости будет захватывать в среднем 0,28 грамма межзвездного газа за секунду (релятивистским замедлением времени пренебрегаем). |
Исходя из состава межзвёздной среды (в основном водород), именно термоядерный синтез на водородной реакции был предложен Бассардом в первоначальной концепции двигателя. К сожалению, протон-протонный цикл непригоден для использования в силу исключительной трудности его осуществления в термоядерном реакторе. Соответственно, более пригодны термоядерные реакции других типов, в частности 2H + 2H → 3He + 1n + 18 МэВ, или 2H + 3H → 4He + 1n + 20 МэВ, но требуемые для них изотопы чрезвычайно редки в составе межзвёздной среды.
Выход, в принципе, был предложен в использовании термоядерных реакций CNO-цикла, где углерод является катализатором термоядерного горения водорода. Тем не менее в любом т. н. каталитическом цикле ядерного синтеза реакции протекают крайне медленно, и плотность мощности ничтожна (для сравнения: в центре Солнца энерговыделение составляет всего лишь порядка 1 ватта на кубический сантиметр). За время пролёта вещества даже при самых оптимистичных предположениях может прогореть лишь ничтожная его доля.
В 1974 году Алан Бонд предложил концепцию RAIR (ram-augmented interstellar rocket), разрешающую проблему трудноосуществимого термоядерного синтеза на протон-протонном цикле. В этой схеме входящий в коллектор протонный поток тормозится до энергии порядка 1 МэВ и бомбардирует мишень из изотопов литий-6 или бор-11. Реакция литий-протон или бор-протон осуществляется проще протон-протонной и даёт значительный выход энергии, которая увеличивает скорость истечения рабочего тела из сопла двигателя. Такая термоядерная реакция может проходить и с использованием малых количеств антиматерии в качестве катализатора.
В концепции двигателя Бассарда, в то же время, существуют значительные теоретические проблемы из-за фактора сопротивления межзвёздной среды — передача импульса от встречного потока вещества на коллектор и далее корабль, что требует превышения тяги двигателя над показателем сопротивления.
В настоящее время работа над концепцией производится в рамках теоретических изысканий.
Ключевая проблема «прямоточника» также в том, что «магнитная воронка» отнюдь не будет выполнять функцию массозаборника так, как предполагалось автором концепции. Скорее, она будет вести себя как «тормоз» (см. «Магнитная пробка», «Пробкотрон», «Адиабатический инвариант»).
Ещё одним недостатком термоядерного прямоточного двигателя (даже на наиболее эффективном протон-протонном цикле) является ограниченность скорости, которой может достичь оснащённый им корабль (не более 0,119c = 35,7 тыс. км/с). Это связано с тем, что при улавливании каждого атома водорода (который можно в первом приближении считать неподвижным относительно звёзд) корабль теряет определённый импульс, который удастся компенсировать тягой двигателя только если скорость не превышает некоторого предела. Для преодоления этого ограничения необходимо как можно более полное использование кинетической энергии улавливаемых атомов, что представляется достаточно трудной задачей.
Вывод
Допустим, экран уловил 4 атома водорода. При работе термоядерного реактора четыре протона превращаются в одну альфа-частицу, два позитрона и два нейтрино. Для простоты пренебрежём нейтрино (учёт нейтрино потребует точного расчёта всех стадий реакции, а потери на нейтрино составляют около процента), а позитроны проаннигилируем с 2 электронами, оставшимися от атомов водорода после изъятия из них протонов. Ещё 2 электрона пойдут на то, чтобы превратить альфа-частицу в нейтральный атом гелия, который благодаря полученной от реакции энергии будет ускорен в сопле двигателя.
