ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Тепловой расчет двигателя МеМЗ-245 (стр. 1 из 4). Мемз двигатели


Модернизация автомобильного двигателя МеМЗ 968ГЭ

МАЛАЯ АКАДЕМИЯ НАУК  КРЫМА

«ИСКАТЕЛЬ»

 

Инженерно – техническая секция

 

 

 

 

 

 

 

Модернизация автомобильного двигателя

МеМЗ 968ГЭ для увеличения мощности, улучшения

тяговых характеристик и повышения экономичности.

 

 

 

 

 

 

 

 

Действительный член МАН Крыма «Искатель»

Ученик 9 класса

Форосской общеобразовательной школы I – III ступени г. Ялты

КОРАБЛЕВ Артем

 

 

 

 

 

 

 

 

Научный руководитель – Кораблев А. Б.

 

 

Введение.

 

         В течении многих десятилетий отечественным производителем, Запорожским автомобильным заводом, выпускался в различных модификациях автомобиль «Запорожец». За долгое время накопился большой парк этих автомобилей и особенно модели ЗАЗ 968 и его модификаций. Машина показала себя неприхотливой, обладающей высокой проходимостью и неплохой нагрузочной способностью. Много автомобилей ЗАЗ являются незаменимыми помощниками в условиях села и города, сочетая в себе низкую стоимость и простоту в обслуживании.

         Однако при наличии многих положительных качеств автомобиль ЗАЗ 968 имеет ряд конструктивных особенностей, которые можно назвать его недостатками. Одним из самых важных недостатков является малая мощность силового агрегата – двигателя МеМЗ 968ГЭ. Малая мощность сочетается с высоким расходом топлива, реально достигающим 10 литров на 100 километров.

         В нашей семье до недавнего времени был автомобиль ЗАЗ 968М и во время проведения ремонта я решил внимательно изучить двигатель и попытаться внести такие изменения в его конструкцию, которые бы позволили увеличить  мощность с одновременным снижением расхода топлива.

 

Недостатки двигателя МеМЗ 968ГЭ и

возможные пути их устранения.

 

         Любые попытки внести изменения в топливную систему с целью экономии топлива приводили к положительному результату только вместе со снижением динамических характеристик автомобиля. Однако в наших условиях горной местности уменьшение мощности в целях экономии топлива приводит к другому затруднению – перегреву на затяжных подъемах. Воздушное охлаждение не позволяет  эффективно охлаждать цилиндры двигателя при работе с очень высокими нагрузками. Требовалось вносить изменения в конструкцию двигателя, что стало возможным при его капитальном ремонте.

         Внимательно изучив принципы работы двигателей внутреннего сгорания, я понял, что мощность двигателя можно повысить несколькими путями:

Первый вариант мной не рассматривался, так так он приводит к еще большему расходу топлива.

         Второй вариант оказался трудно выполнимым, так как требует изменения конструкции коленчатого вала и удлинения шатунов. Такую работу  возможно сделать только в заводских условиях и потому я не разрабатывал этот вариант.

         Разрабатывая третий   вариант, я пришел к выводу, что увеличить давление сжатия рабочей смеси в цилиндрах можно двумя способами – уменьшить при сжатии утечку смеси, а при рабочем ходе уменьшить прорыв выхлопных газов в картер двигателя  между корпусом цилиндра и корпусом поршня (первый способ), или принудительно нагнетать воздух в цилиндры для создания давления в них еще на стадии впуска (второй способ).

Второй способ достаточно труден в реализации и требует тщательной разработки. В настоящее время я веду разработку конструкции нагнетателя воздуха с ременным приводом, однако более простым, хотя и менее эффективным, является первый способ. Рассмотрим, что нам даст уплотнение зазора между поршнем и стенками цилиндра при работе четырехтактного карбюраторного двигателя, каким является двигатель МеМЗ968ГЭ.

При проектировании и расчете двигателя внутреннего сгорания величина давления в цилиндре при сжатии рабочей смеси (так называемая компрессия ) имеет важнейшее значение и оказывает прямое влияние на эффективную мощность двигателя.

Начнем с цикла впуска. Формула расчета давления в конце цикла впуска имеет вид:

Ра = Р0 - D Ра

где  Р0– плотность заряда (давление в цилиндре) на впуске,  D Ра  - потери воздуха из – за сопротивления впускных каналов и неплотности зазора между поршнем и цилиндром. Здесь мы видим, что уплотнение зазора уменьшает потери при впуске за счет увеличения разрежения в цилиндре при впуске.

         Соответственно мы получаем давление в конце сжатия в соответствии с формулой:

Рс = Ра×en ,

где  Ра- давление в конце цикла впуска,  e - степень сжатия ( в нашем случае величина неизменная, зависящая от соотношения длины хода поршня и величины рабочей камеры), n– коэффициент политропности процесса ( в нашем случае не изменяющий значения ).

Из него мы можем получить среднее эффективное давление рабочего цикла:

pe= pi - pm

где pi– индикаторное давление рабочего цикла двигателя, прямо пропорциональное давлению при сжатии ( pi= Pc/ e- 1 ) , pm– давление механических потерь  на преодоление сопротивления кривошипно – шатунного механизма, сил инерции, возникающих при работе двигателя и сопротивления внешних устройств (генератора, топливного насоса и т.д.), а так же потери при прорыве газов через неплотности газораспределительных клапанов и неплотность между стенками цилиндра и поршнем.

         Эффективная мощность двигателя рассчитывается по формуле:

Nе = ре Vл n / 30t,

Из нее мы видим, что мощность прямо пропорциональна среднему эффективному давлению рабочего цикла.

         При дополнительном уплотнении зазора между стенками цилиндра и поршнем мы получаем увеличение заряда при впуске, соответственно получая более высокое давление при сжатии. Это дает нам более высокое среднее эффективное давление рабочего цикла, что приводит к увеличению мощности двигателя.

         В автомобильном двигателе роль уплотнителя между стенками цилиндра и поршнем выполняют компрессионные поршневые кольца. В двигателе МеМЗ 968ГЭ их два – верхнее и нижнее. Поршневая группа обеспечивает такую степень сжатия, которая соответствует давлению компрессии в цилиндрах 9 кг./ см2 при объеме цилиндров 1198 см3 . Автомобильные двигатели  ВАЗ, АЗЛК, имеющие близкие по значению   объемы  цилиндров (ВАЗ 2101 – 1200 см3), развивают давление компрессии в цилиндрах 12 кг./см2. Такая существенная разница получается за счет больших тепловых зазоров между поршнем и цилиндром в двигателе МеМЗ 968ГЭ из – за малоэффективного воздушного охлаждения.

