ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Секретный советский проект: атомный автомобиль. Атомная двигатель


Ядерный ракетный двигатель Википедия

Я́дерный раке́тный дви́гатель (ЯРД) — разновидность ракетного двигателя, которая использует энергию деления или синтеза ядер для создания реактивной тяги. Бывают жидкостными (нагрев жидкого рабочего тела в нагревательной камере от ядерного реактора и вывод газа через сопло) и импульсно-взрывными (ядерные взрывы малой мощности при равном промежутке времени).

Традиционный ЯРД в целом представляет собой конструкцию из нагревательной камеры с ядерным реактором как источником тепла, системы подачи рабочего тела и сопла. Рабочее тело (как правило — водород) подаётся из бака в активную зону реактора, где, проходя через нагретые реакцией ядерного распада каналы, разогревается до высоких температур и затем выбрасывается через сопло, создавая реактивную тягу. Существуют различные конструкции ЯРД: твёрдофазный, жидкофазный и газофазный — соответствующие агрегатному состоянию ядерного топлива в активной зоне реактора — твёрдое, расплав или высокотемпературный газ (либо даже плазма).

В СССР развёрнутое постановление правительства по проблеме создания ЯРД было подписано в 1958 году. Этим документом руководство работами в целом было возложено на академиков Келдыша М. В., Курчатова И. В. и Королёва С. П.[1]. К работам были подключены десятки исследовательских, проектных, конструкторских, строительных и монтажных организаций. ЯРД активно разрабатывались КБХА в Воронеже и испытывались в СССР (см. РД-0410) и США (см. NERVA) с середины 1950-х годов. Исследования ведутся и в 2018 году[2].

По оценкам А. В. Багрова, М. А. Смирнова и С. А. Смирнова ядерный ракетный двигатель может добраться до Плутона за 2 месяца[3][4] и вернуться обратно за 4 месяца с затратой 75 тонн топлива, до Альфы Центавра за 12 лет, а до Эпсилон Эридана за 24,8 года[5].

Ядерный импульсный двигатель[ | код]

Атомные заряды мощностью примерно в килотонну на этапе взлёта должны взрываться со скоростью один заряд в секунду. Ударная волна — расширяющееся плазменное облако — должна была приниматься «толкателем» — мощным металлическим диском с теплозащитным покрытием и потом, отразившись от него, создать реактивную тягу. Импульс, принятый плитой толкателя, через элементы конструкции должен передаваться кораблю. Затем когда высота и скорость вырастут, частоту взрывов можно будет уменьшить. При взлёте корабль должен лететь строго вертикально чтобы минимизировать площадь радиоактивного загрязнения атмосферы.

В США были проведены несколько испытаний модели летательного аппарата с импульсным приводом (для взрывов использовалась обычная химическая взрывчатка). Были получены положительные результаты о принципиальной возможности управляемого полёта аппарата с импульсным двигателем.

Реальных испытаний импульсного ЯРД с подрывом ядерных устройств не проводилось.

Другие разработки[ | код]

В США космические разработки с использованием импульсных ядерных ракетных двигателей осуществлялись с 1958 по 1965 год в рамках проекта «Орион» компанией «Дженерал Атомикс» по заказу ВВС США.

Космический корабль проекта «Орион», рисунок художника

Программа развития проекта «Орион» была рассчитана на 12 лет, расчётная стоимость — 24 миллиарда долларов, что было сопоставимо с запланированными расходами на лунную программу «Аполлон» («Apollo»). Интересно, что разработчики проводили предварительные расчёты постройки на базе этой технологии корабля поколений с массой до 40 млн тонн и экипажем до 20 000 человек[6]. Согласно их расчётам один из уменьшенных вариантов такого ядерно-импульсного звездолёта (массой 100 тыс. т) мог бы достичь Альфы Центавра за 130 лет, разогнавшись до скорости 10 000 км/с.[7][8] Однако приоритеты изменились, и в 1965 году проект был закрыт.

В СССР аналогичный проект разрабатывался в 1950—70х годах[9]. Устройство содержало дополнительные химические реактивные двигатели, выводящие его на 30-40 км от поверхности, Земли и затем предполагалось включать основной я

ru-wiki.ru

Самолёт с атомным двигателем | Насправдi

В середине 50-х — начале 60-х годов прошлого века в СССР начали разрабатывать самолёт с ядерной силовой установкой. Летающая атомная лаборатория на базе самолёта Ту-95М, пройдя испытания на наземном стенде, в 1962—1963 годах провела серию опытных полётов, но вскоре программа была свёрнута. Результаты тех испытаний сегодня практически забыты. А тех, кто создавал атомный самолёт, кто может собрать и обобщить уникальный опыт, в живых остаётся, увы, всё меньше. Вспоминает участник проекта, учёный секретарь НИИ авиационного оборудования Александр Васильевич Курганов, в прошлом ведущий инженер по лётным испытаниям Лётно-исследовательского института и руководитель бригады по испытаниям бортового оборудования на летающей атомной лаборатории.

Летающая атомная лаборатория, созданная на базе самолёта Ту-95М

и оснащённая атомным реактором — имитатором реальной атомной силовой установки.

В 1950-х годах Советский Союз делал успешные шаги в развитии атомной энергетики. Уже работала первая отечественная атомная электростанция, разрабатывались проекты атомных ледоколов и подводных лодок. Руководитель советского атомного проекта Игорь Васильевич Курчатов решил, что пришло время поставить вопрос о создании атомного самолёта.