Итоговое уравнение реакции без учёта нейтрино:
411H → 42He + (4mH − mHe)c² (≈27 МэВ)Пусть корабль летит со скоростью v. При улавливании четырёх атомов водорода в системе отсчёта корабля теряется импульс:
P1=4mHv1−v2/c2.{\displaystyle P_{1}={\frac {4m_{\text{H}}v}{\sqrt {1-v^{2}/c^{2}}}}.}Теоретически достижимый импульс, с которым корабль может запустить атом гелия, можно получить из известного релятивистского соотношения между массой, энергией и импульсом:
EHe2/c2−P22=mHe2c2.{\displaystyle E_{\text{He}}^{2}/c^{2}-P_{2}^{2}=m_{\text{He}}^{2}c^{2}.}Энергия атома гелия (включая энергию покоя) не может превышать сумму масс четырёх атомов водорода, умноженную на квадрат скорости света:
maxEHe=4mHc2.{\displaystyle \max E_{\text{He}}=4m_{\text{H}}c^{2}.}Отсюда квадрат максимально достижимого импульса атома гелия:
P22=(4mH)2c2−mHe2c2.{\displaystyle P_{2}^{2}=(4m_{\text{H}})^{2}c^{2}-m_{\text{He}}^{2}c^{2}.}Если корабль в результате улавливания и использования четырёх атомов водорода не ускорился и не замедлился, значит, импульс, потерянный при их улавливании, равен импульсу, приобретённому в результате выброса атома гелия из сопла:
P1=P2,{\displaystyle P_{1}=P_{2},}P12=P22,{\displaystyle P_{1}^{2}=P_{2}^{2},}(4mH)2v21−v2/c2=(4mH)2c2−mHe2c2,{\displaystyle {\frac {(4m_{\text{H}})^{2}v^{2}}{1-v^{2}/c^{2}}}=(4m_{\text{H}})^{2}c^{2}-m_{\text{He}}^{2}c^{2},}v2/c21−v2/c2=1−(mHe4mH)2,{\displaystyle {\frac {v^{2}/c^{2}}{1-v^{2}/c^{2}}}=1-\left({\frac {m_{\text{He}}}{4m_{\text{H}}}}\right)^{2},}vc=1−(mHe4mH)22−(mHe4mH)2≈0,119.{\displaystyle {\frac {v}{c}}={\sqrt {\frac {1-\left({\frac {m_{\text{He}}}{4m_{\text{H}}}}\right)^{2}}{2-\left({\frac {m_{\text{He}}}{4m_{\text{H}}}}\right)^{2}}}}\approx 0{,}119.}Проблема торможения бассардовского корабля встречным потоком вещества привела к появлению концепции магнитного паруса (англ.)русск. (или парашюта). В этом случае электромагнитное поле коллектора поглощает энергию встречного звёздного ветра (либо межзвёздной среды) и передаёт тормозящий импульс на корабль. Таким образом, уменьшаются требования к расходу топлива на торможение в системе звезды — цели межзвёздного полёта. Концепция предложена Робертом Зубриным (Robert Zubrin) в конце 1980-х годов.[1][2]
Соответственно, магнитный парус может быть использован и для разгона корабля в направлении от звезды, на потоке звёздного корпускулярного ветра.
Развитие этой идеи — ускорение (торможение) корабля с магнитным парусом с помощью мощного потока частиц, разогнанных стационарным планетарным (орбитальным) ускорителем. В данной схеме уменьшаются требования к запасу бортового топлива, используемого для разгона корабля.
Также предложена концепция «подготовленной трассы», в которой на траекторию будущего полёта прямоточного корабля заблаговременно (посредством стационарных установок) выводится поток мелкодисперсного термоядерного горючего.
Эта концепция нашла широкое распространение в фантастической литературе, в частности, на ней построен сюжет романа Пола Андерсона «Тау Ноль».
Принцип двигателя Бассарда используют инопланетяне в повести Тома Лигона «Эльдорадо». Их снаряд, «Всасывающий водород преследователь света», направляется точно на Солнце чтобы ударить в него и вызвать взрыв, аналогичный взрыву сверхновой. Обложка журнала «Если», где опубликована «Эльдорадо», демонстрирует один из вариантов дизайна двигателя Бассарда.[3]
Практически все корабли Федерации из вселенной «Звездного пути» используют коллекторы Бассарда для сбора межзвездного газа с целью последующего использования в двигательно-энергетической системе корабля.