         При рассмотрении поршневой группы, снятой для ремонта, я обратил внимание на большое расстояние между донышком цилиндра и кольцевой канавкой  для установки верхнего поршневого кольца ( рис. 1). Я предполагаю,

что  конструкторы двигателя увеличили это расстояние по
сравнению с поршнями других двигателей с целью увеличения запаса прочности поршня при работе на низкооктановом бензине. При работе на таком топливе (А – 76) и небольшой мощности двигателя возникает опасность детонации, которая может разрушить перегородку между донышком  поршня и канавкой поршневого кольца. Если использовать топлива с более высоким октановым числом (А – 80, АИ – 90), которых не было на момент разработки двигателя и они не могли быть учтены конструкторами, то мы можем исключить возможность возникновения детонации и использовать дополнительный запас прочности поршня.

 

        

Предложения по модернизации двигателя МеМЗ 968ГЭ.

 

 

         Для улучшения характеристик двигателя, повышения его мощности и уменьшения потребления топлива я предлагаю установить дополнительное компрессионное поршневое кольцо на поршне двигателя. Кольцо предлагаю разместить в кольцевой канавке, проточенной в поршне на расстоянии 3,95 мм. от донышка, шириной 1,8 мм.  и глубиной 3,3 мм ( рис. 2 ). Ширина проточенной кольцевой канавки соответствует ширине канавки для установки верхнего компрессионного поршневого кольца. При этом толщина перегородки между

 

 

 

 

 

 

           
   

МОДЕРНИЗИРОВАННЫЙ ПОРШЕНЬ

АВТОМОБИЛЬНОГО ДВИГАТЕЛЯ

МеМЗ968ГЭ

 
  Подпись: 3
 
   
 

 

 

донышком поршня и канавкой составит 3 мм., что соответствует толщине перегородок между кольцами.

         Практическая установка дополнительного компрессионного поршневого кольца на двигателе МеМЗ 968ГЭ автомобиля ЗАЗ 968М позволила определить, что давление компрессии в цилиндрах увеличилось до 11 кг./см2 , мощность двигателя увеличилась с 40 л. с. до 45 л. с.  Улучшились тяговые и динамические характеристики – время набора скорости до 100 км./ч. уменьшилось на 6 секунд или на 17% ( см. приложение № 1). Расход топлива уменьшился с 8,5 ( по паспорту )  до 7,74 литров на 100 км. или на 9% за счет более полного сгорания смеси ( см. приложение № 2).

         Однако при установке дополнительного кольца мы увеличиваем площадь трущихся поверхностей, что увеличивает нагрев цилиндров и поршней. Так же вызывает нагрев и более высокое давление смеси в цилиндрах. При нагреве двигателя МеМЗ968ГЭ до температуры 1050С начинает теряться мощность и возникает необходимость более эффективного охлаждения. Проблему снятия теплоизбытков я предлагаю решить следующим способом - можно установить второй вентилятор на вал генератора. Из стального листа толщиной 1 мм надо вырезать круг диаметром 190 мм с отверстием в центре диаметром 16 мм. Разделив круг на 16 секторов, нужно сделать надрезы по радиусам на глубину 50 мм. Получившиеся лопасти следует изогнуть так же, как у основного вентилятора. С вала генератора надо отвернуть гайку, снять пружинную шайбу и установить на вал крыльчатку, надежно закрепив ее теми же шайбами и гайкой ( см. рис. 3 ). Дополнительный вентилятор увеличит количество подаваемого для охлаждения воздуха и позволить сделать более эффективным охлаждение. Рекомендую применять в модернизированном двигателе гильзы цилиндров с аллюминиевым оребрением, имеющем более высокую теплоотдачу, чем гильзы с чугунным оребрением.

         Дополнительно рекомендую использование анамегатора масла и модификатора топлива киевской фирмы «Адиос». Выпускаемый этой фирмой анамегатор масла «Gold Ozerol МП – 8» модифицирует моторное масло так, что в двигателе вместо пар трения за счет поверхностно – активной пленки образуются

 

       
 

ДОПОЛНИТЕЛЬНЫЙ ВЕНТИЛЯТОР

СИСТЕМЫ ОХЛАЖДЕНИЯ

АВТОМОБИЛЬНОГО ДВИГАТЕЛЯ МеМЗ968ГЭ

 
   
 

 

 

пары качения, что значительно уменьшает трение и нагрев двигателя. При этом значительно увеличевается срок службы моторного масла. Уменьшение трения в кривошипно – шатунном механизме и механизме газораспределения позволит снизить давление механических потерь и увеличить мощность двигателя. Использование модификатора топлива «Adizol» так же позволяет получить поверхностно – активную пленку на стенках цилиндров, что уменьшает трение поршневых колец и нагрев. Практическое применение этих двух веществ на двигателе показало экономическую выгодность - при стоимости анамегатора масла 16 грн. 50 коп. срок службы масла увеличивается при первой заливке с 7000 км. до 15000 км., а при второй заливке – с 7000 км. до 30000 км., при стоимости модификатора топлива 4 копейки на литр топлива получается реальная экономия до 9% или около 11 копеек на литр топлива. Так же заметно уменьшается износ и нагрев компонентов двигателя. 

Установка дополнительного кольца производилась на трех двигателях. Двигатель автомобиля ЗАЗ 968М выпуска 1985 года, эксплуатировавшийся в условиях Ялты с дополнительным поршневым кольцом, на момент выхода из строя шатуна имел пробег 73 000 километров при норме пробега до капитального ремонта 60 000 километров. Представляемый поршень был установлен на этом двигателе и мы можем убедиться в том, что его износ не превышает нормы, а перегородка между донышком поршня и канавкой дополнительного поршневого кольца не имеет следов прогара и разрушения.

Двигатель автомобиля ЗАЗ 968М выпуска 1990 года, эксплуатировавшийся в условиях Фороса с дополнительным поршневым кольцом, на момент выхода из строя направляющей впускного клапана механизма газораспределения  имел пробег 45 000 километров. При обследовании снятой поршневой группы не было обнаружено каких – либо деформаций или неисправностей.

На двигателе автомобиля ЗАЗ968А выпуска 1980 года, эксплуатировавшегося в условиях Ялты с дополнительным поршневым кольцом после 55 000 километров пробега была произведена замена поршневых колец. Каких – либо следов разрушения или повышенного износа поршневой группы обнаружено не было.

 

Выводы.

 

Установка дополнительного компрессионного поршневого кольца на двигателе МеМЗ 968ГЭ автомобиля ЗАЗ 968М позволила получить увеличение мощности двигателя на 12,5 % и уменьшение времени разгона с места до 100 км./час на 17% . Расход топлива при этом уменьшился на 9 %. Улучшились тяговые и разгонные характеристики автомобиля. Практическая эксплуатация модернизированной поршневой группы на двигателях трех автомобилей показала, что модернизация не приводит к снижению надежности шатунно – поршневой группы.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Приложение № 1

Определение тяговых характеристик двигателя МеМЗ968ГЭ.

