ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

двухконтурный турбореактивный двигатель. Двухконтурный турбореактивный двигатель


Двухконтурный турбореактивный двигатель

Двухко́нтурный турбореактивный двигатель

(ДТРД)

авиационный Воздушно-реактивный двигатель, в котором поступающий в него воздух делится на два потока, проходящих через внутренние и внешние контуры. Первый ДТРД с эжектором предложен в 1887 киевским изобретателем Ф. Р. Гешвендом. Первый ДТРД с вентилятором — в 1932 К. Э. Циолковским (См. Циолковский). В 1939 А. М. Люлька разработал проект ДТРД с компрессором и с разделением потоков воздуха на входе. В 1939 французский инженер Р. Аниксионназ и Р. Имберт предложили ДТРД с различным числом роторов вентилятора и компрессора внутреннего контура, как соединённых зубчатой передачей, так и механически не связанных. В 1947 советский инженер В. Ф. Павленко разработал проект ДТРД с разделением потоков воздуха за компрессором. ДТРД с теплообменником во внешнем контуре и с дополнительным газовым компрессором во внутреннем контуре между турбиной и реактивным соплом, предназначенным для снижения давления за турбиной ниже атмосферного, предложен в 1948 советский инженер М. Г. Дубинским, С. 3. Копелевым и А. О. Мацуком. В 1953 немецкий инженер К. Лейст получил патент на ДТРД с биротативным (т. е. имеющим внутренний и наружный ротор) компрессором внутреннего контура, у которого один из двух вращающихся в противоположном направлении роторов (наружный) несёт рабочие лопатки вентилятора внешнего контура. Тяга ДТРД складывается из сил реакции потоков воздуха и продуктов сгорания, получивших ускорение во внутреннем и внешнем контурах и вытекающих через два самостоятельных (рис. 1, а, в) или одно общее (рис. 1, б, г) Реактивное сопло. Внешний контур представляет собой кольцевой канал, в котором находится вентилятор или компрессор, располагающийся за турбокомпрессором (рис. 1, а) или перед ним (рис. 1, 6). Переднее расположение вентилятора даёт возможность использовать его для сжатия воздуха, поступающего во внутренний контур. ДТРД, у которых степень двухконтурности (отношение расходов воздуха через внешний и внутренний контур) больше единицы, принято называть турбовентиляторными двигателями. Степень двухконтурности различных типов ДТРД — от 0,5 до 8. Степень повышения давления воздуха в компрессоре внутреннего контура от 10 до 26, внешнего — от 1,5 до 2,5. Повышение температуры газа перед турбиной существенно улучшает характеристики ДТРД. У современных ДТРД она достигает 1600 К (см. Газотурбинный двигатель). Ротор ДТРД выполняется двухвальным, а иногда и трёхвальным (рис. 2) с разной частотой вращения каждого вала.

Основная особенность ДТРД состоит в том, что при одной и той же затрате энергии сообщается меньшее ускорение значительно большей массе воздуха, чем в обычном турбореактивном двигателе (См. Турбореактивный двигатель) (ТРД). Благодаря этому тяга на взлёте и в полёте с дозвуковой скоростью увеличивается, а удельный расход топлива уменьшается. У ДТРД со степенью двухконтурности 1 взлётная тяга на 25% больше, чем у ТРД, с такой же тягой на скорости 1000 км/ч и существенно меньший шум, создаваемый реактивной струей благодаря меньшей её скорости. ДТРД широко применяются в СССР и за рубежом на дозвуковых, преимущественно пассажирских самолётах (например, Ил-62, Ту-134, «Боинг-727») и самолётах с вертикальными пли укороченными взлётом и посадкой. С увеличением скорости полёта более 1000 км/ч тяга ДТРД резко уменьшается из-за малой скорости реактивной струи. Для увеличения этой скорости сжигается дополнительное количество топлива во внешнем контуре (рис. 1, в) или в общей смесительной камере (рис. 1, г). Это делает выгодным применение ДТРД и на сверхзвуковых самолётах (см. также Авиационный двигатель).

