ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

В России будет создан пульсирующий реактивный двигатель. Импульсный реактивный двигатель


Пульсирующий воздушно-реактивный двигатель

Изобретение относится к технике, преимущественно военной, а именно к двигателям летательных аппаратов, и может быть использовано, вероятнее всего, в качестве двигателя небольших беспилотных летательных аппаратов, таких как зенитные, авиационные и тактические ракеты, беспилотные разведчики, летающие мишени, а также в качестве сбрасываемых дополнительных двигателей. Пульсирующий воздушно-реактивный двигатель содержит, в частности, камеру сгорания, резонаторную трубу, впускные трубы, сопло подачи газа, змеевик нагрева газа и запальную свечу. Впускная труба пульсирующего воздушно-реактивного двигателя выполнена конической с установкой конусного вытеснителя. Стенка камеры сгорания с расположенным на ней змеевиком нагрева газа выполнена параллельной кольцевому коническому течению газа, выходящему из кольцевой щели между стенкой впускной трубы пульсирующего воздушно-реактивного двигателя и конического вытеснителя. Изобретение направлено на повышение термодинамического КПД путем увеличения амплитуды пульсаций давления. 1 ил.

 

Изобретение относится к технике, преимущественно военной, а именно к двигателям летательных аппаратов, и может быть использовано, вероятнее всего, в качестве двигателя небольших беспилотных летательных аппаратов, таких как беспилотные разведчики, летающие мишени и т.п., а также в качестве сбрасываемых дополнительных двигателей.

Известен пульсирующий воздушно-реактивный двигатель (далее ПуВРД) немецкой крылатой ракеты времен Второй мировой войны Фау-1 (см. Г.Б.Синярев, М.В.Добровольский. Жидкостные ракетные двигатели. - Оборонгиз, 1957, с.19, 20). Он представляет собой открытый с обоих торцов канал круглого поперечного сечения, включающий последовательно расположенные входной диффузор, клапанную решетку, камеру сгорания и выходное устройство, состоящее из конфузора и выхлопной трубы, а также систему топливоподачи и систему зажигания с электрозапалом, установленным в камере сгорания. В общем случае входное и выходное устройства двигателя могут иметь форму, отличную от прототипа, поэтому в дальнейшем будем называть их принятыми терминами воздухозаборник и сопло.

Клапанная решетка представляет собой конструкцию из несущих элементов - поперечных стержней, подвижных элементов - плоских упругих пластин постоянной толщины, прикрепленных к боковым граням стержней попарно параллельно друг другу на расстоянии, равном толщине стержня, и опорных проставок, размещенных посредине между парами пластин параллельно им. В каждой паре между пластинами имеется глухой зазор, обращенный назад. Пластины и проставки образуют продольные каналы для прохода воздуха.

Набегающий на двигатель поток проходит через воздухозаборник и клапанную решетку в камеру сгорания. Туда же подается легкоиспаряющееся топливо, после чего топливовоздушная смесь воспламеняется искрой электрозапала. Быстро расширяющиеся во все стороны продукты сгорания, попадая в глухой зазор между пластинами, тормозятся, в результате чего давление там возрастает. Это вызывает изгиб пластин в стороны до контакта с опорными проставками или боковыми стенками. Воздушные каналы клапанной решетки оказываются перекрытыми. Продукты сгорания истекают через сопло в атмосферу, а их давление на закрытую клапанную решетку создает импульс тяги двигателя.

После падения давления пластины клапанной решетки под действием своей упругости, а также разрежения, создаваемого в камере инерцией истекающих газов, возвращаются в исходное положение. В камеру поступает очередная порция воздуха, и цикл повторяется.

Клапанная решетка служит основным, но не единственным элементом узла, создающего тягу пульсирующего двигателя и включающего также боковые стенки, детали крепления и др. Кроме того, функцию создания тяги в таком двигателе могут выполнять и другие устройства. Поэтому в дальнейшем будем пользоваться общим термином "тяговый узел" (как часть двигателя) и конкретным - клапанная решетка тягового узла.

Достоинствами ПуВРД с механическими клапанными решетками являются простота и дешевизна, небольшой вес, надежность. Их недостатки - плохие тяговые характеристики, а именно низкая удельная и лобовая тяга, высокий удельный расход топлива, импульсный характер тяги, но главное - низкий ресурс клапанов.

Так же известны конструкции ПуВРД, использующие аэродинамические клапаны, "Нестационарное распространение пламени", под ред. Дж. Г.Маркштейна, М.: МИР, 1968, с.401-407. Кроме того, ПуВРД, в которых осуществлена замена механических клапанов на аэродинамические, описаны в патентах США №2796735, 1957; №2796734, 1957; №2746529, 1956; №2822037, 1958; 2812635, 1957; 3093962, 1963.

К недостаткам таких ПуВРД следует отнести низкую амплитуду пульсаций давления и, соответственно, низкий термодинамический КПД (коэффициент полезного действия).

Повысить удельную и лобовую тягу и снизить удельный расход топлива можно путем увеличения амплитуды пульсаций давления, которое достигается путем увеличения скорости сгорания топливо-воздушной смеси в камере сгорания ПуВРД. Увеличение же амплитуды пульсаций приводит к росту термодинамического КПД и соответственно к снижению удельного расхода топлива.

Техническим результатом изобретения является повышение термодинамического КПД путем увеличения амплитуды пульсаций давления.

Поставленная техническая задача решается за счет интенсификации процесса массопереноса в камере сгорания, приводящего к росту скорости квазидетонационного горения и соответствующих изменений конструкции ПуВРД и его тягового узла. При этом под "квазидетонационном" горением подразумевается горение с повышенными скоростями продвижения фронта пламени, составляющими в случае ПуВРД 50-100 м/сек. Организация такого режима горения происходит за счет интенсивного массопереноса в камере сгорания. Скорость фронта пламени пропорциональна скорости массопереноса.

Указанный технический результат при осуществлении изобретения достигается тем, что в известном ПуВРД, содержащем, в частности, камеру сгорания, резонаторную трубу, впускные трубы, сопло подачи газа, змеевик нагрева газа и запальную свечу, впускная труба ПуВРД выполнена конической с установкой конусного вытеснителя, а стенка камеры сгорания с расположенным на ней змеевиком нагрева газа выполнена параллельной кольцевому коническому течению газа, выходящему из кольцевой щели между стенкой впускной трубы ПуВРД и конического вытеснителя.

Сравнение научно-технической и патентной документации на дату приоритета в основной и смежной рубриках МКИ показывает, что совокупность существенных признаков заявленного решения ранее не была известна, следовательно, оно соответствует условию патентоспособности "новизна".

Анализ известных технических решений в данной области техники показал, что предложенное устройство имеет признаки, которые отсутствуют в известных технических решениях, а использование их в заявленной совокупности признаков дает возможность получить новый технический результат, следовательно, предложенное техническое решение имеет изобретательский уровень по сравнению с существующим уровнем техники.

Предложенное техническое решение промышленно применимо, т.к. может быть изготовлено промышленным способом, работоспособно, осуществимо и воспроизводимо, следовательно, соответствует условию патентоспособности "промышленная применимость".

Другие особенности и преимущества заявляемого изобретения станут понятны из следующего детального описания, приведенного исключительно в форме не ограничивающего примера и со ссылкой на прилагаемый чертеж, иллюстрирующий предпочтительный вариант реализации, на котором показана схема предлагаемого ПуВРД.

