ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

5.7. Дроссельные характеристики турбовальных двигателей. Двигатели турбовальные


5.7. Дроссельные характеристики турбовальных двигателей

Рис. 5.12. Дроссельные характеристики турбовального двигателя

В отличие от дроссельных характеристик ГТД прямой реакции, которые при М = const в ряде случаев могут быть представлены в виде критериальных зависимостей от одного критерия подобия – приведенной частоты вращения , у турбовальных двигателей, как уже указывалось, такая возможность исключается. Это объясняется тем, что приnт.к.пр = const у них режимы подобия на свободную турбину не распространяются, поскольку она работает при условииnс.т = const, а следовательно, у нееnс.т.пр const. Поэтомудроссельными характеристиками турбовальных двигателей называют зависимости мощности на валу свободной турбины Nе и удельного расхода топлива Се от физической частоты вращения ротора ГГ nт.к при заданных атмосферных условиях рН и ТН или, что то же самое, при заданных значениях температурыТНи высоты полетаН. Они имеют вид, показанный на рис. 5.12.

Физическое объяснение протекания дроссельных характеристик турбовального ГТД имеет много общего с ГТД других типов. При увеличении nт.к возрастает Gв. Повышается также работа Lс.т = Lц, поскольку увеличиваются параметры термодинамического цикла  и . Это приводит к интенсивному возрастанию Ne.

Внутренний КПД с увеличением nт.к все время возрастает, как и у любого другого ГТД, вследствие одновременного повышения  и . Отличие от ТРД и ТРДД состоит в том, что турбовальный ГТД является чисто тепловым двигателем и эффективность использования теплоты в нем оценивается только величиной вн, как это следует из формулы (5.5). Поэтому с увеличением nт.к величина Се все время снижается. У ГТД прямой реакции при определении Суд приходится учитывать еще тяговый КПД, который при повышении режима работы двигателя снижается, что приводит к появлению на дроссельной характеристике этих двигателей характерной «ложки», аналогичной той, которая наблюдается при анализе зависимости Суд от  при  = const. У турбовальных ГТД минимум Се обеспечивается на максимальном режиме.

На дроссельной характеристике принято отмечать точки, соответствующие крейсерскому, номинальному и максимальному режимам.

5.8. Климатические характеристики турбовальных двигателей

Климатическими характеристиками турбовальных ГТД называются зависимости Ne и Се от температуры ТН на разных высотах полета. Следует отметить, что изменение только барометрического атмосферного давления рН не приводит к изменению режима работы ГГ. Не изменяется при этом также и Lс.т. Величины же Gв и Nе изменяются пропорционально рН, что легко учитывается расчетом. Поэтому климатические характеристики турбовальных ГТД рассматривают в зависимости от двух параметров, характеризующих внешние условия – температуры ТН и высоты полета Н.

Климатические характеристики могут быть определены для ГТД любого типа. Но при изучении характеристик ТРД и ТРДД на этом вопросе внимание не заостряется по той причине, что, имея дроссельные характеристики этих двигателей при стандартных атмосферных условиях, их можно пересчитать на другие атмосферные условия путем использования формул подобия. Для турбовальных двигателей такой пересчет произвести нельзя, поскольку, как указывалось, при nт.к.пр = const подобие режимов не распространяется на свободную турбину, а следовательно, и на весь двигатель в целом.

При заданном (например, максимальном) режиме работы двигателя и при отсутствии эксплуатационных ограничений повышение температуры окружающего воздуха при условии рН = const приводит при nт.к = const к снижению мощности двигателя и к увеличению его удельного расхода топлива (штриховые линии на рис. 5.13). Снижение Nе с ростом ТН физически объясняется уменьшением расхода воздуха через двигатель (вследствие падения его плотности), а также уменьшением работы Lс.т (вследствие снижения и соответственно с.т при снижении nт.к.пр с ростом температуры ТН). Возрастание Cе обусловлено падением внутреннего КПД вследствие уменьшения  и .

