ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Для тех, кто боится крутить двигатель.. Как крутить двигатель


Крутить или не крутить двигатель до отсечки? Нужно ли это делать

Очень часто мне задают вопрос – «подскажите, пожалуйста, можно ли или нужно ли крутить двигатель до высоких оборотов (некоторые еще называют жарить, «дать просраться» и т.д.)». Понять их можно, сейчас на многих сайтах, да и форумах ходит такое мнение, что если будешь «пенсионерить» (передвигаться с оборотами не выше 2000 – 2500), то двигатель твоего автомобиля будет ходить долго и счастливо (будет чуть ли не вечный)! НО так ли это на самом деле? Давайте разбираться, выскажу свое мнение, как обычно будет и видео версия в конце …

Крутить или не крутить двигатель

СОДЕРЖАНИЕ СТАТЬИ

В самом начале хочется отметить, что понятие высокие обороты у всех автомобилей различное, например для бензиновых нормальные будут в пределе 2000 – 4000 об/мин, а вот для дизеля 1500 – 2000 об/мин. Также объемный V-образный мотор, быстрее выйдет на заданную скорость, чем скажем 1-3 литровые рядные бензиновые варианты, которые нужно крутить.

Мотор 2,0 литра

НО суть сейчас не в этом, в городе то особо не погоняешь, да еще добавляют «ложку дегтя» вот такие вот щадящие свой мотор и как они считаю продлевающие ресурс индивидуумы! Плетутся, дай бог 40 – 60 км/ч, с минимальными 2000 оборотов. Действительно ли они продлевают ресурс или все это бред?

Минимальные обороты

Какая-то логика в словах тех, кто так говорит и пишет — есть! Вроде не насилую мотор, езжу спокойно, машина проходит дольше. НО не все так просто.

Еще раз повторю свою верхнюю фразу, для бензинового мотора считается нормальными 2000 – 4000 об/мин. А максимальная мощность зачастую раскрывается уже при 5000 – 5500 об/мин

И поверьте 4000 оборотов вполне достаточно для нормальной работы, то есть вы не насилуете силовой агрегат (ресурс сокращается не так сильно), но и не даете ему обрасти нагаром.

Минусы низких оборотов:

КОКС в двигателе

В общем низкие обороты не всегда плохо, но их нужно дозировать, про это чуть ниже.

Высокие обороты, крутить до отсечки

Всегда так делать, тоже не стоит. Прямо на каждом светофоре и при каждой остановке. Все же излишне большая нагрузка при каждой остановке – ТОЖЕ НЕ НУЖНА.

Высокие обороты

Во-первых, это быстрее изнашивает ваш мотор

Во-вторых, Это негативно влияет на АКПП или механику, банально быстрее изнашивая диск сцепления.

В-третьих, Быстрее разгоняешься, нужно дольше и интенсивнее тормозить, больший износ колодок и дисков

Это все понятно, но как же ездить, получается и не крутить, и не тошнить?

А как тогда ездить?

Ездите нормально. Чередуйте нагрузку – есть очень простой способ.

Передвижение с оборотами в 2000 – 4000, но один или пару раз за поездку нужно крутить до 5000 – 6000, чтобы так сказать дать просраться ДВС, удалить весь кокс из камеры сгорания, из мелких масляных каналов (потому как насос начинает качать больше и интенсивнее). Да и в целом силовой агрегат на это рассчитан.

Подводим простой итог:

Сейчас видео версия смотрим

НА этом заканчиваю, думаю, моя статья и видео были вам полезны. ИСКРЕННЕ ВАШ АВТОБЛОГГЕР  

avto-blogger.ru

Для тех, кто боится крутить двигатель..

<CENTER>Рев под капотом - это страшно?

</CENTER>

На тахометре крассная зона начинается с Х об./мин. Какие обороты можно считать(конечно речь идет о промежутках):

  1. нормальными
  2. оптимальными (с точки зрения расхода, ресурса и т.п.)
  3. допустимыми (разово, на небольших промежутках, на больших)
  4. предельными
  5. недопустимыми

Если не вдаваться в подробности, существует 2 главных источника повреждений двигателя, связанных с числом оборотов:

  1. Проблемы, связанные с пределами прочности деталей;
  2. Зависимость давления масла от числа оборотов.
Что касается прочности, то для правильно собранного двигателя она без вреда выдерживает максимально предписанные изготовителем обороты (красная зона тахометра) + ещё 10% - легко. Опасность "перекрутить" двигатель, как правило, существует на ненагруженном двигателе (ну, к примеру, если "запала" педаль газа на нейтралке). При движении со включённой передачей при "перекрутке" возникают "спецэффекты", такие как: отрыв клапанов от кулачков распредвала, "взвешенное" состояние поршневых колец, нарушения в прерывателе - в основном связанные с инерционностью невращательно движущихся деталей. Кроме того, при "перекрутке" резко падает мощность двигателя. Всё это вместе взятое резко снижает интенсивность разгона и заставляет понять, что смысла "крутить" выше просто нет, и побудит к переключению передачи на повышенную. При этом никакого существенного вреда двигатель не получит.

Вообще, правильнее было бы говорить о моточасах двигателя, а ещё правильнее - о моточасах, помноженных на усредненную нагрузку (что касается влияния числа оборотов на долговечность и механическую прочность деталей).

Теперь о давлении масла. Здесь источник "вреда" - малые обороты двигателя, а точнее обороты, при которых ещё закрыт редукционный клапан масляного насоса (этот клапан открывается при достижении расчётного давления масла - примерно 3.5 кГ) Конечно, давление масла зависит, кроме числа оборотов, ещё и от вязкости масла, его температуры и т.д., опустим пока эти параметры. Первый главный момент заключается в том, что при достижении расчётного давления масла "вред" двигателю от числа оборотов - минимален. Второй момент - максимальный ущерб двигателю наносится на холостых оборотах, а также при его пуске и остановке.

С этим приходится мириться изготовителям автомобилей, поскольку полным решением этой проблемы является автономный электрический привод, когда давление масла достигает расчётного раньше того, чем двигатель запущен. Однако это весьма дорого.

Частичным решением является увеличение производительности масляного насоса (обычно - увеличением высоты шестерён).

Однако я отвлёкся.

Давление масла зависит, кроме числа оборотов, ещё и от суммарной площади сечений, через которые масло вытекает (в коренных и шатунных подшипниках, в основном). Эти сечения со временем увеличиваются, и "безвредное число оборотов" смещается "вверх".

Главные выводы:

  1. "Крутить" не вредно, "перекручивать" не стОит.
  2. Всегда лучше ездить на несколько более высоких оборотах, чем принято большинством водителей.
  3. Если при пуске двигателя красная лампа давления масла гаснет не сразу - смените масляный фильтр.

 

www.audi-club.ru

Крутить или не крутить? — журнал За рулем

КЛУБ АВТОЛЮБИТЕЛЕЙ

/"ЧАЙНИКУ" НА ЗАМЕТКУ

КРУТИТЬ ИЛИ НЕ КРУТИТЬ?