Позициями на чертеже показаны:

1 - сопло подачи газа,

2 - первая впускная труба,

3 - вторая впускная труба,

4 - впускная труба ПуВРД,

5 - конический вытеснитель,

6 - камера сгорания,

7 - змеевик нагрева газа,

8 - задняя торцевая стенка,

9 - резонаторная труба,

10 - запальная свеча,

11 - дроссель,

12 - топливный бак (с жидким пропаном),

13 - газовая магистраль,

стрелка 14 - кольцевое коническое течение 14 воздушно-газовой смеси,

ПуВРД, представленный на чертеже, содержит сопло 1 подачи газа с соосно закрепленными первой впускной трубой 2, второй впускной трубой 3 и впускной трубой 4 ПуВРД. Внутри впускной трубы ПуВРД 4 жестко закреплен конический вытеснитель 5. К торцу впускной трубы ПуВРД 4 закреплена камера сгорания 6 с змеевиком 7 нагрева газа. Стенки камеры сгорания 6 и змеевик 7 нагрева газа выполнены коническими. К задней торцовой стенке 8 камеры сгорания 6 закреплена резонаторная труба 9 с запальной свечей 10. Змеевик 7 нагрева газа через дроссель 11 соединяется с топливным баком 12, в кототром находится жидкий пропан, и через газовую магистраль 13 - с соплом 1.

При частичном открытии дросселя 11 и подачи искры на запальную свечу 10 происходит воспламенение газа и горение внутри камеры сгорания 6. Через некоторое время змеевик 7 нагрева газа и стенки камеры сгорания 6 разогреваются и дальнейшее открытие дросселя 11 приводит к осуществлению рабочего цикла ПуВРД. Он осуществляется следующим образом. Подаваемый газ через сопло 1 подачи газа эжектирует воздух во впускные трубы 2, 3 и 4. Далее течение воздушно-газовой смеси разделяется на коническом вытеснителе 5 на кольцевое коническое течение 14, выходящее в камеру сгорания 6 и натекающее на перпендикулярную его направляющую заднюю торцовую стенку 8 камеры сгорания 6. В случае правильной настройки впускной системы на режим 3/4 - волнового резонатора, как это представлено на прилагаемом чертеже, ПуВРД начинает работать в пульсирующем режиме с частотой до 400 Гц. При этом каждый цилиндрический проход газовой смеси до задней торцовой стенки 8 осуществляется вдоль змеевика 7 нагрева газа, аналогично «Спирали Щепкина», турбулизирующего течение и ускоряющего процесс горения. Ускорение процесса горения внутри камеры сгорания 6 позволит увеличить термодинамический КПД ПуВРД и уменьшить длину резонаторной трубы 9.

Разумеется, изобретение не ограничивается описанным примером его осуществления, показанным на прилагаемой фигуре. Остаются возможными изменения различных элементов либо замена их технически эквивалентными, не выходящие за пределы объема настоящего изобретения.

Пульсирующий воздушно-реактивный двигатель (ПуВРД), содержащий, в частности, камеру сгорания, резонаторную трубу, впускные трубы, сопло подачи газа, змеевик нагрева газа и запальную свечу, отличающийся тем, что впускная труба ПуВРД выполнена конической с установкой конусного вытеснителя, а стенка камеры сгорания с расположенным на ней змеевиком нагрева газа выполнена параллельной кольцевому коническому течению газа, выходящему из кольцевой щели между стенкой впускной трубы ПуВРД и конического вытеснителя.

www.findpatent.ru

импульсный реактивный двигатель - патент РФ 2433295

Изобретение относится к реактивным двигателям импульсного действия и применяется в авиа и ракетостроении. Импульсный реактивный двигатель содержит рабочую камеру с подсоединенными к ней штуцером для подвода сжатого воздуха и соплом, камеру торможения рабочего тела, связанную с соплом, на котором установлен первый клапан, насос, связанный своим входом с камерой торможения рабочего тела через сливную трубу и выходом - с рабочей камерой через напорную трубу, на участке которой установлен второй клапан. Изобретение обеспечивает снижение расхода рабочего тела за счет его повторного использования. 5 з.п. ф-лы, 1 ил. импульсный реактивный двигатель, патент № 2433295

Рисунки к патенту РФ 2433295

импульсный реактивный двигатель, патент № 2433295

Изобретение относится к реактивным двигателям импульсного действия и применяется в авиа- и ракетостроении.

Известен импульсный двигатель, работающий от энергии продуктов сгорания, содержащий рабочую камеру с соплом, клапаны, ресивер и мембрану (см. патент RU № 2211937, опубликован 10.09.2003, кл. F02K 9/28).

Недостатком известного технического решения является большой расход рабочего тела.

Техническим результатом изобретения является снижение расхода рабочего тела за счет его повторного использования.

Технический результат изобретения достигается благодаря тому, что импульсный реактивный двигатель содержит рабочую камеру с подсоединенными к ней штуцером для подвода сжатого воздуха и соплом, камеру торможения рабочего тела, связанную с соплом, на котором установлен первый клапан, насос, связанный своим входом с камерой торможения рабочего тела через сливную трубу и выходом - с рабочей камерой через напорную трубу, на участке которой установлен второй клапан.

Кроме того, сопло между первым клапаном и камерой торможения сообщено с атмосферой через третий клапан, при этом первый, второй и третий клапаны могут быть выполнены электромагнитными и связаны с генератором импульсов с возможностью управления их закрытием и открытием.

Кроме того, рабочая камера может быть разделена диафрагмой на две части, к одной из которых подсоединен штуцер для подвода сжатого воздуха, а к другой - сопло и напорная труба.

Изобретение поясняется чертежом, на котором схематично изображен импульсный реактивный двигатель.

Импульсный реактивный двигатель содержит рабочую камеру 1, к которой подсоединены штуцер 2 для подвода сжатого воздуха и сопло 3, служащее для ускорения выходящего из рабочей камеры 1 рабочего тела, в качестве которого используется жидкость. С соплом 3, на котором установлен первый электромагнитный клапан 4, связана камера 5 торможения рабочего тела, выполненная в виде вихревой трубы, служащей для замедления напора отработавшей жидкости. С камерой 5 торможения через сливную трубу 6 связан своим входом насос 7, служащий для перекачки отработавшей жидкости в рабочую камеру 1 через связанную одним концом с выходом насосного узла 7 напорную трубу 8, на участке которой установлен второй электромагнитный клапан 9. Рабочая камера 1 снабжена эластичной диафрагмой 10, в срединной части которой закреплены сдвоенные шайбы 11, выполненные, например, из поликарбоната, служащие для предохранения от затягивания диафрагмы 10 в сопло 3. Диафрагма 10 разделяет рабочую камеру 1 на две части, образуя две рабочие полости 12 и 13, при этом к полости 12 подсоединен штуцер 2 для подвода сжатого воздуха, а к полости 13 подсоединены сопло 3 и другой конец напорной трубы 8.

Сопло 3 между первым клапаном 4 и камерой 5 торможения сообщено с атмосферой через третий электромагнитный клапан 14, служащий для увеличения КПД двигателя путем вентиляции сопла 3 воздухом после прохождения по нему отработавшей жидкости.

Каждый электромагнитный клапан 4, 9 и 14 связан с генератором 15 импульсов с возможностью управления их закрытием и открытием путем подачи через определенные интервалы времени электросигналов на открытие и закрытие.

На насосном узле 7 установлен перепускной клапан 16, соединяющий сливную трубу 6 с напорной трубой 8.