Преимущества ядерных двигателей были очевидны: практически неограниченная дальность и длительность полёта при минимальном расходе топлива — всего несколько граммов урана на десятки часов полёта. Такой самолёт открывал самые заманчивые перспективы перед военной авиацией. Однако первые проработки проекта показали, что полностью защитить самолёт от выхода радиоактивных излучений за пределы конструкции реактора не удаётся. Тогда было принято решение создать так называемую теневую защиту кабины пилотов, а всё бортовое оборудование вне кабины, подверженное гамма-нейтронному облучению, самым тщательным образом обследовать. Первым делом надо было выяснить, как поведут себя незащищённые приборы при работающем реакторе.

Влияние радиоактивного излучения на бортовое оборудование изучали сотрудники Лётно-исследовательского института (ЛИИ) и Института атомной энергии (ИАЭ). Так сложилось содружество инженеров и конструкторов, специалистов по авиационному оборудованию и физиков-ядерщиков. Для исследований в ИАЭ нам предоставили реактор ВВЭР-2, в котором вода охлаждает аппарат и одновременно служит замедлителем нейтронов до энергий, требуемых для поддержания управляемой цепной реакции.

Распределение потока нейтронов, выбрасываемых атомным реактором ВВР-2,

установленным на Ту-95М. Испытательный полёт проходил при одном открытом шибере (заслонке) защиты реактора.

Руководил группой В. Н. Сучков. От Лётно-исследовательского института в ней работали А. В. Курганов, Ю. П. Гаврилов, Р. М. Костригина, М. К. Бушуев,Б. М. Сорокин, В. П. Конарев, В. К. Селезнёв, Л. В. Романенко, Н. И. Макаров, В. П. Федоренко, И. Т. Смирнов, Г. П. Брусникин, Н. Н. Солдатов, И. Г. Хведченя, А. С. Михайлов, В. М. Груздов, В. С. Лисицин и другие. От Института атомной энергии экспериментальными работами руководили Г. Н. Степанов, Н. А. Ухин, А. А. Шапкин.

Ещё в самом начале экспериментов специалисты столкнулись с рядом трудностей. Во-первых, исследуемые приборы и аппаратура довольно сильно нагревались за счёт поглощения энергии излучения. Во-вторых, полностью исключался визуальный контроль, да и какой-либо контакт с исследуемыми образцами. В-третьих, для чистоты экспериментов было очень важно проводить исследования в условиях, по возможности близких к условиям полёта, а на высоте негерметичная авиационная аппаратура работает в разрежённой атмосфере. Чтобы создать разрежение воздуха, сконструировали малогабаритные барокамеры, из которых специальный компрессор откачивал воздух. Исследуемые приборы устанавливали в барокамеры и помещали их в канал атомного реактора вблизи его активной зоны.

Схема водо-водяного энергетического реактора ВВЭР-2,

на котором проводились первые испытания авиационного оборудования на радиационную стойкость.

Впоследствии к экспериментам были подключены: первая атомная электростанция в Физико-энергетическом институте им. А. И. Лейпунского (ФЭИ), облучательные установки в филиале Физико-химического института им. Л. Я. Карпова (ФХИ) в Обнинске. В результате этих работ впервые в стране были определены реальная радиационная стойкость бортового авиационного оборудования и наиболее чувствительные изделия, элементы и материалы, выявлена «иерархия» радиационной стойкости по видам оборудования, решены другие важные вопросы.

Следующим этапом работы по программе создания атомного самолёта стали разработка и строительство наземного стенда летающей атомной лаборатории (ЛАЛ). Стенд нужен был для проведения дозиметрических исследований в реальной конфигурации самолёта Ту-95М, а также для оценки работоспособности изделий в реальных условиях. На стенде исследовали радиотехническую бортовую аппаратуру и электротехнические агрегаты, оценивали величину радиоактивности, вызванной воздействием нейтронов, а также её спад во времени. Эти данные были очень важны с точки зрения эксплуатации и послеполётного обслуживания самолёта.

Вспоминается переполошивший всю группу эпизод, связанный с работой реактора. Однажды во время контрольного осмотра оператор заметил на водной поверхности бака обильную белую пену, похожую на пену стирального порошка. Атомщики забеспокоились: если это органическая пена, ещё полбеды — где-нибудь прокладка «газит», а если неорганическая — гораздо хуже — возможна коррозия алюминия, из которого сделаны корпуса тепловыделяющих элементов (ТВЭЛов), а в них находится ядерное горючее — уран. Все понимали, что разрушение корпусов ТВЭЛов может привести к катастрофическим последствиям.

Чтобы разобраться в ситуации, в первую очередь надо было определить химический состав пены. Взяли образцы и поехали в Семипалатинск, в ближайшую лабораторию. Но химики так и не разобрались, органика это или нет.

На объект срочно прилетел один из ведущих специалистов ИАЭ и посоветовал первым делом промыть бак реактора спиртом. Но эта процедура не помогла — аппарат продолжал гнать пену. Тогда решили ещё раз тщательно осмотреть всю конструкцию реактора изнутри. Чтобы не «схватить» повышенную дозу радиации, работать внутри бака можно было не более пяти минут. Осмотром занимались молодые механики из ОКБ им. А. Н. Туполева. Наконец, один из них с криком «Нашёл!» выбрался из бака, держа в руках кусок микропористой резины. Как туда попал этот посторонний предмет, можно только догадываться.