 

Определение тяговых качеств производилось путем определения максимальной скорости автомобиля с двигателем, на котором была установлена модернизированная поршневая группа. Используемая методика рекомендуется заводом – изготовителем для определения тяговых характеристик двигателя и определения его мощности. Максимальная скорость определялась при движении на высшей передаче на мерном участке длиной 1 километр с хода. Замер производился после регулировки ходовой части, регулировки развала – схождения колес, регулировки токсичности выхлопа, предварительного разогрева двигателя до температуры +850С, сухом дорожном покрытии, температуре воздуха + 200С и отсутствии ветра, в автомобиле находились 2 человека. Время прохождения мерного участка фиксировалось путем включения секундомера при пересечении начальной отметки и отключения при пересечении конечной отметки. Замер производился за два заезда  в обоих направлениях участка, оба замера производились непосредственно один за другим.

Скорость автомобиля определялась по формуле: V = 3600/T( км. /час ), где

Т – время ( в секундах ) прохождения километрового мерного участка.2 За действительное значение максимальной скорости автомобиля было принято среднее арифметическое из величин скоростей, полученных в двух заездах.

 

T1 = 28 c.     V1 = 3600/28 = 128,6 км./час.

T2 = 27,5 c.  V2 = 3600/27,5 = 130,9 км./час.

V = (128,6+130,9)/2 = 129,75 км. /час.

 

Завод – изготовитель для определения мощности двигателя дает следующие контрольные цифры максимальной скорости в зависимости от мощности:

·        Двигатель МеМЗ968Э мощностью 30 л.с.    – 118 км./час.

·        Двигатель МеМЗ968ГЭ мощностью 40 л.с. – 123 км./час.

·        Двигатель  МеМЗ968БЭ мощностью 45 л.с. – 130 км./час.

По результатам замера максимальной скорости можно сделать вывод, что мощность двигателя в результате установки дополнительного компрессионного кольца увеличилась с 40 л. с. до 45 л. с. и прирост мощности составил 12,5%.

            Для полноты оценки тяговых качеств произвели замер времени разгона от нуля до 100 км./час с последовательным переключением передач при тех же условиях, что и замеры максимальной скорости. Автомобиль разгонялся с места на первой передаче энергичным нажатием на педаль акселератора. Трогание с места плавное. Переключение передач производилось  быстро и бесшумно при наивыгоднейших режимах. Замеры производились в двух направлениях участка, непосредственно один за другим.

 

Т1= 30 сек.   Т2 = 28 сек.      Т = (30+28)/2 = 29 сек.

 

Завод – изготовитель дает следующие контрольную цифру времени разгона до

100 км./час:  для автомобиля ЗАЗ968М с двигателем МеМЗ 968ГЭ – 35 сек.

Уменьшение времени разгона составило 6 сек. или на 17%.

 

 

Приложение № 2

Определение контрольного расхода топлива двигателем МеМЗ968ГЭ.

 

 

Эксплуатационный расход бензина является одним из параметров, характеризующих общее техническое состояние двигателя. Величина эксплуатационного расхода бензина в большей степени зависит от дорожных и климатических условий, режима движения (скорость, нагрузка, дальность и частота поездок) и совершенства вождения автомобиля (квалификации водителя). В связи с этим нельзя с достаточной объективностью судить о техническом состоянии автомобиля по эксплуатационному расходу бензина, тем более по нему нельзя судить о техническом состоянии двигателя (так как на расход бензина существенно влияет состояние ходовой части автомобиля). 

            Объективным показателем технического состояния двигателя служит контрольный расход бензина. 

            Замер контрольного расхода заключается в определении расхода бензина (л/100 км) при скорости автомобиля 80 км/ч с технически исправной ходовой частью при соблюдении условий испытания, изложенных в приложении № 1.

            Измерение выполнялся на участке дороги длиной 5 км, с постоянной скоростью, в двух противоположных направлениях движения по 2 раза в каждом направлении. При этом бензин в карбюратор подавался из специальных мерных колб. Замеры производились лишь после того, как полностью установился нормальный тепловой режим двигателя. Завод – изготовитель дает контрольную цифру контрольного расхода бензина для технически исправного автомобиля ЗАЗ968М с двигателем МеМЗ968ГЭ – 8,5 литров/ 100 км.

            Мерным участком служил 5 – километровый отрезок дороги Бахчисарай  - Симферополь с ровным профилем, сухим покрытием.

           

При проведении контрольных замеров были получены следующие результаты:

 

            V1 = 385 гр./5 км.

            V2 = 388 гр./5 км.

            V3 = 385 гр./5 км.

            V4 = 390 гр./5 км.

 

            Средний арифметический контрольный расход на 5 километров после четырех замеров составил:     

 

Vзам = (V1+V2+V3+V4)/4 = (0,385+0,388+0,385+0,390)/4 = 0,387 л. / 5 км.

           

Контрольный расход топлива на 100 километров составил:

 

            Vконтр. = Vзам. * 20 = 0,387 * 20 = 7,74 л./100 км.

 

            Из результатов замера контрольного расхода топлива следует, что после установки дополнительного компрессионного кольца на поршневой группе расход уменьшился на  V пасп. - Vконтр= 8,5 – 7,74 = 0,76 л./100 км. или на 9%.

           

 

Список используемой литературы.

 

1.С. Фучаджи «Автомобиль ЗАЗ 968М, руководство по ремонту и

                            эксплуатации», Запорожье, 1995 г.

2.С. Шейнин «Автомобили «Запорожец», руководство по эксплуатации и

                          ремонту» , Киев,Проминь, 1971 г.

3.«Анамегаторы – ответы почти на все вопросы». Издание фирмы «Adioz»,

      Киев, 2001 г.

4.   Колчин А. И. Демидов В. П. «Расчет автомобильных и тракторных

                           двигателей». Москва, Высшая школа, 1980г.

  1.  Артамонов М.Д., Морин М.М., Скворцов Г.А. «Основы теории и                   конструирования автотракторных двигателей. Конструирование и расчет автомобильных и тракторных  двигателей». Москва, Высшая школа, 1978
  2. «Двигатели внутреннего сгорания. Устройство и работа поршневых и комбинированных двигателей». /Под общ. ред. Орлина А.С., Круглова М.Г.– Москва, Машиностроение, 1990

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Содержание.

 

1.Введение ……………………………………………………………. 2

2.                Недостатки двигателя МеМЗ 968 и возможные
          пути их устранения…………………………………………………..2

3.Предложения по модернизации двигателя МеМЗ 968……………5

4.Выводы ……………………………………………………………...11

5.Приложения

6.Список используемой литературы………………………………...14

 

 

 

        

 

 

 

 

 

 

 

 

 

 

 

znakka4estva.ru

Тепловой расчет двигателя МеМЗ-245

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ

УНИВЕРСИТЕТ

Кафедра двигателей внутреннего сгорания

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к тепловому расчёту по дисциплине:

“Автомобильные двигатели”

Выполнил: ст. гр. А-32

Ващенко Н.В.

Проверил: Талда Г.Б.

