ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

В России создан авиационный двигатель для полетов в ближнем космосе. Космические перспективные двигатели


Перспективные космические двигатели | Файловый клуб FilesClub.net

С самого начала времен Человек поднимая глаза в небо и задавался вопросами: что там «наверху» и как до этого «верха» добраться. Проходили эпохи и века, но человек так и не оставлял своей мечты отправится ввысь. С каждым новой идеей, с каждым новым гением, Человек приближался к своей мечте. Медленно, но целеустремленно, Человек подчинял законы мироздания для своей мечты. Сначала самодельные крылья, потом воздушный шар. Следующим шагом стал Самолет, перевернувший весь взгляд на авиастроение. Сотни и тысячи молодых умов были воодушевлены на новые открытия. И вот уже Человек покорил атмосферу Земли и уже устремил свои взгляды дальше и выше, в Космос. Человек опять принялся соревноваться, но на сей раз не только с природой, но и с самим собой за звание первого в космосе. И после тысячи экспериментов и тестов Человек покорил рубеж земной орбиты. Дальше была она: Луна. И опять человек доказал свой ум и терпение, покорив и Луну. Но Человек знал, что может больше и отправлял зонды ко всем телам в нашей солнечной системе. Совсем недавно Человек своими роботами добрался и до Плутона, теперь взгляда Человека устремлены как никогда вдаль. И только технологии сдерживают его воображение и тягу к первооткрыванию. Сейчас мы окунемся в мир перспективных космических двигателей, которые собственно и будут нашими лошадей которые несут нас по направлению к звездам. Для начала стоит понимать, что их себя представляет обычный реактивный двигатель. Третий закон Ньютона гласит- «Сила действия равна силе противодействия», это высказывание лежит в основе всего ракетостроения. То есть если тяга двигателя направленна в одну сторону, то ускорение самого аппарата с этим двигателем направленна в противоположную сторону, и эта сила равна по модулю.

Таким образом напрашивается вывод: чем больше массы вы выбросим в противоположную сторону нашего желаемого направления, тем большую скорость разовьем. Это не совсем верно пора ввести новое понятие: «Удельный импульс» это показатель эффективности реактивного двигателя и равен отношению создаваемого им импульса к расходу топлива. Чем больше удельный импульс, тем меньше топлива надо потратить, чтобы получить определённое количество движения. Теперь нам нужно учитывать и скорость вылета рабочего тела из сопла. В современных ракетных двигателях для повышения удельного импульса используются разные топливные па́ры. Существуют 3 типа использующихся топливных пар: 1 Керосин (РГ-1) + жидкий кислород. Удельный импульс – 250-306 с Такая пара обеспечивает наибольшую надёжность и общую дешевизну использования. Двигатели на такой паре используют советские и российские РД-107 и РД-108 на ракетах семейства Р-7 («Восток», «Молния», «Восход», «Союз»). Говоря о том, что эта система очень надежна надо понимать, что за 59 лет использования в разнообразных миссиях по запуску как пилотируемых, так и дистанционно управляемых аппаратов, было совершенно около 1500 запусков с 97% успеха. Такого процента не достигло ни одно семейство ракет. 2 Жидкий водород + жидкий кислород. Удельный импульс – 311-339 с На сегодняшний день основным оператором такой системы является НАСА и Европейское космическое агентство, двигателями советского производства РД-180, двигателями европейского производства «Вулкан-2», а также американскими RS-68. Такая пара обеспечивает наибольший удельный импульс среди используемых систем. Но в тоже время его сложность в содержании и поддержании определённой температуры на протяжении полета, означают высокую стоимость запуска. Большую эффективную показывают в условиях вакуума, следовательно, целесообразно использования во вторых и третьих ступенях. 3 Несимметри́чный дим

filesclub.net

Космические двигатели будущего

Современные ракетные двигатели неплохо справляются с задачей выведения техники на орбиту, но совершенно непригодны для длительных космических путешествий. Поэтому уже не первый десяток лет ученые работают над созданием альтернативных космических двигателей, которые могли бы разгонять корабли до рекордных скоростей.

Давайте рассмотрим семь основных идей из этой области.

Космические двигатели будущего

EmDrive

двигатели

Чтобы двигаться, надо от чего-то оттолкнуться – это правило считается одним из незыблемых столпов физики и космонавтики. От чего конкретно отталкиваться – от земли, воды, воздуха или реактивной струи газа, как в случае ракетных двигателей, – не так важно.

Хорошо известен мысленный эксперимент: представьте, что космонавт вышел в открытый космос, но трос, связывающий его с кораблем, неожиданно порвался и человек начинает медленно улетать прочь. Все, что у него есть, – это ящик с инструментами. Каковы его действия? Правильный ответ: ему нужно кидать инструменты в сторону от корабля. Согласно закону сохранения импульса, человека отбросит от инструмента ровно с той же силой, с какой и инструмент от человека, поэтому он постепенно будет перемещаться по направлению к кораблю. Это и есть реактивная тяга – единственный возможный способ двигаться в пустом космическом пространстве. Правда, EmDrive, как показывают эксперименты, имеет некоторые шансы это незыблемое утверждение опровергнуть.

Создатель этого двигателя – британский инженер Роджер Шаер, основавший собственную компанию Satellite Propulsion Research в 2001 году. Конструкция EmDrive весьма экстравагантна и представляет собой по форме металлическое ведро, запаянное с обоих концов. Внутри этого ведра расположен магнетрон, излучающий электромагнитные волны, – такой же, как в обычной микроволновке. И его оказывается достаточно, чтобы создавать очень маленькую, но вполне заметную тягу.

Сам автор объясняет работу своего двигателя через разность давления электромагнитного излучения в разных концах "ведра" – в узком конце оно меньше, чем в широком. Благодаря этому создается тяга, направленная в сторону узкого конца. Возможность такой работы двигателя не раз оспаривалась, но во всех экспериментах установка Шаера показывает наличие тяги в предполагаемом направлении.

В числе экспериментаторов, опробовавших "ведро" Шаера, такие организации, как NASA, Технический университет Дрездена и Китайская академия наук. Изобретение проверяли в самых разных условиях, в том числе и в вакууме, где оно показало наличие тяги в 20 микроньютонов.