Лит.: Стечкин В.С., Теория реактивных двигателей, М., 1958; Клячкин А. Л., Теория воздушно-реактивных двигателей, М., 1969: High speed aerodynamics and jet propulsion, v. 12, L., 1959.

С. З. Копелев.

Двухконтурный турбореактивный двигатель

Рис. 1. Схемы двухконтурного турбореактивного двигателя; расположение вентилятора: а — заднее, б — переднее; сжигание дополнительного топлива: в — во внешнем контуре, г — в общей смесительной камере; 1 — вентилятор (компрессор) внешнего контура; 2 и 21 — компрессор и турбина низкого давления; 3 — 31 — компрессор и турбина высокого давления; 4 — камера сгорания внутреннего контура; 5 — камера сгорания внешнего контура; 6 — форсунки дополнительного топлива; 7—71 — реактивное сопло внутреннего и внешнего контура.

Двухконтурный турбореактивный двигатель. Рис. 2

Рис. 2. Схема (а) и общий вид (б) трёхвального двухконтурного турбореактивного двигателя (ДТРД): 1 — вход воздуха во внешний контур; 2 — вход воздуха во внутренний контур; 3 — лопатки вентилятора; 4 и 41 — компрессор и турбина низкого давления; 5—51 —компрессор и турбина высокого давления; 6 — камера сгорания; 7 — турбина привода вентилятора; 8 — реактивное сопло.

Источник: Большая советская энциклопедия на Gufo.me

gufo.me

Энциклопедия техники - значение слова Турбореактивный Двухконтурный Двигатель

(ТРДД), турбовентиляторный двигатель, — турбореактивный двигатель с внутренним и наружным контурами, в котором часть энергии сгорания топлива, подводимого во внутренний контур, преобразуется в механическую работу для привода вентилятора наружного контура. Внутренний контур содержит компрессор, турбины компрессора и вентилятора и камеру сгорания. Поток сжатого воздуха наружного контура и поток газа внутреннего контура, вытекающего из турбины вентилятора, используются для получения реактивной тяги с помощью отдельных реактивных сопел или одного общего сопла, в котором смешиваются потоки. Перед реактивными соплами ТРДД могут находиться форсажные камеры сгорания для увеличения тяги путём сжигания дополнительного топлива . Введение второго контура при отсутствии форсажа являет основным средством повышения экономичности ТРД вследствие уменьшения потерь энергии с отбрасываемой струёй, обусловленного уменьшением её среднемассовой скорости. Экономичность ТРДД зависит от параметров рабочего процесса и уменьшается с повышением скорости полёта. Поэтому нефорсированные ТРДД применяются в основном на дозвуковых пассажирских и транспортных самолётах, на которых они с 60-х гг. стали основным типом двигателя. ТРДД с форсажными камерами (ТРДДФ) широко применяются на сверхзвуковых самолетах для повышения экономичности при полёте с дозвуковой скоростью, а также для расширения диапазона изменения характеристик двигателя.Важнейшим параметром ТРДД является степень двухконтурности т. Находящиеся в эксплуатации ТРДД дозвуковых самолётов имеют m = 0,5—2 и, как правило, смешение потоков в общем реактивном сопле, или m = 4—8 и раздельное истечение потоков (в этом случае вентилятор одноступенчатый).Значения удельного расхода топлива в дозвуковом ТРДД находятся в пределах Суд = 0,08—0,058 кг/(Н(·)ч) при Маха числе полёта М(∞) = 0,8 на высоте H = 11 км. Меньшие значения относятся к ТРДД с большей степенью двухконтурности. ТРДД сверхзвуковых самолётов имеют при М(∞) = 2,2 и H = 11 км на нефорсированном режиме Суд = 0,13—0,14 кг/(Н(·)ч) и до 0,2 кг/(Н·ч) на полном форсаже.Для ТРДД дозвуковых самолётов наибольший интерес представляет дроссельная характеристика на крейсерском режиме полёта , показывающая изменение экономичности двигателя в зависимости от режима его работы. На протекание дроссельной характеристики ТРДД сильно влияет значение степени двухконтурности на расчётном режиме mp. Для ТРДДФ сверхзвуковых манёвренных самолётов важны высотно-скоростные характеристики в полном диапазоне изменения условий полёта . Дросселирование здесь производится в основном изменением подачи форсажного топлива. Протекание высотно-скоростных характеристик ТРДД обеспечивается принятой программой регулирования, задающей закон изменения параметра регулирования в зависимости от внешних условий, напримерnк = f(р*вх, Т*вх) илиnк = const,где nк — частота вращения компрессора, р*вх и Т*вх — полное давление и температура торможения воздуха на входе в двигатель.По конструкции ТРДД разделяются на одно-, двух- и трёхвальные, с передним и задним вентиляторами. Передний вентилятор работает всегда на оба контура, задний — только на наружный контур (свободная турбовентиляторная приставка). Наибольшее распространение получили двух- и трёхвальные ТРДД с передним вентилятором. Второе название ТРДД — турбовентиляторный двигатель — также нашло широкое распространение, но его чаще применяют, имея в виду ТРДД с большой степенью двухконтурности.Впервые ТРДД был предложен А. М. Люлькой в 1937. Первые ТРДД для пассажирских самолётов были созданы во 2-й половине 50-х гг. (за рубежом — «Конуэй» английской фирмы «Роллс-Ройс», в СССР — Д-20П в ОКБ П. А. Соловьёва).