Харьков 2010

Содержание

Введение

1. Описание особенностей прототипа ДВС

2. Тепловой расчет двигателя

Заключение

Использованная литература

Приложение

В настоящее время в Украине эксплуатируются автомобили, которые частично физическии техническиустарели. Поэтому целесообразным является при их ремонте осуществлять модернизацию этих двигателей, с целью улучшения их технико-экономических показателей. К таким двигателям относится двигатель МеМЗ-245. Целью данного теплового расчета является модернизация двигателя МеМЗ-245, для улучшения технико-экономических показателей. При модернизации данного двигателя используем параметры, заданные кафедрой ДВС: n=5600мин-1 ; e=10; α=0,88.

На автомобилях, тракторах, дорожных и строительных машинах применяются карбюраторные двигатели, дизели, а также двигатели, работающие на газовом топливе (сжатом и сжиженном газе).

На автомобильномтранспорте,особенно налегковом,преимущественно применяют карбюраторные двигатели. Это объясняется их превосходство перед дизелями по массовым, скоростным и тяговым показателям, меньшему шуму и более низкой стоимости изготовления.

Прототипом модернизируемого двигателя служит карбюраторный, четырехтактный двигатель МеМЗ-245, устанавливаемый на легковом автомобиле ЗАЗ-1102, и имеющий свои характерные особенности.

Таблица 1.1 - Технико-экономические параметры двигателя.

1.1 Блок цилиндров. Отлит из чугуна и составляет одно целое с цилиндрами. Высокая жёсткость блока обеспечивается тем, что плоскость разъёма блока с масляным картером расположена ниже оси коленчатого вала на 53 мм.

Расстояния между осями первого-второго, третьего-четвёртого цилиндров равны 81 мм, а между вторым и третьим 86 мм и между ними по всей высоте цилиндров выполнены протоки для охлаждающей жидкости. В нижней части блока цилиндров выполнены пять опор для вкладышей коренных подшипников коленвала.

1.2 Головка цилиндров. Отлита из алюминиевого сплава. Общая для всех цилиндров. Объем камеры сгорания при поставленных на место клапанах и ввернутой свече зажигания 23,89-25,47 см3 . Разница между объемами камер сгорания одной головки не должна превышать 0,6 см3 .

В головке цилиндров выполнены клиновые камеры сгорания. С левой стороны головки расположены впускные и выпускные каналы, а с правой - резьбовые отверстия для свечей зажигания. Расположение клапанов, а, следовательно, осей их сёдел и втулок однорядное под углом 21о .

В специальную расточку переднего гнезда установлена манжета для уплотнения шейки распредвала.

1.3 Поршни. Отлиты из алюминиевого сплава. Юбка поршня имеет бочкообразную форму. Ось отверстия для поршневого пальца смещена на 1,5 мм в правую сторону (по ходу автомобиля) от средней плоскости поршня. Днища поршней плоские, но в центре под углом 21о имеются два углубления диаметром 36 мм, глубиной 7,8 мм, которые служат для исключения упирания поршней в клапаны.

1.4 Поршневые кольца (компрессионные). Отлиты из чугуна. Наружная цилиндрическая поверхность верхнего компрессионного кольца, прилегающая к цилиндру, покрыта слоем хрома, а нижнего - слоем олова.

На внутренней поверхности нижнего компрессионного кольца имеется выточка. Это кольцо устанавливается на поршень выточкой вверх к днищу поршня. Нарушение этого условия вызывает утечку масла через кольцо в цилиндр, нагарообразование на стенках камеры сгорания и увеличение расхода масла.

1.5 Маслосъемное кольцо состоит из четырех стальных деталей: двух кольцевых дисков, одного осевого расширителя и одного радиального расширителя. Рабочая поверхность кольцевых дисков покрыта твердым хромом.

1.6 Поршневые пальцы. Изготовлены из углеродистой стали, плавающие, с наружным диаметром 20 мм, длиной 61 мм и толщиной стенки 4 мм.

1.7 Шатуны (стальные, кованые). Крышка шатуна обрабатывается в сборе с ним, поэтому при разборке и сборке двигателя нельзя переставлять с одного шатуна на другой. На бобышках под болт на шатуне и крышке выбиты порядковые номера цилиндров, которые при сборке должны быть совмещены. При правильном положении крышки пазы для фиксирующих выступов вкладышей в шатуне и крышке также располагаются с одной стороны. На стержне шатуна выштампован номер детали; на крышке имеется выступ. При сборке номер и выступ должны быть обращены к задней стороне двигателя. Поршневые и кривошипные головки шатунов подбираются по массе.

1.8 Коленчатый вал. Отлит из высокопрочного чугуна, статически и динамически сбалансирован. Осевое перемещение вала ограничено двумя упорными шайбами, расположенными по обе стороны переднего коренного подшипника. Величина осевого зазора составляет 0.075-0.175 мм достигается подбором передней сталебабитовой упорной шайбы соответствующей толщины.

К фланцу ступицы шкива на переднем конце коленчатого вала привернут тремя болтами двухручьевой шкив привода вентилятора, водяного насоса и генератора. Болты крепления шкива к ступице расположены неравномерно, поэтому шкив может устанавливаться только в одном определенном положении. На ободе шкива имеются два паза.

1.9 Маховик. Отлит из серого чугуна и имеет напрессованный стальной зубчатый обод для пуска двигателя стартером.

1.10 Вкладыши. Вкладыши коренных и шатунных подшипников коленчатого вала тонкостенные, взаимозаменяемые, сталеалюминевые. Толщина вкладышей коренных подшипников

мм, шатунных мм.

1.11 Впускные и выпускные клапаны. Располагаются в головке над цилиндрами вертикально, в один ряд, вдоль оси двигателя. Привод клапанов осуществляется от распределительного вала через штанги и коромысла. Клапаны изготовлены из жароупорной стали, диаметр стержня клапана 9 мм. Тарелка впускного клапана имеет диаметр 36 мм, а выпускного 34 мм. Оба клапана имеют угол седла 21°. Высота подъема клапанов 8,5 мм. На верхнем конце клапана имеется канавка для сухариков тарелки клапанной пружины.

Для уменьшения расхода масла через зазор между впускным клапаном и его направляющей втулкой стержень клапана уплотнен маслоотражательным колпачком сальникового типа.

Маслоотражательный колпачок плотно напрессован на выточку направляющей втулки впускного клапана. Своей рабочей кромкой, поджатой пружиной колпачок плотно облегает стержень впускного клапана.

1.12 Распределительный вал. Чугунный, литой, имеет пять опорных шеек. Осевое перемещение распределительного вала ограничено упорным фланцем, находящимся между торцом шейки распределительного вала и ступицей шестерни с зазором 0,1-0,2 мм. Правильность фаз распределения обеспечивается установкой шестерен по меткам: метка "О" на шестерне коленчатого вала должна быть против риски у впадины зуба на текстолитовой шестерне.