Это очень мало относительно химических реактивных двигателей. Но, учитывая то, что двигатель Шаера может работать сколь угодно долго, так как не нуждается в запасе топлива (работу магнетрона могут обеспечивать солнечные батареи), потенциально он способен разгонять космические корабли до огромных скоростей, измеряемых в процентах от скорости света.

двигатели

Чтобы полностью доказать работоспособность двигателя, необходимо провести еще множество измерений и избавиться от побочных эффектов, которые могут порождаться, к примеру, внешними магнитными полями. Однако уже выдвигаются и альтернативные возможные объяснения аномальной тяги двигателя Шаера, которая, в общем-то, нарушает привычные законы физики.

К примеру, выдвигаются версии, что двигатель может создавать тягу благодаря взаимодействию с физическим вакуумом, который на квантовом уровне имеет ненулевую энергию и заполнен постоянно рождающимися и исчезающими виртуальными элементарными частицами. Кто в итоге окажется прав – авторы этой теории, сам Шаер или другие скептики, мы узнаем в ближайшем будущем.

Солнечный парус

двигатели

Как говорилось выше, электромагнитное излучение оказывает давление. Это значит, что теоретически его можно преобразовывать в движение – например, с помощью паруса. Аналогично тому, как корабли прошлых веков ловили в свои паруса ветер, космический корабль будущего ловил бы в свои паруса солнечный или любой другой звездный свет.

Проблема, однако, в том, что давление света крайне мало и уменьшается с увеличением расстояния от источника. Поэтому, чтобы быть эффективным, такой парус должен иметь очень малый вес и очень большую площадь. А это увеличивает риск разрушения всей конструкции при встрече с астероидом или другим объектом.

Попытки строительства и запуска солнечных парусников в космос уже имели место – в 1993 году тестирование солнечного паруса на корабле "Прогресс" провела Россия, а в 2010 году успешные испытания по пути к Венере осуществила Япония. Но еще ни один корабль не использовал парус в качестве основного источника ускорения. Несколько перспективнее в этом отношении выглядит другой проект – электрический парус.

Электрический парус

двигатели

Солнце излучает не только фотоны, но также и электрически заряженные частицы вещества: электроны, протоны и ионы. Все они формируют так называемый солнечный ветер, ежесекундно уносящий с поверхности светила около одного миллиона тонн вещества.

Солнечный ветер распространяется на миллиарды километров и ответственен за некоторые природные явления на нашей планете: геомагнитные бури и северное сияние. Земля от солнечного ветра защищается с помощью собственного магнитного поля.

Солнечный ветер, как и ветер воздушный, вполне пригоден для путешествий, надо лишь заставить его дуть в паруса. Проект электрического паруса, созданный в 2006 году финским ученым Пеккой Янхуненом, внешне имеет мало общего с солнечным. Этот двигатель состоит из нескольких длинных тонких тросов, похожих на спицы колеса без обода.

двигатели

Благодаря электронной пушке, излучающей против направления движения, эти тросы приобретают положительный заряженный потенциал. Так как масса электрона примерно в 1800 раз меньше, чем масса протона, то создаваемая электронами тяга не будет играть принципиальной роли. Не важны для такого паруса и электроны солнечного ветра. А вот положительно заряженные частицы – протоны и альфа-излучение – будут отталкиваться от тросов, создавая тем самым реактивную тягу.

Хотя эта тяга будет примерно в 200 раз меньше, чем таковая у солнечного паруса, проект заинтересовал Европейское космическое агентство. Дело в том, что электрический парус гораздо проще сконструировать, произвести, развернуть и эксплуатировать в космосе. Кроме того, с помощью гравитации парус позволяет также путешествовать к источнику звездного ветра, а не только от него. А так как площадь поверхности такого паруса гораздо меньше, чем у солнечного, то для астероидов и космического мусора он уязвим куда меньше. Возможно, первые экспериментальные корабли на электрическом парусе мы увидим уже в следующие несколько лет.

Ионный двигатель

двигатели

Поток заряженных частиц вещества, то есть ионов, излучают не только звезды. Ионизированный газ можно создать и искусственно. В обычном состоянии частицы газа электрически нейтральны, но, когда его атомы или молекулы теряют электроны, они превращаются в ионы. В общей своей массе такой газ все еще не имеет электрического заряда, но его отдельные частицы становятся заряженными, а значит, могут двигаться в магнитном поле.

В ионном двигателе инертный газ (обычно используется ксенон) ионизируется с помощью потока высокоэнергетических электронов. Они выбивают электроны из атомов, и те приобретают положительный заряд. Далее получившиеся ионы ускоряются в электростатическом поле до скоростей порядка 200 км/с, что в 50 раз больше, чем скорость истекания газа из химических реактивных двигателей. Тем не менее современные ионные двигатели обладают очень маленькой тягой – около 50–100 миллиньютонов. Такой двигатель не смог бы даже сдвинуться со стола. Но у него есть серьезный плюс.

Большой удельный импульс позволяет значительно сократить расходы топлива в двигателе. Для ионизации газа используется энергия, полученная от солнечных батарей, поэтому ионный двигатель способен работать очень долго – до трех лет без перерыва. За такой срок он успеет разогнать космический аппарат до скоростей, которые химическим двигателям и не снились.

Ионные двигатели уже не раз бороздили просторы Солнечной системы в составе различных миссий, но обычно в качестве вспомогательных, а не основных. Сегодня как о возможной альтернативе ионным двигателям все чаще говорят про двигатели плазменные.

Плазменный двигатель

двигатели

Если степень ионизации атомов становится высокой (порядка 99%), то такое агрегатное состояние вещества называется плазмой. Достичь состояния плазмы можно лишь при высоких температурах, поэтому в плазменных двигателях ионизированный газ разогревается до нескольких миллионов градусов. Разогрев осуществляется с помощью внешнего источника энергии – солнечных батарей или, что более реально, небольшого ядерного реактора.

Горячая плазма затем выбрасывается через сопло ракеты, создавая тягу в десятки раз большую, чем в ионном двигателе. Одним из примеров плазменного двигателя является проект VASIMR, который развивается еще с 70-х годов прошлого века. В отличие от ионных двигателей, плазменные в космосе еще испытаны не были, но с ними связывают большие надежды. Именно плазменный двигатель VASIMR является одним из основных кандидатов для пилотируемых полетов на Марс.