РЕСУРС ДВИГАТЕЛЯ ЗАВИСИТ НЕ ТОЛЬКО ОТ МАРКИ АВТОМОБИЛЯ, НО И ОТ ПРИЕМОВ ВОЖДЕНИЯ

ТЕКСТ / АНАТОЛИЙ СУХОВ

С «КЛИНЫШКОМ»

Не перевелись в автошколах инструкторы, которые учат ездить «внатяг», на минимальных оборотах — дескать, так меньше износится двигатель. Кое-кто из них даже подгибает педаль или подкладывает под нее деревянный упор — тогда при всем желании полностью газ не откроешь. Так и ездит потом иной водитель — с «клинышком», пугаясь, едва стрелка тахометра переваливает отметку 2000. Оправдывают такой стиль экономией топлива, заботой о двигателе.

Что касается экономии топлива, это верно лишь отчасти. На низких оборотах двигатель не тянет, поэтому при обгоне или на мало-мальски заметном подъеме приверженец такого стиля езды вынужден «топтать» педаль газа, дополнительно обогащая смесь и сжигая сэкономленное топливо.

Так, может быть, выигрываем в ресурсе? На первый взгляд, ответ очевиден: меньше обороты двигателя — ниже относительные скорости перемещения деталей, соответственно уменьшается и износ. Но не все так просто. Наиболее ответственные подшипники скольжения (распределительного вала, коренных и шатунных шеек коленчатого вала) рассчитаны на работу в режиме гидродинамической смазки. Масло под давлением подается в зазор между валом и вкладышем и воспринимает возникающие нагрузки, не допуская непосредственного соприкосновения деталей — те просто «всплывают» на так называемом масляном клине. Коэффициент трения при гидродинамической смазке крайне мал — всего 0,002–0,01 (у смазанных поверхностей при граничном трении он в десятки раз выше), поэтому в таком режиме вкладыши выдерживают сотни тысяч километров. Но давление масла зависит от оборотов двигателя: масляный насос приводится от коленчатого вала. Если нагрузка на двигатель велика, а обороты — низкие, масляный клин может продавливаться до металла, и вкладыш начнет разбиваться, причем износ быстро прогрессирует по мере роста зазоров: создать «клин» все сложнее, подачи масла не хватает.

К тому же при езде на низких оборотах возникают ударные нагрузки в двигателе и трансмиссии. Инерция вращающихся деталей уже недостаточна, чтобы сгладить возникающие колебания. То же происходит и при троганье. Вспомним автошколу: стоит резко отпустить сцепление при малом газе, как машина начинает прыгать. Иногда это кончается поломкой сцепления: не выдерживают упругие пластины крепления ведомого диска к кожуху, лопаются, выскакивают из окон пружины. Лучше уж немного потерять на износе, но избежать досрочной поломки.

Итак, чем больше требуем от мотора (резкое ускорение, подъем, груженый автомобиль), тем выше должны быть обороты. И наоборот, при спокойной езде, когда двигатель нагружен слабо, нет смысла загонять стрелку тахометра в конец шкалы.

ЗОЛОТАЯ СЕРЕДИНА

Ускоренный износ вкладышей — не единственное зло от увлечения низкими оборотами. При коротких поездках на таких режимах в двигателе накапливаются низкотемпературные отложения, в первую очередь в системе смазки. Стоит «прохватить» по шоссе — и горячее масло под напором хорошенько промоет систему, заодно выгорит лишний нагар в камерах сгорания и канавках поршня. Иногда так удается восстановить понизившуюся из-за залегания колец компрессию в цилиндрах.

Разбирая «жигулевский» мотор, многие обращали внимание на стертые выемки на торце клапанов — следы рычагов. Эти отметины означают: клапаны не вращались, а работали все время в одном положении. Между тем вращение клапана продлевает срок его службы, только возможно это при оборотах свыше 4000–4500 об/мин. Немногие выводят мотор на эти режимы, вот и появляется выемка на клапанах. А дальше она сама станет препятствовать их вращению.

Но долгая работа вблизи красной зоны двигателю тоже не на пользу. Системы охлаждения и смазки работают на пределе, без запаса. Малейший дефект первой — забитый пухом спереди или герметиком изнутри радиатор, неисправный термостат — и стрелка указателя температуры окажется в красной зоне. Плохое масло или забитые грязью смазочные каналы могут вызвать задиры на деталях или даже «прихват» вкладышей или поршней, поломку распредвала. Поэтому «гонщикам» не стоит упускать из виду манометр и указатель температуры. Исправный же двигатель, заправленный хорошим маслом, без проблем переносит максимальные обороты. Конечно, в таком режиме его ресурс снижается, но отнюдь не катастрофически — лишь бы запчасти не оказались «левыми»! 

Между этими двумя крайностями и лежит золотая середина. В зависимости от конкретных условий оптимальный режим — 1/3–3/4 оборотов максимальной мощности. В режиме обкатки тоже недопустимы слишком низкие обороты, а верхнюю границу стоит опустить до 2/3 «максималки». Но главный принцип остается незыблемым — чем выше нагрузка, тем выше должны быть обороты.

ХОЛОДНЫЙ ПУСК

Пуск на морозе мотору не на пользу. Сконденсировавшийся на холодных стенках цилиндра бензин не сгорает, а разжижает и смывает с них масляную пленку. Поэтому большие обороты непрогретому двигателю вредны, а на малых старые карбюраторные двигатели не тянут. Впрысковые моторы позволяют ехать сразу же, но лучше подождать минутку, пока масло хоть немного разбежится по системе, поступит ко всем узлам.

Масляное голодание может наступить сразу же после пуска, если масло не успеет вернуться в поддон и насос хлебнет воздуха. Поэтому, если загорелась лампочка недостаточного давления масла, сразу же выключите двигатель на 30–40 секунд — пусть оно стечет. Причиной может стать как слишком густое масло, так и его недостаточный уровень или забитый маслоприемник (ЗР, 2002, № 4, с. 188).

ТЕПЛОВОЙ УДАР

Эта опасность подстерегает водителя, который всегда спешит: выиграв какие-то секунды в сумасшедшей гонке, он подлетает к тротуару, выключает зажигание и... в тот же момент температура двигателя начинает расти. Секунду назад тепловой баланс работавшего на высоких оборотах мотора поддерживался за сче

www.zr.ru

Стоит ли крутить движок? | Сайт Александра Нечаева

Темы с такими вопросами периодически появляются на всех форумах. На каких оборотах двигателя нужно ездить интересует многих водителей, а так как это вопрос противоречивый, то четкого и однозначного ответа на него нет – нужно учитывать кучу нюансов. Есть несколько аксиом, которые актуальны для любого бензинового двигателя внутреннего сгорания, и ряд особенностей, которые характерны для конкретных моделей двигателя.