Двигатели космических кораблей во вселенной Рейнольдса «Космический Апокалипсис» (в романах они названы прямоточными Конджойнерскими двигателями) используют межзвездный водород в качестве топлива.
Космический корабль «Тезей» в романе Питера Уоттса «Ложная слепота» использует двигатель Бассарда.
Двигатель Бассарда многократно упоминается в серии «Известный космос» Ларри Нивена. В некоторых произведениях используется название «прямоточный двигатель» (ramjet).
Двигатель, «поглощающий межзвёздное вещество», используется у братьев Стругацких в рассказе «Частные предположения» на фотонном звездолёте «Муромец».
В романе «Фиаско» писателя Станислава Лема звездолет «Эвридика» использует двигатели, работающие на основе реакции термоядерного синтеза, топливом для которых служит водород космического пространства.
www.gpedia.com
Переименовать в Двигатель Бассарда
Межзвёздный прямоточный двигатель Бассарда (поле коллектора показано видимым) в представлении художникаМежзвёздный прямоточный двигатель Бассарда (англ. Bussard ramjet) — концепция ракетного двигателя для межзвёздных полётов, предложенная в 1960 году физиком Робертом Бассардом (Robert W. Bussard (англ.)).
Основой концепции является захват вещества межзвёздной среды (водорода и пыли) идущим на высокой скорости космическим кораблём и использование этого вещества в качестве рабочего тела (либо непосредственно топлива) в термоядерном ракетном двигателе корабля. Захват вещества межзвёздной среды осуществляется мощным электромагнитным полем, в приближении имеющим конфигурацию широкой воронки, направленной вперёд по вектору скорости корабля. Предположительно, диаметр собирающего поля должен составлять тысячи или десятки тысяч километров. Существенной особенностью такой схемы будет являться практически полная топливная автономность корабля: будучи разогнанным имеющимся на борту запасом топлива до некоторой скорости, обеспечивающей достаточный приток межзвёздного водорода во входной коллектор, то есть после входа в «прямоточный режим», корабль сможет двигаться далее с постоянным ускорением, не выключая привода и не переходя на инерционный полёт.
Предложены два основных варианта использования захваченного межзвёздного водорода:
Межзвёздная среда содержит вещество в количестве порядка 10−21 кг/м³, в основной массе — ионизированный и неионизированный водород, небольшое количество гелия и практически никаких других газов в заметном количестве. Соответственно, через коллектор корабля должен пропускаться объём пространства порядка 1018 м³ для сбора одного грамма водорода. Подобный объём требует огромного диаметра электромагнитного (электростатического ионного) собирающего коллектора и чрезвычайно большой напряжённости поля.
Пример расчета сбора межзвездного газа для случая радиуса поля захвата 50 км. Тогда R=50 000 м Площадь захвата=7 853 981 633,97 м2 Скорость (берем максимальную из раздела Ограничение на скорость) = 35 700 000 м/с Время = 1 сек Просеянный объем = 280 387 144 332 889 000 м3 Плотность среды = 1E-21 кг/м3 Полученная масса = 0,000 280 387 144 332 890 кгТ.е. идеально работающее поле радиусом 50 км при максимальной скорости будет захватывать в среднем 0,28 грамма межзвездного газа за секунду (релятивистским замедлением времени пренебрегаем). |
Исходя из состава межзвёздной среды (в основном водород), именно термоядерный синтез на водородной реакции был предложен Бассардом в первоначальной концепции двигателя. К сожалению, протон-протонный цикл непригоден для использования в силу исключительной трудности его осуществления в термоядерном реакторе. Соответственно, более пригодны термоядерные реакции других типов, в частности 2H + 2H → 3He + 1n + 18 МэВ, или 2H + 3H → 4He + 1n + 20 МэВ, но требуемые для них изотопы чрезвычайно редки в составе межзвёздной среды.