1.13 Фазы распределения двигателя. Впускной клапан открывается за 12° до в. м. т. и закрывается через 60° после н. м. т. Выпускной клапан открывается за 54° до н. м. т. и закрывается через 18° после в. м. т.

Указанные фазы действительны при зазоре между коромыслом и клапаном, равном 0.45 мм.

1.14 Система смазки. Комбинированная - под давлением и разбрызгиванием. Она состоит из маслоприемника, масляного насоса, масляных каналов, масляного фильтра, редукционного клапана, масляного картера, стержневого указателя уровня масла, маслоналивного патрубка, крышки маслоналивного патрубка, масляного радиатора, предохранительного клапана и запорного крана.

1.15 Масляный картер. Отлит из магниевого сплава, уплотнение достигается установкой прокладки из материала марки БР-1 толщиной 3 мм.

1.16 Масляный фильтр полнопоточный, с основным бумажным фильтрующим элементом.

1.17 Масляный насос. Насос шестеренчатого типа установлен внутри масляного картера и крепится к блоку цилиндров двумя шпильками. Корпус насоса изготовлен из алюминиевого сплава, крышка насоса из чугуна, ведущая шестерня - стальная, закреплена на валу штифтом, ведомая - из металлокерамики, вращается на оси, закрепленной в корпусе насоса.

Привод масляного насоса осуществляется от носка коленвала, имеющего лыски.

1.18 Масляный радиатор. Соединен с масляной магистралью двигателя резиновым шлангом через запорный кран и предохранительный клапан, которые установлены с левой стороны двигателя.

1.19 Система охлаждения. Жидкостного типа, с принудительной циркуляцией жидкости. Поддержание правильного температурного режима осуществляется при помощи термостата, действующего автоматически, и жалюзи, которое открывает и закрывает водитель.

mirznanii.com

двигатель

двигатель

На Запорожцы 968-ой модели устанавливались двигатели МеМЗ-968Э, МеМЗ-968ГЭ, МеМЗ-968БЭ. Все они карбюраторные, четырёхтактные, имеют 4 цилиндра, расположенных V-образно под углом 90%. рабочий объём цилиндров 1197 см3. Охлаждение двигателя воздушное, от осевого вентилятора, расположенного в развале цилиндров.

Двигатель (продольный разрез) Для всех моторов базовым является МеМЗ-968Э, мощностью 41 л.с. МеМЗ-968ГЭ, мощностью в 45 л.с., отличается от базового установкой новой конструкции двухкамерного карбюратора типа ДААЗ 2101-20, а также новым выпускным патрубком. Двигатель МеМЗ-968БЭ, мощностью 50 л.с., оснащается также дополнительной конструкцией новых головок цилиндров с уменьшенным объемом камер сгорания. Первые два двигателя используют бензин А-76, а 50-сильный МеМЗ-968БЭ АИ-93.

Цилиндры и головки цилиндров имеют оребренную поверхность для увеличения площади охлаждения.

Однокамерный карбюратор обеспечивает высокую приемистость, экономичность, уверенный пуск и равномерную работу двигателя сразу же после пуска. При нормально заряженной аккумуляторной батарее, правильной регулировке системы зажигания и применении зимнего масла двигатель должен без подогрева пускаться от стартера с первой-второй попытки.

Модели МеМЗ-968Э МеМЗ-968ГЭ МеМЗ-968БЭ Тип Четырёхконтактный, карбюраторный, воздушного охлаждения Число и расположение цилиндров 4, V-образно Диаметр цилиндра, мм 76 Рабочий объем цилиндров, л 1,197 Степень сжатия 7,2 7,2 8,4 Максимальная мощность, л.с./об/мин 41/4400 45/4400 50/4500 Крутящий момент, кгс*м 7,8 7,8 8,3 Порядок работы цилиндров 1-3-4-2

Силовой агрегат представляет собой компактную конструкцию и крепится к автомобилю на трёх опорах. Передняя опора представляет собой сварную фигурную поперечину, прикреплённую к картеру сцепления. Поперечина с помощью двух кронштейнов и амортизирующих резиновых подушек крепится к стенке моторного отсека. Эти опоры несут основную статическую и динамическую нагрузки, передаваемые им силовым агрегатом.

Силовой агрегат и детали крепления в моторном отсеке Поперечина задней опоры размещена под кузовом, и на ней с помощью кронштейна с амортизирующими подушками силовой агрегат крепится за заднюю крышку коробки передач. Задняя опора силового агрегата воспринимает незначительную нагрузку, но при разгоне и торможении автомобиля фиксирует силовой агрегат в продольном направлении.

Для уменьшения шума от угловых и продольных перемещений силового агрегата в салоне автомобиля опоры конструктивно выполнены так, что исключается возможность контакта их с металлическими деталями кузова.

Кривошипно-шатунный механизм В кривошипно-шатунный механизм входят: картер двигателя, цилиндры, поршни с пальцами, поршневые кольца, шатуны, коленчатый вал и головки цилиндров.

Картер двигателя туннельного типа, отлит из магниевого сплава МЛ-5, является основной корпусной деталью двигателя. Сплошные боковые стенки вместе с передней, задней и внутренней поперечными перегородками придают картеру необходимую жесткость.

Корпусные детали двигателя

В задней стенке картера имеется расточка для установки привода прерывателя-распределителя зажигания и масляного насоса, которые приводятся от шестерни, выполненной на распределительном валу двигателя (передаточное число 1:1). С левой стороны картера находятся два продольных канала: для отвода масла от масляного насоса к центробежному маслоочистителю и для подвода масла к подшипникам коленчатого вала.

В верхней части картера расточены четыре отверстия, расположенные попарно под углом 90%, в которые устанавливаются цилиндры. Цилиндры и головки цилиндров крепятся шпильками, ввернутыми в картер.

Средняя опора коленчатого вала - разъемная - из двух половин, крепится к картеру коленчатого вала двумя вертикально расположенными болтами.

Передний и задний коренные подшипники коленчатого вала неразъемные. Задний запрессован непосредственно в стенку картера и фиксируется стопором, а передний - в переднюю опору и фиксируется штифтом. Коренные подшипники коленчатого вала изготовлены из специального алюминиевого сплава. Выше расточек под коренные подшипники в средней, передней и задней стенках картера расточены опоры под распределительный вал.

В восьми расточенных приливах картера установлены толкатели.

Цилиндры с оребреной наружной поверхностью отлиты из чугуна, взаимозаменяемые. Диаметр цилиндра 76 +0,02-0,01мм.

Для обеспечения монтажного зазора между поршнями и цилиндром в пределах 0,05-0,07 мм цилиндры по диаметру сортируются на три размерные группы.

Размерные группы цилиндров различаются по цветной маркировке, нанесенной на верхнем ребре.