Аксиома первая – езда на очень низких и очень высоких оборотах вредна. В первом случае мало давление масла и трущиеся детали мотора не получают должного его количества, во втором – системы смазки и охлаждения, наоборот, работают на своем пределе, что сокращает ресурс мотора. Меньше всего движки выхаживают у «дедов» и «гонщиков». Другое дело, что ресурс моторов Logan позволяет особо не задумываться о бережливости. Ну не пройдет он 500 тысяч километров, пройдет 400 в «неблагоприятных» условиях (цифры абсолютно условные). Разве расстроится среднестатистический владелец, который купил машину на три года, а потом продал? Столько на машинах сегодня не ездят. Да и двигатель скорее умрет от некачественного обслуживания, чем от высоких оборотов.

Аксиома вторая – чем выше обороты, тем лучше динамика. Тут и говорить нечего, хочешь быстро ускориться – крути движок. Особенно это актуально для малообъемных слабосильных двигателей, например как у Logan. Кому-то нужно удовлетворить свои гоночные амбиции, кто-то хочет почувствовать драйв от высокой скорости, ну и про повседневные дорожные задачи не стоит забывать – обогнать фуру на трасе, вклинится в поток, быстро проехать перекресток… Как все это реализовать если под капотом 75 л.с., а багажник и салон забиты до отказа? Только выкручивая двигатель до отсечки.

Аксиома третья – чем ниже обороты, тем ниже расход топлива. Естественно, эту аксиому не нужно доводить до абсурда, утверждая, что на 1000 оборотов будет самая экономичная езда. Слишком большие нагрузки при маленьких оборотах вредны. Если держать минимально разумные обороты, то езда будет экономичной. Эти «минимально разумные» обороты зависят от объема двигателя, загрузки авто, характера рельефа и других параметров. Опытный водитель всегда поймет, что двигателю приходится трудно – по детонации, плохой тяге, изменившемуся звуку работы – и включит пониженную передачу. По опыту автора этого материала негруженый Logan (1,6, 8 клапанов) по ровной дороге вполне может поддерживать постоянную скорость при 1400-1500 оборотов в минуту на любой передаче. Если ехать на 5-й (около 55 км/ч), то это будет самый экономичный режим. Эта аксиома, кстати, полностью опровергает популярный миф, что самый низкий расход топлива на оборотах максимального крутящего момента.

Аксиома четвертая – при частом стоянии в пробках и долгой работе на холостом ходу на свечах и деталях двигателя образуется нагар, который нужно периодически «прожигать». Самое лучшее средство это как раз высокие обороты. Вся «гадость» благополучно сгорит и вылетит в выхлопную трубу. Во многих официальных сервисах механики для машин с городской эксплуатацией настоятельно рекомендуют как минимум раз в неделю выкручивать мотор до отсечки.

Это, повторим, относится ко всем двигателям, в том числе и логановским, но у наших есть свои особенности. На Logan в России, как известно, устанавливают 8-клапанные моторы объемом 1,4 и 1,6 и 16-клапанный 1,6. Все три двигателя нормально работают на низких оборотах и хорошо выкручиваются до ограничителя. Это не волговский 402-й движок, который на 4000 оборотах расходует масла больше, чем бензина.

Есть правда нюанс. У 16-клапанного мотора пик крутящего момента настигает при 3750 вращений коленвала в минуту, это более оборотистый мотор, на высоких оборотах у него заметен подхват и лучше динамика. 8-клапанники архаичнее по конструкции – у них пик момента на 3000 оборотов, но это даже и хорошо. Эти двигатели, что 1,4, что и 1,6, на высоких оборотах дают меньшую прибавку, демонстрируя хороший момент «внизу». Эту особенность отличают многие логановоды: в городе, где двигатель особо не раскрутишь, разница между 8-клапанником и 16-клапанником не так уж и заметна, а вот на трассе, где обороты обычно высокие, большее количество клапанов играет заметную роль.

У 8-клапаников есть особенность – они шумноваты. Вкупе с невысоким уровнем шумоизоляции машины в целом это приводит к слабому акустическому комфорту при работе двигателя на высоких оборотах. Конечно, до жигулевской «классики», которая на 4000 оборотах ревет так, будто сейчас пойдет на взлет, Logan далеко, но все равно мотор слышно хорошо. И это лишний аргумент не раскручивать его сверх меры.

Так стоит ли крутить двигатель? Над таким вопросом, по хорошему, вообще не стоит задумываться. Logan позволяет каждому водителю ездить так, как ему нравится. Хочешь крутить – крути, не хочешь – не крути. Если вы хотите быстро разогнаться, совершить маневр, раскочегарить груженую машину, то почему бы и не раскрутить до высоких оборотов. Двигатель от этого не сломается, а если не злоупотреблять даже и спасибо скажет. Но ехать с постоянной скоростью на высоких оборотах, не переходя на повышенную (мы не говорим, конечно, про пятую передачу на трассе, тут без вариантов), довольно глупо, ведь бензина в таком режиме расходуется больше, да и лишний шум ни к чему.

Еще вам может быть интересно

anechaev.org

Как Поднять Крутящий Момент Двигателя. Перспективы Авто-Развития. 1km-auto

Увеличиваем крутящий момент двигателя своими силами

April 24,

У каждого двигателя есть какие-то характеристики. У какого-то они больше, у другого меньше. Все известно, что для лучшей динамики автомобилю требуется большая мощность, но мало кто знает, что такое крутящий момент двигателя. Говоря простым языком, - это момент силы, который прилагается к коленчатому валу для того, чтобы провернуть его в полный оборот. Логично предположить, что если это сила, то измеряется она в Нм. Таким образом, чем выше этот показатель, тем динамичнее автомобиль.

Но если мощность растет примерно до 5500-6000 оборотов, то максимальный крутящий момент двигателя развивается на средних оборотах. Что касается дизельных моторов, то у них такая характеристика серьезно превосходит бензиновые, поскольку степень сжатия в них почти в два раза больше, следовательно, к поршню прилагается большая энергия, которая, впоследствии, передается на коленчатый вал.

Как ни крути, самым распространенным двигателем является четверка . Их объем варьируется, но производители придерживаются именно такой конструкции, поскольку ее удобно размещать поперечно, кроме того, она не так дорога в производстве, как, скажем, шестерка . Но неоспоримым фактом является тот момент, что увеличение количества цилиндров, без изменения других характеристик, приводит к пропорциональному увеличению крутящего момента. К примеру, если крутящий момент двигателя, который имеет 4 цилиндра и 2 литра объема, составляет 150 Нм, то увеличение количества цилиндров до 6 поднимет его до 225 Нм. Естественно, нужно учесть потери на трение и прочие сторонние силы, таким образом, чистая прибавка составляет примерно треть, то есть конечный результат – 200 Нм.

Крутящий момент и мощность постоянно стараются увеличить. Самый простой способ это сделать – уменьшить объем камеры сгорания либо другими путями повысить степень сжатия. В этом случае стоит помнить о запасе двигателя, потому что головку блока цилиндров попросту может сорвать со шпилек или болтов крепления.

Второй способ – это установка коленчатого вала с большим коленом. В таком случае упадет оборотистость двигателя, кроме того, нужно менять и цилиндры, потому что изменится ход поршня. Фактически – это простое увеличение рабочего объема.

