Оживленное обсуждение вызвал в свое время пост про Безтопливный двигатель работает, но никто знает почему. Я всегда был сторонником того, что спор должен решится конкретным фактом использования или просто временем. Что касается именно этого двигателя, то похоже развязка приближается. Вот немного в продолжении этой темы
Эксперты и энтузиасты с 2003 года спорят о возможности существования гипотетического «волшебного» электромагнитного двигателя EmDrive. Принцип его работы очень простой: магнетрон генерирует микроволны, энергия их колебаний накапливается в резонаторе высокой добротности, а факт наличия стоячей волны электромагнитных колебаний в замкнутом резонаторе специальной формы является источником тяги. Так создаётся тяга в замкнутом контуре, то есть в системе, полностью изолированной от внешней среды, без выхлопа.
При желании, собрать свой собственный EmDrive может любой желающий, у которого есть паяльник и ненужная микроволновка.
С одной стороны, этот двигатель вроде бы нарушает закон сохранения импульса, на что указывают многие физики. С другой стороны, британский изобретатель Роджер Шойер (Roger Shawyer) свято верит в работоспособность своего EmDrive — и у него много сторонников (см. несколько сотен страниц обсуждений на форуме NASASpaceFlight). Проведённые испытания на Земле (результаты 22 зарегистрированных испытаний) как будто подтверждают работоспособность EmDrive.
Наконец пришло время положить конец спорам.
----------------------<cut>----------------------
Окончательную точку в спорах намерен поставить Гвидо Петта (Guido Fetta) — единомышленник Шойера и конструктор ещё одного гипотетического двигателя Cannae Drive, который работает на том же принципе: генерация микроволн и создание тяги в замкнутом контуре без выхлопа.
Среди основателей компании Theseus Space — сама Cannae Inc., а также малоизвестные фирмы LAI International, AZ и SpaceQuest.
Дата запуска пока не объявлена. Возможно, энтузиастам удастся собрать деньги и построить экспериментальный аппарат в 2017 году.
Единственная задача этого спутника — испытания двигателя Cannae Drive в течение шести месяцев. Спутник попробует передвинуться с помощью электромагнитной тяги Cannae Drive.
Разработчики Cannae Drive заявляют, что их двигатель способен генерировать тягу до нескольких ньютонов и «более высоких уровней», что лучше всего подходит для использования в маленьких спутниках. Двигателю не требуется топлива, у него нет выхлопа.
Объём двигателя на спутнике CubeSat — не более 1,5 юнитов, то есть 10×10×15 см. Источник питания — менее 10 Вт. Сам спутник будет состоять из шести юнитов.
Сразу после успешной демонстрации на орбите компания Theseus Space намерена предложить новый двигатель сторонним производителям для использования на других спутниках.
По расчётам Cannae, более массивная версия электромагнитного двигателя весом 3500 кг способна доставить груз массой 2000 кг на расстояние 0,1 светового года за 15 лет. Общая масса такого аппарата вместе с системами охлаждения и другими деталями составит 10 тонн.
Если работоспособность двигателя подтвердится в результате надёжного повторяемого научного эксперимента, то учёным придётся найти объяснение этому феномену. Сам Роджер Шойер предполагает, что принцип работы двигателя основан на специальной теории относительности. Двигатель преобразовывает электричество в микроволновое излучение, которое испускается внутри закрытой конической полости, что приводит к тому, что микроволновые частицы прилагают к большей, плоской части поверхности полости, большее усилие, чем в более узком конце конуса, и тем самым создают тягу.
Шойер уверен, что такая система не противоречит закону сохранения импульса.
Гвидо Петта предлагает похожее объяснение в описании патента США № 20140013724, упоминая силу Лоренца — силу, с которой электромагнитное поле действует на точечную заряженную частицу.
Исследователи НАСА, которые испытывают EmDrive, предполагают, что тяга создаётся благодаря «квантовому вакууму виртуальной плазмы» частиц, которые появляются и исчезают в замкнутом контуре пространства-времени. То есть систему на самом деле не изолированная, поэтому она не нарушает закон сохранения импульса благодаря эффектам квантовой физики.
Разработка EmDrive в целом игнорируется научным сообществом, хотя некоторые эксперименты всё-таки проводятся. Например, в 2012 году группа китайских физиков опубликовала результаты измерений тяги электромагнитного двигателя, которая составила 70-720 мН при мощности микроволнового излучателя 80-2500 Вт, при ошибке измерений менее 12%. Это слегка превышает тягу ионного двигателя, сопоставимой массы и энергетической мощности.
Энтузиасты уверены: если EmDrive работает, то в перспективе станет возможным создание не только эффективных космических двигателей, но и летающих автомобилей, а также кораблей, самолётов — любого транспорта на электромагнитной тяге.
Компания Cannae — не единственная, кто хочет проверить работу электромагнитного двигателя в космосе. Немецкий инженер Пол Коцыла (Paul Kocyla) сконструировал маленький карманный EmDrive, а сейчас собирает деньги в рамках краудфандинговой кампании. Чтобы запустить прототип в космос на мини-спутнике PocketQube, требуется 24 200 евро. За три месяца удалось собрать 585 евро.
Недавно научные работы Шойера были опубликованы в открытом доступе. «По всему миру люди измеряли тягу. Одни строили двигатели у себя в гаражах, другие — в крупных организациях. Все они выдают тягу, тут нет великой тайны. Кто-то думает, что здесь некая чёрная магия, но это не так. Любой нормальный физик должен понять, как оно работает. Если кто не понимает, ему пора менять работу», — категорично заявил британский инженер.
источник
masterok.livejournal.com
Магнетроны называются электронные приборы, в которых образуются колебания сверхвысокой частоты при помощи модуляции потока электронов. Магнитные и электрические поля в нем действуют с большой силой.
Впервые магнетрон был создан в Америке в 1921 году. С течением времени эксперименты с ним продолжались. В результате появилось множество видов магнетронов, использующихся в радиоэлектронике. В 1960 году приборы стали использоваться в печах сверхвысокой частоты для домашнего применения. Менее распространены клистроны, платинотроны, которые основаны на этом же принципе действия.