Эти часы и записку А. В. Курганов получил из рук Генерального конструктора А. Н. Туполева

за участие в создании самолёта с атомным двигателем.

В мае 1962 года начался этап лётных испытаний, в котором участвовала наша бригада. Дозиметрические и другие исследования в условиях полёта показали, что во время работы реактора дальность радиосвязи сокращается под воздействием потока нейтронов, а находящийся в специальных ёмкостях вне защищённой кабины кислород, которым экипаж дышит во время высотного полёта, подвергается активации (в нём обнаружили молекулы озона — О3). При этом элементы электрооборудования работали достаточно устойчиво.

Масштабная и очень интересная работа по созданию атомного самолёта, к сожалению, не была завершена. Программу закрыли, но участие в ней осталось в памяти на всю жизнь. В дальнейшем мне приходилось заниматься разными лётно-космическими экспериментами, лётными испытаниями на первом сверхзвуковом пассажирском самолёте Ту-144 и запуском космического корабля многоразового использования «Буран». Я получал разные награды, но самая дорогая среди них — часы, которые вручил мне Генеральный конструктор академик Андрей Николаевич Туполев за участие в проекте создания атомного самолёта. Часы до сих пор великолепно работают и стали семейной реликвией.

фото: nkj.ru

Александр Курганов 

 

naspravdi.info

Атомобиль | Журнал Популярная Механика

В этом месяце исполняется 50 лет с того момента, как «Волга-Атом», первый гражданский автомобиль, приводившийся в движение не сгоранием ископаемого топлива, а энергией атома, выехал за ворота сборочного цеха.

Дмитрий Мамонтов

1 апреля 2015 17:05

В 1949 году Советский Союз стал второй страной в мире, сумевшей успешно построить и испытать образец атомного оружия. С одной стороны, это, безусловно, был серьезный успех советских ученых и инженеров. С другой — не менее серьезный удар по самолюбию советского руководства. Ведь в гонке двух стран второе место — это последнее. Именно тогда многие руководители страны стали задумываться над теми областями, в которых СССР мог бы вырваться вперед. В частности, над проектами мирного использования атомной энергии.

От автомобиля к атомобилю От автомобиля к атомобилю В качестве источника энергии в Ford Nucleon 1957 года предполагалось использовать компактный ядерный реактор. Кабина была вынесена за переднюю ось, а тяжелый реактор вместе с биологической защитой был установлен далеко позади. По расчетам инженеров Ford, на одной загрузке топлива Nucleon мог пройти 5000 миль (8000 км), после чего вся энергоустановка подлежала замене целиком, при этом владелец мог выбрать любую энергоустановку — более мощную или более экономичную.

Гонка за мирным атомом

В 1949 году правительство СССР, прислушавшись к доводам ученых, среди которых были академик Петр Капица, президент Академии наук Сергей Вавилов и «отец советской атомной бомбы» Игорь Курчатов, приняло решение о строительстве первого сугубо гражданского атомного объекта — атомной электростанции. В октябре 1954 года Обнинская АЭС была официально включена в сеть Мосэнерго, и обычные люди получили возможность зажечь лампочку от атомной электроэнергии. Советский Союз выиграл первый отрезок эстафеты за «мирный атом».

Но и американцы не дремали. В 1952 году на верфях Гротона была заложена подводная лодка «Наутилус», которая должна была стать первой атомной субмариной в мире. К 1954 году, когда была построена Обнинская АЭС, «Наутилус» был спущен на воду, а в январе 1955-го вышел в море, став первым транспортным (хотя и не гражданским) средством, движимым энергией атомного распада.

Атом в упряжке

При разработке «Волга-Атом» конструкцию существующего шасси ГАЗ-21 никак не удавалось усилить. В результате идея компоновки была позаимствована у концепт-кара 1962 года Ford Seattle-ite XXI с двумя передними осями. Все четыре передних колеса «Волга-Атом» были рулевыми (из них два ведущими). Несмотря на длинный капот, места для размещения биозащиты и системы охлаждения в моторном отсеке не хватило. Пришлось использовать переднюю часть салона, а водительское место разместили сзади.

Однако в Союзе уже был готов ответный ход. В 1953 году Совет министров СССР принял решение о строительстве атомного ледокола. Судно было заложено в 1956 году на ленинградском судостроительном заводе им. Марти, через год спущено на воду, после чего начался монтаж ядерной энергетической установки, разработанной коллективом нижегородского Опытного конструкторского бюро машиностроения (ОКБМ) под руководством Игоря Африкантова. В декабре 1959 года атомный ледокол «Ленин» был официально передан Министерству морского флота СССР, и хотя к тому времени «Наутилус» уже эксплуатировался и даже успел достичь своим ходом Северного полюса, счет можно было считать как минимум равным. Важно то, что ледокол «Ленин» был чисто гражданским судном, а «Наутилус» военным кораблем, — ведь в глазах международной общественности вес гражданских атомных проектов был существенно выше. Через несколько лет еще несколько атомных гражданских судов вышли на океанский простор — американская «Саванна» (1964) и немецкий «Отто Ган» (1968) (японское судно «Муцу» сильно запоздало из-за технических проблем и было сдано в 1990 году). Но, образно говоря, они явились на старт, когда гонка уже была закончена.