Смотреть значение Турбореактивный Двухконтурный Двигатель в других словарях

Двигатель — двигателя, м. 1. Машина, приводящая что-н. в движение; механизм, преобразующий какой-н. вид энергии в механическую работу (тех.). внутреннего сгорания. Электрический двигатель.........Толковый словарь Ушакова

Двигатель М. — 1. Устройство, преобразующее какой-л. вид энергии в механическую работу. 2. перен. Сила, способствующая росту, развитию чего-л.Толковый словарь Ефремовой

Турбореактивный Прил. — 1. Приводимый в движение газовой турбиной и реактивным двигателем.Толковый словарь Ефремовой

Двигатель — -я; м.1. Машина, превращающая какой-л. вид энергии в механическую энергию. Паровой д. Д. внутреннего сгорания. Реактивный д.2. чего. Сила, побуждающая к чему-л., содействующая........Толковый словарь Кузнецова

Турбореактивный — -ая, -ое. ◊ Турбореакти́вный двигатель. Авиационный газотурбинный двигатель, в котором тяга создаётся струёй газов, вытекающих из реактивного сопла. Турбореакти́вный........Толковый словарь Кузнецова

Бензиновый Двигатель — , самый распространенный ВИД ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ.Научно-технический энциклопедический словарь

Ветровой Двигатель — , техническое приспособление, использующее силу ветра для выработки энергии, которая приводит в действие механизмы, либо для генерации электричества. Начиная с 1970 г.,........Научно-технический энциклопедический словарь

Вечный Двигатель — , существует две теоретические формы вечного двигателя. В первой механизм работает бесконечно без притока ЭНЕРГИИ извне. Однако этот вид машины противоречит первому........Научно-технический энциклопедический словарь

Двигатель — • (мотор), механизм, преобразующий энергию (такую как тепло или электричество) в полезную работу. Термин «мотор» иногда применяется к ДВИГАТЕЛЮ ВНУТРЕННЕГО СГОРАНИЯ........Научно-технический энциклопедический словарь

Двигатель Ванкеля — , двигатель внутреннего сгорания, в котором вместо поршней действуют роторы. Конструкция была разработана в 1950-х гг. немецким инженером Феликсом Ванкелем (1902-88). Каждый........Научно-технический энциклопедический словарь