Двигатель снабжен кронштейном 17, с помощью которого он крепится к поворотному шарниру 18, закрепленному на корпусе летательного аппарата (не показан), при этом на кронштейне 17 закреплена рукоять 19 управления.

Импульсный реактивный двигатель работает следующим образом.

В исходном положении рабочая полость 12 рабочей камеры 1 через штуцер 2 заполнена сжатым воздухом, генератор 15 импульсов включен, насосный узел 7 работает при открытом перепускном клапане 16. Для работы двигателя перепускной клапан 16 закрывается, и жидкость под давлением из насосного узла 7 поступает по напорной трубе 8 через открытый второй электромагнитный клапан 9 в рабочую полость 13 рабочей камеры 1. Происходит заполнение жидкостью рабочей полости 13 и сжатие воздуха в рабочей полости 12 над диафрагмой 10. Далее генератор 15 импульсов подает сигнал на закрытие второго электромагнитного клапана 9 и открытие первого электромагнитного клапана 4, при этом происходит выброс жидкости через сопло 3 и возникновение в двигателе подъемной силы. Далее отработанная жидкость поступает в камеру 5 торможения для уменьшения остаточного напора, после чего по сливной трубе 6 сливается в накопитель насосного узла 7. После закрытия первого электромагнитного клапана 4 открывается третий электромагнитный клапан 14, препятствующий созданию торможения потока жидкости за счет устранения разрежения в сопле 3 за первым электромагнитным клапаном 4. Далее цикл повторяется с той же жидкостью.

В другом варианте выполнения двигателя в рабочей камере 1 можно не использовать диафрагму 10, а подавать сжатый воздух и жидкость в определенных количествах при помощи электроконтроллеров.

Для создания давления жидкости может быть использован компрессор и баллоны сжатого газа.

Таким образом, благодаря такому выполнению импульсного реактивного двигателя обеспечивается повторное использование в двигателе рабочего тела.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Импульсный реактивный двигатель, содержащий рабочую камеру с подсоединенными к ней штуцером для подвода сжатого воздуха и соплом, камеру торможения рабочего тела, связанную с соплом, на котором установлен первый клапан, насос, связанный своим входом с камерой торможения рабочего тела через сливную трубу и выходом - с рабочей камерой через напорную трубу, на участке которой установлен второй клапан.

2. Двигатель по п.1, отличающийся тем, что сопло между первым клапаном и камерой торможения сообщено с атмосферой через третий клапан.

3. Двигатель по п.2, отличающийся тем, что первый, второй и третий клапаны выполнены электромагнитными и связаны с генератором импульсов с возможностью управления их закрытием и открытием.

4. Двигатель по п.1, отличающийся тем, что рабочая камера разделена диафрагмой на две части, к одной из которых подсоединен штуцер для подвода сжатого воздуха, а к другой - сопло и напорная труба.

5. Двигатель по п.1, отличающийся тем, что сливная труба соединена с напорной трубой посредством перепускного клапана.

6. Двигатель по п.1, отличающийся тем, что в качестве рабочего тела используется жидкость.

www.freepatent.ru

Импульсный реактивный двигатель

Изобретение относится к реактивным двигателям импульсного действия и применяется в авиа и ракетостроении. Импульсный реактивный двигатель содержит рабочую камеру с подсоединенными к ней штуцером для подвода сжатого воздуха и соплом, камеру торможения рабочего тела, связанную с соплом, на котором установлен первый клапан, насос, связанный своим входом с камерой торможения рабочего тела через сливную трубу и выходом - с рабочей камерой через напорную трубу, на участке которой установлен второй клапан. Изобретение обеспечивает снижение расхода рабочего тела за счет его повторного использования. 5 з.п. ф-лы, 1 ил.

 

Изобретение относится к реактивным двигателям импульсного действия и применяется в авиа- и ракетостроении.

Известен импульсный двигатель, работающий от энергии продуктов сгорания, содержащий рабочую камеру с соплом, клапаны, ресивер и мембрану (см. патент RU №2211937, опубликован 10.09.2003, кл. F02K 9/28).

Недостатком известного технического решения является большой расход рабочего тела.

Техническим результатом изобретения является снижение расхода рабочего тела за счет его повторного использования.

Технический результат изобретения достигается благодаря тому, что импульсный реактивный двигатель содержит рабочую камеру с подсоединенными к ней штуцером для подвода сжатого воздуха и соплом, камеру торможения рабочего тела, связанную с соплом, на котором установлен первый клапан, насос, связанный своим входом с камерой торможения рабочего тела через сливную трубу и выходом - с рабочей камерой через напорную трубу, на участке которой установлен второй клапан.

Кроме того, сопло между первым клапаном и камерой торможения сообщено с атмосферой через третий клапан, при этом первый, второй и третий клапаны могут быть выполнены электромагнитными и связаны с генератором импульсов с возможностью управления их закрытием и открытием.

Кроме того, рабочая камера может быть разделена диафрагмой на две части, к одной из которых подсоединен штуцер для подвода сжатого воздуха, а к другой - сопло и напорная труба.

Изобретение поясняется чертежом, на котором схематично изображен импульсный реактивный двигатель.

Импульсный реактивный двигатель содержит рабочую камеру 1, к которой подсоединены штуцер 2 для подвода сжатого воздуха и сопло 3, служащее для ускорения выходящего из рабочей камеры 1 рабочего тела, в качестве которого используется жидкость. С соплом 3, на котором установлен первый электромагнитный клапан 4, связана камера 5 торможения рабочего тела, выполненная в виде вихревой трубы, служащей для замедления напора отработавшей жидкости. С камерой 5 торможения через сливную трубу 6 связан своим входом насос 7, служащий для перекачки отработавшей жидкости в рабочую камеру 1 через связанную одним концом с выходом насосного узла 7 напорную трубу 8, на участке которой установлен второй электромагнитный клапан 9. Рабочая камера 1 снабжена эластичной диафрагмой 10, в срединной части которой закреплены сдвоенные шайбы 11, выполненные, например, из поликарбоната, служащие для предохранения от затягивания диафрагмы 10 в сопло 3. Диафрагма 10 разделяет рабочую камеру 1 на две части, образуя две рабочие полости 12 и 13, при этом к полости 12 подсоединен штуцер 2 для подвода сжатого воздуха, а к полости 13 подсоединены сопло 3 и другой конец напорной трубы 8.

Сопло 3 между первым клапаном 4 и камерой 5 торможения сообщено с атмосферой через третий электромагнитный клапан 14, служащий для увеличения КПД двигателя путем вентиляции сопла 3 воздухом после прохождения по нему отработавшей жидкости.

Каждый электромагнитный клапан 4, 9 и 14 связан с генератором 15 импульсов с возможностью управления их закрытием и открытием путем подачи через определенные интервалы времени электросигналов на открытие и закрытие.

На насосном узле 7 установлен перепускной клапан 16, соединяющий сливную трубу 6 с напорной трубой 8.

Двигатель снабжен кронштейном 17, с помощью которого он крепится к поворотному шарниру 18, закрепленному на корпусе летательного аппарата (не показан), при этом на кронштейне 17 закреплена рукоять 19 управления.

Импульсный реактивный двигатель работает следующим образом.