1 — Анод2 — Катод3 — Накал4 — Резонансная полость5 — Антенна
• Анодный блок. Представляет собой толстостенный металлический цилиндр с полостями в стенках. Эти полости являются объемными резонаторами, которые создают колебательную кольцевую систему.• Катод. Он имеет цилиндрическую форму. Внутри него размещен подогреватель.• Внешние электромагниты или постоянные магниты. Они создают магнитное поле, которое параллельно оси прибора.• Проволочная петля. Она применяется для вывода сверхвысоких частот, и закреплена в резонаторе.
Резонаторы создают кольцевую систему колебаний. Возле них пучки электронов воздействуют на электромагнитные волны. Так как эта система выполнена замкнутой, то она способна возбудиться только на определенных частотах колебаний. При нахождении рядом с рабочей частотой других частот, случается перескакивание частоты и нарушается стабильность работы устройства.
Чтобы исключить такие отрицательные эффекты магнетроны с одинаковыми резонаторами оснащаются разными связками, либо используются магнетроны с отличающимися размерами резонаторов.
В магнетронах применяется движение электронов в перпендикулярных магнитных и электрических полях, созданных в зазоре кольца между анодом и катодом. Между ними подается напряжение (анодное), которое образует радиальное электрическое поле. Под воздействием этого поля электроны вырываются из нагретого катода и устремляются к аноду.
Анодный блок находится между полюсов магнита, образующего магнитное поле, которое направлено вдоль оси магнетрона. Магнитное поле действует на электрон и отклоняет его на спиральную траекторию. В промежутке между анодом и катодом создается вращательное облако, похожее на колесо со спицами. Электроны возбуждают в объемных резонаторах колебания высокой частоты.
Отдельно каждый резонатор является колебательной системой. Магнитное поле концентрируется внутри полости, а электрическое поле сосредоточено у щелей. Энергия выводится из магнетрона с помощью индуктивной петли. Она размещена в соседних резонаторах. Электроэнергия подключается к нагрузке коаксиальным кабелем.
Нагревание токами высокой частоты производится в волноводах различного сечения, либо в объемных резонаторах. Также нагревание может производиться электромагнитными волнами.
Приборы работают от выпрямленного тока по простой схеме выпрямления. Устройства небольшой мощности способны работать от переменного тока. Рабочая частота тока магнетронов может достигать 100 ГГц, мощностью до нескольких десятков киловатт в постоянном режиме, и до 5 мегаватт в режиме импульсов.
Устройство магнетрона довольно простое. Его стоимость невысока. Поэтому такие качества в сочетании с повышенной эффективностью нагревания и разнообразным использованием высокочастотных токов открывают большие возможности использования в разных сферах жизни.
• Многорезонаторные устройства. Они содержат анодные блоки с несколькими резонаторами. Блоки состоят из различного вида резонаторов. В диапазоне 10 см длины волны магнетрон обладает КПД 30%. Выход излучения высокой частоты осуществляется сбоку в щель резонатора.• Обращенные устройства. Они бывают двух исполнений: коаксиальные и обычные. Такие магнетроны способны выдать импульсы высокой частоты 700 наносекунд с энергией 250 джоулей. Коаксиальный вид магнетрона содержит стабилизирующий резонатор. В нем имеются отверстия во внешней стенке, а также ферритовые стержни с подмагничивающими катушками.
• В устройствах радаров антенна подключена к волноводу. Она, по сути, является щелевым волноводом, или рупорным коническим облучателем вместе с отражателем в виде параболы (тарелка). Управление магнетрона осуществляется с помощью коротких мощных импульсов напряжения. В итоге образуется короткий импульс энергии с малой длиной волны. Малая часть такой энергии поступает снова на антенну и волновод, и далее к чувствительному приемнику. Сигнал обрабатывается и поступает на электронно-лучевую трубку на экран радара.• В бытовых микроволновых печах волновод имеет отверстие, которое не создает препятствие радиочастотным волнам в рабочей камере. Важным условием работы микроволновки является условие, чтобы при работе печи в камере находились какие-либо продукты. При этом микроволны поглощаются продуктами, и не возвращаются на волновод. Стоячие волны в микроволновой печи могут искрить. При долгом искрении магнетрон может выйти из строя. Если в микроволновке мало продуктов для приготовления, то лучше дополнительно поместить в камеру стакан с водой для лучшего поглощения волн.
1 — Магнетрон2 — Высоковольтный конденсатор3 — Высоковольтный диод4 — Защита5 — Высоковольтный трансформатор• В радиолокационных станциях используются коаксиальные магнетроны с быстрым изменением частоты. Это позволяет расширить тактико-технические свойства локаторов.
Чтобы самому приобрести магнетрон для домашней микроволновой печи, необходимо изучить и разобраться в маркировке, выяснить, какие бывают их виды, и их параметры.
Наиболее малую мощность имеет магнетрон 2М 213. Его мощность составляет 700 ватт при нагрузке и 600 ватт номинальная.
Приборы средней мощности в основном изготавливают на 1000 ватт. Марка такого магнетрона – 2М 214.
Наибольшая мощность магнетрона у модели 2М 246.
Показатель мощности у них равен 1150 ватт. Перед приобретением необходимо сопоставить цену магнетрона со стоимостью всей печи, и не забыть о стоимости работ по ремонту. Возможно, что не будет смысла в ремонте.
Для разных моделей микроволновок можно устанавливать магнетрон других фирм изготовления. Главное, чтобы он подходил по мощности, в настоящее время не проблема приобрести его в торговой сети. Исключение составляют модели, которые уже сняты с производства.
Однако, даже если вы разобрались в устройстве микроволновки, то не рекомендуется заниматься заменой деталей в домашних условиях, так как этим должны заниматься квалифицированные специалисты, способные обеспечить безопасную работу устройства. К тому же, сделать это самостоятельно будет довольно проблематично.