Рис. 5.13. Климатические характеристики

при Н =Нр:с учетом и - - - - без учета

эксплуатационных ограничений

Такое влияние температуры ТНна изменениеNеявляется неблагоприятным с точки зрения согласования потребной мощности для полета вертолета, которая от температурыТНпрактически не зависит, и располагаемой мощности двигателя, сильно снижающейся с ростомТН. Это противоречие может быть преодолено уменьшением полезной нагрузки вертолета в условиях жаркого климата, либо установкой более мощного двигателя, подбираемого из условий обеспечения полета при высоких значениях температурыТН. Этому последнему условию отвечают высотные турбовальные двигатели. У них при работе у земли и в некотором диапазоне высотН Нpдвигатель работает с ограничением поNе max, т.е. он в той или иной степени задросселирован. В таком случае на рассматриваемой высоте полета величинаNес ростом температурыТНвначале поддерживается постоянной за счет увеличенияnт.ки температуры
до выхода ГГ на расчетный режим работы.

Климатические характеристики высотного турбовального двигателя на максимальном режиме с учетом эксплуатационных ограничений для случая Н = Нр представлены на рис. 5.13 сплошными линиями. Их протекание легко объяснить с использованием рис. 5.8, на котором для этого же случая показано изменение параметров в областях соответствующих ограничений. Постоянная максимальная мощность Nе поддерживается в области II (рис. 5.13) за счет раскрутки ротора ГГ. В точке «р» двигатель выходит на ограничение по nт.к.max и только с этого момента Nе при дальнейшем возрастании ТН начинает падать – вначале на участке III более медленно (вследствие повышения температуры ), а на участкеIV более интенсивно (вследствие снижения nт.к в области ограничения по ). На участкеI снижение мощности при уменьшении ТН вызвано необходимостью поддержанияnт.к.пр = const из условияKу.min =const, что требует более интенсивного дросселирования двигателя, чем на участкеII. Некоторое увеличениеСев областяхI,IIиIV(по сравнению со штриховой линией) связано со снижениемвниз-за уменьшенияnт.к. На участкеIвеличинаСесохраняется практически постоянной (вследствие неизменности параметрови).

Рис. 5.14. Объединенные дроссельно-климатические характеристики

при nс.т = 100% иН = 1 км

На высотах, меньших расчетной, диапазон температур, соответствующих условию Nе.max = const, существенно расширяется. В частности, на взлетном режиме (приН = 0), как это видно из рис. 5.9, условиеNе.max = const обеспечивается во всем диапазоне температурТН <ТН3, в том числе на участке0-3приТН > 288 К.

Поддержание постоянства мощности ТВаД на взлетном режиме при увеличении температуры Тн до определенного значения является важным эксплуатационным показателем вертолетного двигателя. Эти температуры могут составлять 30…40С.

Объединенные дроссельно-климатические характеристики турбовального двигателя ТВ3-117 при Н = 1 км изображены на рис. 5.14. Они представляют собой совокупность дроссельных характеристик при различных значениях температуры tН,°C. На рис. 5.14 а показано изменение мощности двигателя Ne , а на рис. 5.14 б – расхода топлива Gт от относительной частоты вращения ротора ГГ

,%. Выход на тот или иной режим ограничения зависит от величины температурыtН. При tН < –40 С достигается ограничение по nт.к.пр.max, в диапазоне tН от –40 С до +15 С наступает ограничение по Nе.max, а при tН > 15 С – по . Отштрихованными линиями на рис. 5.14 отмечены режимы, соответствующие максимальному, номинальному и крейсерскому режимам работы двигателя.

studfiles.net

Турбовальный двигатель Вики

Газотурбинный двигатель (ГТД) — тепловой двигатель, в котором газ сжимается и нагревается, а затем энергия сжатого и нагретого газа преобразуется в механическую работу на валу газовой турбины.

В отличие от поршневого двигателя, в ГТД процессы происходят в потоке движущегося газа.

Сжатый атмосферный воздух из компрессора поступает в камеру сгорания, куда также подаётся топливо, которое, сгорая, образует большое количество газообразных продуктов сгорания под высоким давлением. Затем в газовой турбине энергия давления продуктов сгорания преобразуется в механическую работу за счёт вращения лопаток, часть которой расходуется на сжатие воздуха в компрессоре. Остальная часть работы передаётся на приводимый агрегат. Работа, потребляемая этим агрегатом, и считается полезной работой двигателя. Газотурбинные двигатели имеют самую большую удельную мощность среди ДВС, до 6 кВт/кг.

В качестве топлива может использоваться любое горючее, которое можно диспергировать: бензин, керосин, дизельное топливо, мазут, природный газ, судовое топливо, водяной газ, спирт и измельчённый уголь.