Теперь – немного теории. Вернемся к нашему увеличению количества цилиндров. Чем же оно так эффективно? Дело в том, что в первом случае (4) взрыв в камере сгорания происходит каждые 180 градусов. Это значит, что на всей длине хода поршня используется энергия одного цилиндра. В шестицилиндровом моторе этот взрыв происходит каждые 90 градусов вращения коленчатого вала. В этом случае, пока поршень проходить половину рабочего хода, происходит еще один взрыв в другом цилиндре, теперь коленвал вращают уже два поршня. Когда первый дойдет до нижней мертвой точки, второй пройдет половину хода, произойдет взрыв в третьем и так далее. Очевидно, что такая конструкция эффективнее.

Крутящий момент двигателя – это довольно важная характеристика, которая способна выделить агрегат из общего ряда. В заключение стоит добавить, что более объемные двигатели обладают большим крутящим моментом и большей мощностью.

Как увеличить крутящий момент двигателя

Многие автолюбители, привыкая к мощности своего автомобиля, остаются недовольными динамическими характеристиками. Кондиционер, гидроусилитель также влияют на суммарную тяговитость двигателя. Владельцы малолитражек испытывают дискомфорт при работающем кондиционере, что даже увеличивает вероятность попасть в дорожно-транспортное происшествие при обгоне или подобных манёврах. Ресурс такого двигателя заметно меньше, чем на более тяговитых двигателях, потому что трудиться малолитражке приходится больше. Постоянная увеличенная нагрузка и влияет на износ основных узлов агрегата. Все эти факторы наталкивают на мысль: как увеличить крутящий момент двигателя и его мощность?

Крутящий момент.

Крутящий момент – это физическая величина равная произведению силы на плечо рычага, к которому она приложена. В двигателе она играет немаловажную роль и показывает, как быстро двигатель может набрать максимальную мощность. Проще говоря, имея хорошие показатели крутящего момента, автомобиль будет лучше разгоняться с низов . Есть два подхода для повышения этих показателей. Первый и наиболее быстрый – это не вмешиваясь глубоко в двигатель, установить внешние наиболее производительные детали, такие как воздушный фильтр, распределительные валы, система выпуска и дроссельная заслонка. При правильном подходе суммарная мощность может возрасти до 20-30%. С этим подходом вы не затратите много времени и средств, но и прирост не столь существенен. Второй способ заключается в более глубокой доработке двигателя - увеличение объёма сгораемой камеры, доработка головки блока цилиндров. Стоит заметить, что эти два способа пересекаются , и дополняют друг друга. Доработав двигатель глубоко, придётся модернизировать или ставить более производительные внешние детали. Рассмотрим эти способы подробнее.

Чип тюнинг двигателя. Эта модификация возможна на инжекторных автомобилях. Суть этой модификации заключается в изменении управляющих сигналов машины, которые подает чип основным устройствам. Изменяются текущие характеристики двигателя, тщательная диагностика должна дать идеальные результаты - это является обязательным условием чип тюнинга. В результате программной модификациимы можем получить прирост крутящего момента порядка 5-20%, если воспользоваться хорошо сбалансированной прошивкой, увеличение расхода топлива будет сведено к минимуму, а в некоторых случаях и к снижению аппетита вашего автомобиля.

Увеличить крутящий момент.

Головка блока цилиндров – что мы можем выжать из этого узла? Как обеспечить более производительную работу и увеличить момент? Основная задача головки блока цилиндров это впуск сгораемой смеси и выпуск сгоревших газов, как раз подача в камеру сгорания большего объема способствует повышению момента. Некоторые автолюбители турбируютдвигатели, т. е. воздушная масса не всасывается тактом, а нагнетается турбиной, следовательно, не затрачивается энергия на забор воздуха. Но такие модернизации дороги, и очень сложны, не каждый двигатель получится модифицировать, но прирост при этом будет ощутимый. Приемлемым вариантом видится увеличение пропускной способности впускного клапана. Подбирается клапан с большим диаметром тарелки, после дорабатывается сам клапан на токарном станке и подгоняется под него посадочное место для как можно плотного прилегания клапана и последующего надежного запирания камеры сгорания. В этом вопросе для каждого двигателя будут свои нюансы. Увеличить крутящий момент можно также заменой распределительного вала на спортивный вариант с регулируемым шкивом и измененной программой управления. Отличие спортивного распределительного вала от стокового в измененном профиле кулачков, т. е. фазами газораспределения, это позволяет более эффективно наполнять рабочую камеру смесью. А большее количество рабочей смеси при сгорании лучше давит на поршень, и, следовательно увеличивает крутящий момент двигателя.

Еще одним способом увеличения крутящего момента является увеличение степени сжатия путем уменьшения объема камеры сгорания. За счет малого объема большей компрессии достигнуть легче. Уменьшая объем камеры сгорания, путем фрезеровки плоскости головки блока цилиндров, либо установка поршней сдругой формой верхней части занимающей больший объём, но такие модификации вряд ли возможны на 16 клапанных двигателях, так как в таких моторах поршень вплотную приближается к клапанам. При обрыве ремня газораспределительного механизма поршень врезается в открытые клапана и приводит их в негодность. Что чревато дорогостоящим ремонтом головки блока цилиндров и возможно узлов самого блока цилиндров.

Следующим основным шагом является увеличение рабочего объёма. Для этого необходимо заменить каленчатый вал, шатуны и поршни. Увеличение рабочего объема способствует основной нашей задаче, а именно увеличить крутящий момент в интервале между низкими и средними оборотами двигателя. С таким мотором для хорошего разгона его не придется крутить до высоких 5-6 тысяч. Далее модифицируем поршни, установкой облегченных собратьев. Уменьшая массу поршня, мы снимаем часть нагрузки на коленчатый вал и коренные шейки также уменьшается инерция поршня и в мертвых точках поршню легче остановиться. Все эти модификации должны сопровождаться изменением углов зажигания, настройки подачи топлива и воздуха. Для инжекторных двигателей это прошивка электронного блока управления (ЭБУ), для карбюраторных тщательная настройка карбюратора. Еще одним вариантом повышения динамических характеристик может служить расточка блока цилиндров и установка поршней большего диаметра, но стоит отметить, что расточка также практикуется в ремонтных целях, и может отрицательно сказаться на ресурсе двигателя.

Проделав некоторые модификации, вы приятно удивитесь новым способностям вашего автомобиля, прирост в наборе скорости и тяговитости в целом будет ощутимымым. Но следует быть готовым к большему расходу топлива, ведь двигатель стал объёмнее и прожорливее!

25-10-, 18:40 | Зинченко Владимир Александрович

Крутящий момент двигателя

Крутящий момент и мощность двигателя - два разных и порой несовместимых понятия.

Он важен как в тюнинге, так и в обычной гражданской эксплуатации автомобилей.

Например, при обгоне на трассе. Его особенно нехватает старым моторам ВАЗ, с 8-ми клапанной ГБЦ. А как мы знаем, при обгоне дорога каждая секунда, особенно когда перед тобой длинная фура .