Пища имеет в составе воду, которая состоит из заряженных частиц. Продукты в микроволновой печи разогреваются посредством воздействия на них волн высокой частоты. Молекулы воды выступают в качестве диполя, так как проводят волны электрического поля.
Похожие темы:
electrosam.ru
Чтобы получить частные и высокие колебания, используют магнетроны. Электрические и магнитные поля действуют с высокой силой. В результате происходят колебания высокой частоты. Часто применяемой разновидностью устройства является многорезонаторная. В таком магнетроне на электроны действуют сразу три поля:
Впервые этот термин был использован в 1921 году американским ученым-физиком А. Халлом. Его исследования и эксперименты были продолжены далее, что привело к появлению многих разновидностей магнетронов, которые стали использовать в радиоэлектронике. Патент на это изобретение получил А. Жаке в 1924 году. Именно он изобрел современный магнетрон, принцип действия которого основывается на взаимодействии двух полей.
В последующее десятилетие велись разработки магнетронов для генерации волн СВЧ. Главная задача заключалась в увеличении частоты колебаний, что удалось сделать только советским ученым. Они увеличили исходное значение в два раза, применив в качестве материала анода медь.
Сердцем магнетрона является блок анода, состоящий из медного цилиндра, с пустотой внутри. В центре его имеются полости, они являются кольцевой системой объемных резонаторов. В середине анода имеется отверстие, именно через него идет подключение к питанию. Также от него анод подключается к катоду. Им является нить накала, она подогреваемая и проходит через всю середину анода. Чтобы обеспечить выход высокочастотных колебаний, такой выход устанавливают в одном из резонаторов. Внутри анодного блока вакуум. Для его охлаждения на поверхности устанавливают ребристые радиаторы.
Помещают этот блок так, что бы он оказался между магнитами, создающими магнитное поле достаточной силы. Устанавливают напряжение между анодом и катодом, причем так, что положительно заряженный полюс находится у анода. Электроны от катода начинают двигаться из-за действия поля электричества. Двигаться они должны к аноду, а магнетрон, принцип действия которого заключается в магнитном поле, возвращает его образно к катоду.
Добиться эффекта, когда электроны движутся по описываемой окружности и при этом находятся рядом с анодом, но возвращаются обратно, можно, если соблюсти определенные условия в двух связанных полях. При таком состоянии на аноде остается лишь малая часть всех электронов, вылетевших с катода.
Возвратившись на катод, часть электронов заменяется. Этот процесс продолжается, образуя возле анода заряд в форме кольца. Такой заряд начинает образовываться возле каждого резонатора, появляются незатухающие высокочастотные колебания. Вывести такие колебания можно витками проводов, расположив их в любом из резонаторов. Следом эти колебания передаются на волновод (или коаксиальную линию).
Магнетроном можно назвать прибор СВЧ, он генераторный, вакуумный, движение электронов в нем происходит в двух полях: электронном и магнитном. Создает магнетрон принцип действия двух этих полей, которые образуют третье – СВЧ.
Использоваться могут они в радиотехнике. Например, при составлении радарных карт. Для этого магнетрон должен состоять не только из рупорного облучателя, но и из параболического отражателя. При помощи управления импульсами высокой интенсивности создается короткий импульс излучения микроволн. Часть энергии, отражаясь, возвращается обратно к волноводу и антенне, что направляют ее к приемнику. После обработки данные появляются на радарной карте.
В печах, работа которых основана на микроволнах, принцип действия немного другой. Магнетрон для микроволновки имеет на конце волновода прозрачное отверстие для радиочастот, которые образуются в отсеке для приготовления пищи. Поэтому важно включать такую печь только с наличием в ней еды. Без этого условия стоячие волны вызовут искрение, так как магнитные волны не поглотились, а были возвращены обратно. Если это продлится долгое время, магнетрон просто сломается. Скорость, при которой пища в микроволновке готовится, зависит напрямую от мощности магнетрона.
Большинство микроволновых печей имеет мощность от 700 до 850 Вт. Этого вполне хватит, чтобы вскипятить стакан воды всего за 2-3 минуты. Магнетрон для СВЧ "Сатурн", в зависимости от модели, может иметь разную мощность. Выбор СВЧ этой фирмы можно начать именно со сравнения магнетронов, а потом и дополнительных функций.
При покупке микроволновой печи следует знать принцип ее действия. Многие насторожено относятся к этой технике, ошибочно полагая, что это источник радиации. На самом деле, в ней действует принцип СВЧ, что следует из самого названия. СВЧ - не что иное, как «сверхвысокие частоты». Радиацию она, конечно, не излучает, но обращаться с такой техникой нужно осторожно.
Сама микроволновка уже изначально имеет защиту окружающих от СВЧ-излучения. Такая печь оборудована специальным датчиком, который отключит магнетрон, если открыта дверца. Завершить работу магнетрон, принцип действия которого заключается в выработке СВЧ-волн, не сможет, если нарушены правила эксплуатации. Если поместить в печь, например, металлическую миску, она просто выведет из строя весь прибор.
Волны от СВЧ-печи могут выходить наружу не дальше чем на пять метров. Поэтому в то время, когда она работает, лучше находиться подальше. Однако планировка кухонь большинства квартир делать этого не позволяет, ибо придется выходить в другую комнату.
Электромагнитное поле бесконтактно разогревает пищу, помещенную в микроволновую печь. Более того, процесс нагрева происходит непосредственно в пределах продукта, что сокращает время приготовления до нескольких минут. Не надо предварительно нагревать посуду, в которой находится пища.
Для лучшего результата готовки надо знать кулинарные хитрости приготовления тех или иных продуктов. С учетом того, что время идет, а устройство СВЧ-печей не меняется, можно предположить их дальнейшее и постоянное закрепление за кухнями многих потребителей.