Термоядерный двигатель

двигатели

Укротить энергию термоядерного синтеза люди пытаются с середины ХХ века, но пока что сделать это так и не удалось. Тем не менее управляемый термоядерный синтез все равно очень привлекателен, ведь это источник громадной энергии, получаемой из весьма дешевого топлива – изотопов гелия и водорода.

В настоящий момент существует несколько проектов конструкции реактивного двигателя на энергии термоядерного синтеза. Самой перспективной из них считается модель на основе реактора с магнитным удержанием плазмы. Термоядерный реактор в таком двигателе будет представлять собой негерметичную цилиндрическую камеру размером 100–300 метров в длину и 1–3 метра в диаметре. В камеру должно подаваться топливо в виде высокотемпературной плазмы, которая при достаточном давлении вступает в реакцию ядерного синтеза. Располагающиеся вокруг камеры катушки магнитной системы должны удерживать эту плазму от контакта с оборудованием.

Зона термоядерной реакции располагается вдоль оси такого цилиндра. С помощью магнитных полей экстремально горячая плазма проистекает через сопло реактора, создавая огромную тягу, во много раз большую, чем у химических двигателей.

Двигатель на антиматерии

двигатели

Все окружающее нас вещество состоит из фермионов – элементарных частиц с полуцелым спином. Это, к примеру, кварки, из которых состоят протоны и нейтроны в атомных ядрах, а также электроны. При этом у каждого фермиона есть своя античастица. Для электрона таковой выступает позитрон, для кварка – антикварк.

Античастицы имеют ту же массу и тот же спин, что и их обычные "товарищи", отличаясь знаком всех остальных квантовых параметров. Теоретически античастицы способны составлять антивещество, но до сих пор нигде во Вселенной антивещество зарегистрировано не было. Для фундаментальной науки является большим вопросом, почему его нет.

Но в лабораторных условиях можно получить некоторое количество антивещества. К примеру, недавно был проведен эксперимент по сравнению свойств протонов и антипротонов, которые хранились в магнитной ловушке.

При встрече антивещества и обычного вещества происходит процесс взаимной аннигиляции, сопровождаемый выплеском колоссальной энергии. Так, если взять по килограмму вещества и антивещества, то количество выделенной при их встрече энергии будет сопоставимо со взрывом "Царь-бомбы" – самой мощной водородной бомбы в истории человечества.

Причем значительная часть энергии при этом выделится в виде фотонов электромагнитного излучения. Соответственно, возникает желание использовать эту энергию для космических перемещений путем создания фотонного двигателя, похожего на солнечный парус, только в данном случае свет будет генерироваться внутренним источником.

Но чтобы эффективно использовать излучение в реактивном двигателе, необходимо решить задачу создания "зеркала", которое было бы способно эти фотоны отразить. Ведь кораблю каким-то образом надо оттолкнуться, чтобы создать тягу.

Никакой современный материал попросту не выдержит рожденного в случае подобного взрыва излучения и моментально испарится. В своих фантастических романах братья Стругацкие решили эту проблему путем создания "абсолютного отражателя". В реальной жизни ничего подобного пока сделать не удалось. Эта задача, как и вопросы создания большого количества антивещества и его длительного хранения, – дело физики будущего.

Источник

7lostworlds.ru

В России создан авиационный двигатель для полетов в ближнем космосе - Армия и ОПК

© Антон Новодережкин/ТАСС, архив

МОСКВА, 13 июля. /ТАСС/. Комбинированный двигатель, с помощью которого самолеты смогут выполнять полеты и в атмосфере, и в ближнем космосе, создан в России и будет представлен на форуме "Армия-2016". Об этом сообщил журналистам командующий Ракетными войсками стратегического назначения (РВСН) Сергей Каракаев.

"В филиале Военной академии РВСН имени Петра Великого (г. Серпухов) разработан двигатель для перспективного воздушно-космического самолета. Данное ноу-хау позволило решить задачу создания комбинированной силовой установки летательного аппарата для перевода двигателя с воздушного режима работы при полете в атмосфере на ракетный - в космическом пространстве", - сказал Каракаев.

Командующий РВСН рассказал, что на международном оборонном форуме "Армия-2016", который пройдет в начале сентября в подмосковной Кубинке под эгидой Минобороны РФ, военные представят действующую модель этого двигателя. По его словам, модель прошла огневые испытания и "работоспособность агрегата доказана".

Весной вице-премьер Дмитрий Рогозин объявил, что российские самолетостроители приступили к разработке боевого самолета шестого поколения.

Как сообщил в интервью ТАСС советник первого заместителя гендиректора концерна "Радиоэлектронные технологии" (компания ведет исследования по бортовому оборудованию для нового поколения истребителей), одной из главных технических особенностей этих летательных аппаратов станет возможность выходить в ближний космос и выполнять там управляемый полет с гиперзвуковой скоростью.

Планируется, что опытный образец совершит первый полет до 2025 года.

Новости smi2.ru

Новости smi2.ru

Загрузка...

tass.ru

Русские космические корабли с ядерными двигателями

топ 100 блогов fritzmorgen — 27.11.2012 Русские космические корабли с ядерными двигателями

Россия разрабатывает ядерные ионно-ксеноновые двигатели для дальних космических полётов. В соответствии с картой проекта, уже к 2018 году наши учёные планируют в 30 раз повысить уровень электрической мощности космических систем:

http://atominfo.ru/newsc/l0499.htm

Первую стадию разработки техпроекта ядерного космического двигателя мегаваттного класса наши учёные завершат уже в этом году. Технические решения по выбору конкретной конструкции ТВЭЛ и реактора уже выбраны:

http://atominfo.ru/newsb/k0856.htm

Идея применения ядерных двигателей на космических аппаратах не нова: решение о разработке ядерных ракетных двигателей в СССР в 1960-е годы принимали еще академики Мстислав Келдыш, Игорь Курчатов и Сергей Королев. Подобные разработки велись не только в СССР, но и в США.