В исходном положении рабочая полость 12 рабочей камеры 1 через штуцер 2 заполнена сжатым воздухом, генератор 15 импульсов включен, насосный узел 7 работает при открытом перепускном клапане 16. Для работы двигателя перепускной клапан 16 закрывается, и жидкость под давлением из насосного узла 7 поступает по напорной трубе 8 через открытый второй электромагнитный клапан 9 в рабочую полость 13 рабочей камеры 1. Происходит заполнение жидкостью рабочей полости 13 и сжатие воздуха в рабочей полости 12 над диафрагмой 10. Далее генератор 15 импульсов подает сигнал на закрытие второго электромагнитного клапана 9 и открытие первого электромагнитного клапана 4, при этом происходит выброс жидкости через сопло 3 и возникновение в двигателе подъемной силы. Далее отработанная жидкость поступает в камеру 5 торможения для уменьшения остаточного напора, после чего по сливной трубе 6 сливается в накопитель насосного узла 7. После закрытия первого электромагнитного клапана 4 открывается третий электромагнитный клапан 14, препятствующий созданию торможения потока жидкости за счет устранения разрежения в сопле 3 за первым электромагнитным клапаном 4. Далее цикл повторяется с той же жидкостью.

В другом варианте выполнения двигателя в рабочей камере 1 можно не использовать диафрагму 10, а подавать сжатый воздух и жидкость в определенных количествах при помощи электроконтроллеров.

Для создания давления жидкости может быть использован компрессор и баллоны сжатого газа.

Таким образом, благодаря такому выполнению импульсного реактивного двигателя обеспечивается повторное использование в двигателе рабочего тела.

1. Импульсный реактивный двигатель, содержащий рабочую камеру с подсоединенными к ней штуцером для подвода сжатого воздуха и соплом, камеру торможения рабочего тела, связанную с соплом, на котором установлен первый клапан, насос, связанный своим входом с камерой торможения рабочего тела через сливную трубу и выходом - с рабочей камерой через напорную трубу, на участке которой установлен второй клапан.

2. Двигатель по п.1, отличающийся тем, что сопло между первым клапаном и камерой торможения сообщено с атмосферой через третий клапан.

3. Двигатель по п.2, отличающийся тем, что первый, второй и третий клапаны выполнены электромагнитными и связаны с генератором импульсов с возможностью управления их закрытием и открытием.

4. Двигатель по п.1, отличающийся тем, что рабочая камера разделена диафрагмой на две части, к одной из которых подсоединен штуцер для подвода сжатого воздуха, а к другой - сопло и напорная труба.

5. Двигатель по п.1, отличающийся тем, что сливная труба соединена с напорной трубой посредством перепускного клапана.

6. Двигатель по п.1, отличающийся тем, что в качестве рабочего тела используется жидкость.

www.findpatent.ru

Воздушно-реактивный бесклапанный пульсирующий двигатель

Изобретение относится к авиационной технике, воздушно-реактивным двигателям для беспилотных летательных аппаратов, летающих мишеней, малых летательных аппаратов и может быть применено в качестве двигателя привода ротора реактивных вертолетов. Воздушно-реактивный бесклапанный пульсирующий двигатель летательного аппарата содержит камеру сгорания, резонансную трубу, многоэжекторную систему впуска топливовоздушной смеси, топливную форсунку, топливную систему, змеевик-перегреватель, расположенный с задней по ходу движения летательного аппарата стороны. Через вход змеевика-перегревателя подают топливо из топливной системы в многоэжекторную систему впуска топливовоздушной смеси. Выходная часть многоэжекторной системы соединена с камерой сгорания в ее передней по ходу движения летательного аппарата части. Топливная форсунка расположена во входной части многоэжекторной системы впуска. Выпуск выхлопных газов из резонансной трубы осуществляют в сторону, противоположную движению летательного аппарата. Резонансная труба расположена с внешней стороны камеры сгорания, а змеевик-перегреватель - внутри. Оси резонансной трубы, камеры сгорания и многоэжекторной впускной системы расположены параллельно друг другу. Выпуск выхлопных газов из камеры сгорания осуществляют с поворотом на 180 градусов по отношению к вектору движения двигателя. Изобретение направлено на уменьшение габаритов двигателя. 12 з.п. ф-лы, 4 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к двигателестроению и авиационной технике, в частности к воздушно-реактивным двигателям для беспилотных летательных аппаратов (далее БПЛА), летающих мишеней, малых летательных аппаратов (далее ЛА).

Уровень техники

Известны и употребляются (например, как двигатели летающих мишеней) бесклапанные пульсирующие воздушно-реактивные двигатели ПуВРД по патенту US №2795105 и его модификации, например по патенту US №3354650. Эти ПуВРД имеют впуск воздуха со стороны, противоположной направлению движения двигателя. Змеевик-перегреватель топлива ПуВРД по патенту US №2795105 расположен снаружи корпуса двигателя, что ухудшает теплопередачу из камеры сгорания к испаряемому топливу, и при этом испаряемое топливо никак не участвует своей кинетической энергией в процессе наполнения камеры сгорания (далее КС). Недостаток таких двигателей - большая длина резонансной трубы, увеличивающая габариты двигателя и делающая невозможным его применение, например, для привода ротора реактивного вертолета.

Известен двигатель по патенту US №2663142, представляющий собой тип прямоточного воздушно-реактивного двигателя (ПВРД), в котором подача топлива осуществляется в систему инжекторов, создающих некоторое избыточное давление топливовоздушной смеси в КС уже до начала горения в ней топливного заряда. Топливо, в качестве которого используется в том числе и пропан, подается в КС через змеевик-перегреватель, расположенный непосредственно в КС, при этом испаряемое топливо в процессе расширения на выходе в систему инжекторов участвует своей кинетической энергией (динамическим напором при расширении) в процессе наполнения КС.

Однако такой двигатель не является пульсирующим, горение в камере сгорания происходит в постоянно установившемся режиме. Приведенный тип двигателя никогда не использовался в технике.

Известен работоспособный и применявшийся ранее в качестве привода ротора реактивных вертолетов и двигателя реактивных самолетов бесклапанный ПуВРД «давления» (pressure pulse jet engine) или многоэжекторный ПуВРД с самозапуском без использования пускового источника сжатого воздуха по патенту US №3093962.

Рассматриваемый ПуВРД, предназначенный для установки в конце лопасти ротора реактивного вертолета, работает по принципу наполнения КС и создания противодавления, приближенному к ПВРД, но не требует ни дополнительного источника давления (расхода) воздуха, ни собственной начальной скорости для начала работы.

При начале работы двигателя атмосферный воздух входит во впускной тракт под давлением за счет кинетической энергии перегретого газа (пропана), выходящего из форсунки со сверхзвуковой скоростью и смешивающегося с ним еще во время движения (эжектирование воздуха), по акустически настроенной системе впуска попадает в виде топливовоздушной смеси в камеру сгорания, где при участии выхлопной резонансной трубы реализуется процесс пульсирующего горения топливовоздушных зарядов. Роль обратных клапанов ПуВРД клапанного типа в рассматриваемом двигателе выполняет инерция ускоренной массы (кинетическая энергия) топливоздушной смеси, движущейся во впускной многоэжекторной системе, осуществляя аэродинамическое запирание впускного тракта, препятствующее выхлопу продуктов горения топлива из впускного тракта двигателя и созданию «обратной тяги».

При разгоне двигателя в составе ЛА или ротора вертолета в наполнении топливовоздушным зарядом КС участвует и скоростной динамический напор воздуха, поступающего в воздухозаборники, расположенные на крыле ЛА или непосредственно на двигателе или на конце лопасти ротора вертолета по направлению к фронту движения ЛА или движения лопасти во время рабочего вращения ротора.