Покупая самостоятельно магнетрон, нужно обязательно знать маркировку. Чтобы не совершить ошибку, покупая магнетрон на микроволновку LG, нужно ознакомиться с тем, какие же они бывают. Самая слабая мощность у магнетрона 2M213. У него выходная мощность при нагрузке и типовая равны 700 и 600 W соответственно, анодное значение - 3,95 kVp, а частота - 2460 MHz.
Магнетронов со средними значениями величин несколько. Основной из них: 2M214. У этой модели частота такая же, анодное значение чуть выше - 4.20 kVp. Выходная мощность при нагрузке и типовая – 1000 и 850 W соответственно.
Максимальные значения показателей у магнетрона марки2M246. При той же частоте анодное значение больше - 4.40 kVp, средние мощности на выходе при нагрузке – 1150 W, типовая - 1000 W.
Любой из видов магнетрона для микроволновок LG можно заменить аналогичным для другой фирмы, например, "Самсунг". Аналогично можно заменить магнетрон для микроволновки "Самсунг" подходящим по мощности элементом от другой фирмы. Если модель бытовой сверхвысокочастотной печи выпущена очень давно, то найти деталь соответствующей марки очень трудно. Возможно, производитель уже снял с производства данный вид.
Но даже если вы знаете принцип работы магнетрона, не следует заниматься починкой такой техники дома самостоятельно.
Приобрести магнетрон для микроволновой печи 2M218 JF Daewoo можно самостоятельно, заказав в специализированных магазинах или непосредственно у производителя. Стоит он порядка 2 тысяч рублей.
Разогрев продуктов в микроволновке происходит так: любая пища содержит в себе молекулы воды, она, в свою очередь, состоит из заряженных положительно и отрицательно частиц. Такие молекулы выступают диполем, потому что хорошо проводят волны электричества.
Частая поломка СВЧ-печей - выход из строя магнетрона. Купить магнетрон на микроволновку LG (как, впрочем, и других производителей данных бытовых приборов) и заменить его самостоятельно будет достаточно проблематично. Даже если найдется подходящий элемент, установить его сможет только мастер.
Перед покупкой устройства стоит сравнить его цену со стоимостью самой микроволновки. Часто бывает, что ремонт обойдется дороже покупки. Всегда учитывайте данный фактор.
Итак, мы выяснили, для чего нужен такой элемент, как магнетрон, и в каких сферах он применяется.
fb.ru
Магнетроны применяются для получения колебаний высокой частоты. Они незаменимы в электронике и радиотехнике; устанавливаются в радиолокационных стациях, для высокочастотного нагрева, для ускорения заряженных частиц. В основе действия магнетрона лежит взаимодействие сильных электрических и магнитных полей, результатом чего является генерация колебаний высоких частот. Наиболее популярных видом магнетрона является многорезонаторный магнетрон.
Конструкция многорезонаторного магнетрона
Его о
сновой является анодный блок, который представляет собой толстостенный полый медный цилиндр, в стенках которого вырезаны полости, соединённые с центральным пространством щелями. Эти полости представляют собой кольцевую систему объёмных резонаторов.
В центре анодного блока высверлено широкое круглое отверстие, через которое подключается источник питания посредством специальных выводов к катоду (подогреваемая нить накала), который проходит вдоль центральной оси анода. Вывод высокочастотных колебаний устанавливается в одном из резонаторов. Торцы цилиндра герметично закрыты медными крышками, а внутри обеспечивается вакуум высокой степени. Эффективное охлаждение блока обеспечивается ребристыми радиаторами, расположенными на его поверхности.
Принцип действия магнетрона
Весь анодный блок устанавливается в сильное магнитное поле, которое создаётся постоянными магнитами. Между катодом и анодом устанавливается высокое электрическое напряжение, при этом положительный полюс прикладывается к аноду. Электроны, которые вылетают из катода под действием электрического поля, двигаются в радиальном направлении к аноду, однако под влиянием магнитного поля меняют траекторию движения.
При определённых величинах магнитного и электрического полей удаётся добиться такого состояния, когда электроны, описывая окружность, в итоге пройдя рядом с анодом, вновь возвращаются на катод, а на анод попадает только незначительная часть вылетевших электронов. Большая часть их возвращается обратно в область катода.
При некоторых условиях динамического равновесия, возвращающиеся в область катода электроны заменяются вылетевшими вновь. Поскольку электроны постоянно перемещаются от катода к аноду, возле последнего рядом со щелями объёмных резонаторов устанавливается постоянно вращающийся заряд кольцеобразной формы. По мере движения по окружности центральной полости анодного блока электроны возбуждают в каждом резонаторе незатухающие высокочастотные колебания.
Выводятся эти колебания посредством витка проводов, расположенного в полости одного из резонаторов, которые затем передаются в коаксиальную линию или волновод.
pue8.ru
26.03.2013
Магнитный двигатель
http://www.sciteclibrary.ru/rus/catalog/arts/index.html
Испытал подобную схемку с 2-мя парами постоянных магнитов. При поднесении пары магнитов с наружи внутренние магниты разворачиваются вокруг оси вращения. Система работает, следует дальше увеличивать количество магнитов.
Устройство Динатрона
http://www.glubinnaya.info/modules.php?name=Forums&file=viewtopic&t=4495&start=0&postdays=0&postorder=asc&highlight=
Подобную катушку испытывали без разрядников и ферритов. В резонансе на выходе получали больше чем на входе. Катушку Динатрона вспомнил в связи с идеей создания теплового вентилятора.