Как работает атомный двигатель Как работает атомный двигатель Конструкция первого поколения представляет собой классическую «пушечную схему». Подкритические урановые шайбы на поршне и торце цилиндра сближаются, увеличивая критичность, и реакция деления разогревает рабочее тело (гелий) в цилиндрах. Гелий расширяется и толкает поршень, совершая работу. Распредвал выдвигает кадмиевый стержень-поглотитель, реакция затухает. Во втором поколении в качестве топлива используется газофазный гексафторид урана, который одновременно является и рабочим телом. Графитовый замедлитель сделан пористым, чтобы газ эффективнее перемешивался, и в нем шла реакция деления.

Чистый дизайн и начинка

Тем не менее идеологическую победу в атомной гонке все-таки нельзя было признать совсем чистой, и советские ученые, инженеры и руководители искали возможность закрепить успех. Требовались нестандартные идеи, и одна из них поступила по дипломатическим каналам.

В 1957 году компания Ford представила публике один из самых амбициозных концептов в своей истории — Ford Nucleon. Дизайнеры изобразили свое видение автомобиля будущего, причем даже не на полноразмерном макете, а на модели в масштабе 3:8. Nucleon выглядел крайне футуристично, но самым необычным был вовсе не его внешний вид, а предполагаемый источник энергии — очень компактный ядерный реактор. Дальше масштабной модели и ее концептуального описания дело не пошло, но принято считать, что Ford Nucleon стал своеобразным символом атомной эпохи.

Тупиковая ветвь

Столкнувшись с проблемами масштабирования, Камнев предложил создать побочный продукт — атомную машину для дорожного строительства, точнее — атомный дорожный каток. Славский озвучил идею Хрущеву, и тот пришел в восторг, узнав, что с помощью такого катка можно, используя выделяемое реактором избыточное тепло, с минимальными затратами строить прямую как стрела и ровную как зеркало дорогу даже в самых густых лесах. Один такой каток был построен к концу 1959 года, очевидец описывает его так: «Даже в самых больших карьерах я не видел таких гигантов. Махина высотой с семиэтажный дом и шириной в 20 м прокладывает в лесу прямую и ровную дорогу, просто спекая верхний слой грунта при температуре свыше 500 градусов». Испытания, проведенные в Сибири, оставили 25-километровый отрезок великолепнейшей дороги прямо сквозь тайгу примерно посередине между Томском и Новосибирском. Дорогу бы проложили до конца, но случилась неприятность: усталый оператор катка заснул за рычагами, и единственная в своем роде строительная машина утонула в болоте, на дне которого она и лежит до сих пор. А идеальная дорога одиноко начинается и заканчивается посреди тайги — как памятник атомной фантазии прошлой эпохи.

Ford Nucleon был представлен на различных выставках, и в 1958 году на одном из американских автосалонов его увидел второй секретарь советского посольства Владимир Синявин. Он был большим энтузиастом технического прогресса и с восторгом описал идею автомобиля в своем отчете. Поскольку там упоминался атомный проект, на родине отчет внимательно изучили. Военных он не заинтересовал, поскольку они посчитали описанное пустой фантазией, но на всякий случай отчет переслали в Министерство среднего машиностроения СССР, которое курировало тогда все атомные проекты. Его увидел один из заместителей министра, легендарного Ефима Павловича Славского. Так началась неизвестная история удивительной машины, которая могла бы перевернуть всю мировую автомобильную промышленность.

Атомный двигатель давал очень много тепла, для рассеивания которого требовалась эффективная система охлаждения. У инженеров не было опыта работы с подобными конструкциями, поэтому в поисках решений они изучали американские концепт-кары 1950-х, такие как Buick Le-Sabre 1951 года (на фото) или Ford X 2000 1958 года. При всей вычурности у них было важное достоинство: они позволяли вписать огромные воздухозаборники системы охлаждения в общий дизайн кузова.

Добиться невозможного

Славскому идея показалась интересной, и он конфиденциально попросил нескольких физиков-атомщиков изучить возможность реализации подобного проекта. Ответ был совершенно однозначным: «Пустые фантазии!». На ближайшем совещании в Кремле Славский между делом в шутку упомянул об этом — вот, мол, какой ерундой занимаются американцы. Он ожидал, что Хрущев посмеется вместе с ним, однако реакция была совершенно другой. Никита Сергеевич выслушал министра и вдруг неожиданно серьезно сказал: «А почему бы нам не сделать такой автомобиль? Ведь с ледоколом хорошо получилось!» Попытки переубедить генсека не увенчались успехом, Хрущев отмел все возражения взмахом руки: «Если эти физики не могут, найдите других».

И такие физики были найдены. Для проектирования автомобиля, приводимого в движение атомной энергией, было создано Автомобильное конструкторское бюро (АКБ) под руководством Александра Эдуардовича Камнева. АКБ занималось разработкой ядерной силовой установки.

Ford X 2000 1958 года

По пушечной схеме

Физики АКБ, взяв за основу атомную силовую установку ледокола «Ленин», быстро убедились в том, что она не поддается масштабированию в меньшую сторону. Построить же автомобиль под существующий реактор было немыслимо — настолько огромной получалась машина. Над этой проблемой физики работали до 1960 года, но без особого успеха, пока на очередном совещании кто-то них в сердцах не воскликнул: «Не получается, хоть засовывай уран в цилиндры двигателя!» — и это навело Камнева на идею, которая оказалась весьма плодотворной.

www.popmech.ru

8 грамм тория на миллионы километров!

Поделиться на Facebook ВКонтакте Twitter Одноклассники

Американская компания собирается выпустить первый в мире автомобиль на ядерной энергии в ближайшие два года.