Основные принципы работы[ | код]

Одну из простейших конструкций газотурбинного двигателя, для понятия его работы, можно представить как вал, на котором находится два диска с лопатками, первый диск — компрессора, второй — турбины, в промежутке между ними установлена камера сгорания.

Простейшая схема газотурбинного двигателя Схема турбореактивного двигателя

Принцип работы газотурбинного двигателя:

Увеличение количества подаваемого топлива (добавление «газа») вызывает генерирование большего количества газов высокого давления, что, в свою очередь, ведёт к увеличению числа оборотов турбины и диска(ов) компрессора и, вследствие этого, увеличению количества нагнетаемого воздуха и его давления, что позволяет подать в камеру сгорания и сжечь больше топлива. Количество топливо-воздушной смеси зависит напрямую от количества воздуха, поданного в камеру сгорания. Увеличение количества ТВС (топливо-воздушной смеси) приведёт к увеличению давления в камере сгорания и температуры газов на выходе из камеры сгорания и, вследствие этого, позволяет создать бо́льшую энергию выбрасываемых газов, направленную для вращения турбины и повышения реактивной силы.

Как и во всех циклических тепловых двигателях, чем выше температура сгорания, тем выше топливный коэффициент полезного действия (если точнее, чем выше разница между «нагревателем» и «охладителем»). Сдерживающим фактором является способность стали, никеля, керамики или других материалов, из которых состоит двигатель, выдерживать температуру и давление. Значительная часть инженерных разработок направлена на то, чтобы отводить тепло от частей турбины. Большинство турбин также пытается рекуперировать тепло выхлопных газов, которое, в противном случае, теряется впустую. Рекуператоры — это теплообменники, которые передают тепло выхлопных газов сжатому воздуху перед сгоранием. При комбинированном цикле тепло передается системам паровых турбин. И при комбинированном производстве тепла и электроэнергии (когенерация) отработанное тепло используется для производства горячей воды.

Чем меньше двигатель, тем выше должна быть частота вращения вала(ов), необходимая для поддержания максимальной линейной скорости лопаток, так как длина окружности (путь, проходимый лопатками за один оборот), прямо зависит от радиуса ротора. Максимальная скорость турбинных лопаток определяет максимальное давление, которое может быть достигнуто, что приводит к получению максимальной мощности, независимо от размера двигателя. Реактивный двигатель вращается с частотой около 10000 об/мин и микротурбина — с частотой около 100000 об/мин.[2][3]

Для дальнейшего развития авиационных и газотурбинных двигателей рационально применять новые разработки в области высокопрочных и жаропрочных материалов для возможности повышения температуры и давления. Применения новых типов камер сгорания, систем охлаждения, уменьшения числа и массы деталей и двигателя в целом возможно в прогрессе применение альтернативных видов топлива, изменение самого представления конструкции двигателя.

Газотурбинная установка (ГТУ) с замкнутым циклом[ | код]

В ГТУ с замкнутым циклом рабочий газ циркулирует без контакта с окружающей средой. Нагрев (перед турбиной) и охлаждение (перед компрессором) газа производится в теплообменниках. Такая система позволяет использовать любой источник тепла (например, газоохлаждаемый ядерный реактор). Если в качестве источника тепла используется сгорание топлива, то такое устройство называют двигателем внешнего сгорания. На практике ГТУ с замкнутым циклом используются редко.

Газотурбинная установка (ГТУ) с внешним сгоранием[ | код]

Большинство ГТУ представляют собой двигатели внутреннего сгорания, но также возможно построить ГТУ внешнего сгорания, которая, фактически, является газотурбинной версией теплового двигателя.[источник не указан 2426 дней]

При внешнем сгорании в качестве топлива используется пылевидный уголь или мелкоистолчённая биомасса (например, опилки). Внешнее сжигание газа используется как непосредственно, так и косвенно. В прямой системе сквозь турбину проходят продукты сгорания. В косвенной системе используется теплообменник, и через турбину проходит чистый воздух. Тепловой КПД ниже в системе внешнего сгорания косвенного типа, однако лопасти не подвергаются воздействию продуктов сгорания.

Одновальные и многовальные газотурбинные двигатели[ | код]

Простейший газотурбинный двигатель имеет только один вал, куда устанавливается турбина, которая приводит во вращение компрессор и одновременно является источником полезной мощности. Это накладывает ограничение на режимы работы двигателя.