Двигатель от вентилятора охлаждения процессора с постоянным магнитом в резонансе товарищ уже вводил. Токи потребления порядка 2 мА. Двигатель в роли генератора питал светодиодную лампочку. Разрядник в схеме лучше использовать ламповый, иначе получиться озонатор воздуха с окислами азота. И разрядник лучше поместить внутри катушек, как у Грея. Импульсное магнитное поле от самоиндукции, создаваемое катушками, сжимает магнитное поле от электрической дуги. При сжатии магнитного поля в 2 раза отдаваемая энергия увеличивается в 4 раза. При противоположных токах магнитное поле не фиксируется компасом, но оно, ни куда не исчезает – оно присутствует. Нагреваемые медные наружные пластины необходимо изготовить в виде треугольников. В паре треугольники образуют звезду Давида (шестиугольная звезда). Происходит взаимогашение внешнего магнитного поля от вихревых токов. Тем самым сокращаются потери. Т.е. снижается потребляемая нагрузка. Подобную систему я предлагал еще ранее с микроволновкой (на магнетронах). В данном случае, с увеличением массы нагреваемого металла потребляемая нагрузка не увеличивается. Нагрев в данном случае происходит не от вихревых токов, а от испускаемой энергии при соударениях электронов об внешнюю оболочку атомов. При резком торможении электрона испускается электромагнитное излучение. Электрон впитывает энергию эфира и отлетает с прежней скоростью. Происходит подпитка эфиром по типу теплового насоса. Подобная работа производится в магнетронах.
И немного о самой катушке из данного сайта:
Оказалось, что при выключении питания, эта 2 пара концов катушки продолжала цокать периодически, образуя маленький сферический разрядик. При зазоре на разряднике 2, после 7-8 цоканий раздавался сокрушительный разряд: БАБАХ. Ток потребления 0,5 А. И ТАК ПРОДОЛЖАЛОСЬ НЕСКОЛЬКО ЧАСОВ ПОДРЯД!!!
Это и есть РАДИАНТ!!! Холодное электричество!!! Почему холодное? Да потому, что когда вы рядом с пинцетом поднесете руку, вы спокойно можете держать его, замыкая витки индуктора. Никакого замыкания не произойдет, ток остается холодным. Продольные волны могут разрушить и расплавить металл, но не трогать тело.
Об этом указывал Тесла. Редкие разряды тока производят укалывающие воздействия на организм. От него не спасает даже металлические экраны. Но свыше 100 Гц излучение уже производит приятную теплоту в теле.
ШОКИРУЮЩЕЕ ОТКРЫТИЕ (Тесла)
Самые стойкие металлы испарялись от таких вспышек.
Постоянные приложения высокого тока высокого напряжения могли, в конце концов, превращать толстые провода в пар. Заряженные высокими потенциалами постоянного тока, конденсаторам давали возможность разрядиться через участок толстого провода. Тесла настроил свой аппарат так, чтобы убрать все возможные колебания тока. Когда опускался одиночный контакт включателя (прим. - рубильника), это производило единичный, взрывоподобный электрический всплеск: прямоточный импульс, напоминающий свечение.
В его лучшей и самой эффективной системе высоко заряженным конденсаторам позволялось производить импульсивный разряд через специальные, предназначенные для работы в тяжелом режиме магнитной дуги.
Электроды в форме рога были помещены в поле сильного магнитного поля. Будучи выстроены под правильным углом к дуге, токи, которые внезапно образовывались в магнитном пространстве, ускорялись вдоль рогов до тех пор, пока были потушены. Быстро потушены!
Тесла подобрал параметры цепи таким образом, чтобы предотвратить возникновения колебаний в конденсаторах через дуговое пространство. Каждый дуговой разряд представлял собой чистый однонаправленный импульс очень высокой мощности. Никаких «отравляющих обратных токов» не допускалось.
Тесла рассмотрел этот странный эффект умножения напряжения с разных сторон. Главной проблемой был тот факт, что не было магнитной индукции. Трансформаторы увеличивают, или уменьшают напряжение, когда изменяется ток. Здесь были импульсы. Изменения происходили во время импульсов. Но в цепи не было трансформатора. Не было проводов на достаточно близком расстоянии, чтобы возникала магнитная индукция. Без магнитной индукции теоретически невозможно получить трансформирующий эффект. Вообще невозможно преобразование с низкого напряжения в высокое. И все же каждое включение приносило бело-голубые искры и их болезненные уколы.
Тесла, в конце концов, закрыл магнитную дугу, поместив искровой промежуток в минеральное масло.
Это заблокировало ранний поджиг дуги, одновременно значительно увеличив выходную мощность системы.
Электричество подавалось параллельно, через конденсатор. Магнитная дуга была прицеплена почти прямо к одному концу этого конденсатора, с другой стороны длинная и толстая медная шина, соединяющая магнитную дугу и дальнюю пластину конденсатора.
Это простое ассиметричное расположение магнитно-дугового разрядника с одной стороны подачи динамо производило чистые однонаправленные электроположительные, или электроотрицательные импульсы по желанию.
Ассиметричное расположение конденсатора и магнитной дуги определяет полярность паровозика импульсов. Если устройство магнитной дуги расположено вблизи положительно заряженной стороны, то шина заряжается отрицательно и результирующий разряд тока получается решительно отрицательный.
Он (Тесла) начал размещать эти «вторичные» витки внутри его «первичной» цепи прерывателя. Полоска (шина), соединяющая его магнитную дугу с конденсаторами, образовывала «первичку». Он провел нужные разграничения элементов своего Трансформатора. Несколько инженеров действительно благодарны этим разграничениям. «Первичка» и «вторичка» Трансформаторов Тесла – это не магнитные индукторы. Это – конденсаторы с внутренним сопротивлением. Конденсаторы в форме витков! Действие Трансформатора Тесла – это электростатическая индукция.
Равенство медных масс давало максимальные трансформирующие эффекты. Когда это условие равенства масс соблюдалось, Тесла говорил, что витковые конденсаторы находятся «в резонансе» - электростатическом резонансе.
Может быть, он теперь производил новый метафизический вихрь, в который теперь закручивались все, явления импульсов?
Тесла и другие верили, что электрические и магнитные силы в действительности представляли собой эфирный газ, который задерживался в материи. Материалы были каким-то образом «поляризованы» различными видами трения, при помощи чего поток эфира индуцировался в них. Большинство материалов могли сохранять поток бесконечно, поскольку не нужно было затрачивать работу. Материи только оставалось поляризоваться, преобразуя потоки эфира. Эфирный газ содержал в себе всю силу. Безграничную силу.