Для сравнения возмём стоковые движки и сравним их характеристики:

ВАЗ 2101 карбюратор (1300) - 87,3 Н*м

ВАЗ 2107 карбюратор (1500) - 105,9 Н*м

ВАЗ 2109 карбюратор (1500) - 106,4 Н*м

ВАЗ 2109 инжектор (1500) - 118 Н*м

ВАЗ 2110 инжектор (1600/8V) - 120 Н*м

ВАЗ 2112 инжектор (1600/16V) - 131 Н*м

ВАЗ 2170 Priora (двиг.21126) - 145 Н*м.

Также важно, при каких оборотах крутящий момент будет максимальным, например для Приоры и ВАЗ 2112 (1600/16V) - это 4000 об/мин, а для десятки 8V - это 2700.

Как увеличить крутящий момент?

Из простых и недорогих способов:

1. Установка фильтра нулевого сопротивления + прямоточный глушитель. Рассчитывать на большой эффект не стоит.

2. Прошивка мозгов (чип-тюнинг), как дополнение к первому пункту. После этого эффект заметен.

Самый эффективный вариант:

Расточка блока, т.е. увеличение рабочего объёма цилиндров.

C движка ВАЗ 21124, при объёме 1,8 л можно снять около 200 Н*м, при этом крутящий момент в 100 - 110 (который у десятки ) будет уже на 1500 об/минуту.

Тема крутящего момента

Ведущий показатель, по которому судят о возможностях и применимости мотора, это МОЩНОСТЬ ДВИГАТЕЛЯ. Уже потом идут его экономичность, моторесурс, массогабаритные показатели и пр.

Мощность в свою очередь складывается из произведения двух главных параметров:

- частота (скорость) вращения вала двигателя

- крутящий момент на этом валу

Чем выше значение каждого их этих параметров - тем больше мощность мотора. Рассмотрим возможность повышения мощности двигателя при неизменном объеме рабочих камер. Следовательно, повышать мощность не увеличивая рабочий литровый объем, возможно лишь двумя путями:

– увеличивая частоту вращения вала и скорость движения главного рабочего органа

nbsp - увеличивая значение крутящего момента на валу мотора

Рассмотрим перспективы увеличения каждого из этих параметров:

Возможно, ли все выше и выше поднимать значение скорости вращения вала? Нет, нельзя – и вообще, для большинства потребителей мощности значение приводных оборотов должно быть невелико – для автомобиля в городском и в стартовом цикле- это сотни, а то и десятки оборотов в минуту, для гребных винтов больших и малых судов нужно лишь несколько большее значение. Даже для винтов самолетов это значение не должно превышать 1000-1200 оборотов в минуту, а для вертолетов это значение заметно ниже… Но современные поршневые моторы начинают развивать более или менее приемлемую мощность при оборотах от 1500 в минуту. Т.е. для таких моторов в качестве посредников между колесами-винтами и моторами приходится ставить сложные, дорогостоящие и тяжелые редукторы, либо вариаторы… Но если для повышения мощности мы решим повысить обороты вала мотора, то редукторы потребуются еще более сложные и тяжелые, с большим количеством передаточных ступеней. Т.е. – повышение мощности за счет увеличения числа оборотов вала - весьма малоэффективный путь. Тем более, что поршневые двигатели с кривошипно-шатунным механизмом и сложным механизмом газораспределения чисто по конструктивным особенностям не могут давать бороты выше 7-8 тысяч в минуту. Двигатель Ванкеля заметно мощнее, так как его рабочие частоты вращения несколько выше – до 10-12 тыс. оборотов

Существует, правда возможность ставить десмодромный механизм приводов впускных-выпускных клапанов. Такой механизм позволяет заметно поднять обороты поршневого двигателя. Но он очень сложный и дорогой. Поэтому находит лишь применение в экзотической технике, типа спорткаров Формулы-1 или мотоциклов Ducati.

Следовательно, для повышения мощности мотора более выгоден и эффективен иной путь – путь увеличения значения крутящего момента. В двигателях крутящий момент является важнейшим динамическим показателем и характеризует тяговые возможности двигателя.

Но вначале кратко разберем и вспомним само основное понятие - что такое крутящий момент.

Коротко это физическое понятие можно определить так: крутящий момент (момент силы) - это вращающая сила, которую создает главный рабочий орган двигателя и передает ее на вал двигателя.

Представить суть понятия крутящего момента, можно на примере обычного рычага в виде гаечного ключа. Если мы накинем ключ на туго затянутую гайку, и для того, чтобы сорвать её с места, с силой нажмем на рукоятку ключа, то на гайку начнет воздействовать крутящий момент (Мкр). Крутящий момент равен силе, приложенной к рычагу – рукояти гаечного ключа, умноженной на длину плеча силы. В цифрах это будет описываться так: если на рукоять ключа длиной один метр подвесить 10-килограммовый груз, то на гайку будет воздействовать крутящий момент величиной 10 кг•м. В системе измерения СИ этот показатель (умножается на значение ускорения свободного падения – 9,81 м/с2) будет равен 98,1 Н•м.

Из этой простой формулы, описывающей механику крутящего момента, исходит следующий вывод: получить больший крутящий момент можно двумя путями –либо нарастив длину рычага, либо увеличив вес груза.

В двигателе крутящий момент представляет собой произведение сил давления рабочих газов на полезную поверхность главного рабочего органа, на плечо приложения. В случаях с поршневыми двигателями это плечо приложения равно радиусу кривошипа коленчатого вала, в случаях с двигателями Ванкеля – это плечо между центром ротора и осью эксцентрикового вала, а в случае с совершенным роторным двигателем – это плечо от центра вращения вала до средины рабочей лопасти ротора. (РИС.)

В наиболее распространенных сегодня поршневых моторах крутящий момент возникает благодаря сгоранию рабочей смеси, которая расширяясь с большим давлением, толкает поршень вниз. Поршень в свою очередь через шатун давит на «колено» коленчатого вала. Хотя в описании характеристик двигателей длину плеча не указывают, об этом позволяет судить величина хода поршня (которая является удвоенным значением радиуса кривошипа). В силе, которая влияет на плечо рычага и создает крутящий момент, так же следует учитывать силы трения и инерции.

Примерный расчет крутящего момента поршневого мотора происходит так. Рабочие газы горения топливо-воздушной смеси давят на поршень, поршень передает давление на шатун, а шатун свое движение вниз передает на кривошипный механизм. Когда поршень толкает шатун с усилием 200 кг на плечо 5 см возникает крутящий момент 10 кГ•с, или 98,1 Н•м. Но у поршневого мотора с кривошипно – шатунным механизмом есть один очень серьезный недостаток: он создает усилие крутящего момента очень небольшой период времени в рабочем цикле. Четырехтатный мотор лишь один рабочий такт из четырех развивает рабочее усилие, а двухтактный мотор – только каждый второй такт. Во время нерабочих тактов коленчатый вал и поршневая группа вращаются по инерции массивных движущихся деталей мотора. То есть график распределения приложения движущей силы на круг вращения будет выглядеть так…. (cмотри графики крутящего момента тремя абзацами ниже)

Но тут есть еще один очень важный аспект. Не стоит думать, что усилие вращающего момента полноценно и активно работает весь период рабочего такта. На самом деле даже во время осуществления именно рабочего такта сила крутящего момента не вполне полноценна и не является отображением всей мощи силы давления рабочих газов на поршень. Т.е. крутящий момент поршневого мотора связан с силой давления рабочих газов расширения на поршень не вполне прямым и совсем малоэффективной образом. Виной тому врожденные и неискоренимые пороки посредника между прямолинейным движением поршня и вращательным движением вала - кривошипно – шатунного механизма. Причем они проявляют себя во всей красе как в поршневых двигателя, так и в роторных моторах Ванкеля.