Как результат ПуВРД «давления» превосходит все иные типы воздушно-реактивных двигателей (ПуВРД и дозвуковых ПВРД) за исключением турбореактивного двигателя по показателю удельного потреблению топлива, не превышающего 0,078 кг/кГ·ч при измеренной скорости двигателя в составе ЛА, равной 321 км/ч (89 м/с).

Недостатком рассматриваемого двигателя является большое гидравлическое сопротивление для поступающего в КС потока воздуха, так как он меняет направление движения на 180° (два поворота под углом 90°), причем оба этих поворота организованы практически под прямым углом. В результате большого гидравлического сопротивления во впускном тракте двигателя ухудшаются условия наполнения КС зарядом воздушно-топливной смеси, что не позволяет получить максимально возможную тягу при данном объеме КС, а значит, и минимальных значений удельного потребления топлива.

Змеевик-перегреватель двигателя имеет незначительное число оборотов и перекрывает не более чем 1/3 длины КС, что делает невозможной существенно полную теплопередачу от большей части внутренней поверхности КС к перегреваемому топливу.

Выхлопная резонансная труба рассматриваемого двигателя имеет длину, приближающуюся к длине резонансных труб клапанных ПуВРД (около ¼ длины звуковой волны) и существенно короче, чем у рассмотренных в качестве аналогов бесклапанных ПуВРД, у которых длина резонансной трубы должна приближаться к ½ длины звуковой волны), но тем не менее имеет значительную длину, что резко снижает прочность конструкции двигателя при его работе вследствие того, что при работе двигателя резонансная труба раскаляется до многих сотен градусов Цельсия (несмотря на теплоотвод при обтекании двигателя наружным воздухом), теряет прочность и, представляя собой консоль, под действием громадных центробежных сил на конце лопастей вращающегося ротора вертолета начинает изгибаться.

Ресурс резонансной трубы, которая непрерывно истончается (пламенно-кислородная эрозия и коррозия сталей) таким образом, ограничен, в процессе работы двигателя стрела прогиба непрерывно увеличивается вплоть до разрушения конструкции, поэтому приходится утолщать стенки резонансной трубы и предусматривать ее дополнительные крепления, что в большинстве случаев в пределах конструкции законцовки лопасти ротора с гондолой ПуВРД невозможно как из-за увеличения аэродинамического сопротивления, так и из-за увеличения веса двигателя. Впускная многоэжекторная система расположена в концевой части лопасти ротора вертолета, впускное воздушное окно находится на торце профиля лопасти, частично искажает профиль лопасти, что ухудшает обтекание этой части лопасти воздушным потоком и практически исключает подъемную силу концевой части лопасти.

В качестве прототипа принят ПуВРД «давления» по патенту US №6216446 и заявке US 11/301,940. Описанный в патенте и улучшенный по заявке ПуВРД является бесклапанным пульсирующим воздушно-реактивным двигателем с самозапуском без использования пускового источника сжатого воздуха, работающего по принципу работы, не отличающемуся от описанного выше аналога (ПуВРД «давления» по патенту US №3093962). Вход воздушно-топливной смеси в двигатель-прототип осуществляется с его передней фронтальной части, что дает наименьшее гидравлическое сопротивление для наполнения КС топливовоздушным зарядом и теоретически наибольший его к.п.д.

В двигателе-прототипе к вектору реактивной тяги от сгоревшей топливовоздушной смеси добавляется также вектор тяги перегретого газового топлива, вытекающего со сверхзвуковой скоростью из топливной форсунки, причем эта тяга в связи со значительными расходами (десятки грамм в секунду) топлива и большой скоростью выхода при значительном давлении газифицированного топлива из форсунки существенна.

Главным недостатком прототипа является большая продольная длина двигателя и, соответственно, очень большая стрела прогиба нагретого до сотен °С двигателя, конструктивно исключающая его применение в качестве двигателей БПЛА, малых ЛА и двигателей роторов реактивных вертолетов.

Из-за необходимости размещения на одной оси многоэжекторной системы, КС и выхлопной резонансной трубы длина двигателя-прототипа превышает длину всех конструкций ПуВРД (как клапанного, так и бесклапанного типов). По настоящее время двигатель-прототип не употреблялся и не употребляется в ЛА и реактивных вертолетах и служит лишь в качестве экономичного пульсирующего газогорелочного устройства для водяных и паровых котлов пульсирующего типа, а также быстрого разогрева дорожных покрытий при ремонте дорог.

Раскрытие изобретения

Целью изобретения является создание ПуВРД, лишенного недостатка прототипа, выражающегося в большой длине двигателя, затрудняющего или делающего невозможным его использование в ЛА, БПЛА и в качестве привода ротора реактивного вертолета.

По сравнению с прототипом предлагаемый ПуВРД за счет невыступающей за габарит длины КС многоэжекторной системы и выхлопной резонансной трубы отличается практически втрое меньшей продольной длиной и при этом меньшим, чем у работоспособного на ЛА аналога, гидравлическим сопротивлением впускного тракта, позволяющего эффективно использовать скоростной напор забираемого при движении двигателя из атмосферы воздуха для наполнения КС зарядами топливовоздушной смеси.

В предлагаемой конструкции двигателя к вектору реактивной тяги от сгоревшей топливовоздушной смеси так же, как и у прототипа, добавляется вектор тяги перегретого газового топлива, вытекающего под большим давлением со сверхзвуковой скоростью из топливной форсунки. Прирост тяги за счет добавочной тяги форсунки при эжектировании ею дополнительной массы воздуха, направляемой на горение, достигает 10-20% сверх тяги работоспособного аналога ПуВРД «давления» с впуском топлива перпендикулярно оси КС в статическом режиме. Все преимущества в комплексе позволяют получить компактный ПуВРД с высоким к.п.д. и применить его в качестве двигателя легких ЛА, БПЛА и двигателя ротора реактивных вертолетов.

Указанная цель достигается тем, что используют воздушно-реактивный бесклапанный пульсирующий двигатель летательного аппарата согласно настоящему изобретению. Двигатель содержит камеру сгорания, резонансную трубу, многоэжекторную систему впуска топливовоздушной смеси, топливную форсунку, топливную систему, змеевик-перегреватель, при этом вход змеевика-перегревателя, через который подают топливо из топливной системы в многоэжекторную систему впуска топливовоздушной смеси, расположен с задней по ходу движения летательного аппарата стороны; выходная часть многоэжекторной системы соединена с камерой сгорания в ее передней по ходу движения летательного аппарата части; топливная форсунка расположена во входной части многоэжекторной системы впуска; резонансная труба расположена с внешней стороны камеры сгорания; при этом выпуск выхлопных газов из резонансной трубы осуществляют в сторону, противоположную движению летательного аппарата.

В частности, резонансная труба параллельна оси камеры сгорания, ось многоэжекторной впускной системы направлена параллельно оси камеры сгорания, а змеевик-перегреватель расположен в камере сгорания.

В частности, выход камеры сгорания имеет конусообразную или коноидальную переходную часть к резонансной трубе, а витки змеевика-перегревателя могут быть выполнены соприкасающимися.

В частности, дно камеры сгорания выполнено плоским или имеет форму части сферы или конуса, а также дополнительно имеет обратный обтекатель.

В частности, резонансная труба выполнена с переменным сечением по своей длине, которое представляет собой конусное сечение с увеличением диаметра проходного сечения к месту выхлопа в атмосферу.

В частности, на выходе многоэжекторной системы установлен стабилизатор пламени, выполненный в виде сетки или одной и более спиралей.