Импульсные продольные волны ориентирует спины вращения электронов. Электроны с одинаковыми спинами начинают притягиваться друг к другу. Но полному сближению мешают ближние торсионные силы. Ассоциация электронов металла начинает вырывать электроны (вместе с эфирными частицами) из воздуха. Происходит коронное свечение.
Катушки, расположенные в поле катушки Тесла заряжаются положительным потенциалом. При подключении катушки съема между антенной и массой через нагрузку идет ток. Количество съемных катушек и снимаемая нагрузка не влияет на потребляемую нагрузку в первичной цепи. Так уж устроены ассиметричные конденсаторы. При увеличении зазора в разряднике увеличивается величина напряжения в съемной катушке.
По Николаеву: электрон имеет инерционную массу на 2/3 выше расчетной. Если проще: электрон выбивает энергию большую, чем позволяет его начальная масса или разбиваем маленьким камешком аквариум и на нас выливается вода — избыточная энергия. В советские времена Чернецкий указал на повышенную энергию, полученную с помощью разрядника. После этого на него вылился огромный поток «грязи».
В поле катушки многократно ускоряются все химические реакции, в том числе и горения.
У Маринова имеется механический автономный генератор с двумя осями вращения. Груз-маятник вращается по типу вращения электрона: вокруг собственной оси вращения и орбитальное – вокруг атома. В итоге возникает подъемная сила. Смотри безопорный двигатель.
Катушка Тесла с импульсными продольными волнами работает по типу теплового насоса, вытягивая энергию из окружающего пространства (из эфира). На базе продольных (торсионных) волн работают многие действующие автономные источники энергии.
За автономными источниками энергии будущее, а без автономных источников мы можем оставить наших потомков с глобальным потеплением без будущего.
С уважением, Бегенеев Сергей
alisacom.ru
История знает много случаев изобретения «вечных двигателей», многие из которых пытались использовать для своего вращения силу притяжения к Земле. Попытки все еще не прекращаются, но, как известно, «вечный двигатель» все же не возможен по причине действия закона сохранения энергии. Однако в начале 21 века был изобретен двигатель, который нарушает один из основных законов физики – закон сохранения импульса. Такой двигатель может генерировать тягу для космического аппарата в вакууме без использования топлива, не «отталкиваясь» ни от чего, не выбрасывая ничего в космос.
Первый действующий прототип анонсировала в декабре 2002 года британская исследовательская компания Satellite Propulsion Research, основанная аэрокосмическим инженером Роджером Шойером. Аппарат был назван EmDrive. С тех пор он подвергался беспощадной критике в научных кругах, т.к. по мнению ученых не имел теоретического обоснования и грубо нарушал законы физики. Принцип работы EmDrive довольно простой. Тяга вырабатывается с помощью образования стоячей волны микроволнового излучения в замкнутом контейнере, подобного тому, которое мы наблюдаем в СВЧ печи. На вид гипотетический двигатель представляет собой ведро с магнетроном внутри. Магнетрон работает от электроэнергии, полученной от солнечных батарей.
Изображение: M. Tajmar and G. Fiedler / Institute of Aerospace Engineering, Technische Universität Dresden, 01062 Dresden, German
Если такой двигатель действительно был бы реализован, то это явилось бы огромным прорывом в аэрокосмическом приборостроении. Как предполагают ученые, EmDrive мог бы добраться до Плутона меньше чем за 18 месяцев, а также исследовать спутники Сатурна всего за три года.
Со времени создания первого прототипа EmDrive прошло более 10 лет. Аппарат исследовался неоднократно в различных лабораториях, и до сих пор никто не смог экспериментально опровергнуть его действие. Наличие тяги подтверждалось во всех экспериментах. За исследование аппарата взялось даже агентство НАСА. NASA Eagleworks —исследовательская группа в области двигательных систем под руководством Гарольда Уайта в Космическом центре Джонсона — исследовала EmDrive и представила обнадеживающие результаты испытаний в 2014 году.
Природа наблюдаемой тяги по-прежнему остается неясной, но Уайт предположил, что тяга порождается виртуальными частицами в квантовом вакууме, которые ведут себя как ионы топлива в магнито-гидродинамических двигательных системах, добывающих «топливо» из самой ткани пространства-времени и устраняющих необходимость использования топлива. Хотя многие ученые раскритиковали теоретическую модель Уайта, другие считают, что он хотя бы указывает в правильном направлении.
Одной из главных претензий к изобретению Роджера Шойлера было то, что его работы не опубликовал ни один рецензируемый журнал. Однако, после положительных опытов в НАСА, критиковать это изобретение становится все сложнее.
«Впервые в этом участвует кто-то с хорошо оборудованной лабораторией и с мощным бэкграундом, исключающим ошибку в эксперименте, а не инженеры, которые могут бессознательно выдавать желаемое за действительное», — пишет иностранная научная пресса.
Летом 2015 г. физики из Технического Университета Дрездена провели независимые тесты двигателя EMDrive в высоком вакууме и доложили о результатах испытаний на конференции по реактивному движению 51st AIAA/SAE/ASEE Joint Propulsion Conference.
Главной целью испытаний было максимально нивелировать все возможные известные эффекты, которые могут формировать дополнительную тягу и не позволяют точно измерить собственную мощность двигателя. Наличие тяги было подтверждено опять. По данным экспериментов получается, что двигатель производит тягу примерно в 20 микроньютонов при мощности магнетрона 700 ватт. Однако исследователи осторожно интерпретируют результаты, уточняя, что не все эффекты, оказывающие влияние на устройство, учтены.
Сейчас действительно еще рано говорить, что НАСА или другие исследовательские группы подтвердили возможность реализации двигателя, подобного EmDrive. Эксперименты продолжаются. Возможно, при попытке объяснить природу тяги, которая не поддается классическим описаниям и законам физики, мы столкнемся с новыми открытиями, позволяющими качественно поменять наше представление о движении в пространстве.