Двигатель Внутреннего Сгорания — , широко используемый в машинах и мотоциклах двигатель, внутри которого горючее сгорает так, что выделяемые при этом газы могут производить движение. Бывает двух видов........Научно-технический энциклопедический словарь

Двигатель Возвратно-поступательного Действия — , см. ПОРШНЕВОЙ ДВИГАТЕЛЬ.Научно-технический энциклопедический словарь

Двигатель С Воспламенением От Сжатия — , см. ДИЗЕЛЬНЫЙ ДВИГАТЕЛЬ.Научно-технический энциклопедический словарь

Двухтактный Двигатель — , двигатель, в котором движение каждого поршня осуществляется в два этапа. Эта операция называется двухтактным циклом. Во многих малых бензиновых двигателях используется........Научно-технический энциклопедический словарь

Дизельный Двигатель — , ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ, в котором тепло для поджигания горючего получается путем сжатия воздуха. Этот тип двигателя был изобретен Рудольфом ДИЗЕЛЕМ в 1890-е........Научно-технический энциклопедический словарь

Ионный Двигатель — , тип РАКЕТНОГО двигателя, который в качестве движущей силы использует не горячие газы, а ионы (ионный ракетный двигатель), испускаемые в электрическом поле атомами........Научно-технический энциклопедический словарь

Корабельный Двигатель — , силовая установка, используемая для приведения в движение морских КОРАБЛЕЙ и в качестве вспомогательной установки в более маленьких плавающих суднах. В XIX и начале........Научно-технический энциклопедический словарь

Линейный Двигатель — , тип ЭЛЕКТРИЧЕСКОГО ДВИГАТЕЛЯ, разработанный для мощных высокоскоростных поездов. В принципе похож на роторный электрический мотор, но вместо нескольких катушек (ротора),........Научно-технический энциклопедический словарь

Паровой Двигатель — , ДВИГАТЕЛЬ, приводимый в действие силой пара. Пар, получаемый путем нагрева воды, используют для движения. В некоторых двигателях сила пара заставляет двигаться поршни,........Научно-технический энциклопедический словарь

Поршневой Двигатель — , любой ДВИГАТЕЛЬ, в котором поршень совершает возвратно-поступательное движение, такой как ПАРОВОЙ ДВИГАТЕЛЬ или ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ, обычно спользуемый........Научно-технический энциклопедический словарь

Прямоточный Воздушно-реактивный Двигатель — (ПВРД), авиационный РЕАКТИВНЫЙ ДВИГАТЕЛЬ, реактивный мотор, приводящий в движение летательный аппарат с помощью скоростного потока воздуха, сжимаемого в приемном устройстве........Научно-технический энциклопедический словарь

Реактивный Двигатель — , двигатель, который обеспечивает продвижение вперед, быстро выпуская струю жидкости или газа в направлении, противоположном направлению движения. Чтобы создать высокоскоростной........Научно-технический энциклопедический словарь

Солнечный Двигатель — (гелиотермический двигатель), устройство, превращающее СОЛНЕЧНУЮ ЭНЕРГИЮ в механическую РАБОТУ. Чаще всего используется для обеспечения РЕАКТИВНОЙ ТЯГИ для космического........Научно-технический энциклопедический словарь

Стартовый Двигатель — , РАКЕТНЫЙ двигатель, который сообщает движение снаряду или космическому кораблю на первых стадиях полета, а затем отделяется и тем самым уменьшает собственный вес........Научно-технический энциклопедический словарь

Тепловой Двигатель — , любой двигатель, который превращает тепловую энергию (обычно сжигаемого топлива) в полезную механическую энергию. Таким образом, все ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ........Научно-технический энциклопедический словарь

Термоэлектрический Двигатель — , разновидность РАКЕТНОГО реактивного двигателя, сочетающего тепловую и электрическую энергию для разгона частиц до огромных скоростей. В дуговом РЕАКТИВНОМ ДВИГАТЕЛЕ........Научно-технический энциклопедический словарь