На заре космической эпохи ученые пытались создать ядерный ракетный двигатель, в котором рабочее тело, создававшее тягу, нагревалось непосредственно в реакторе. Однако такие установки давали "выхлоп" крайне высокой радиоактивности.

Новый проект предполагает использование ионных электрореактивных двигателей, в которых реактивная тяга создается за счет ускоренного электрическим полем потока ионов.Ядерный реактор "поставляет" необходимый для этого процесса электрический ток, и радиоактивные вещества не попадают во внешнюю среду.

Предполагается, что рабочим телом в двигателе будет ксенон.

Всего на разработку выделено 17 миллиардов рублей. Это небольшие для России деньги: для сравнения, на модернизацию нашей армии уйдёт в тысячу раз большая сумма.

Как мы будем использовать эти двигатели?

Во-первых, такой двигатель будет установлен на космический буксир, который, наконец-то, сможет тягать спутники туда-сюда по орбитам и обслуживать их:

http://www.federalspace.ru/main.php?id=402

Если бы во время неудачи с Фобос-грунтом у нас был такой буксир, спутник с большой долей вероятности можно было бы спасти.

Кроме того, ядерный двигатель пригодится нам во время пилотируемого полёта на Марс. Люди не умеют впадать в спячку: поэтому долгие месяцы в обычном космическом корабле будут для них слишком суровым испытанием, на грани смертельного. С ядерными же двигателями время полёта к Марсу сократится в разы.

При этом в процессе подготовки к этой исторической экспедиции будут решаться и другие принципиальные проблемы дальних перелётов. Например, уже сейчас разрабатывается система защиты кораблей от солнечной радиации:

http://atominfo.ru/newsc/l0053.htm

Специальные сверхпроводящие магниты будут двойной спиралью опоясывать корабль, а создаваемое ими магнитное поле будет защищать астронавтов от космических лучей.

Отмечу, что ядерный космический двигатель — это полностью российский проект:

http://www.nikiet.ru/index.php?option=com_content&view=article&id=426%3A-2012-280812&catid=6&Itemid=5

Технологии американцев — нашего единственного полноценного конкурента в космосе — пока не позволяют им продвинуться в разработке собственного варианта ядерной тяги.

Поэтому NASA сейчас удовлетворяется тем, что готовит к запуску в космос обычные реакторы — реакторы для выработки электричества. В настоящее время насисты корпят над проектом реактора для лунной базы. Если первый в истории США чернокожий президент не похерит окончательно экономику своей могучей страны, эта база будет построена на Луне к 2020 году. Питать её будет маленький традиционный реактор мощностью в 40 Киловатт:

http://atominfo.ru/news/air6608.htm

Для полноразмерной базы, конечно же, этого будет недостаточно. Наши учёные считают, что для нормальных размеров базы на другом небесном теле нужна будет на три порядка большая мощность — около 25 Мегаватт:

http://www.nikiet.ru/index.php?option=com_content&view=article&id=434%3A2012-28092012&catid=6&Itemid=5

Впрочем, для небольшой научно-исследовательской миссии вполне хватит и американского реактора.

В любом случае, на нашей родной планете мы уже вовсю ходим вокруг гигаваттной планки. К примеру, очень перспективный реактор нового поколения, который сейчас разрабатывают наши учёные, будет только в первой своей реализации иметь мощность в 300 Мегаватт:

http://ru.wikipedia.org/wiki/БРЕСТ

Это реактор так называемого «замкнутого цикла»: он значительно безопаснее, дешевле и чище реакторов, которые стоят в современных АЭС.

На разработку новых «земных» реакторов Россия выделяет уже довольно серьёзные ресурсы. Только прямые инвестиции в ядерный центр в Димитровграде составят 120 миллиардов рублей:

http://expert.ru/2011/10/19/nteres-k-atomu/

Что важно, вполне конкретные результаты центр в Димитровграде даёт уже сейчас. Например, в следующем году Россия полностью закроет дефицит молибдена-99 на мировом рынке (этот изотоп используется в медицине).

А в 2013 году в Димитровграде открывается Центр медицинской радиологии, рассчитанный на лечение около 40 тысяч человек в год.

Россия сейчас является безусловным лидером в атомной энергетике. Практически все перспективные разработки делаются именно в нашей стране.

Например, сейчас ведётся работа над реакторной установкой СВБР-100. Этот реактор на быстрых нейтронах будет построен в течение ближайших четырёх лет. При помощи таких реакторов можно будет быстро и относительно недорого создавать так называемые «малые АЭС» по всему миру:

http://expert.ru/2011/02/8/yadernyij-reaktor-v-kazhdyij-dom/

Строиться такой реактор будет всего лишь два года, а срок его эксплуатации будет составлять 60 лет. Особенность этого реактора в том, что он почти полностью изготавливается на заводе. То есть, на месте нужно просто подготовить для него фундамент и установить туда уже готовые блоки: это относительно несложная процедура.

Мощность реактора можно будет выбирать в пределах 100-400 Мегаватт.

Представьте, крупное производство в какой-нибудь труднодоступной местности. Рядом — небольшой город. Где брать электричество?

Ставим малую АЭС на основе СВБР-100 — и вопрос решён. В ближайшие тридцать лет рынок таких установок составит, по оценкам экспертов, 300-600 миллиардов долларов.

Для сравнения, эти цифры больше, чем все доходы бюджета Российской Федерации в текущем году.

Кстати, покупать малые АЭС будет у нас, в частности, Канада. Три года назад они отказались от своего проекта с говорящим названием SLOWPOKE:

http://en.wikipedia.org/wiki/SLOWPOKE_reactor

Правительства большинства других стран не видят особого смысла финансировать собственные проекты в атомной сфере. Они понимают, что соревноваться на этом поле с Россией уже нереально. Куда как проще и эффективнее присоединяться к нашим проектам.

К 2019 году в России будет построен исследовательский реактор МБИР на быстрых нейтронах. Исследователи из США и других стран уже записываются в очередь, чтобы проводить на нём эксперименты:

http://www.nikiet.ru/index.php?option=com_content&view=article&id=426%3A-2012-280812&catid=6&Itemid=5

Ещё один исследовательский реактор — ПИК — был запущен в конце прошлого года. Первые физические эксперименты начнут проводиться там через год.