Недавно в Интернете я наткнулась на один интересный научно-популярный фильм, созданный в 90-х годах прошлого века. Фильм о возможном устройстве материи и возможных способах получения энергии, о которых мы пока можем только мечтать. О мире, где снят запрет на максимальную скорость передвижения. Это конечно фантастика, но что-то в ней есть. Даю ссылку для любознательных. "Путешествие в нано мир">>>
http://emdrive.com/
Nasa validates 'impossible' space drive
temperatures.ru
«ВЕЧНЫЙ ДВИГАТЕЛЬ» В ВОПРОСАХ И ОТВЕТАХ ИЛИ «ВНОВЬ О МАГНЕТРОНЕ»
В.И. Коробейников. Россия [email protected]
Прошел практически год со дня публикации статьи «Как правильно рассчитывать КПД «вечных двигателей». Статья вызвала очень много откликов. В них много удивления и нет достаточного понимания происходящего. Одним из самых главных «козырей» у оппонентов было то, что в типовых и очень популярных бытовых микроволновых печах магнетрон никак не демонстрирует того, что он является «вечным двигателем». Счетчик электроэнергии «видит» работающий магнетрон в микроволновых печах и очень хорошо «видит», показывая это своим быстрым вращением. Все это правильно. Именно так все и происходит. Вот отсюда и начинаются наиболее интересные и довольно непонятные вещи для оппонентов. Почему же магнетрон в бытовых микроволновых печках не демонстрирует того, что он является одним из самых древних РАБОТАЮЩИХ (с 1937 года) представителей «вечных двигателей» в официальной науке?
Для дальнейшего изложения материала необходимо вновь напомнить об основных принципах работы магнетрона.В работе магнетрона используется важный случай движения электронов при наличии двух полей — магнитного и электрического, перпендикулярных друг другу. Магнетрон представляет собой двухэлектродную лампу или диод, содержащий накаливаемый катод и холодный анод и помещаемый во внешнее магнитное поле. Отметим, что анод (анодный блок) магнетрона имеет довольно сложную монолитную конструкцию с системой резонаторов. Магнитное поле создается либо катушками с током (электромагнит), либо постоянным магнитом, между полюсами которого помещается магнетрон. Если бы магнитного поля не было, то электроны, вылетающие из катода практически без начальной скорости, двигались бы в электрическом поле вдоль прямых линий, перпендикулярных к катоду, и все попадали бы на анод. При наличии магнитного поля траектории электронов искривляются силой Лоренца. Если магнитное поле достаточно велико, то траектории электронов не пересекают плоскости анода. В этом случае ни один электрон не достигает анода. Траектории движения электронов в магнетроне изображены на Рис.1.
Траектория электрона есть циклоида, описываемая точкой, лежащей на окружности круга, равномерно катящегося по катоду. При прохождении циклоидного потока электронов мимо щелей резонаторов анодного блока, в них возбуждаются мощные электромагнитные СВЧ колебания. Высокочастотная энергия из прибора обычно выводится с помощью петли или отверстия связи, помещенных в периферийной части одного из резонаторов анодного блока. Отметим, что магнетрон разрабатывался как мощный генератор электромагнитных колебаний СВЧ диапазона. Вышеизложенное является лишь очень кратким напоминанием полной теории магнетрона, которая включает в себя практически всю электрофизику.
Итак, что же вызвало непонимание и недоверие к тому, что магнетрон является «вечным двигателем»? Наибольшее непонимание исходило от некоторых «профессионалов», эксплуатирующих магнетроны в радиолокационных станциях (РЛС). Это же относится и к большинству массовых пользователей бытовых СВЧ печей. При каких условиях магнетрон становится «вечным двигателем»? В том случае, когда выполняется равенство
U / B2 = q . ?2 / 2m .
Это равенство = очень важно. Оно означает условия, когда электроны, вылетевшие из катода, не могут попасть на анод и, соответственно, замкнуть цепь анодного источника. Процесс идет, а закон Ома не работает (анодная цепь разомкнута). В большинстве приборов магнетроны работают в импульсном режиме. Что это значит? Это означает, что анодное напряжение на магнетроне импульсное, с определенным периодом, меняется от 0 до максимального значения и обратно. В бытовых СВЧ печках импульсное напряжение меняется от 0 до 2000-3000 вольт и обратно до 0. Импульсы идут с частотой 50 Герц. Будет равенство U / B2 = q . ?2 / 2m выполняться? Нет, за исключением одной (двух) точек во время действия импульса.
На Рис.2 показана схема включения магнетрона в бытовой СВЧ печи. На высоковольтном диоде пульсирующее (импульсное) напряжение, которое и подводится к магнетрону. Что при этом происходит? За время действия импульса напряжения происходит формирование электронно-плазменного облака-ротора в магнетроне и перезаряд высоковольтного конденсатора. Цепь анодного источника оказывается замкнутой (переходные процессы) и работает закон Ома. В бытовых импульсных СВЧ печах анодный ток достигает значений 0,3-0,5 Ампера.
Рис. 2. Схема включения магнетрона в бытовой СВЧ печке
Вот эти импульсные (переходные) процессы очень хорошо «видит» счетчик электроэнергии.Что надо сделать, чтобы равенство U / B2 = q . ?2 / 2m постоянно выполнялось? Необходимо перевести работу магнетрона в режим непрерывной генерации. На аноде должно быть не пульсирующее напряжение, а постоянное и такой величины, чтобы равенство U / B2 = q . ?2 / 2m выполнялось всегда. В этом случае цепь анодного источника окажется разомкнутой, (анодный ток отсутствует), и закон Ома перестанет выполняться. Очень интересная ситуация. Анодный источник работает на холостом ходу, а на выходе магнетрона генерируется СВЧ мощность. Поскольку закон Ома не работает, то счетчик электроэнергии перестает «видеть» работающий и выдающий на выход мощность (энергию) магнетрон. К примеру, у типовых магнетронов со штатными кольцевыми постоянными магнитами, применяемых в бытовых СВЧ печах, анодный ток (2-3 микроампера) появляется при постоянном (не пульсирующем) анодном напряжении 60-65 вольт. При таком значении анодного напряжения говорить о значительной величине «лишней» энергии на выходе неуместно. Такой анодный ток (2-3 мкА) должен появляться при анодном напряжениях в сотни и тысячи вольт. В этом случае на выходе будет мощность в сотни и более ватт. Магнитное поле, и очень большое, должно быть от постоянных магнитов. Электрическое поле - от внешнего источника, а он работает на «холостом ходу». Вот он, «вечный двигатель»!