Размерные группы цилиндров и поршней Группа Цветовой индекс Диаметр, мм Цилиндра Поршня А Красный 75,99-76,00 75,93-75,94 Б Желтый 76,00-76,01 75,94-75,95 В Зелёный 76,01-76,02 75,95-75,96

При увеличении диаметра цилиндров (износ) от номинального размера более чем на 0,08 мм их необходимо обработать под ремонтный размер поршней (в запасные части поступают поршни одного ремонтного размера - увеличенные на 0,2 мм).

Цилиндры на двигателе установлены так, что плоские длинные ребра первого и третьего обращены в сторону крышки распределительных шестерен, а второго и четвертого - в сторону маховика.

Детали шатунно-кривошипного механизма Поршни изготовлены из жаропрочного алюминиевого сплава, луженые, имеют плоское днище.

На головке поршня проточены три канавки под поршневые кольца: два верхние - под компрессионные, нижняя - для стального малосъемного кольца.

Юбка поршня имеет форму эллипсного конуса, большое основание которого расположено у нижнего края юбки, а наибольшая ось эллипса лежит в плоскости, перпендикулярной к оси поршневого пальца.

Для обеспечения монтажного зазора между поршнем и цилиндром в пределах 0,05-0,07 мм поршни подбираются по цилиндрам согласно их размерных групп.

Ремонтные размеры цилиндров и поршня Группа Диаметр юбки поршня (ремонтного размера), мм Диаметр цилиндров после ремонта, мм Зазор, мм А 76,13-76,14 76,19-76,20 0,05-0,07 Б 76,14-76,15 76,20-76,21 0,05-0,07 В 76,15-76,16 76,21-76,22 0,05-0,07

Литер группы, определяющий номинальный размер ремонтного увеличения, наносится на наружной поверхности днища поршня. На днище поршня наносится также стрелка для правильного расположения смещения оси поршневого пальца при монтаже. Стрелка должна быть обращена в сторону шкива вентилятора.

По диаметру отверстия под палец поршни сортируются на четыре размерные группы, обозначенные краской на бобышке поршня.

Размеры пальцев поршней и отверстий под них. Группа Цветовой индекс Диаметр под палец поршня, мм Наружный диаметр поршневого пальца, мм 1 Красный 21,9875-21,9900 21,9900-21,9925 2 Желтый 21,9900-21,9925 21,9925-21,9950 3 Зеленый 21,9925-21,9950 21,9950-21,9975 4 Белый 21,9950-21,9975 21,9975-22,0000

Поршневые пальцы - стальные, плавающие, заклеенные и полированные. Диаметр пальца 22 мм, длина - 65,6 мм.

От осевого перемещения пальцы фиксируются пружинными стопорными кольцами.

Пальцы изготовлены с высокой точностью и сортируются на четыре группы по наружному диаметру.

Обозначение размерной группы наносится на внутренней поверхности, и шатун комплектуют из деталей только одной размерной группы. Этим обеспечивается натяг между пальцем и поршнем в пределах от нуля до 0,005 мм и зазор между пальцем и шатуном 0,002-0,007 мм (при температуре 20°C).

Во избежание задиров на сопрягаемых поверхностях сборка пальца с поршнем должна производится только при нагреве поршня до температуры 50-75°C.

Поршневые кольца - по три кольца на каждом поршне, два компрессионных из специального чугуна. Верхнее - хромированное с тупыми кромками, нижнее - фосфатированное с острыми кромками. На его наружной поверхности выполнена прямоугольная фаска. При постановке на поршень кольцо устанавливается фаской вниз.

Маслосъемное кольцо стальное, состоящее из четырех элементов, двух стальных дисков, осевого и радиального расширителей.

Монтажный зазор в замке колец, сжатых в цилиндре, должен быть 0,25-0,55 мм для компрессионных и 0,9-1,5 мм для дисков маслосъемных колец.

Шатуны - стальные, кованые, двутаврового сечения. В верхнюю головку шатуна запрессована бронзовая втулка. По размеру диаметра втулки шатун маркируется у головки цветовым индексом.

Нижняя головка шатуна разъемная, с тонкостенными взаимозаменяемыми вкладышами. Крышка нижней головки шатуна не взаимозаменяема. При сборке крышки со стержнем шатуна цифры на их приливах у разъема нижней головки (указывающие номер цилиндра) должны располагаться с одной стороны. Гайки шатунных болтов затягиваются моментом 5,0-5,6 кгс*м и стопорятся.

Стопорение производится стопорными шайбами с поворотом их на 1,5-2 грани после соприкосновения с основными.

На стержне шатуна нанесен номер детали. При установке на двигатель шатун должен быть обращен номером в сторону вентилятора. Разница в массе шатунов, установленных на двигатель, не должна превышать 12 г.

Коленчатый вал и его опоры Коленчатый вал - трехопорный, литой, из высокопрочного чугуна. Диаметр коренных шеек 55-0,02 мм, шатунных 50-0,0100,025, радиус кривошипа 33 мм. Коленчатый вал сбалансирован вместе с маховиком, механизмом сцепления и корпусом центрифуги. Допустимый дисбаланс не должен превышать 15 кг*м.

При динамической балансировке на шатунные шейки устанавливаются разъемные, круглого сечения, статически отбалансированные противовесы массой+-1 г каждый.

После балансировки на маховике и кожухе сцепления наносятся метки их взаимного расположения. При сборке метки необходимо совмещать.

Разъемный подшипник средней коренной шейки вместе со средней опорой монтируется на коленвал до постановки в картер. Моменты затяжки болтов средней опоры 2-2,5 кгс*м, болтов крепления опоры к картеру - 1,6-2 кгс*м.

Передняя и задняя шейки коленчатого вала уплотнены маслоотражателями и резиновыми самоподжимными сальниками. Передний и задний сальники не взаимозаменяемы. Задний сальник на рабочей кромке имеет маслосгонную резьбу (левую), на сальнике имеется стрелка, указывающая направление вращения вала.

На заднем торце коленчатого вала на четырех штифтах, один из которых смещен, установлен маховик, крепящийся к валу специальным болтом с контрящей шайбой. Болт имеет расточку, в которой установлен подшипник ведущего вала коробки передач. Болт маховика затягивается динамометрическим ключом с моментом 28-32 кгс*м.

Осевой разбег коленчатого вала (0,06-0,27 мм) ограничен буртом подшипника передней опоры с одной стороны и упорной шайбой коленчатого вала с другой.

Головка цилиндров - имеет развитые ребра охлаждения, отливается из алюминиевого сплава, взаимозаменяема, общая на два цилиндра. В головку запрессованы металлокерамические втулки клапанов и седла клапанов, выполненные из специального чугуна.

Перед установкой направляющих и седел клапанов головка должна быть нагрета до 190-210oC. В головку запрессованы также кожухи штанг и маслозаливная трубка. Головка имеет два разделительных впускных канала, по одному на каждый цилиндр, и два выпускных канала, расположенных со стороны свечей зажигания. в расточки выпускных каналов запрессованы патрубки с плоскими фланцами для крепления выпускных труб. Затяжка гаек крепления головки цилиндров производится только на холодном двигателе в два приема: предварительным моментом 1,6-2 кгс*м и окончательным 4,0-5,0 кгс*м.