Выход, в принципе, был предложен в использовании термоядерных реакций CNO-цикла, где углерод является катализатором термоядерного горения водорода. Тем не менее в любом т. н. каталитическом цикле ядерного синтеза реакции протекают крайне медленно, и плотность мощности ничтожна (для сравнения: в центре Солнца энерговыделение составляет всего лишь порядка 1 ватта на кубический сантиметр). За время пролёта вещества даже при самых оптимистичных предположениях может прогореть лишь ничтожная его доля.
В 1974 году Алан Бонд предложил концепцию RAIR (ram-augmented interstellar rocket), разрешающую проблему трудноосуществимого термоядерного синтеза на протон-протонном цикле. В этой схеме входящий в коллектор протонный поток тормозится до энергии порядка 1 МэВ и бомбардирует мишень из изотопов литий-6 или бор-11. Реакция литий-протон или бор-протон осуществляется проще протон-протонной и даёт значительный выход энергии, которая увеличивает скорость истечения рабочего тела из сопла двигателя. Такая термоядерная реакция может проходить и с использованием малых количеств антиматерии в качестве катализатора.
В концепции двигателя Бассарда, в то же время, существуют значительные теоретические проблемы из-за фактора сопротивления межзвёздной среды — передача импульса от встречного потока вещества на коллектор и далее корабль, что требует превышения тяги двигателя над показателем сопротивления.
В настоящее время работа над концепцией производится в рамках теоретических изысканий.
Ключевая проблема «прямоточника» также в том, что «магнитная воронка» отнюдь не будет выполнять функцию массозаборника так, как предполагалось автором концепции. Скорее, она будет вести себя как «тормоз» (см. «Магнитная пробка», «Пробкотрон», «Адиабатический инвариант»).
Ещё одним недостатком термоядерного прямоточного двигателя (даже на наиболее эффективном протон-протонном цикле) является ограниченность скорости, которой может достичь оснащённый им корабль (не более 0,119c = 35,7 тыс. км/с). Это связано с тем, что при улавливании каждого атома водорода (который можно в первом приближении считать неподвижным относительно звёзд) корабль теряет определённый импульс, который удастся компенсировать тягой двигателя только если скорость не превышает некоторого предела. Для преодоления этого ограничения необходимо как можно более полное использование кинетической энергии улавливаемых атомов, что представляется достаточно трудной задачей.
Вывод
Допустим, экран уловил 4 атома водорода. При работе термоядерного реактора четыре протона превращаются в одну альфа-частицу, два позитрона и два нейтрино. Для простоты пренебрежём нейтрино (учёт нейтрино потребует точного расчёта всех стадий реакции, а потери на нейтрино составляют около процента), а позитроны проаннигилируем с 2 электронами, оставшимися от атомов водорода после изъятия из них протонов. Ещё 2 электрона пойдут на то, чтобы превратить альфа-частицу в нейтральный атом гелия, который благодаря полученной от реакции энергии будет ускорен в сопле двигателя.
Итоговое уравнение реакции без учёта нейтрино:
4 → 42He + (4mH − mHe)c² (≈27 МэВ)Пусть корабль летит со скоростью v. При улавливании четырёх атомов водорода в системе отсчёта корабля теряется импульс:
P1=4mHv1−v2/c2.{\displaystyle P_{1}={\frac {4m_{\text{H}}v}{\sqrt {1-v^{2}/c^{2}}}}.}Теоретически достижимый импульс, с которым корабль может запустить атом гелия, можно получить из известного релятивистского соотношения между массой, энергией и импульсом:
EHe2/c2−P22=mHe2c2.{\displaystyle E_{\text{He}}^{2}/c^{2}-P_{2}^{2}=m_{\text{He}}^{2}c^{2}.}Энергия атома гелия (включая энергию покоя) не может превышать сумму масс четырёх атомов водорода, умноженную на квадрат скорости света:
maxEHe=4mHc2.{\displaystyle \max E_{\text{He}}=4m_{\text{H}}c^{2}.}Отсюда квадрат максимально достижимого импульса атома гелия:
P22=(4mH)2c2−mHe2c2.{\displaystyle P_{2}^{2}=(4m_{\text{H}})^{2}c^{2}-m_{\text{He}}^{2}c^{2}.}Если корабль в результате улавливания и использования четырёх атомов водорода не ускорился и не замедлился, значит, импульс, потерянный при их улавливании, равен импульсу, приобретённому в результате выброса атома гелия из сопла:
P1=P2,{\displaystyle P_{1}=P_{2},} P12=P22,{\displaystyle P_{1}^{2}=P_{2}^{2},} (4mH)2v21−v2/c2=(4mH)2c2−mHe2c2,{\displaystyle {\frac {(4m_{\text{H}})^{2}v^{2}}{1-v^{2}/c^{2}}}=(4m_{\text{H}})^{2}c^{2}-m_{\text{He}}^{2}c^{2},} v2/c21−v2/c2=1−(mHe4mH)2,{\displaystyle {\frac {v^{2}/c^{2}}{1-v^{2}/c^{2}}}=1-\left({\frac {m_{\text{He}}}{4m_{\text{H}}}}\right)^{2},} vc=1−(mHe4mH)22−(mHe4mH)2≈0,119.{\displaystyle {\frac {v}{c}}={\sqrt {\frac {1-\left({\frac {m_{\text{He}}}{4m_{\text{H}}}}\right)^{2}}{2-\left({\frac {m_{\text{He}}}{4m_{\text{H}}}}\right)^{2}}}}\approx 0{,}119.}Проблема торможения бассардовского корабля встречным потоком вещества привела к появлению концепции магнитного паруса (англ.) (или парашюта). В этом случае электромагнитное поле коллектора поглощает энергию встречного звёздного ветра (либо межзвёздной среды) и передаёт тормозящий импульс на корабль. Таким образом, уменьшаются требования к расходу топлива на торможение в системе звезды — цели межзвёздного полёта. Концепция предложена Робертом Зубриным (Robert Zubrin) в конце 1980-х годов.[1][2]
Соответственно, магнитный парус может быть использован и для разгона корабля в направлении от звезды, на потоке звёздного корпускулярного ветра.
Развитие этой идеи — ускорение (торможение) корабля с магнитным парусом с помощью мощного потока частиц, разогнанных стационарным планетарным (орбитальным) ускорителем. В данной схеме уменьшаются требования к запасу бортового топлива, используемого для разгона корабля.
Также предложена концепция «подготовленной трассы», в которой на траекторию будущего полёта прямоточного корабля заблаговременно (посредством стационарных установок) выводится поток мелкодисперсного термоядерного горючего.
Эта концепция нашла широкое распространение в фантастической литературе, в частности, на ней построен сюжет романа Пола Андерсона «Тау Ноль».
Принцип двигателя Бассарда используют инопланетяне в повести Тома Лигона «Эльдорадо». Их снаряд, «Всасывающий водород преследователь света», направляется точно на Солнце чтобы ударить в него и вызвать взрыв, аналогичный взрыву сверхновой. Обложка журнала «Если», где опубликована «Эльдорадо», демонстрирует один из вариантов дизайна двигателя Бассарда.[3]
Практически все корабли Федерации из вселенной «Звездного пути» используют коллекторы Бассарда для сбора межзвездного газа с целью последующего использования в двигательно-энергетической системе корабля.
Двигатели космических кораблей во вселенной Рейнольдса «Космический Апокалипсис» (в романах они названы прямоточными Конджойнерскими двигателями) используют межзвездный водород в качестве топлива.
Космический корабль «Тезей» в романе Питера Уоттса «Ложная слепота» использует двигатель Бассарда.
Двигатель Бассарда многократно упоминается в серии «Известный космос» Ларри Нивена. В некоторых произведениях используется название «прямоточный двигатель» (ramjet).
Двигатель, «поглощающий межзвёздное вещество», используется у братьев Стругацких в рассказе «Частные предположения» на фотонном звездолёте «Муромец».
В романе «Фиаско» писателя Станислава Лема звездолет «Эвридика» использует двигатели, работающие на основе реакции термоядерного синтеза, топливом для которых служит водород космического пространства.
encyclopaedia.bid