По словам директора Laser Power Systems, Чарльза Стевенса (Charles Stevens), всего одного грамма тория достаточно, чтобы заменить более 28 000 литров нефтепродукта.

Чтобы автомобиль проработал без дозаправки всю жизнь, ему понадобится лишь 8 грамм тория, считает Стивенс.

На данный момент фирма Laser Power Systems, с главным офисом в Коннектикуте, работает над новым двигателем, который будет использовать торий — тяжёлый слаборадиоактивный металл — чтобы создавать электричество для мотора

Этот металл используется в области атомной энергии, а также применяется в металлургии. Он способен производить огромное количество тепла, будучи плотным материалом, схожим с ураном.В одном из интервью он объяснил принцип работы: небольшие частицы тория использовались для выработки тепла — был создан ториевый лазер и несколько подобных лазеров нагревали воду для получения пара, чтобы привести в действие серию мини-турбин.

Стивенс говорил, что двигатель с весом примерно 227 кг будет достаточно легок и компактен, чтобы уместится под капотом обычного автомобиля.Все же, если бы все было так просто, то нефтепродукты уже бы канули в лету. По словам Стивенса, разработка работающих компактных турбин и генераторов намного сложнее, чем создание ториевого лазера.

На данном этапе команда из 40 рабочих во главе со Стивенсом пытается ответить на вопрос, как эффективнее совместить лазеры, турбины и генераторы. Если задумка удастся, то, по их мнению, автомобили с ториевым двигателем смогут покрывать расстояния в миллионы километров.

«Машина состарится раньше, чем мотор. Не будет ни нефтепродуктов, ни выхлопных газов — ничего» — говорит Стивенс.

Если торий станет главным источником энергии, то Австралия станет глобальным энергетическим гигантом. По данным Геологической службы США (US Geological Survey), в Австралии второе по объему месторождение тория на Земле — около 333 690 тонн (примерно 1/4 всех запасов тория на планете). Кроме Австралии, большое количество тория находится в США и Индии.В 1950-е Форд разработал концепт-кар под названием Ford Nucleon. Этот автомобиль на атомной энергии был разработан, по словам Форда, на основе предположения, что в будущем атомные реакторы станут компактнее, безопаснее и легче.

В основе дизайна была энергетическая капсула, которая находилась в задней части автомобиля. Форд предполагал, что зарядные станции заменят бензоколонки, а проехать без подзарядки можно будет более 8 000 км.Сегодня можно задуматься, почему же до сих пор на дорогах не разъезжают автомобили на атомной энергии, ведь в мире уже существуют атомные электростанции, подлодки и авианосцы. Во время холодной войны СССР и США использовали небольшие реакторы для снабжения энергией спутников.

Ученые могли бы создать миниатюрную атомную станцию и вставить ее в автомобиль. Но не так все просто.Возможно главная причина, по которой у нас улицы не забиты автомобилями с атомным двигателем это радиоактивность. Такие машины нуждались бы в соответствующей защите, иначе не только водитель, но и окружающие люди могли бы пострадать.

Если использовать всю необходимую защиту, то автомобиль был бы невероятно тяжелым, возможно даже настолько, что он не смог бы сдвинутся с места.Также подобные автомобили могут быть использованы во вред людям, например, как опасное радиоактивное оружие.

В конце концов, энергетическим компаниям, автомобильным концернам и правительствам придется тесно сотрудничать, чтобы создать нужную инфраструктуру.

Им также придется установить стандартизированный процесс избавления от использованного энергопродукта, у которого еще сотни лет будет высокий уровень радиации.

Источник

Жми «Нравится» и получай лучшие посты в Фейсбуке!

Поделиться на Facebook ВКонтакте Twitter Одноклассники

vse-obo-vsem.su

Двигатели атомные - Энциклопедия по машиностроению XXL

Состав требований стандартов к техническому уровню изделий может развиваться по эволюционной форме, характеризующейся постепенным изменением количественных значений параметров, и революционной, характеризующейся скачками. Скачок происходит в момент появления первых научно-исследовательских, проектно-конструкторских работ или опытного образца на новые изделия, отличающиеся от предшествующих образцов новыми принципами функционирования, используемыми видами энергии и т.п. Скачком является, например, появление электровозов, реактивных двигателей, атомных реакторов.  [c.218] Возможности использования в ракетных двигателях атомной энергии  [c.166]

Примеры газовой коррозии весьма разнообразны. Сюда относятся многочисленные случаи окалинообразования, например окисление металлов при металлургических процессах обработки металлов (плавка, литье, ковка, горячая прокатка, термообработка при высоких температурах). По имеющимся данным, от 3 до 5% металла при выпуске проката черных металлов расходуется на угар (газовую коррозию). Многие конструкции современной техники или их отдельные детали эксплуатируются при высоких температурах, например детали печей (колосники), огневые коробки паровозов, нагревательные элементы электропечей, клапаны, цилиндры, поршни и выхлопные трубы двигателей внутреннего сгорания, детали химической аппаратуры (при синтезе аммиака наиболее ответственная аппаратура работает при температурах порядка 500—600° и до 1000 атмосфер давления), газовые турбины, реактивные двигатели, атомные энергетические установки и ряд других.  [c.99]