Турбовентиляторный Двигатель — , ТУРБИННЫЙ двигатель, разработанный на основе ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ, но более эффективный. В нем имеется компрессор, нагнетающий воздух из воздухозаборника в........Научно-технический энциклопедический словарь

Турбовинтовой Двигатель — , авиационный двигатель с пропеллером (воздушным винтом), который приводится в действие газовой ТУРБИНОЙ через передаточный механизм (редуктор). Турбина сжимает воздух,........Научно-технический энциклопедический словарь

Турбореактивный Двигатель — , авиационный двигатель (вид газовой ТУРБИНЫ), в котором энергия вырабатывается реактивной силой расширяющихся газов. Спереди в компрессор поступает воздух, нагнетается........Научно-технический энциклопедический словарь

Четырехтактный Двигатель — , ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ, работа каждого поршня которого делится на четыре такта, составляющие четырехтактный цикл, или цикл Отто, названный так в честь его........Научно-технический энциклопедический словарь

Посмотреть еще слова :

slovariki.org

двухконтурный турбореактивный двигатель - это... Что такое двухконтурный турбореактивный двигатель?

 двухконтурный турбореактивный двигатель

двухко́нтурный турбореакти́вный дви́гатель — см. Турбореактивный двухконтурный двигатель.

Энциклопедия «Авиация». - М.: Большая Российская Энциклопедия. Свищёв Г. Г.. 1998.

Смотреть что такое "двухконтурный турбореактивный двигатель" в других словарях:

avia.academic.ru

Реферат Двухконтурный турбореактивный двигатель

скачать

Реферат на тему:

План:

Введение

Схема газотурбинного двигателя.

Газотурбинный двигатель (ГТД, ТРД) — тепловой двигатель, в котором газ сжимается и нагревается, а затем энергия сжатого и нагретого газа преобразуется в механическую работу на валу газовой турбины.

В отличие от поршневого двигателя, в ГТД процессы происходят в потоке движущегося газа.

Сжатый атмосферный воздух из компрессора поступает в камеру сгорания, туда же подаётся топливо, которое, сгорая, образует большое количество продуктов сгорания под высоким давлением. Затем в газовой турбине энергия газообразных продуктов сгорания преобразуется в механическую работу за счёт вращения струёй газа лопаток, часть которой расходуется на сжатие воздуха в компрессоре. Остальная часть работы передаётся на приводимый агрегат. Работа, потребляемая этим агрегатом, является полезной работой ГТД. Газотурбинные двигатели имеют самую большую удельную мощность среди ДВС, до 6 кВт/кг.

В качестве топлива могут использоваться любое горючее, которое можно диспергировать: бензин, керосин, дизельное топливо, мазут, природный газ, судовое топливо, водяной газ, спирт и измельченный уголь.

1. Одновальные и многовальные двигатели

Простейший газотурбинный двигатель имеет только одну турбину, которая приводит компрессор и одновременно является источником полезной мощности. Это накладывает ограничение на режимы работы двигателя.

Иногда двигатель выполняется многовальным. В этом случае имеется несколько последовательно стоящих турбин, каждая из которых приводит свой вал. Турбина высокого давления (первая после камеры сгорания) всегда приводит компрессор двигателя, а последующие могут приводить как внешнюю нагрузку (винты вертолёта или корабля, мощные электрогенераторы и т. д.), так и дополнительные компрессоры самого двигателя, расположенные перед основным.

Преимущество многовального двигателя в том, что каждая турбина работает при оптимальном числе оборотов и нагрузке. При нагрузке, приводимой от вала одновального двигателя, была бы очень плоха приемистость двигателя, то есть способность к быстрой раскрутке, так как турбине требуется поставлять мощность и для обеспечения двигателя большим количеством воздуха (мощность ограничивается количеством воздуха), и для разгона нагрузки. При двухвальной схеме легкий ротор высокого давления быстро выходит на режим, обеспечивая двигатель воздухом, а турбину низкого давления большим количеством газов для разгона. Также есть возможность использовать менее мощный стартер для разгона при пуске только ротора высокого давления.