Продолжаем мы и международную работу по термоядерному реактору. Реальных результатов в обозримом будущем ждать там не приходится, однако участие в программе ITER позволяет находить интересные с инженерной точки зрения решения, которые наши специалисты используют уже в практичных, промышленных реакторах.

Если вы запутались во всём этом выводке атомных проектов, вот небольшой перечень некоторых перспективных разработок:

http://www.atominfo.ru/newsc/l0523.htm

Итак, сейчас Россия успешно проводит сразу две революции в ядерной энергетике.

Во-первых, это проект «Прорыв» — безопасные и экономичные реакторы на быстрых нейтронах, которые будут работать по замкнутому циклу:

http://izvestia.ru/news/532115

Во-вторых, это проект мегаваттного космического реактора, который позволит нам начать полноценное освоение других планет.

Что важно, это не просто планы и мечты. Огромная часть работ уже проведена, а с разработок прошлых лет мы уже успешно получаем большие деньги.

Вот вам, например, свежая новость.

«Росатом» начал полномасштабное наступление на Европу. Вскоре мы начинаем поставки ядерного топлива на шведскую АЭС «Рингхальс-3», а если переговоры с французами пойдут по плану, то мы будем поставлять топливо и в сердце европейского атома — во Францию:

http://expert.ru/2012/11/26/nastuplenie-na-konkurentov/?n=66992

Очень сильны наши позиции на рынке Китая, который не перестаёт вводить в эксплуатацию всё новые и новые АЭС. Строим мы АЭС и в Индии. И знаете, что самое интересное?

Когда говорят про космос, в первую очередь вспоминают недорогую американскую игрушку «Курьёзити». Когда говорят про инновации, разумеется, думают про последний айфон.

Однако про тот обширнейший пласт технологий, в котором мы не просто сильны, а являемся неоспоримым лидером, никто не знает. Потому что, увы, в искусстве самопиара наша страна пока ещё отстаёт от западного мира на много корпусов.

Собственно, я не настоящий сварщик. Внутри действующей атомной станции я был всего лишь раз в жизни, три года назад:

http://fritzmorgen.livejournal.com/192571.html

Мой короткий обзор — в котором наверняка специалисты найдут кучу неточностей — я сделал скорее от отчаяния, потому что считаю, что хоть кто-нибудь должен был об этом написать.

И, кстати, раз уж речь зашла об исследованиях, я хочу поблагодарить вас за ваше участие в работе над открытым корпусом текстов, про который я писал в предыдущем посте. Статистика проекта показывает, что над разметкой текста сегодня работает на 250 человек больше, чем вчера.

PS. Традиционное мнение пессимистов на «Эхе Москвы»:

http://echo.msk.ru/blog/fritz_morgen/957006-echo/#comments

Любопытно, но большая часть оппозиционеров ещё не в курсе, что ГЛОНАСС успешно функционирует.

Update 1. Ещё из очень востребованных проектов у нас есть плавучие АЭС:

http://www.atominfo.ru/news2/b0413.htmhttp://www.okbm.nnov.ru/russian/lomonosov

Это расположенные на корблях небольшие атомные станции, энергия которых может питать средних размеров город или крупное производство. За ними уже выстраиваются очереди — как в России, так и по всей планете.

Update 2. По вопросу безопасности. Согласно международным договорённостям, включать ядерные реакторы разрешается на орбитах не ниже 800 километров. До этого момента ядерное топливо практически безопасно, с ним работают чуть ли не в обычных свинцовых перчатках:

http://zvercorner.com/?p=6375

Update 3. По вопросу охлаждения ядерного двигателя. Есть два варианта.

Первый уже летал на многих советских реакторах — это панели-радиаторы, охлаждение излучением. Температура неба в космосе — порядка 10~20 кельвин, поэтому тепло с горячего радиатора туда улетает с инфракрасным излучением.

Вот два типа советских спутниковых реакторов. Радиатор на них — это почти весь «конус», а сам реактор — его вершина, он очень маленький. Там всё подписано где что.

http://www.ippe.ru/podr/ippe1/rpr/rcosm.phphttp://www.ippe.ru/podr/ippe1/rpr/1rcosm.phphttp://www.ippe.ru/podr/ippe1/rpr/2rcosm.php

Второй вариант, над которым работают — это капельный холодильник. Он тоже охлаждает излучением, но вместо панели-излучателя создаёт поток капель горячего теплоносителя с очень большой суммарной площадью поверхности излучения. Но на проектируемом, похоже, будут простые панели-излучатели:

http://www.atomic-energy.ru/smi/2011/04/12/21062

Во многом база для космического реактора была наработана ещё в советское время, но целый ряд вопросов по-прежнему требует решений. Одной из сложнейших проблем, заставивших разработчиков ЯЭДУ пораскинуть мозгами, стал вопрос снятия тепла. Его удалось решить благодаря оригинальной конструкции капельного холодильника, разработанного специально для космического реактора.

Механизм заключается в следующем: форсунка разбрызгивает жидкость с высокой степенью энергоотдачи в специальную прозрачную камеру, где она охлаждается благодаря способности светиться (идея в том, что при достаточно большой площади поверхности жидкости в мелкодисперсном состоянии происходит максимальное «высвечивание» тепла), а затем возвращается в контур. Избытки тепла предполагается излучать в космос.

Вот ещё от Центра Келдыша, где разрабатывают капельные холодильники для космоса:

http://www.kerc.msk.ru/ipg/development/cooler/cooler.shtml

yablor.ru

«В России создали двигатель для воздушно-космического самолета» в блоге «Перспективные разработки, НИОКРы, изобретения»

Двигатель включает силовую установку, работающую на двух режимах - воздушном и ракетном.

Двигатель для перспективного воздушно-космического самолета, который будет применяться как в Вооруженных силах РФ, так и в гражданской сфере, создали в серпуховском филиале Военной академии РВСН имени Петра Великого, сообщил РИА Новости в понедельник представитель академии.

Комбинированный воздушно-ракетный двигатель с прямоточной камерой пульсирующего горения, форкамерой и системой воздушного запуска создан для обеспечения возможности работы двигательной установки как в атмосфере, так и в космическом пространстве. Перспективный самолет с таким двигателем может с большей выгодой доставлять грузы на орбитальные станции, отметил собеседник агентства.