В первой части учебного пособия кратко изложены исторические данные, показана роль, которую играли русские и советские ученые в развитии основных положений теоретической теплотехники. Подробно рассмотрены основные законы термодинамики, термодинамические процессы, дифференциальные уравнения термодинамики и истечение газов и паров. В прикладной части рассмотрены циклы двигателей внутреннего сгорания, газотурбинных и паротурбинных установок, а также циклы атомных электростанций,  [c.3]

Явление ползучести металлов при высокой температуре порядка 500 °С наблюдается в деталях паровых турбин — трубопроводах, дисках, лопатках. Паровые турбины до сих пор производят значительную долю электрической энергии. Другим примером могут служить газотурбинные самолетные двигатели, температура газа в которых достигает 1300°С Основной причиной выхода из строя турбин является ползучесть рабочих лопаток. Высокие рабочие температуры применяются также в различных высокотемпературных технологических процессах, например нефтехимических и при переработке нефти. С проблемой учета ползучести металлических панелей мы встречаемся в системе термической защиты космических аппаратов, атомной энергетике и др. К конструкциям, работающим в условиях высоких температур, должны быть предъявлены следующие требования деформация не должна превышать допустимую в соответствии с выполняемыми конструктивными функциями изделия не должно произойти разрушения конструкции вследствие ползучести.  [c.304]

Первый ядерный реактор был построен из урана и графита Ферми с сотрудниками в конце 1942 г. в США. Первый советский ядерный реактор построили И. В. Курчатов с сотрудниками несколько позже. В настоящее время энергия деления широко используется в науке, промышленности, сельском хозяйстве, медицине и других областях. Наиболее перспективными направлениями использования атомной энергии является создание мощных атомных электростанций (в комбинации с опреснительными установками и регенераторами ядерного горючего) и транспортных средств с атомными двигателями.  [c.412]

Топливом для жидкостных реактивных двигателей служат водород и соединения водорода с углеродом, твердые металлы с малой атомной массой (литий, бор) и их соединения с водородом. В качестве окислителей используются жидкий кислород, перекись водорода, азотная кислота.  [c.567]

Рис. 17.45. Схема атомно-реактивного двигателя Рис. 17.45. Схема атомно-реактивного двигателя
Для обеспечения работоспособности устройств, работающих в высокотемпературных средах (различные элементы двигателей, устройства в атомной энергетике и т. д.), необходимо их охлаждение. Расчет и проектирование систем их охлаждения непосредственно связаны с решением задач тепломассообмена.  [c.4]

Пузырьковое кипение используется в испарителях и паровых котлах для получения пара, в теплообменниках, предназначенных для охлаждения поверхностей при высоких тепловых нагрузках, в атомных реакторах, в система. охлаждения тепловых двигателей п других аппаратах н устройства .  [c.296]

Пленочное кипение наблюдается при закалке металлов в жидкой среде, в ряде быстродействующих перегонных аппаратов, при кипении криогенных жидкостей, при охлаждении жидкостью ракетных двигателей на химическом топливе и атомных ракетных двигателей. При высоких давлениях абсолютная величина а при пленочном кипении.становится значительной (рис. 13-18), поэтому пережога кипятильной трубы  [c.317]

Отвод тепла в режиме пузырькового кипения являегся одним из наиболее совершенных методов охлаждения поверхности нагрева. Он находит широкое применение в атомных реакторах, при охлаждении реактивных двигателей, а также в ряде других технических устройств.  [c.107]

За прошедшие 60 лет отмечены следующие существенные отклонения от прогноза Н. А. Умова началась и быстро проходит эпоха нефти и природного газа, наступила и еще долго продлится эра атомной энергии (рис. 1.1), передвинулся на отметку примерно 40% предел повышения КПД тепловых двигателей (рис. 1.2) при этом поршневые паровые машины окончательно вытеснены турбинами и двигателями внутреннего сгорания. Однако постоянно возобновляющиеся энергоресурсы (ветер, приливы и отливы, волны, солнечное излучение, тепло недр Земли), как и прежде практически почти не используются.  [c.11]

Одни тираны сменяли других, одна религия или ее разновидность, с помощью котором они захватывали бразды правления, уступала с боем место другой. Отдавая все силы утолению жажды власти и славы, фанатизму веры и преследованию инакомыслящих, борьбе за обогащение и самосохранение, погрязнув в холодных и горячих войнах, заговорах и интригах, человечество прекрасно обходилось без паровых машин и двигателей внутреннего сгорания, без телевизоров, без автомобилей и самолетов, а тем более без атомной энергии.  [c.39]

Большая часть топлив и смазочных материалов, предназначенных для использования в условиях излучений высокой энергии, испытывается путем облучения в реакторе. Поэтому точные характеристики спектра падающего излучения (нейтронов и у-квантов) будут зависеть от типа реактора и используемой защиты. В некоторых случаях, относящихся, например, к смазке определенных механизмов в стационарных энергетических реакторах, оба фактора совершенно точно известны. В других случаях, например в летательных аппаратах с атомными двигателями, технически возможны широкие пределы, внутри которых допустима определенная гибкость.  [c.115]

Комбинированное воздействие внешних факторов на термостойкость. Двумя важнейшими внешними факторами являются температура и облучение. Главной особенностью исследований радиационной стойкости, начатых более 5 лет назад, была разработка лабораторного оборудования, которое обеспечивало бы получение информации об эксплуатационных характеристиках летательных аппаратов с атомными двигателями.  [c.119]