Рассмотрим кинематику кривошипно – шатунного механизма (КШМ-а) поршневого мотора.

Когда давление газов на первом этапе горения топлива максимально, т.к. в это время объем камеры сгорания минимален, и работа совершаемая газами тоже наиболее велика, то в это миг крутящий момент на валу мотора от работы таких газов равен нолю. Ибо поршень в этой фазе работы КШМ-а находится в верхней мертвой точке и плечо рычага кривошипа равно нолю. Вся кинематика мотора (если это одноцилиндровый двигатель) движется лишь под воздействием сил инерции массы движущихся частей поршневой и кривошипно-шатунной группы двигателя.

Именно для этого на поршневые моторы и ставят маховики, чтобы усилить инерционность этой части деталей двигателя. Т.е. на этом этапе работы поршневого мотора длинные осевые линии плеча кривошипа и шатуна выстроились одну прямую линию, которая параллельна вектору силы расширяющихся газов. Поэтому вся сила этих газов в данный момент тратится на деформацию конструктивных элементов поршневой и кривошипно-шатунной группы и полезная работа газов расширения в этот миг полностью отсутствует.

Далее – под действием инерции вращения вал двигателя поворачивается, и движение кривошипа приводит к постепенному увеличению плеча, которое воспринимает крутящий момент, т.е. величина полезной силы расширяющихся газов возрастает. Величина нарастания значения плеча кривошипа постепенно увеличивается до значения углового расстояния в 60 град. от положения верхней мертвой точки. (РИС.) Именно в этой позиции возможно максимально эффективная работа КШМ-а, но время получения максимально возможного крутящего усилия (крутящего момента) уже утеряно, ибо по мере углового движения вниз верхней точки плеча кривошипа, вниз движется и поршень и давление рабочих газов в камере сгорания значительно падает… То есть сила газов расширения в момент наиболее высокого КПД уже не так велика, как в верхней мертвой точке.

Далее, вал двигателя с кривошипом продолжает вращение и проекция плеча кривошипа по отношению к вектору силы расширяющихся газов снова начинает уменьшаться… При этом по мере движения поршня вниз и дальнейшего увеличения объема расширения камеры сгорания, давление газов в ней падает, а значит падает и усилие давления этих газов на поршень.

Следовательно, на линии расширения газов и угловом пути плеча кривошипа после достижения им положения в 60 град. от верхней мертвой точки, величина крутящего момент резко падает, так как к этому приводит сложение двух процессов - падение движущего поршень давления рабочих газов и резкое уменьшение воспринимающего силу этого давления плеча кривошипа. В нижней мертвой точке продольные оси шатуна и плеча кривошипа снова выстраиваются в одну линию, и давление рабочих газов снова бессмысленно тратит свою уже небольшую силу лишь на бессмысленную деформацию элементов мотора, а движущиеся детали мотора продолжают вращаться лишь под действием инерции своих масс. По сути дела КШМ выдает силу крутящего момента на вал двигателя лишь дробными, последовательными пульсациями - серией многочисленных, но кратковременных толчков.

Все автомобилисты ощущают все прелести именно такого режима работы поршневого мотора с КШМ-ом особенно в моменты, когда надо с некоторой средней скорости, если идешь на высшей передаче и теряешь инерцию движения, вдруг резко ускориться- то есть снять с мотора мощное усилие крутящего момента. Если не переходить на низшую передачу, просто резко попытаться увеличить обороты мотора на прежней передаче и нажать на педаль «газа», то получим не мощное тяговое усилие, а лишь задыхающееся тарахтение и вибрацию мотора, готового заглохнуть… Это именно проявил себя малоэффективный режим работы КШМ-а, который не способен эффективно снять крутящий момент при невысокой частоте вращения вал. Приходится в этом случае переходить на нижнюю передачу и резко нажимать педаль газа, чтобы увеличить обороты мотора, тем самым обеспечить большое количество «силовых толчков» КШМ-а в единицу времени и увеличить тяговое усилие. А вот электромоторы, которые переводят рабочую мощь электромагнитных сил в своих обмотках в простое вращательное движение без всяких малоэффективных механизмов – посредников, не страдают такой болезнью. Именно поэтому многие автомобилисты с завистью наблюдают, как легко и мощно стартуют со светофоров громоздкие и тяжелые троллейбусы, обгоняя в стартовом импульсе легкие и вроде бы мощные легковые авто. То же можно сказать и о стартовом импульсе гибридных автомобилей, где стартовый импульс (крутящий момент на старте) обеспечивает электромотор.

Итак – КШМ – это неизбежный и тяжелый порок поршневых моторов, который резко снижает их эффективность, увеличивает их громоздкость, повышает цену и уменьшает надежность. Поэтому уже не менее ста лет идет, пока еще безуспешная работа, по созданию бесшатунных схем поршневых двигателей. Работы идут сто лет, но серьезной отдачи от нее пока не видно, так как сама схема поршневого мотора давно исчерпала свои возможности в плане принципиального совершенствования. Именно поэтому почти всю историю техники осуществляются попытки создать более эффективную и инженерно совершенную конструкцию мотора без применения поршней с возвратно – поступательным движением. Именно таким направлением является линия создания роторных машин с вращательным движением главного рабочего элемента.

Роторные двигатели

Единственным на сегодня выпускаемым в промышленных масштабах роторным двигателем является двигатель Ванкеля – роторный двигатель с планетарным движением главного рабочего элемента. Как я уже писал, этот тип двигателя обладает одним неоспоримым преимуществом- это наиболее простой по количеству деталей тип конструкций. Но при этом он обладает немалыми врожденными, неизбежными для такого типа организации внутренней кинематики, недостатками. И один из основных недостатков - наличие КШМ-а. Не удивляйтесь: как это – роторный двигатель, а имеет кривошипно- шатунный механизм? А вот так- имеет. Правда двигатель Ванкеля обладает не полноценным КШМ-мом, как его поршневые конкуренты, а лишь его фрагментом. Но этот фрагмент и заключает в себе все главные недостатки и пороки классического КШМ-а, которые и играют на такую сложную судьбу этого типа двигателей. Поэтому двигатели Ванкеля и не смогли потеснить своих поршневых конкурентов – ибо у них не было преимущества в главном: не было простой и мало затратной схемы переведения давления рабочих газов во вращение рабочего вала. То есть роторный двигатель Ванкеля только лишь от части ушел от возвратно –поступательного движения поршней, но так и не смог прийти к чистому и простому вращательному движению главного рабочего элемента, поэтому в его конструкции и пришлось применять кривошипный механизм, со всеми его недостатками и потерями. (РИС.) Соответственно, надо понимать, что планетарное вращательное движение центра ротора вокруг геометрического центра рабочей камеры и вокруг оси вала есть промежуточный вариант устройства, между двумя диаметрально противоположными типами организации движения главных рабочих элементов разных типов двигателей: возвратно – поступательным и простым вращательным движением.