В частности, многоэжекторная система представляет собой систему, выполненную из по меньшей мере двух эжекторных систем, установленных параллельно на вход в камеру сгорания.

В частности, топливная форсунка имеет одно или более сопла для прохода топлива и она устроена распылительной с распылением жидкого топлива газообразным топливом под давлением.

В частности, топливная система работает по вытеснительному типу под давлением наддува топливного бака выше, чем давление насыщенных паров жидкого топлива.

В частности, топливная система работает по насосному типу при работе насоса от электрического или механического привода.

В частности, камера сгорания образована змеевиком-перегревателем.

Краткое описание чертежей

Фиг.1. Внешний вид двигателя с камерой сгорания и змеевиком-перегревателем внутри камеры сгорания.

Фиг.2. Разрез двигателя по камере сгорания.

Фиг.3. Разрез двигателя по впускной эжекторно-инжекторной системе.

Фиг.4. Внешний вид с камерой сгорания, являющейся змеевиком-перегревателем, с вырезом по камере сгорания.

На Фиг.1 показан корпус камеры сгорания 1 двигателя летательного аппарата, выполненный из жаропрочного металлического сплава, которая имеет закрепленные сваркой, высокотемпературной пайкой или завальцовкой герметичные заднее дно 2 и передний конус 3, к которому в свою очередь указанным выше способом присоединено колено проходного патрубка выхлопа 4, к которому в свою очередь присоединена резонансная труба 5, которая может быть как прямой, так и с конусным раствором в сторону выхлопа. Направление движение летательного аппарата показано стрелкой. Снаружи корпуса двигателя расположена система впуска топливовоздушной смеси многоэжекторного типа, состоящая из первого эжектора 6, второго эжектора 7 и третьего эжектора 8, являющегося одновременно и патрубком впуска топливоздушной смеси в камеру сгорания. Отдельные эжекторы системы впуска топливовоздушной смеси соединены между собой силовыми центраторами 9 и 10. Внутри корпуса камеры сгорания 1 расположен змеевик-перегреватель 17 топлива (см. Фиг.2), имеющий входной конец 11 для подачи в него жидкого топлива и выходной конец 12, соединенный с коленом 13 топливной форсунки 18 (см. Фиг.3). В корпус камеры сгорания 1 встроена свеча 14 электровоспламенения топливовоздушной смеси электроискрового или калильного типа и силовой переходник 15, жестко соединенный с корпусом камеры сгорания 1 двигателя и имеющий присоединительную часть для крепления к ротору вертолета или корпусу ЛА или БПЛА.

На Фиг.2 показано, что во внутренней полости корпуса камеры сгорания 1 двигателя образована камера сгорания 16, внутри которой расположен змеевик-перегреватель 17, имеющий входной конец 11 и выходной конец 12, к которому присоединена топливная форсунка 17 (см. Фиг.3).

На Фиг.3 показана впускная эжекторная система, которая состоит из топливной форсунки 18, закрепленной на колене 13 змеевика-перегревателя, первого эжектора 6, второго эжектора 7 и третьего эжектора 8, являющегося одновременно и патрубком впуска топливоздушной смеси в камеру сгорания 16. На конце эжектора 8 может стоять стабилизационная пламенная сетка 19 или пламенные спирали.

На Фиг.4 показан один из вариантов осуществления настоящего изобретения, в котором корпус камеры сгорания 1 двигателя выполнен в виде навитой виток к витку и герметично сваренной или спаянной высокотемпературной пайкой по виткам трубы из жаропрочного или высокотеплопроводного металлического сплава, представляющей собой змеевик-перегреватель. Заднее дно 2 и передний конус 3, который также может быть выполнен из конусно навитой трубы змеевика-перегревателя, герметично приварены или припаяны, как указано выше, к змеевику-перегревателю. Силовой переходник 15 также приварен к змеевику-перегревателю.

Такая конструкция двигателя вследствие максимальной рабочей поверхности змеевика-перегревателя позволяет максимально использовать тепловую энергию, выделяемую в камере сгорания для перегрева поступающего в камеру сгорания топлива, и одновременно снизить тепловые нагрузки корпуса двигателя, что повышает его механическую прочность и пламенно-кислородную эрозию и коррозию корпуса.

Двигатель работает следующим образом.

Жидкое топливо под давлением от 6 атм до 40 атм подается во входной конец 11 змеевика-перегревателя 17 при помощи топливной вытеснительной системы под давлением собственных насыщенных паров топлива либо топливным насосом. В змеевике 17 топливо предварительно газифицируется за счет теплообмена с атмосферой через значительную площадь поверхности змеевика. Газообразное топливо через выходной конец 12 и колено 13 подается в топливную форсунку 18. Выходя с большой скоростью из топливной форсунки в эжектор 6, газообразное топливо подсасывает атмосферный воздух и поступает в эжектор 7, где подсасывает еще большее количество воздуха, и далее поступает в эжектор 8, который подсасывает из атмосферы еще часть воздуха, необходимого для сгорания топливоздушной смеси. Свеча электровоспламенения 14 поджигает топливоздушную смесь, после чего в камере сгорания 16 начинается горение топливоздушной смеси. После прогрева камеры сгорания 16 на выходе из конца 12 змеевика 17 газифицированное топливо достигает температуры около 600-1000°С, течение газа топлива из форсунки 14 достигает и значительно превышает скорость звука в воздухе, при этом при некотором определенном расходе топлива в камере сгорания 16 возникает устойчивое пульсирующее горение топливоздушной смеси, появляется постоянная и увеличивающаяся по мере увеличения расхода топлива тяга. Длина резонансной трубы 5 для возникновения и поддержания устойчивых автоколебаний и максимальной амплитуды автоколебаний в предлагаемом типе двигателя может быть в случае правильной настройки резонансной системы даже менее длины камеры сгорания, минимальная длина которой в общем случае не менее двух диаметров камеры сгорания. Максимальная амплитуда колебаний элементов двигателя подбирается, как и в любом типе ПуВРД в процессе доводки.

В ПуВРД обычных типов (как клапанных, так и бесклапанных) увеличение давления газообразного топлива не вызывает увеличения тяги, но в ПуВРД «давления» увеличение давления газообразного топлива вызывает почти пропорциональное увеличение тяги, описываемое линейной зависимостью. В связи с этим в предлагаемом двигателе целесообразно увеличивать давление жидкого топлива. Наиболее простым способом это достигается применением вытеснительной топливной системы на насыщенных парах самого топлива. В качестве топлива целесообразно применять MPS-газ (смесь метилацетилена, пропадиена), МАРР-газ (смесь метилацетилена, пропадиена и пропана), Ametalene (Chemtane 2).

Однако давление насыщенных паров указанных сжиженных газов при температуре 20°С не превышает 5-6 атм, что недостаточно для работы ПуВРД «давления».

Для увеличения давления подачи указанных сжиженных газов необходимо применять газы-вытеснители, в качестве которых целесообразно применение азота или природного газа (метана).

Для получения же наивысшего давления в топливной системе целесообразно применение не пропана (давление паров которого при +20°С составляет 10,5 атм, но при +15°С уже всего 9 атм, т.е. практически предельно низко для работы ПуВРД «давления»), а смесей пропана с этаном или смесей метилацетилен-пропадиена с этаном, давление паров в которых может достигать 15-30 атм (в зависимости от содержания в них этана) и при необходимых эксплуатационных температурах определяемое содержанием в жидкости этана, имеющего собственное давление насыщенных паров при 21°С около 38 атм, а при 0°С около 24 атм.