«Решена задача создания комбинированной силовой установки летательного аппарата для перевода двигателя с воздушного режима работы при полете в атмосфере на ракетный — в космическом пространстве. Двигатель включает силовую установку, работающую на двух контурах (режимах) — воздушном и ракетном», — пояснил представитель академии в ходе выставки «День инноваций Минобороны РФ — 2015».

Принцип работы, по его словам, таков: «Самолет патрулирует воздушное пространство, взлетает с обычного аэродрома, дальше получает команду на отработку в космосе, например перехват боевых блоков, уничтожение целей, выходит в космическое пространство, там отрабатывает и возвращается в атмосферу».

Представитель академии отметил, что самого воздушно-космического самолета пока еще нет, сначала для него создают двигатель, а потом запустят в работу саму машину: «Проект этой модели был разослан в ведущие российские организации, были получены отзывы и замечания. Два завода уже берутся сделать опытный образец в натуральную величину. НПО „Молния“ ведет сейчас разработку НИРа по гиперзвуковому воздушно-космическому самолету, но у них нет двигательной установки, мы пытаемся с ними начать проводить научную работу вместе».

По его словам, размерность двигателя будет зависеть от стартовой массы самолета и полезной нагрузки, которую он понесет. Представленная на «Дне инноваций» модель — действующая, она прошла огневые испытания — работоспособность агрегата доказана.

В силовой установке на воздушном режиме использовалось керосиновое топливо, а для космоса — метан и газообразный кислород. Задач делать двигатель с экологически чистым топливом пока не стоит, так как будущий летательный аппарат возвращаемый, многоразовый и не будет иметь проблем с отработанными ступенями, как у обычных космических ракет.

По предварительным оценкам академии, стоимость созданного двигателя — 90 миллионов рублей, тогда как жидкостные ракетные двигатели на ракету с одной ступенью стоят порядка 120-140 миллионов. Таким образом, установка выходит гораздо выгоднее как по собственной стоимости, так и с учетом многоразового ее использования, отмечают в научном заведении.

sdelanounas.ru

перспективные проекты космических кораблей США » Военное обозрение

21 июля 2011 года американский космический корабль Atlantis совершил свою последнюю посадку, поставившую точку в длительной и интереснейшей программе Space Transportation System. По целому ряду причин технического и экономического характера было решено прекратить эксплуатацию системы Space Shuttle. Тем не менее, от идеи многоразового космического корабля не отказались. В настоящее время разрабатывается сразу несколько подобных проектов, и некоторые из них уже успели показать свой потенциал.

Проект многоразового космического корабля «Спейс Шаттл» преследовал несколько основных целей. Одной из главных было сокращение стоимости полета и подготовки к нему. Возможность многократного применения одного и того же корабля в теории давала известные преимущества. Кроме того, характерный технический облик всего комплекса позволил заметным образом увеличить допустимые габариты и массу полезной нагрузки. Уникальной особенностью STS была возможность возвращения космических аппаратов на Землю внутри своего грузоотсека.

Многоразовый космос: перспективные проекты космических кораблей СШАПоследний старт корабля Altantis, 8 июля 2011 г. Фото NASA

Тем не менее, в ходе эксплуатации было установлено, что удалось выполнить далеко не все поставленные задачи. Так, на практике подготовка корабля к полету оказалась слишком долгой и дорогой – по этим параметрам проект не укладывался в изначальные требования. В ряде случаев многоразовый корабль принципиально не мог заменить «обычные» ракеты-носители. Наконец, постепенное моральное и физическое устаревание техники приводило к самым серьезным рискам для экипажей.

В итоге было принято решение о прекращении эксплуатации комплекса Space Transportation System. Последний 135-й полет состоялся летом 2011 года. Четыре имевшихся корабля списали и передали музеям за ненадобностью. Самым известным последствием таких решений стал тот факт, что американская космическая программа на несколько лет осталась без собственного пилотируемого корабля. До сих пор астронавтам приходится попадать на орбиту при помощи российской техники.

Кроме того, на неопределенный срок вся планета осталась без используемых многоразовых систем. Впрочем, уже принимаются определенные меры. К настоящему времени американские предприятия разработали сразу несколько проектов многоразовых космических кораблей того или иного рода. Все новые образцы уже, как минимум, выведены на испытания. В обозримом будущем они также смогут поступить в полноценную эксплуатацию.

Boeing X-37

Основной компонент комплекса STS представлял собой орбитальный самолет. Эта концепция в настоящее время находит применение в проекте X-37 компании Boeing. Еще в конце девяностых годов «Боинг» и NASA начали изучать тематику многоразовых кораблей, способных находиться на орбите и летать в атмосфере. В начале прошлого десятилетия эти работы привели к старту проекта X-37. В 2006 году опытный образец нового типа дошел до летных испытаний со сбросом с самолета-носителя.

Аппарат Boeing X-37B в обтекателе ракеты-носителя. Фото US Air Force

Программа заинтересовала военно-воздушные силы США, и с 2006 года реализуется уже в их интересах, хотя и при определенном содействии со стороны NASA. По официальным данным, ВВС желают получить перспективный орбитальный самолет, способный выводить в космос различные грузы или выполнять разнообразные эксперименты. По разным оценкам, нынешний проект X-37B может использоваться и в иных миссиях, в том числе связанных с ведением разведки или выполнением полноценной боевой работы.

Первый космический полет аппарата X-37B состоялся в 2010 году. В конце апреля ракета-носитель Atlas V вывела аппарат на заданную орбиту, где он пробыл 224 дня. Посадка «по-самолетному» состоялась в начале декабря того же года. В марте следующего года начался второй полет, продолжавшийся до июня 2012-го. В декабре состоялся очередной запуск, а третья посадка была проведена только в октябре 2014 года. С мая 2015-го по май 2017-го опытный X-37B осуществлял свой четвертый полет. 7 сентября прошлого года начался очередной испытательный полет. Когда он завершится – не уточняется.

Согласно немногочисленным официальным данным, целью полетов является изучение работы новой техники на орбите, а также проведение различных экспериментов. Даже если опытные X-37B и решают задачи военного характера, заказчик и исполнитель не раскрывают подобную информацию.