Рассмотрим, как работает и проявляет себя кривошипный механизм в двигателе Ванкеля, который создает самое главное в моторе - крутящий момент.

Итак, расширение рабочих газов в двигателе Ванкеля происходит только в одной зоне его камеры сгорания, форма которой называется эпитрохоидой. (РИС.) Следовательно, начала такта расширения и его завершение будет происходить в постоянно одинаковых геометрических позициях. Поэтому и суммарный вектор силы, который будет придавать планетарное, вращательно – поступательное движение ротору будет все время работать в одном направлении. А вот плечо рычага, которым обладает эксцентрично посаженый на вал мотора диск, который и будет переводить поступательное движение ротора во вращение этого вала, будет все время меняться по закону синусоиды. То есть будут две геометрические точки, когда проекция плеча рычага по отношению к направлению вектора действующей силы, будет равна нолю. (РИС.) Так же будут две точки, когда проекция плеча рычага по отношению к вектору силы будет максимальной, а во всех остальных точках проекция этого плеча будет различна по значению, меняясь по закону синусоиды. Всё совершенно так же, как и в КШМ-е поршневого мотора. Именно поэтому двигатель Ванкеля в исполнении с одной роторной секцией имеет крайне неудовлетворительную диаграмму крутящего момента – еще хуже, чем у поршневого мотора. Ведь длина рабочего хода у двигателя Ванкеля меньше, поэтому и рывки по нарастанию и падению интенсивности крутящего момента еще больше. Но к этому недостатку добавляется еще и возможность на небольшом участке вращения ротора иметь отрицательный крутящий момент, т.е. момент который работает против основного вращения ротора… Вот такого этапа в диаграмме крутящего момента в поршневых моторах точно нет. Именно по этой причине односекционные моторы Ванкеля с одним ротором имеют очень плохую диаграмму крутящего момента и нуждаются для приобретения приемлемой работоспособности в массивных маховиках. На приведенном выше схеме из старой книги Судовые роторные двигатели хорошо видно, как на первом (верхнем графике) линия значения крутящего момента в односекционном двигателе Ванкеля часть времени опускается в поле отрицательных значений. Т.е. некоторое время сила рабочих газов вращает ротор в обратном направлении. соотвественно и режим крутящего момента у такого двигателя очень плохой.

Так же надо отметить, что двигатели Ванкеля по режиму крутящего момента являются верховыми моторами- т.е. у них большая величина крутящего момента появляется только на верхах , т.е. после набора значительного количества оборотов главного вала. Т.е. чтобы резко стартовать с места автомобилю с двигателем Ванкеля надо вначале хорошо прогазоваться и набрать мощь - раскрутить двигатель до боольших оборотов и только потом выжать сцеление, иначе на малых оборотах земетной силы крутящего момента на валу не будет и авто не удастся резко сорвать с места.

***

Проведя это небольшое исследование темы крутящего момента мы увидели, что на настоящем этапе развития техники постоянным и непрерывным крутящим моментом могут похвастаться лишь газовые турбины и электромоторы- силовые машины, в которых тяговое усилие действующего силового принципа превращается во вращение главного вала непосредственно и без применения механизмов - посредников. А вот поршневые моторы и двигатели Ванкеля, которые используют для преобразования поступательного движения главных рабочих органов во вращательное движение своих главных валов конструкции – посредники, в виде кривошипных механизмов, выдают на главный вал прерывистый, пульсирующий крутящий момент плохого качества.

Именно в избавлении от этого недостатка автору этих строк и видится задача по созданию двигателя внутреннего сгорания с герметично запираемой камерой сгорания, который будет обладать простым непрерывным вращением главного рабочего элемента. Поэтому такой мотор не будет нуждаться в механизме - посреднике и будет сразу преобразовывать простое и непрерывное вращение главного рабочего элемента в непрерывное вращение рабочего вала с постоянным крутящим моментом

ПРОДОЛЖЕНИЕ СТАТЬИ О КРУТЯЩЕМ МОМЕНТЕ Опубликовано 30.06.13г.

nbsp Но - в приведённых выше рассуждениях есть одна важный уровень фактологии, который уводит нас еще дальше в теорию и практику изучения рабочих схем существующих тепловых двигателей, различных силовых машин и прочих моторов. И изучение этих вопросов, как и обобщение и исследование такой технической практики, должно привести нас к пониманию – на каком пути развития пытаться создать конструкцию совершенного теплового двигателя. Привести к осознанию – что нам делать: искать принципиально новую конструкцию совершенного теплового двигателя, или может быть обойтись поверхностным тюнингом существующих двигателей и добиться на этом пути высоких результатов?

nbsp Итак, выше мы говорили, что сам режим работы кривошипно-шатунного механизма (КШМ) поршневого мотора даёт непрерывно пульсирующий (изменяющийся) от ноля до максимума и обратно величину крутящего момента. Но – в двигателях ВНУТРЕННЕГО СГОРАНИЯ, этот недостаток накладывается на другой еще более существенный и неискоренимый порок таких моторов. А в иных типах двигателей, в которых этого второго недостатка нет, а есть только первый недостаток, обусловленный наличием в моторе КШМ, с величиной и режимом крутящего момента все обстоит не так уж плохо. Эти редкие счастливчики из большого мира моторов – паровые двигатели, т.е. двигатели внешнего сгорания. В отличие от двигателей ВНУТРЕННЕГО СГОРАНИЯ (бензиново-соляровых моторов), двигатели ВНЕШНЕГО СГОРАНИЯ (паровые двигатели) имели и имеют совершенно недостижимый для ДВС могучий крутящий момент, что позволяло паровым двигателям обходится совсем без коробки передач, этой весьма громоздкой и дорогой части любого современного автомобиля. А в магистральных дизельных железнодорожных тепловозах вместо механических коробок передач в паре с дизельным двигателем применят дорогие и сложные по устройству электрические или гидромеханические передачи. А вот старинные паровозы с примитивными паровыми двигателями на угле без всяких коробок передач легко сдвигали с места и разгоняли до высоких скоростей тысячетонные составы… Почему же так происходит? Что за загадочное явление в мире моторов, где старинные и примитивные паровые машины оказываются в какой-то своей части гораздо совершеннее и удобнее современных дизелей, газовых турбин и прочих ДВС (двигателей внутреннего сгорания)?

nbsp Оказывается – в паровых двигателях, благодаря особенностям организации их технологических циклов, внутренняя логика цепочки преобразования типов энергии гораздо более дружественна для создания высокого значения крутящего момента. Т.е. паровые машины (паровые двигатели) для создания стабильного и мощного крутящего момента, как машины для преобразования разных типов энергии, оказались гораздо более подходящими и эффективными, чем ДВС (двигатели внутреннего сгорания) с их сложной организацией технологических циклов. Правда, КПД паровых машин при этом оказывается многократно хуже, чем у бензиновых или дизельных, или даже газотурбинных ДВС (двигателей внутреннего сгорания). Зато никакого тюнинга конструкции и видоизменения механической сути паровых двигателей для повышения значения крутящего момента делать не нужно, он у них и так на предельном значении.

nbsp Итак - рассматриваем организацию и схему работы таких технологических циклов в моторах двух типов: в двигателях ВНУТРЕННЕГО СГОРАНИЯ и в двигателях ВНЕШНЕГО СГОРАНИЯ.