Гайки необходимо затягивать и отвертывать только торцовым ключом с наружным диаметром головки не более 23 мм.

Головки цилиндров двигателей МеМЗ-968Э и МеМЗ-968ГЭ от головок цилиндров двигателя МеМЗ-968БЭ отличаются объемом камеры сгорания.

На двигателях МеМЗ-968Э и МеМЗ-968ГЭ объем камеры сгорания 41,2-43,7 см3, а на двигателе МеМЗ-968БЭ - 33,25-35,75 см3.

Для их отличия в верхней части головки цилиндров отлит номер детали, 968-1003015Б - для двигателей МеМЗ-968Э и МеМЗ-968ГЭ и 968А-1003015-Б - для двигателя МеМЗ-968БЭ.

Газораспределительный механизм Газораспределительный механизм верхнеклапанный, состоит из шестерен, распределительного вала и балансирного механизма, толкателей и штанг, коромысел и клапанов.

Газораспределительный и балансирный механизмы

Распределительный вал - трехопорный, на переднем конце вала на шпонке устанавливается текстолитовая шестерня привода всего механизма. Фиксируется шестерня специальной гайкой с торцевым шлицем, являющаяся одновременно эксцентриковым кулачком привода бензинового насоса. На заднем конце вала, на продолжении третей опоры шейки, выполнена винтовая шестерня для привода распределителя зажигания и масляного насоса.

С обеих сторон, во внутрь распределительного вала, запрессованы втулки для балансирного вала и противовеса. Опорами распределительного вала являются отверстия, обработанные под размер вала в теле картера двигателя.

Балансирный механизм - (шестерни, вал и противовес) приводится во вращение парой косозубых шестерен. Для правильной установки фаз газораспределения и балансирного механизма на шестернях выбиты метки "О", которые при сборке должны быть совмещены.

Толкатели - плунжерного типа, стальные, с наплавленными торцами. Толкатели выпускных клапанов первого и третьего цилиндров (первая пара со стороны вентилятора) имеют четыре отверстия на цилиндрической поверхности: одно - вверху для выема толкателя, второе - в проточке для подвода масла через штанги в головку цилиндров к коромыслам и два - внизу для слива масла, стекающего по кожухам штанг толкателей из головки.

Вставка толкателей имеет центральное и боковое сверления. все остальные толкатели не имеют вставок и проточек по наружному диаметру.

Детали газораспределительного механизма Штанги толкателей - дюралюминиевые трубки с напрессованными стальными наконечниками. В наконечниках просверлены отверстия для прохода смазки.

Штанги толкателей выпускных клапанов I и III цилиндров короче и имеют длину 208,9-210,2 мм.

Коромысла клапанов - стальные, литые, с регулировочным винтом и контргайкой. Различают правое и левое коромысла.

Валик коромысел клапанов - стальной, полый, с проточками по наружному диаметру под коромыслами клапанов и отверстиями в них для подвода и слива масла.

Клапаны - подвесные, расположены в головке цилиндров. Диаметр впускного клапана - 34 мм, а выпускного - 32 мм.

Рабочая фаска выпускных клапанов имеет специальную наплавку. Угол наклона рабочей фаски клапанов - 45o.

На стержни выпускных клапанов сверху надеты наконечники высокой твердости, так как выпускные клапаны изготовлены из некалящейся жаропрочной стали. Каждый клапан имеет по две пружины - малую и большую.

Проверка и регулировка зазоров а механизме привода клапанов производится на холодном двигателе.

При регулировке ни в коем случае не следует уменьшать зазоры против нормы. Уменьшение зазоров вызывает неплотную посадку клапанов, падение мощности двигателя и прогар клапанов.

Система смазки Система смазки - комбинированная. Под давлением смазываются коренные и шатунные подшипники, подшипники распределительного и балансирного валов, толкатели и валики коромысел; остальные детали - разбрызгиванием. система смазки включает в себя масляный картер, приемник масляного насоса, масляный насос, центробежный маслоочиститель, масляный радиатор, систему проводящих и отводящих каналов, указатель уровня масла и маслозаливную горловину.

Масляный насос шестеренчатого типа смонтирован в отдельном корпусе из магниевого сплава, который крепится во внутренней полости картера коленчатого вала двумя шпильками. Редукционный клапан шариковый, выполненный в корпусе масляного насоса, срабатывает при давлении в масляной системе в пределах 5,5-7,5 кгс/см2; в эксплуатации не регулируется. От масляного насоса масло подается в переднюю опору и через передний коренной подшипник и полость вдоль переднего конца коленчатого вала - в центробежный маслоочиститель. Очищенное масло по внутренним полостям болта центробежного маслоочистителя и коленчатого вала поступает на смазку трущихся поверхностей и в масляный радиатор.

Центробежный маслоочиститель является фильтром тонкой очистки масла. До него масло очищается только сеткой приемника масла. В процессе работы двигателя за счет центробежных сил от масла отделяются твердые частицы и оседают на стенках корпуса и крышки. Чугунный корпус установлен на носке коленчатого вала, фиксируется на шпонке и крепится вместе с маслоотражателем специальным болтом, момент затяжки 10-12,5 кгс*м.

Крышка изготовлена из алюминиевого сплава, одновременно она используется как шкив привода вентилятора. Крепится крышка к корпусу шестью болтами через паронитовую прокладку. Для предотвращения неправильной установки меток ВМТ и МЗ, нанесенных на крышке, относительно корпуса одно из шести отверстий (обозначено меткой) смещено.

В крышку вворачивается храповик для проворачивания коленчатого вала вручную.

Схема смазки двигателя Маслоприемник состоит из колпака с сеткой и маслоподводящей трубкой с фланцем. К масляному насосу маслоприемник крепится болтами. Уплотнение достигается резиновым кольцом.

Масляный радиатор включен в систему смазки параллельно через калиброванное отверстие в штуцере-жиклере. Радиатор состоит из секций и завихрителей, омываемых воздушным потоком. Крепится радиатор на картере в развале цилиндров на трех шпильках через проставки и уплотняется торцами двух резиновых колец, одетых на трубки.

Радиатор представляет собой спаянные медью в защитной среде секции, штампованные из тонкой листовой стали, в которых установлены, для улучшения отвода тепла, специально выполненные завихрители, а между секциями установлены гофры.

Проставка радиатора - штампованная, выполнена из листовой стали и является основной несущей деталью. К ней припаяны ограничительные тарелки и трубки, на которые одеваются уплотнительные резиновые кольца.

При каждом снятии кожуха наружную часть радиатора необходимо продувать сжатым воздухом.

Вентиляция картера двигателя МеМЗ-968Э закрытая, картерные газы из крышки распределительных шестерен через полихлоридную трубку отсасываются в неочищенную полость воздушного фильтра.