В существующем виде изделие Boeing X-37B представляет собой самолет-ракетоплан характерного облика. Он отличается крупным фюзеляжем и плоскостями средней площади. Используется ракетный двигатель; управление осуществляется автоматикой или по командам с земли. По известным данным, в фюзеляже предусмотрен грузовой отсек длиной более 2 м и диаметром свыше 1 м, в котором можно разместить до 900 кг полезной нагрузки.

Прямо сейчас опытный X-37B находится на орбите и решает поставленные задачи. Когда он вернется на Землю – неизвестно. Сведения о дальнейшем ходе пока экспериментального проекта тоже не уточняются. По-видимому, новые сообщения об интереснейшей разработке появятся не ранее очередной посадки опытного образца.

SpaceDev / Sierra Nevada Dream Chaser

Еще одной версией орбитального самолета является корабль Dream Chaser от компании SpaceDev. Этот проект разрабатывался с 2004 года для участия в программе NASA Commercial Orbital Transportation Services (COTS), однако не смог пройти первый этап отбора. Тем не менее, компания-разработчик вскоре договорилась о сотрудничестве с фирмой United Launch Alliance, которая была готова предложить свою ракету-носитель Atlas V. В 2008 году SpaceDev вошла в состав корпорации Sierra Nevada, и вскоре после этого получила дополнительное финансирование для создания своего орбитального самолета. Позже появилось соглашение с Lockheed Martin о совместном строительстве опытной техники.

Опытный орбитальный самолет Dream Chaser. Фото NASA

В октябре 2013 года летный прототип аппарата Dream Chaser был сброшен с вертолета-носителя, после чего перешел в планирующий полет и выполнил горизонтальную посадку. Несмотря на поломку при посадке, прототип подтвердил расчетные характеристики. В дальнейшем были выполнены некоторые другие проверки на стендах. По их результатам проект был доработан, а в 2016 году стартовало строительство опытного образца для космических полетов. В середине прошлого года NASA, Sierra Nevada и ULA подписали соглашение о проведении двух орбитальных полетов в 2020-21 годах.

Не так давно разработчики аппарата Dream Chaser получили разрешение на проведение запуска в конце 2020 года. В отличие от ряда других современных разработок, первая космическая миссия этого корабля будет осуществляться с реальной нагрузкой. Корабль должен будет доставить на Международную космическую станцию определенные грузы.

В существующем виде многоразовый космический корабль Sierra Nevada / SpaceDev Dream Chaser представляет собой самолет характерного облика, внешне напоминающий некоторые американские и зарубежные разработки. Машина имеет общую длину 9 м и оснащена треугольным крылом размахом 7 м. Для совместимости с существующими ракетами-носителями в будущем будет разработано складное крыло. Взлетная масса определена на уровне 11,34 т. Dream Chaser сможет доставлять на МКС 5,5 т груза и возвращать на Землю до 2 т. Спуск с орбиты «по-самолетному» связан с меньшими перегрузками, что, как ожидается, может быть полезным для доставки некоторого оборудования и образцов в рамках отдельных экспериментов.

SpaceX Dragon

По ряду причин, идея орбитального самолета в настоящее время не пользуется особой популярностью среди разработчиков новой космической техники. Более удобным и выгодным сейчас считается многоразовый корабль «традиционного» облика, выводимый на орбиту при помощи ракеты-носителя и возвращающийся на Землю без использования крыльев. Наиболее успешной разработкой такого рода является изделие Dragon от компании SpaceX.

Грузовой корабль SpaceX Dragon (миссия CRS-1) вблизи МКС. Фото NASA

Работы по проекту Dragon стартовали в 2006 году и выполнялись в рамках программы COTS. Целью проекта являлось создание космического корабля с возможностью неоднократных запусков и возвращений. Первый вариант проекта предполагал создание транспортного корабля, а в дальнейшем на его базе планировалось разработать пилотируемую модификацию. К настоящему времени Dragon в версии «грузовика» показал определенные результаты, тогда как ожидаемый успех пилотируемой версии корабля постоянно сдвигается по срокам.

Первый демонстрационный запуск транспортного корабля Dragon состоялся в конце 2010 года. После всех требуемых доработок NASA заказало полноценный запуск такого аппарата с целью доставки грузов на Международную космическую станцию. 25 мая 2012 года «Дракон» успешно пристыковался к МКС. В дальнейшем было проведено несколько новых запусков с доставкой грузов на орбиту. Важнейшим этапом программы стал пуск 3 июня 2017 года. Впервые в истории программы состоялся повторный запуск отремонтированного корабля. В декабре в космос отправился еще один аппарат, уже летавший к МКС. С учетом всех испытаний к настоящему времени изделия Dragon совершили 15 полетов.

В 2014 году компания SpaceX анонсировала перспективный пилотируемый корабль Dragon V2. Утверждалось, что этот аппарат, представляющий собой развитие существующего грузовика, сможет доставлять на орбиту или возвращать домой до семи космонавтов. Также сообщалось, что в будущем новый корабль сможет использоваться для облета Луны, в том числе с туристами на борту.

Как нередко случается с проектами компании SpaceX, сроки реализации проекта Dragon V2 несколько раз смещались. Так, из-за задержек с предполагаемым носителем Falcon Heavy дата первых испытаний переместилась на 2018 год, а первый пилотируемый полет постепенно «уполз» на 2019-й. Наконец, несколько недель назад компания-разработчик объявила о намерении отказаться от сертификации нового «Дракона» для пилотируемых полетов. В будущем такие задачи предполагается решать при помощи многоразовой системы BFR, которая еще не создана.

Транспортный корабль Dragon имеет полную длину 7,2 м при диаметре 3,66 м. Сухая масса – 4,2 т. Он способен доставлять к МКС полезную нагрузку весом 3,3 т и возвращать до 2,5 т груза. Для размещения тех или иных грузов предлагается использовать герметичный отсек объемом 11 куб.м и негерметичный 14-кубовый объем. Отсек без герметизации при спуске сбрасывается и сгорает в атмосфере, тогда как второй грузовой объем возвращается на Землю и осуществляет посадку на парашюте. Для коррекции орбиты аппарат оснащается 18 двигателями типа Draco. Работоспособность систем обеспечивается парой солнечных батарей.