В предлагаемом двигателе выхлопные газы, исходящие из камеры сгорания, совершают поворот на 180° по отношению к вектору движения двигателя, однако из практики конструирования клапанных и бесклапанных U-образных ПуВРД (Локвуда-Хиллера) известно, что разворот выходящих из камеры сгорания выхлопных газов на 180° при пульсирующем характере работы двигателя не оказывает значительного влияния на форму и амплитуду волн сжатия и разрежения рабочего тела резонансной трубы и увеличивает гидравлическое сопротивление выпускного тракта двигателя всего на 0,2-0,5%, что не влияет на показатели тяги и топливной экономичности двигателя. В то же время известно, что уменьшение гидравлического сопротивления на впускном тракте, организуемое за счет направления входа воздуха во впускной тракт по ходу движения двигателя, уменьшает гидравлическое сопротивление системы впуска, улучшает наполнение камеры сгорания зарядом топливовоздушной смеси и повышает к.п.д. любого типа двигателя внутреннего сгорания, в том числе и ПуВРД.

Совокупность перечисленных технических решений позволяет выполнить задачу цели изобретения - получение компактного двигателя для использования в ЛА, БПЛА и в качестве привода ротора реактивного вертолета.

1. Воздушно-реактивный бесклапанный пульсирующий двигатель летательного аппарата, содержащий камеру сгорания, резонансную трубу, многоэжекторную систему впуска топливовоздушной смеси, топливную форсунку, топливную систему, змеевик-перегреватель, через вход которого подают топливо из топливной системы в многоэжекторную систему впуска топливовоздушной смеси, расположенный с задней по ходу движения летательного аппарата стороны; при этом выходная часть многоэжекторной системы соединена с камерой сгорания в ее передней по ходу движения летательного аппарата части; топливная форсунка расположена во входной части многоэжекторной системы впуска, а выпуск выхлопных газов из резонансной трубы осуществляют в сторону, противоположную движению летательного аппарата, отличающийся тем, что резонансная труба расположена с внешней стороны камеры сгорания, а змеевик-перегреватель - внутри, при этом оси резонансной трубы, камеры сгорания и многоэжекторной впускной системы расположены параллельно друг другу, а выпуск выхлопных газов из камеры сгорания осуществляют с поворотом на 180° по отношению к вектору движения двигателя.

2. Двигатель по п.1, отличающийся тем, что выход камеры сгорания имеет конусообразную или коноидальную переходную часть к резонансной трубе.

3. Двигатель по п.1, отличающийся тем, что витки змеевика-перегревателя выполнены соприкасающимися.

4. Двигатель по п.1, отличающийся тем, что дно камеры сгорания выполнено плоским или имеет форму части сферы или конуса.

5. Двигатель по п.1, отличающийся тем, что дно камеры сгорания дополнительно имеет обратный обтекатель.

6. Двигатель по п.1, отличающийся тем, что резонансная труба выполнена с переменным сечением по своей длине.

7. Двигатель по п.6, отличающийся тем, что упомянутое переменное сечение представляет собой конусное сечение с увеличением диаметра проходного сечения к месту выхлопа в атмосферу.

8. Двигатель по п.1, отличающийся тем, что на выходе многоэжекторной системы установлен стабилизатор пламени, выполненный в виде сетки или одной и более спиралей.

9. Двигатель по п.1, отличающийся тем, что многоэжекторная система представляет собой систему, выполненную из по меньшей мере двух эжекторных систем, установленных параллельно на вход в камеру сгорания.

10. Двигатель по п.1, отличающийся тем, что топливная форсунка имеет одно или более сопла для прохода топлива.

11. Двигатель по п.1, отличающийся тем, что топливная форсунка устроена распылительной с распылением жидкого топлива газообразным топливом под давлением.

12. Двигатель по п.1, отличающийся тем, что топливная система работает по вытеснительному типу под давлением наддува топливного бака выше, чем давление насыщенных паров жидкого топлива.

13. Двигатель по п.1, отличающийся тем, что топливная система работает по насосному типу при работе насоса от электрического или механического привода.

www.findpatent.ru

импульсный реактивный двигатель - это... Что такое импульсный реактивный двигатель?

 импульсный реактивный двигатель

Astronautics: detonation jet

Универсальный русско-английский словарь. Академик.ру. 2011.

Смотреть что такое "импульсный реактивный двигатель" в других словарях:

universal_ru_en.academic.ru

Пульсирующий- первый реактивный — Паркфлаер

Многие полагают, что пульсирующий воздушно-реактивный двигатель (ПуВРД) пявился в Германии в период Второй мировой войны, и применялся на самолетах-снарядах V-1 (Фау-1), но это не совсем так. Конечно, немецкая крылатая ракета стала единственным серийным летательным аппаратом с ПуВРД, но сам двигатель был изобретен на 80 (!) лет раньше и совсем не в Германии. Патенты на пульсирующий воздушно-реактивный двигатель были получены (независимо друг от друга) в 60-х годах XIX века Шарлем де Луврье (Франция) и Николаем Афанасьевичем Телешовым (Россия).

Пульсирующий воздушно-реактивный двигатель (англ. Pulse jet), как следует из его названия, работает в режиме пульсации, его тяга развивается не непрерывно, как у ПВРД (прямоточный воздушно реактивный двигатель) или ТРД (турбореактивный двигатель), а в виде серии импульсов.

Воздух, проходя через конфузорную часть, увеличивает свою скорость, вследствие чего давление на этом участке падает. Под действием пониженного давления из трубки 8 начинает подсасываться топливо, которое затем подхватывается струей воздуха, рассеивается ею на более мелкие частички. Образовавшаяся смесь, проходя диффузорную часть головки, несколько поджимается за счет уменьшения скорости движения и в окончательно перемешанном виде через входные отверстия клапанной решетки поступает в камеру сгорания.Первоначально топливно-воздушная смесь, заполнившая объем камеры сгорания, воспламеняется с помощью свечи, в крайнем случае, с помощью открытого пламени, подводимого к обрезу выхлопной трубы. Когда двигатель выйдет на рабочий режим, вновь поступающая в камеру сгорания топливно-воздушиая смесь воспламеняется не от постороннего источника, а от горячих газов. Таким образом, свеча необходима лишь на этапе запуска двигателя, в качестве катализатора.Образовавшиеся в процессе сгорания топливно-воздушной смеси газы резко повышают, и пластинчатые клапаны решетки закрываются, а газы устремляются в открытую часть камеры сгорания в сторону выхлопной трубы. Таким образом, в трубе двигателя, в процессе его работы происходит колебание газового столба: в период повышенного давления в камере сгорания газы движутся в сторону выхода, в период пониженного давления — в сторону камеры сгорания. И чем интенсивнее колебания газового столба в рабочей трубе, тем большую тягу развивает двигатель за один цикл.

ПуВРД имеет следующие основные элементы: входной участок а — в, заканчивающийся клапанной решеткой, состоящей из диска 6 и клапанов 7; камеру сгорания 2, участок в — г; реактивное сопло 3, участок г — д, выхлопную трубу 4, участок д — е.Входной канал головки имеет конфузорный а — б и диффузорный б — в участки. В начале диффузорного участка устанавливается топливная трубка 8 с регулировочной иглой 5.

И снова вернемся к истории. Немецкие конструкторы, ещё накануне Второй мировой войны проводившие широкий поиск альтернатив поршневым двигателям, не обошли вниманием и это изобретение, долгое время остававшееся невостребованным. Наиболее известным летательным аппаратом как я уже говорил, явился немецкий самолёт-снаряд Фау-1.