Вентиляция картера двигателей МеМЗ-968ГЭ и МеМЗ-968БЭ также закрытая. Картерные газы из крышки распределительных шестерен отсасывается через трубку в очищенную полость фильтра.

Из воздушного фильтра картерные газы отсасываются карбюратором через горловину и дополнительно золотниковым устройством дроссельной заслонки карбюратора через трубку. Маслоотражатель, установленный в маслоуловителе воздушного фильтра, способствует конденсации масляных паров. Собравшееся масло в маслоуловителе фильтра стекает в прозрачную сливную трубку.

В процессе эксплуатации при накоплении масла в прозрачной трубке ее надо снимать и сливать масло.

Устройство вентиляции картера позволяет регулировать количество отсасываемых из картера газов в зависимости от режима работы двигателя.

При работе с малой частотой вращения коленчатого вала и на малых нагрузках золотник карбюратора лишь частично открывает перепускные отверстия и обеспечивает отсос небольшого количества картерных газов.

С открытием дроссельной заслонки золотник открывает отверстие полностью, увеличивая отсос картерных газов.

Система охлаждения Система охлаждения состоит из осевого нагнетающего вентилятора, выполненного в одном узле с генератором, дефлекторов, обеспечивающих необходимое распределение охлаждающего воздушного потока, и системы терморегулирования для поддержания нормального теплового состояния двигателя при различных колебаниях температуры окружающей среды.

Детали системы охлаждения двигателя Направляющий аппарат вентилятора отлит заодно с лопатками, в нем размещен генератор с выступающими концами вала. На одном конце вала генератора закреплено рабочее колесо вентилятора. На другом - шкив привода вентилятора. Шкив состоит из двух половин: передней и задней, одиннадцати регулировочных шайб и нажимного колпачка.

Привод вентилятора с генератором осуществляется клиновидным ремнем от шкива на коленчатом валу. Шкив привода вентилятора составляет одно целое с крышкой центробежного маслоочистителя.

Система терморегулирования состоит из двух воздухоотводящих кожухов (по одному на каждую пару цилиндров) и двух заслонок, приводимых в действие от термостатов.

Во время пуска двигателя заслонки закрывают выход охлаждающего воздуха наружу и перепускают его в моторный отсек, образуя таким образом циркуляцию воздуха внутри моторного отсека. По мере прогрева двигателя воздух нагревается и воздействует на термостаты, которые через систему рычагов постепенно открывают заслонки и перепускают часть воздуха наружу.

Вход воздуха в моторный отсек регулируется заслонками, установленными в раструбах воздухоподводящих рукавов. Заслонки фиксируются с помощью пружинных рукояток и гребенок, приваренных к раструбам. С наступлением холодов заслонки следует прикрывать, контролируя температуру масла по указателю на щитке приборов, которая должна быть не ниже 650C.

Система питания Система питания состоит из топливного бака, топливного насоса, карбюратора, воздушного фильтра и трубопровода.

Топливный бак установлен за спинкой заднего сиденья. К верхней части бака прикреплены винтами датчик уровня бензина и фланец бензозаборной трубки с фильтром. Заливная горловина бака выведена в моторный отсек в специальный лоток. Закрывается горловина пробкой.

Топливный насос - диафрагменного типа, взаимозаменяем с насосом автомобилей "Таврия" и ВАЗ. Установлен насос с левой стороны двигателя на крышке распределительных шестерен и приводится в действие штангой от эксцентрика (кулачка), который одновременно является гайкой крепления шестерни распределительного вала. Между двигателем и насосом установлены направляющая штанги, теплоизоляционная проставка и прокладки для уплотнения и регулировки величины выступания штанги. Для заполнения системы питания топливом перед пуском двигателя имеется рычаг ручной подкачки топлива.

Воздушный фильтр состоит из верхней и нижней частей. Место разъема уплотнено резиновой прокладкой. Нижняя часть с верхней частью соединены при помощи двух пружинно-рычажных замков. В поддон заливается 200 см3 масла. В поддоне закреплены маслоразделитель и седло клапана. В верхней части расположены приемная труба и фильтрующий элемент из капроновой пластины.

Вентиляция картера осуществляется отсосом картерных газов из-под крышки распределительных шестерен двигателя в неочищенную полость воздушного фильтра при помощи шланга.

Глушитель состоит из корпуса, перегородок и перепускных труб.

Карбюратор К-133 Карбюратор К-133* (*двигатели могут быть укомплектованы карбюраторами К-133А или К-127 в зависимости от времени выпуска автомобиля. Эти карбюраторы отличаются устройством смесительной камеры. На них отсутствует экономайзер системы холодного хода ЭПХХ.) - двухдиффузионный, вертикальный, с падающим потоком и горизонтальным подводом воздуха. Поплавковая камера однокамерная, балансированная, сообщается с атмосферой через воздушный патрубок и воздушный фильтр.

Состоит карбюратор из трех основных частей: крышки поплавковой камеры, средней части с поплавковой камерой и нижнего патрубка со смесительной камерой.

В крышке размещены воздушная заслонка, топливный фильтр, топливный клапан поплавкового механизма, распылитель ускорительного насоса, воздушный жиклер холостого хода и клапан стояночной разбалансировки. Воздушная заслонка шарнирно связанна с дроссельной заслонкой и приводится в действие тягой, кнопка которой расположена на туннеле пола. При полностью закрытой воздушной заслонке дроссельная заслонка открывается на 1,6-1,8 мм, чем достигается наилучшее смесеобразование при пуске холостого двигателя.

Средняя часть образует поплавковую камеру и воздушный канал с запрессованными в нем диффузорами. В средней части находится поплавок, ускорительный насос, клапан экономайзера, обратный и нагнетательный клапаны ускорительного насоса, воздушный жиклер главной системы, жиклер холостого хода и главный жиклер.

В смесительной камере размещена дроссельная заслонка, привод которой тягой соединен с педалью акселератора. Кроме дроссельной заслонки в смесительной камере размещен экономайзер принудительного холостого хода (ЭРХХ). Экономайзер состоит из корпуса, закрытого крышкой, внутрь которого установлена диафрагма. На крышке установлен винт, которым регулируется количество поступающей в двигатель смеси и ограничивается ход клапана с диафрагмой. Экономайзер является основным регулирующим элементом, который управляет разрежением, возникающем в выхлопной трубе.

Микровыключатель крепится на кронштейне винтами. Эффективность действия ЭПХХ зависит от правильности установки микровыключателя.

Электропневмоклапан размещен на горизонтальной полке справа от катушки зажигания и предназначен для включения и отключения подачи разрежения к диафрагме клапана.

Электронный блок управления устанавливается справа на стенке моторного отсека. Он управляет работой электропневмоклапана, регулируя ее в зависимости от частоты вращения коленчатого вала.

E-mail: [email protected]

www.virtuos2000.narod.ru


Смотрите также