2. Турбореактивный двигатель

Схема турбореактивного двигателя: 1 — входное устройство; 2 — осевой компрессор; 3 — камера сгорания; 4 — рабочие лопатки турбины; 5 — сопло.

В полёте поток воздуха тормозится во входном устройстве перед компрессором, в результате чего его температура и давление повышается. На земле во входном устройстве воздух ускоряется, его температура и давление снижаются.

Проходя через компрессор, воздух сжимается, его давление повышается в 10—45 раз, возрастает его температура. Компрессоры газотурбинных двигателей делятся на осевые и центробежные. В наши дни в двигателях наиболее распространены многоступенчатые осевые компрессоры. Центробежные компрессоры, как правило, применяются в малогабаритных силовых установках.

Далее сжатый воздух попадает в камеру сгорания, в так называемые жаровые трубы (имеется более прогрессивная конструкция — кольцевая камера сгорания, состоящая не из отдельных труб, а выполненная цельным кольцевым элементом). В наши дни кольцевые камеры сгорания являются наиболее распространёнными. Трубчатые камеры сгорания используются гораздо реже, в основном на военных самолётах. Воздух на входе в камеру сгорания разделяется на первичный, вторичный и третичный. Первичный воздух поступает в камеру сгорания через специальное окно в передней части, по центру которого расположен фланец крепления форсунки и участвует непосредственно в окислении (сгорании) топлива (формировании топливо-воздушной смеси). Вторичный воздух поступает в камеру сгорания сквозь отверстия в стенках жаровой трубы, охлаждая, придавая форму факелу и не участвуя в горении. Третичный воздух подаётся в камеру сгорания уже на выходе из неё, для выравнивания поля температур. При работе двигателя в передней части жаровой трубы всегда вращается вихрь раскалённого газа (что обусловлено специальной формой передней части жаровой трубы), постоянно поджигающего формируемую топливовоздушную смесь, происходит сгорание топлива (керосина, газа), поступающего через форсунки в парообразном состоянии.

Газовоздушная смесь расширяется и часть её энергии преобразуется в турбине через рабочие лопатки в механическую энергию вращения основного вала. Эта энергия расходуется, в первую очередь, на работу компрессора, а также используется для привода агрегатов двигателя (топливных подкачивающих насосов, масляных насосов и т. п.) и привода электрогенераторов, обеспечивающих энергией различные бортовые системы.

Основная часть энергии расширяющейся газовоздушной смеси идёт на ускорение газового потока в сопле и создание реактивной тяги.

Чем выше температура сгорания, тем выше КПД двигателя. Для предупреждения разрушения деталей двигателя используют жаропрочные сплавы, оснащённые системами охлаждения, и термобарьерные покрытия.

2.1. Турбореактивный двигатель с форсажной камерой

Турбореактивный двигатель с форсажной камерой (ТРДФ) — модификация ТРД, применяемая в основном на сверхзвуковых самолётах. Между турбиной и соплом устанавливается дополнительная форсажная камера, в которой сжигается дополнительное горючее. В результате происходит увеличение тяги (форсаж) до 50%, но расход топлива резко возрастает. Двигатели с форсажной камерой, как правило, не используются в коммерческой авиации по причине их низкой экономичности.

«Основные параметры турбореактивных двигателей различных поколений» Поколение/период Т-ра газаперед турбиной°C Степень сжатиягаза, πк* Характерныепредставители Где установлены
1 поколение1943-1949 гг. 730-780 3-6 BMW 003, Jumo 004 Me 262, Ar 234, He 162
2 поколение1950-1960 гг. 880-980 7-13 J 79, Р11-300 F-104, F4, МиГ-21
3 поколение1960-1970 гг. 1030-1180 16-20 TF 30, J 58, АЛ 21Ф F-111, SR 71,МиГ-23Б, Су-24
4 поколение1970-1980 гг. 1200-1400 21-25 F 100, F 110, F404,РД-33, АЛ-31Ф F-15, F-16,МиГ-29, Су-27
5 поколение2000-2020 гг. 1500-1650 25-30 F119-PW-100, EJ200,F414, АЛ-41Ф F-22, F-35,ПАК ФА

Начиная с 4-го поколения рабочие лопатки турбины выполняются из монокристаллических сплавов, охлаждаемые.