Главный конструктор Фау-1 Роберт Люссер выбрал для него ПуВРД главным образом, из-за простоты конструкции и, как следствие, малых трудозатрат на изготовление, что было оправдано при массовом производстве одноразовых снарядов, серийно выпущенных за неполный год (с июня 1944 по март 1945) в количестве свыше 10 000 единиц.

Кроме беспилотных крылатых ракет, в Германии, так же разрабатывалась пилотируемая версия самолета-снаряда-  Фау-4 (V-4). По задумке инженеров, пилот должен был навести на цель свой одноразовый пепелац, покинуть кабину и спастись, используя парашют.  

 Правда, о том, способен ли человек покинуть кабину пилота на скорости 800км/час, да еще имея у себя за головой воздухозаборник двигателя- скромно умалчивалось.

 Изучением и созданием ПуВРД занимались не только в фашисткой Германии. В 1944 году для ознакомления, в СССР Англия поставила покореженые куски Фау-1. Мы, в свою очередь "слепили из того, что было", создав при этом, практически новый двигатель ПуВРД Д-3, ииии..........и водрузили его на Пе-2:

Но не с целью создания первого отечественного реактивного бомбардировщика, а для испытаний самого двигателя, который потом применялся для производства советских крылатых ракет 10-Х:

Но на этом не ограничивается применение пульсирующих двигателей в советской авиации. В 1946 году была реализована идея оборудовать истрибитель ПуВРД-шками: 

Да. Всё просто. На истрибитель Ла-9, под крыло установили два пульсирующих движка. Конечно на практике все оказалось несколько сложнее: на самолете изменили систему питания топливом, сняли бронеспинку, и две пушки НС-23, усилив конструкцию планера. Прирост скорости составил 70 км/ч. Летчик-испытатель И.М.Дзюба отмечал сильные вибрации и шум при включении ПуВРД. Подвеска ПуВРД ухудшала маневренные и взлетно-посадочные характеристики самолета. Запуск двигателей был ненадежным, резко снижалась продолжительность полета, усложнялась эксплуатация. Проведенные работы принесли пользу лишь при отработке прямоточных двигателей, предназначавшихся для установки на крылатые ракеты.  Конечно, в боях эти самолеты участия не принимали, но они достаточно активно использовались на воздушных парадах, где неизменно своим грохотом производили сильное впечатление на публику. По свидетельству очевидцев в разных парадах участвовало от трех до девяти машин с ПуВРД.Кульминацией испытаний ПуВРД стал пролет девяти Ла-9РД летом 1947 г. на воздушном параде в Тушино. Пилотировали самолеты летчики-испытатели ГК НИИ ВВС В.И.Алексеенко. А.Г.Кубышкин. Л.М.Кувшинов, А.П.Манучаров. В.Г.Масич. Г.А.Седов, П.М.Стефановский, А.Г.Терентьев и В.П.Трофимов.

Надо сказать о том, что американцы, тоже, не отставали в этом направлении. Они прекрасно понимали, что реактивная авиация, даже находясь на стадии младеньчества, уже превосходит свои поршневые аналоги. Но поршевых самолетов- очень много. Куда их девать?!.... И в 1946 году под крылья одного из самых совершенных истребителей своего времени, Мустанг P-51D, подвесили два двигателя Ford PJ-31-1.

 

Однако, результат оказался, прямо скажем,- не очень. С включенными ПуВРД скорость самолета заметно увеличивалась, но топливо они поглащали- о-го-го, так что долго летать с хорошей скоростью не получалось, и в выключенном состоянии реактивные моторы превращали истребитель небеный тихоход. Промучившись целый год американцы, все-таки, пришли к выводу, что получить задешево истребитель, способный хотя бы как-то конкурировать с новомодными реактивными не получится.

В итоге про ПуВРД забыли.....Но не на долго! Этот тип двигателей хорошо проявил себя в качестве авиамодельного! А почему бы нет?! Дешевый в производстве и обслуживании, имеет простое устройство и минимум настроек, не требует дорогостоящего горючего, да и вообще- его и покупать не обязательно- можно и самостоятельно построить, имея минимум ресурсов.

Это самый маленький ПуВРД в мире. Создан в 1952 г.

Ну согласитесь, кто не мечтал о реактвном самолете с хомячком пилотом и ракетами?!))))Теперь ваша мечта стала реальостью! Да и не  обязательно покупать двигаль- его можно построить:

  P.S. данная статья основана на материалах, опубликованных в сети Интернет...The end. 

www.parkflyer.ru

В России будет создан пульсирующий реактивный двигатель » Военное обозрение

Гридасову.у нас с вами завязывается интересная беседа...

Цитата: gridasov

это очень важная информация. Особенно в том, что люди продолжают оставаться людьми. Все пытаются казаться лучше других и очень часто строят свой авторитет на обругивании оппонентов

Этому множество причин, только перечисление которых займёт пару часов. Но это СЛЕДСТВИЯ, а вот ПРИЧИН меньше... и в них уже разбираться и быстрее и проще... Знаете наши предки говорили: ВСЁ НУЖНОЕ - ПРОСТО; ВСЁ СЛОЖНОЕ - НЕНУЖНО! Когда то прибл 7 лет назад, у меня "вдруг", открылись глаза, хотя это классическое "вдруг" не более чем метафора или речевая фигура. Этому "вдруг" предшествовало накопление громадного к-ва Информации. И в "один прекнасный день" когда у меня случайно обнаружили рак, я вдруг с пронзительной ясностью понял, что НИКАКОГО БОГА НЕТ!!! Что это мега- дальновидный развод и управленческая манипуляция "хозяев" по отношению к "рабам". Что касается смысла человеческой жизни... Вы вероятно человек с академическим и складом и укладом... и образом... так-сказать. Я ваш подход не осуждаю, но принимаю, он тоже имеет место быть! Но верить склонен предкам, которые учили, что человек возвращается на землю раз за разом, единственно с Целью ПОЗНАНИЯ ЛЮБВИ!!! Большей, ни Цели, ни Энергии во Вселенной нет! А вот на Любовь, как на ПРИЧИНУ, наматывается всё остальное и

Цитата: gridasov

Она дополняет и гармонично сочетает все противоречия

познаёт алгоритмику

Цитата: gridasov

уровневых преобразований всех энергетических структур, как процессов. И самое простое это познать геометрические закономерности магнитных силовых потоков

Цитата: gridasov

Это триединая задача . Каждая оставаясь нерешенной не создаст полноты всей картины мироустройства.

Вот когда вы поглубже окунётесь в Плыкина, когда увидите ту Вселенную или точнее КОНГЛОМЕРАТ ВСЕЛЕННЫХ, увидите зримо Бога, не еврейско-христианского деда на облаке со спицами и недовязанным носком а Истинную Сущность рождающую Вселенные... Тогда начинаеш кожей ощущать сколько миллиардов и биллионов исусов-смотрящих должно быть в этих Вселенных... Вот тогда начинаешь понимать, что Мир действительно совсем и не триедин, как учит церковь и наука, а Мир это Информация... Что - "материя" это "сгущенная Информация". Ведь никто и никогда от века не видел БЕЗ-ОБРАЗНОЙ Материи, ведь даже атом имеет свой образ... понесло меня... Вы выходите ко мне в личку и там можем толковать, делиться..., ну естественно, при обоюдном комфорте и желании...

topwar.ru


Смотрите также