В двигателях ВНЕШНЕГО СГОРАНИЯ устройство для создания Рабочего Тела высокого давления обособленно от расширительной машины. Т.е. паровой котёл, который создает поток водяного пара (Рабочего Тела) отделен от самого парового двигателя - т.е. от поршневого мотора (расширительной машины). Такое разделение резко снижает КПД парового двигателя, ибо теплопередача тепловой энергии через стенку котла от горящего топлива в нагреваемому пару – резко ухудшает КПД такой силовой установки. НО – зато в итоге паровой котёл даёт стабильный по количественному весовому расходу и давлению поток Рабочего Тела - водяного пара. Т.е. от момента подачи пара в поршневой двигатель, до момента отсечки пароподачи в конце рабочего хода, пар продолжает поступать на линии расширения по ходу поршня в полость рабочего цилиндра и давление в этом цилиндре не падает весь рабочих ход (до момента отсечки). Поэтому давление пара продолжает создавать одинаково стабильное усилие на поршень весь рабочий ход. Т.е. расширение Рабочего Тела (рабочий ход) парового поршневого двигателя происходит в режиме изобарного процесса – при постоянном давлении. Для создания мотором максимального по времени и наиболее мощного по значению режима крутящего момента – это наилучшие условия.

nbsp Итак - в двигателях ВНЕШНЕГО СГОРАНИЯ Рабочего Тела хватает для того, чтобы обеспечить постоянное и вполне мощное рабочее давление на поршень по длине всего рабочего его хода. Т.е. по самой своей схеме принципиальной организации работы паровые двигатели имеют практически идеальный крутящий момент и высокую мощность и совершенно не требуют тюнинга двигателя в области совершенствования тяговой мощности. Она у паровых машин и так на предельной высоте.

Но вот в двигателях ВНУТРЕННЕГО СГОРАНИЯ определяется совсем иная схема организации рабочих процессов в моторе. По основному своему принципу организации технологических процессов в таком моторе, поршневой ДВС испытывает крайний недостаток в полноценном наполнении рабочего пространства между поршнем и цилиндром Рабочим Телом высокого давления. В момент поджигания сжатого заряда рабочей топливно-воздушной смеси поршень стоит около Верхней Мертвой точки, но по мере течения времени, когда заряд начинает гореть и выделять тепло и поднимать давление, поршень начинает очень быстро ускоряться. Обычно последние порции сжатого заряда, которые находятся дальше всего от очага первоначального поджигания около свечи, не успевают сгореть и идут на выхлоп. Ибо фронт пламени в сжатом заряде распространяется со скоростью до 20 м/сек, а поршень на середине своего пути разгоняется до скорости 10-15 м/сек. При этом давление в горящем заряде резко падает (рабочий объём между дном цилиндра и днищем поршня быстро увеличивается), температура заметно уменьшается и последние порции топливной смеси перестают гореть…

nbsp Теоретически считается, что горение происходит только в период 40°-60° от Верхней Мертвой Точки, т.е. процесс «горение- создание рабочего тела» идет лишь 40°-60° углового расстояния из 180° общего расстояния рабочего хода поршня. Т.е. оставшиеся минимум 120° углового расстояния на поршень давит всё меньшее давление Рабочего Тела, ибо рабочее пространство между донышком цилиндра и поршнем увеличивается, а Рабочего Тела не добавляется. Вот его давление на поршень и уменьшается…

nbsp Но тут мы должны вспомнить, что рабочий ход – это только один из четырёх линейных возвратно-поступательных движений технологического цикла 4-х тактного поршневого ДВС (двигателя внутреннего сгорания). Т.е. получается очень грустная арифметика – из 720° градусов углового расстояния полного технологического цикла такого мотора (2-а оборота коленвала на полный цикл), только 180° предоставляется собственно на сам рабочий ход, но вот нарастающее (или не уменьшающееся) давление на поршень со стороны газов Рабочего Тела осуществляется лишь на угловом расстоянии не более 60°. Т.е. делим 720 на 60 и получаем 12. Т.е. полноценно и активно Рабочее Тело в поршневом ДВС (двигателе внутреннего сгорания) действует только 1/12 часть времени полного технологического цикла такого мотора, т.е. не более 8%… А в поршневом паровом двигателе двойного действия постоянное давление подводится к поршню около 85% полного технологического времени цикла такого мотора.

Теперь, я надеюсь, читателю становится понятно, почему поршневому ДВС (двигателю внутреннего сгорания) для своей работы требуются высокие обороты коленвала и громоздкая и сложно устроенная коробка передач, для создания приемлемого для потребителя крутящего момента. А вот паровая машина (двигатель ВНЕШНЕГО СГОРАНИЯ) может выдавать могучий крутящий момент на частоте всего в пару десятков оборотов главного вала в минуту и без всякой коробки передач.

nbsp А если добавить сюда еще и синусоидальный, пульсирующий режим выдачи крутящего момента кривошипно-шатунным механизмом любого поршневого мотора, то становится ясным, что в поршневом ДВС (двигателе внутреннего сгорания), реально мощный импульс крутящего момента на коленчатом валу поршневого ДВС создается еще в меньшем промежутке времени, чем 8% примерно на треть – т.е. около 6%. Как говорится печальная картина, и никакое совершенствование механизмов моторов, никакое обвешивание электроникой малоэффективного железа, никакой чип-тюнинг не могут изменить этого принципиального недостатка поршневых ДВС (двигателей ВНУТРЕННЕГО СГОРАНИЯ).

nbsp Так что же нам делать, чтобы произвести реальное улучшение положения дел с тепловыми силовыми машинами и тяговыми моторами на ископаемом топливе? Какую создать совершенную конструкцию, какую произвести ревизию существующих моделей двигателей и какой совершить тюнинг (т.е. модернизацию) самой идеи теплового двигателя? Ответ на такой вопрос о тюнинге самой идеи двигателя есть у автора статьи, и он изложит его в следующей части такой статьи.

Смотрите продолжение, которое скоро здесь появится.

Источники: http://fb.ru/article/58718/uvelichivaem-krutyaschiy-moment-dvigatelya-svoimi-silami, http://www.autoshcool.ru/2925-kak-uvelichit-krutyaschiy-moment-dvigatelya.html, http://www.ladatuning.net/tyuning-dvigatelya-vaz/478-krutyashchij-moment-dvigatelya, http://www.rotor-motor.ru/page07.htm

Комментариев пока нет!

www.1km-auto.ru