3. Турбовинтовой двигатель

Схема турбовинтового двигателя: 1 — воздушный винт; 2 — редуктор; 3 — турбокомпрессор.

В турбовинтовом двигателе (ТВД) основное тяговое усилие обеспечивает воздушный винт, соединённый через редуктор с валом турбокомпрессора. Для этого используется турбина с увеличенным числом ступеней, так что расширение газа в турбине происходит почти полностью и только 10—15 % тяги обеспечивается за счёт газовой струи.

Турбовинтовые двигатели гораздо более экономичны на малых скоростях полёта и широко используются для самолётов, имеющих большую грузоподъёмность и дальность полёта. Крейсерская скорость самолётов, оснащённых ТВД, 600—800 км/ч.

3.1. Турбовальный двигатель

Турбовальный двигатель (ТВаД) — газотурбинный двигатель, у которого вся развиваемая мощность через выходной вал передается потребителю Основная область применения — силовые установки вертолетов.

4. Двухконтурные двигатели

Дальнейшее повышение эффективности двигателей связано с появлением так называемого внешнего контура. Часть избыточной мощности турбины передаётся компрессору низкого давления на входе двигателя.

4.1. Двухконтурный турбореактивный двигатель

Схема турбореактивного двухконтурного двигателя (ТРДД) со смешением потоков: 1 — компрессор низкого давления; 2 — внутренний контур; 3 — выходной поток внутреннего контура; 4 — выходной поток внешнего контура.

В турбореактивном двухконтурном двигателе (ТРДД) воздушный поток попадает в компрессор низкого давления, после чего часть потока проходит по обычной схеме через турбокомпрессор, а остальная часть (холодная) проходит через внешний контур и выбрасывается без сгорания, создавая дополнительную тягу. В результате снижается температура выходного газа, снижается расход топлива и уменьшается шум двигателя. Отношение количества воздуха, прошедшего через внешний контур, к количеству прошедшего через внутренний контур воздуха называется степенью двухконтурности (m). При степени двухконтурности <4 потоки контуров на выходе, как правило, смешиваются и выбрасываются через общее сопло, если m>4 — потоки выбрасываются раздельно, так как из-за значительной разности давлений и скоростей смешение затруднительно.

Двигатели с малой степенью двухконтурности (m<2) применяются для сверхзвуковых самолётов, двигатели с m>2 для дозвуковых пассажирских и транспортных самолётов.

4.2. Турбовентиляторный двигатель

Схема турбореактивного двухконтурного двигателя без смешения потоков (Турбовентиляторного двигателя): 1 — вентилятор; 2 — защитный обтекатель; 3 — турбокомпрессор; 4 — выходной поток внутреннего контура; 5 — выходной поток внешнего контура.

Турбовентиляторный реактивный двигатель (ТВРД) — это ТРДД со степенью двухконтурности m=2—10. Здесь компрессор низкого давления преобразуется в вентилятор, отличающийся от компрессора меньшим числом ступеней и большим диаметром, и горячая струя практически не смешивается с холодной.

4.3. Турбовинтовентиляторный двигатель

Дальнейшим развитием ТВРД с увеличением степени двухконтурности m=20—90 является турбовинтовентиляторный двигатель (ТВВД). В отличие от турбовинтового двигателя, лопасти двигателя ТВВД имеют саблевидную форму, что позволяет перенаправить часть воздушного потока в компрессор и повысить давление на входе компрессора. Такой двигатель получил название винтовентилятор и может быть как открытым, так и закапотированным кольцевым обтекателем. Второе отличие — винтовентилятор приводится от турбины не напрямую, как вентилятор, а через редуктор.