При разработке пилотируемой версии «Дракона» были использованы определенные агрегаты базового транспортного корабля. При этом герметичный отсек пришлось заметным образом переработать для решения новых задач. Также изменились некоторые иные элементы корабля.

Lockheed Martin Orion

В 2006 году NASA и компания Lockheed Martin договорились о создании перспективного космического корабля, пригодного для многократного использования. Проект назвали в честь одного из самых ярких созвездий – Orion. На рубеже десятилетий, уже после завершения части работ, руководство Соединенных Штатов предложило отказаться от этого проекта, но после долгих споров его удалось спасти. Работы были продолжены и к настоящему времени привели к определенным результатам.

Перспективный корабль Orion в представлении художника. Рисунок NASA

В соответствии с исходной концепцией, корабль «Орион» должен был использоваться в разных миссиях. С его помощью предполагалось доставлять грузы и людей на Международную космическую станцию. Получив соответствующее оборудование, он мог бы отправиться к Луне. Также прорабатывалась возможность осуществления полета к одному из астероидов или даже к Марсу. Тем не менее, решение таких задач относили к отдаленному будущему.

Согласно планам прошлого десятилетия, первый испытательный запуск корабля Orion должен был состояться в 2013 году. На 2014-й планировали старт с астронавтами на борту. Полет к Луне можно было осуществить до конца десятилетия. Впоследствии график был скорректирован. Первый беспилотный полет перенесли на 2014 год, а запуск с экипажем – на 2017-й. Лунные миссии перенесли на двадцатые годы. К настоящему времени на следующее десятилетие были перенесены и полеты с экипажем.

5 декабря 2014 года состоялся первый испытательный запуск «Ориона». Корабль с имитатором полезной нагрузки был выведен на орбиту ракетой-носителем Delta IV. Через несколько часов после старта он вернулся на Землю и приводнился в заданном районе. Новые запуски пока не проводились. Впрочем, специалисты «Локхид-Мартин» и НАСА не сидели без дела. За несколько последних лет был построен ряд опытных образцов для проведения тех или иных испытаний в земных условиях.

Всего несколько недель назад началось строительство первого корабля Orion для пилотируемого полета. Его запуск запланирован на следующий год. Задача вывода корабля на орбиту будет возложена на перспективную ракету-носитель Space Launch System. Завершение текущих работ покажет реальные перспективы всего проекта.

Проект Orion предусматривает строительство корабля длиной порядка 5 м и диаметром около 3,3 м. Характерной чертой этого аппарата является большой внутренний объем. Несмотря на установку необходимой аппаратуры и приборов, внутри герметичного отсека остается чуть менее 9 куб.м свободного пространства, пригодного для установки тех или иных устройств, в том числе кресел экипажа. Корабль сможет брать на борт до шести астронавтов или определенный груз. Полная масса корабля определена на уровне 25,85 т.

Суборбитальные системы

В настоящее время реализуется несколько любопытных программ, не предусматривающих выведение полезной нагрузки на орбиту Земли. Перспективные образцы техники от ряда американских компаний смогут осуществлять только суборбитальные полеты. Такую технику предполагается использовать для проведения некоторых исследований или в ходе развития космического туризма. Новые проекты такого рода не рассматриваются в контексте развития полноценной космической программы, но все же представляют определенный интерес.

Суборбитальный аппарат SpaceShipTwo под крылом самолета-носителя White Knight Two. Фото Virgin Galactic / virgingalactic.com

Проекты SpaceShipOne и SpaceShipTwo от компаний Scale Composites и Virgin Galactic предлагают строительство комплекса в составе самолета-носителя и орбитального самолета. С 2003 года техника двух типов выполнила значительное число испытательных полетов, в ходе которых отрабатывались различные особенности конструкции и методики работы. Ожидается, что корабль типа SpaceShipTwo сможет брать на борт до шести пассажиров-туристов и поднимать их на высоту не менее 100-150 км, т.е. выше нижней границы космического пространства. Взлет и посадка должны осуществляться с «традиционного» аэродрома.

Компания Blue Origin с середины прошлого десятилетия прорабатывает иной вариант суборбитальной космической системы. Она предлагает выполнять подобные полеты при помощи связки ракеты-носителя и корабля по типу используемых в иных программах. При этом и ракета, и корабль должны быть многоразовыми. Комплекс получил название New Shepard. C 2011 года ракеты и корабли нового типа регулярно совершают испытательные полеты. Уже удалось отправить космический аппарат на высоту более 110 км, а также обеспечить безопасное возвращение как корабля, так и ракеты-носителя. В будущем система New Shepard должна будет стать одной из новинок в сфере космического туризма.

Многоразовое будущее

В течение трех десятилетий, с начала восьмидесятых годов прошлого века, основным средством доставки людей и грузов на орбиту в арсенале NASA был комплекс Space Transportation System / Space Shuttle. Ввиду морального и физического устаревания, а также в связи с невозможностью получения всех желаемых результатов эксплуатация «Шаттлов» была прекращена. С 2011 года США не располагает работоспособными многоразовыми кораблями. Более того, пока у них нет и собственного пилотируемого аппарата, вследствие чего астронавтам приходится летать на зарубежной технике.

Несмотря на прекращение эксплуатации комплекса Space Transportation System, американская космонавтика не отказывается от самой идеи многоразовых космических кораблей. Такая техника все еще представляет большой интерес и может использоваться в самых разных миссиях. На данный момент силами NASA и ряда коммерческих организаций разрабатывается сразу несколько перспективных космических кораблей, как орбитальных самолетов, так и систем с капсулами. На данный момент эти проекты находятся на разных стадиях и показывают разные успехи. В самое ближайшее время, не позднее начала двадцатых годов, большинство новых разработок дойдет до стадии испытательных или полноценных полетов, что позволит вновь изучить ситуацию и сделать новые выводы.

По материалам сайтов:http://nasa.gov/http://space.com/http://globalsecurity.org/https://washingtonpost.com/http://boeing.com/http://lockheedmartin.com/http://spacex.com/http://virgingalactic.com/http://spacedev.com/

topwar.ru


Смотрите также