Скорость ракет может быть повышена в 3 раза при переходе от ракет с химическим топливом к ракетам с атомным двигателем, но при этом температура газа достигнет 1930 °С. В ракетах с плазменными двигателями рабочие температуры достигнут 3300—6200 °С и даже тугоплавкие металлы и сплавы должны будут работать с охлаждением.  [c.280]

В СССР в июне 1954 г. была введена в действие первая в мире атомная электростанция мощностью в 5000 кет. В декабре 1959 г. вступил в строй первый в мире атомный ледокол Ленин с мощностью двигателей 44 тыс. л. с. и суточным расходом горючего, измеряемым граммами или десятками граммов. В настоящее время строятся атомные станции электрической мощностью 1 млн. кет.  [c.54]

В новой книге М. Васильев рассказывает о мире машин, вырабатывающих энергию о паровых и газовых турбинах, о двигателях тепловозов и космических ракет, об атомных и геотермических электростанциях. Интересно п живо ведется рассказ о поисках новых путей превращения энергии, тепловых и полупроводниковых элементах, гелиоэлектростанциях, магнитогидродинамических установках и т. д. Книга хорошо иллюстрирована. Рассчитана на широкий круг читателей.  [c.2]

Бесконечно заманчива проблема создания атомоходов — снабженных атомными двигателями транспортных машин.  [c.183]

Автомашина Волга . расходует на 100 тысяч километров 10 тонн бензина. На этот же пробег она, снабженная атомным двигателем, затратит всего 6 граммов урана.  [c.183]

За этот же час полета самолет с атомным двигателем, имеющим коэффициент полезного действия всего 20 процентов, израсходовал бы 0,3 грамма урана.  [c.183]

Уже плавают подводные лодки с атомными двигателями. Советский атомный леДокол совершил несколько крупнейших походов его спидометр уже в 1964 году показывал более 100 тысяч километров пройденных ледовых путей. Испытываются в разных странах первые атомные самолетные установки, есть инженерно разработанные проекты атомных локомотивов.  [c.184]

Особенные усилия ученых направлены на создание атомных реактивных и ракетных двигателей. Существуют проекты по существу всех типов реактивных двигателей— и прямоточный, и турбокомпрессорный, и турбовинтовой, — в которых нагрев воздуха осуществляется за счет энергии расщепляющихся ядер урана. Имеются проекты и ракетных атомных двигателей, в которых инертное вещество, выбрасываемое в сопло, нагревается до высокой температуры.  [c.185]

Конечно, все сведения об авиационных атомных двигателях государства держат в строгой тайне. И тем не менее нет никакого сомнения, что недалек тот час, когда взлетят с аэродромов атомные самолеты, способные без посадки и без дополнительной заправки горючим несколько десятков раз облететь вокруг земного шара, что ринутся в космические рейсы к Урану и Плутону атомные ракетные корабли.  [c.185]

АПТУ двигатель — атомная паротурбинная ус- мгд пользования — магнитогидродинамический  [c.419]

Теория и практика технологии литейного производства на современном этапе позволяют получать изделия с высокими эксплуатационными свойствами. Свидетельством тому является надежная работа отливок в реактивных двигателях, атомных энергетических установках и других машинах ответственного назначения. Литые заготовки используются не только в различных отраслях машиностроения и приборостроения, но и при изготовлении различных строительных конструкций доменных печей и других металлургиче-  [c.147]

Развитие современной техники сопровождается интенсивным повышением тепловых нагрузок узлов и деталей конструкций. Значительные по величине тепловые потоки имеют место при работе высокофорсированных реактивных и газотурбинных двигателей, атомных реакторов, летательных аппаратов, паровых турбин и т. п. На тепловой режим узлов и деталей значительное влияние оказывает так называемое термическое сопротивление контакта, обусловленное несовершенством механического соединения контактируюш,их поверхностей. Этому вопросу в настоящее время посвяш,ено значительное количество работ. Однако, несмотря на обширный ма-териа.[1, ощущается недостаток в обобщении ряда вопросов теплообмена в контактной зоне. Так, в имеющейся литературе отсутствуют исчерпывающие данные  [c.3]

Жароирочпые стали и сплавы применяют для многих деталей котлов, газовых турбин, реактивных двигателей, ракет, атомных устройств и др., работающих при высоких температурах.  [c.285]

Задача 1403. По одному из проектов, межпланетный пассажирский корабль с атомным двигателем стартует вертикально. Считая конечную массу корабля равной 10 т, скорость истечения газов равной 100 км1еек, найти начальную массу корабля, если в целях безопасности пассажиров его ускорение во все время старта поддерживается равным 12,8 м/еек а конечная скорость равна 12,8 км1сек. Учесть изменение силы тяжести с изменением высоты (радиус Земли равен 6400 км). Сопротивлением воздуха пренебречь.  [c.512]

Для летательных аппаратов и их силовых установок характерны высокие тепловые нагрузки. При входе баллистической ракеты в атмосферу тепловой поток к ее поверхности достигает 40 ООО— 100 000 квт1м . В соплах жидкостных ракетных двигателей тепловые потоки достигают величин порядка 30 ООО квт1м . Большие тепловые потоки наблюдаются также в атомных реакторах. Теплоотдача в условиях высоких тепловых нагрузок обладает некоторыми особенностями и требует специального исследования.  [c.245]

Возможен и, по-видимому, перспективен (по зарубежным данным) атомно-реактивный двигательдля самолетов большой массы (700 т и более) при дозвуковых скоростях полета, когда потребная мощность двигателя не чрезмерна (17.45).  [c.571]