5. Наземные двигательные установки

Другие модификации газотурбинных двигателей используются в качестве силовых установок на судах (газотурбоходы), железнодорожном (газотурбовозы) и другом наземном транспорте, а также на электростанциях, в том числе, передвижных, и для перекачки природного газа. Принцип работы практически не отличается от турбовинтовых двигателей.

6. Газовая турбина с замкнутым циклом

В газовой турбине с замкнутым циклом рабочий газ циркулирует без контакта с окружающей средой. Нагрев (перед турбиной) и охлаждение (перед компрессором) газа производится в теплообменниках. Такая система позволяет использовать любой источник тепла (например, газоохлаждаемый ядерный реактор). Если в качестве источника тепла используется сгорание топлива, то такое устройство называют турбиной внешнего сгорания. На практике газовые турбины с замкнутым циклом используются редко.

7. Конструкторы газотурбинных двигателей

wreferat.baza-referat.ru

Двухконтурный турбореактивный двигатель - это... Что такое Двухконтурный турбореактивный двигатель?

 Двухконтурный турбореактивный двигатель Двухконтурный турбореактивный двигатель

Авиация: Энциклопедия. — М.: Большая Российская Энциклопедия. Главный редактор Г.П. Свищев. 1994.

.

Смотреть что такое "Двухконтурный турбореактивный двигатель" в других словарях:

dic.academic.ru

ТУРБОРЕАКТИВНЫЙ ДВУХКОНТУРНЫЙ ДВИГАТЕЛЬ - это... Что такое ТУРБОРЕАКТИВНЫЙ ДВУХКОНТУРНЫЙ ДВИГАТЕЛЬ?

 ТУРБОРЕАКТИВНЫЙ ДВУХКОНТУРНЫЙ ДВИГАТЕЛЬ

(ТРДД) - турбореактивный двигатель с внутр. и нар. контурами движения воздуха (газа) и вентилятором, обслуживающим только нар. или оба контура (см. рис.). Тяга ТРДД создаётся реактивными соплами внутр. и нар. контуров или общим соплом, перед к-рым потоки смешиваются. Отношение расходов воздуха в нар. и внутр. контурах наз. степенью двухконтурности. Использование части энергии продуктов сгорания внутр. контура для турбинного привода вентилятора нар. контура уменьшает скорость истечения газов из реактивных сопел (по сравнению с одноконтурным ТРД), что улучшает экономичность (меньше потери кинетич. энергии с отбрасываемыми струями) и снижает шум двигателя. На пасс. и грузовых самолётах используются ТРДД с большой степенью двухконтурности (до 4 - 8), раздельными контурами и одноступенчатым вентилятором. На сверхзвук, самолётах применяются ТРДД с малой степенью двухконтурности, многоступенчатым вентилятором и форсажной камерой в наружном контуре или с общей форсажно-смесительной камерой (ТРДДФ). ТРДД часто называют также турбовентиляторными двигателями.

Большой энциклопедический политехнический словарь. 2004.

Смотреть что такое "ТУРБОРЕАКТИВНЫЙ ДВУХКОНТУРНЫЙ ДВИГАТЕЛЬ" в других словарях:

dic.academic.ru

Турбореактивный двухконтурный двигатель - это... Что такое Турбореактивный двухконтурный двигатель?

 Турбореактивный двухконтурный двигатель

13. Турбореактивный двухконтурный двигатель

ТРДД

D. Zweistroim-Luftstrahltriebwerk

Е. Turbofan engine

F. Turboréacteur à double flux

Турбореактивный двигатель с внутренним и наружным контурами, в котором часть энергии сгорания топлива, подводимого во внутренний контур, преобразуется в механическую работу для привода вентилятора наружного контура

Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.

Смотреть что такое "Турбореактивный двухконтурный двигатель" в других словарях:

normative_reference_dictionary.academic.ru


Смотрите также