Как все просто, да не простенько! Необходимо предостеречь читателей от дилетантского подхода в понимании происходящих процессов.Электронно-плазменное облако-ротор между анодом и катодом очень трудно рассасывается при отключении анодного источника напряжения. Что произойдет в электронно-плазменном роторе магнетрона при отключении анодного напряжения? Именно то, что и происходит в магнетроне при работе в импульсном режиме. Произойдут довольно большие изменения в электронно-плазменном роторе. Какие? Здесь предлагается самим читателям вспомнить или вновь изучить «Теорию движения заряженных частиц в электромагнитных полях». Еще раз напомним, что равенство (рабочая точка)
U / B2 = q . ?2 / 2m
очень важное на функции-характеристике (Рис.1) магнетрона. Именно эта точка на функции и является для многих непреодолимым барьером в сознании, когда происходит перевод магнетрона из режима подчинения закону Ома в режим не подчинения закону Ома («вечный двигатель»). Усилению непреодолимости этого барьера часто помогает изложение материала и практические занятия по магнетрону в технических университетах. К примеру, в СпбГУ на кафедре «Радиофизики» есть прекрасная лабораторная работа №9 -«Исследование работы магнетронного генератора». В этой лабораторной работе магнетрон работает в импульсном режиме. Для получения (изменения) необходимых выходных параметров выставляется (изменяется) анодный ток магнетрона. Соответственно, изменяют и магнитное поле. Все прекрасно работает и не вызывает недоразумений. Как видим, вольно или невольно, но упор в лабораторной работе сделан на режим работы в положении левее точки равенства U / B2 = q . ?2 / 2m. В лабораторной работе никак не акцентируется, что можно находиться и справа от этой точки равенства в режиме непрерывной генерации. Нахождение справа от этой точки равенства приведет к совершенно другой лабораторной работе: по исследованию магнетрона как «вечного двигателя». Уже этого одного примера достаточно, чтобы понять какую пропасть в сознании технических специалистов заложило равенство (рабочая точка)
U / B2 = q . ?2 / 2m.
У большинства авторитетнейших ученых мужей само понятие «вечный двигатель» вызывает в сознании гнев и отторжение как лженаучное понятие. Что это означает? Это означает, что они сами не очень глубоко разобрались с возможностями магнетрона, который может работать как «вечный двигатель».
С 1937 года практически уже третье поколение технических специалистов эксплуатирует магнетроны, а «лженаучная» ситуация в сознании так и не разрешилась. Здесь следует сделать сравнение магнетрона еще с одним «вечным двигателем» -генератор Серла, работающим с 1946 года. Двигающийся по циклоиде электрон здесь является элементарным магнитом, как виток-петля с током или магнитный ролик генератора Серла. Магнитные ролики в генераторе Серла имеют слишком много балласта по массе и габаритам. Это приводит к тому, что генераторы Серла (механический магнетрон) слишком громоздкие и тяжелые. Магнетрон избавлен от балласта в виде тяжелых и больших молекул магнитного материала, поскольку работает на «голых» электронах. Это очень удобно и выгодно. Равенство (точка) U / B2 = q . ?2 / 2m косвенно связано и с генератором Серла. У магнетрона двигающийся по циклоиде электрон как магнит не должен нарушать указанное равенство. У генератора Серла уже готовые магниты (ролики) должны соблюдать такое же аналогичное электромагнитное равенство. Поэтому невозможно сделать миниатюрный «карманный» генератор Серла на современных магнитах, чтобы выполнялось это конструктивное равенство… но вернемся снова к магнетрону.
В ряде практических ситуаций от магнетрона как от «вечного двигателя» не всегда может требоваться большая СВЧ энергия. В таких случаях ее вообще можно не выводить из магнетрона за ненадобностью. А что же брать от магнетрона в таких случаях? Очень интересный «поворот». Практически любой магнетрон требует воздушного или водяного принудительного охлаждения анодного блока. Уже это указывает на то, какое огромное количество тепла выделяется на анодном блоке. Что мешает использовать это тепло для бытовых нужд? Мешает этому отсутствие на рынке таких магнетронных электронагревательных приборов. Что будет, если такой электронагревательный прибор включить в электрическую сеть? Электрическая сеть будет работать на холостом ходу, а счетчик электроэнергии не будет вращаться. Это только один из возможных вариантов использования магнетрона в непрерывном режиме («вечный двигатель») в качестве бытового электронагревательного прибора, который «отключает» счетчик электроэнергии.
В заключение вопросы ко всем читателям: «Появятся ли на рынке такие магнетронные электронагреватели и когда?» Кто в состоянии ответить на этот вопрос?
Автор ищет инвесторов и партнеров для развития экспериментов в данной области.
Комментарий:E-mail автора указан в начале статьи. К разработке данной темы мы не имеем отношения, поэтому вопросы, связанные с этим проектом нам присылать не следует. Мы безусловно попытаемся выйти на контакт с автором темы, особенно в свете последних событий, связанных с изменением климата, что особенно ярко проявилось нынешней зимой. Учитывая значительное подорожание электроэнергии в ближайшее время, вопрос отбора "бесплатного" тепла у магнетрона может стать очень актуальным на российском рынке. Вся дополнительная информация по этой теме будет публиковаться по мере поступления.
Вернуться на Главную страницу
ФОРУМ
alternatefuel.ru