Как одна из перспектив использования газотурбинного двигателя (ГТД) в авиации рассматривается комбинированный двигатель для межконтинентального самолета, летающего без дозаправки горючим. В тако Ч установке к рабочему телу ТКВРД теплота подводится в теплообменнике от горячего гелия, циркулирующего в ког-туре атомного ГТД. Изобразить циклы гелия и воздуха в координатах s, Т и рассчитать суммарную теоретическую тягу двигателя в полете, если скорость самолета 850 km/i температура и давление окружающего воздуха О °С и 0,09 МПа мощность ядерного реактора 150 МВт степень повышения давления гелия в компрессоре 2,5 степень пс-нижения давления воздуха в турбине 6,0 давление в тег -  [c.139]

Те р м о д и н а м и к а — наука о преобразовании энергии. Ее возникновение в конце лервой четверти прошлого столетия было вызвано необходимостью научного обоснования принципа действия и методов расчета тепловых двигателей. Однако в своем дальнейшем развитии благодаря универсальности и изяшеству своих методов термодинамика перешагнула границы теплоэнергетики и ее методы анализа с большим успехом стали применять во многих других областях знаний, нередко весьма далеких от теплоэнергетики. Можно с уверенностью сказать, что изучение свойств веществ и особенности изменения их состояния — это, в сущности, изучение процессов превращения энергии. От явлений микромира до процессов в галактиках, от простого механического перемещения до сложнейших биологических процессов, всевозможные физические и химичес1 ие превращения, электромагнитные и гравитационные явления, распад и синтез атомных ядер, рождение и гибель звезд — во всем этом оп ределяющую роль играют превращения энергии. Поэтому исследования во всех таких случаях проводят с привлечением термодинамических методов.  [c.6]

При конструировании парогенерирующей аппаратуры очень часто возникает необходимость в расчете коэффициента теплоотдачи при поверхностном кипении. Например, тепловыделяющие элементы в некоторых видах атомных реакторов, сопла реактив-пых двигателей и поверхности нагрева ряда других теплообменных устройств охлаждаются кипящей водой, температура которой в ядре потока -ниже температуры насыщения. Часть поверхности парогенерирующих труб прямоточных паровых котлов также охлаждается водой, недогретой до температуры насыщения. На эко-  [c.260]

Во многих теплообменных устройствах современной энергетики и ракетной техники поток теплоты, который должен отводиться от по- верхности нагрева, является фиксированным и часто практически не зависит от температурного режима теплоотдающей поверхности. Так, теплоподвод к внешней поверхности экранных труб, расположенных в топке котельного агрегата, определяется в основном за счет излучения из топочного пространства. Падающий лучистый поток практически не зависит от температуры поверхности труб, пока она существенно ниже температуры раскаленных продуктов сгорания в топке. Аналогичное положение имеет место в каналах ракетных двигателей, внутри тепловыделяющих элементов (твэлов) активной зоны атомного реактора, где происходит непрерывное выделение тепла вследствие ядерной реакции. Поэтому тепловой лоток на поверхнасти твэлов также является заданным. Он является заданным и в случае выделения теплоты при протекании через тело электрического тока.  [c.322]

В 1805 г. швейцарец И. Риваз предлагает двигатель на водороде, но и теперь этот газ считается топливом будущего , а получение его мыслится с помощью атомной энергии.  [c.95]

В СССР, как и во многих других странах, во все возрастающем количестве ведется строительство атомных электростанций, вырабатывающих электрический ток и тепло для производственных и бытовых нужд. Атомные энергетические установки, заменяющие обычные паросиловые агрегаты и двигатели внутреннего сгорания, вводятся на морских транспортных судах и на кораблях военно-морского флота. Мощные источники ядерных излучений — ядерные реакторы и ускорители заряженных частиц — все шире используются в исследовательской практике и в промышленности для эффективного проведения технологических процессов. Широкое распространение получили радиоактивные изотопы, используемые как источники тепла в специальных генераторах электрического тока и как источники излучений в различных промышленных, исследовательских и медицинских приборах, аппаратах и установках. Не менее широко распространены стабильные изотопы ( тяжелая вода, изотопы урана, бора, азота, неона и многих других химических элементов), применяемые во многих областщ научных исследований, в промышленности и в медицинской практике.  [c.161]

Это позволило профессору Бирмингемского университета Джону Боттериллу, призвав на помощь воображение, представить себе атомный ракетный двигатель мощностью 25 ООО МВт, у которого делящееся вещество находится в небольшом псевдоожиженном в поле центробежных сил цилиндрическом слое, а гелий служит теплоносителем и псевдоожижающим агентом.  [c.93]

Особенно быстрый прогресс наблюдается в области разработки оборудования для глубоководных исследований и практической подводной деятельности. Возникла новая глубоководная технология, вплоть до специальных погрузкающихся аппаратов, снабженных внешними манипуляторами для сбора образцов, извлечения и исследования проб. Быстро совершенствуются и надводные суда. В частности, появились корабли на воздушной подушке, с подводными крыльями, с атомными реакторами и реактивными двигателями. Наконец, в нефте- и газодобывающей промышленности широко используются морские платформы, подводные трубопроводы и хранилища, а такн е различные береговые сооружения. Например, в одном только Мексиканском заливе уже насчитывается более 14 000 морских конструкций и строится много новых.  [c.12]

mash-xxl.info


Смотрите также