Иногда двигатель выполняется многовальным. В этом случае имеется несколько последовательно стоящих турбин, каждая из которых приводит свой вал. Турбина высокого давления (первая после камеры сгорания) всегда приводит в движение компрессор двигателя, а последующие могут приводить как внешнюю нагрузку (винты вертолёта[4] или корабля, мощные электрогенераторы и так далее), так и дополнительные каскады компрессора самого двигателя, расположенные перед основным. Разбиение компрессора на каскады (каскад низкого давления, каскад высокого давления — КНД и КВД соответственно[5], иногда между ними помещается каскад среднего давления, КСД, как, например, в двигателе НК-32 самолёта Ту-160) позволяет избежать помпажа на частичных режимах.

Также преимущество многовального двигателя в том, что каждая турбина работает при оптимальной скорости вращения и нагрузке. При нагрузке, приводимой от вала одновального двигателя, была бы очень плохая приёмистость двигателя, то есть способность к быстрой раскрутке, так как турбине требуется поставлять мощность и для обеспечения двигателя большим количеством воздуха (мощность ограничивается количеством воздуха), и для разгона нагрузки. При двухвальной схеме лёгкий ротор высокого давления быстро выходит на режим, обеспечивая двигатель воздухом, а турбину низкого давления - большим количеством газов для разгона. Также есть возможность использовать менее мощный стартёр для разгона при пуске только ротора высокого давления.

Система запуска[ | код]

Для запуска ГТД нужно раскрутить его ротор до определённых оборотов, чтобы компрессор начал подавать достаточное количество воздуха (в отличие от объёмных компрессоров, подача инерционных (динамических) компрессоров квадратично зависит от частоты вращения и поэтому на малых оборотах практически отсутствует), и поджечь подаваемое в камеру сгорания топливо. Со второй задачей справляются свечи зажигания, зачастую установленные на специальных пусковых форсунках, а раскрутка выполняется стартером той или иной конструкции:

Типы газотурбинных двигателей[ | код]

Турбореактивный двигатель[ | код]

Схема турбореактивного двигателя: 1 — входное устройство; 2 — осевой компрессор; 3 — камера сгорания; 4 — рабочие лопатки турбины; 5 — сопло

В полёте поток воздуха тормозится во входном устройстве перед компрессором, в результате чего его температура и давление повышается. На земле во входном устройстве воздух ускоряется, его температура и давление снижаются.

Проходя через компрессор, воздух сжимается, его давление повышается в 10—45 раз, возрастает его температура. Компрессоры газотурбинных двигателей делятся на осевые и центробежные. В наши дни в двигателях наиболее распространены многоступенчатые осевые компрессоры. Центробежные компрессоры, как правило, применяются в малогабаритных силовых установках.

Далее сжатый воздух попадает в камеру сгорания, в так называемые жаровые трубы, либо в кольцевую камеру сгорания, которая не состоит из отдельных труб, а является цельным кольцевым элементом. В наши дни кольцевые камеры сгорания являются наиболее распространёнными. Трубчатые камеры сгорания используются гораздо реже, в основном на военных самолётах. Воздух на входе в камеру сгорания разделяется на первичный, вторичный и третичный. Первичный воздух поступает в камеру сгорания через специальное окно в передней части, по центру которого расположен фланец крепления форсунки, и участвует непосредственно в окислении (сгорании) топлива (формировании топливо-воздушной смеси). Вторичный воздух поступает в камеру сгорания сквозь отверстия в стенках жаровой трубы, охлаждая, придавая форму факелу и не участвуя в горении. Третичный воздух подаётся в камеру сгорания уже на выходе из неё, для выравнивания поля температур. При работе двигателя в передней части жаровой трубы всегда вращается вихрь раскалённого газа (что обусловлено специальной формой передней части жаровой трубы), постоянно поджигающего формируемую топливовоздушную смесь, происходит сгорание топлива (керосина, газа), поступающего через форсунки в парообразном состоянии.

Газовоздушная смесь расширяется и часть её энергии преобразуется в турбине через рабочие лопатки в механическую энергию вращения основного вала. Эта энергия расходуется, в первую очередь, на работу компрессора, а также используется для привода агрегатов двигателя (топливных подкачивающих насосов, масляных насосов и т. п.) и привода электрогенераторов, обеспечивающих энергией различные бортовые системы.

Основная часть энергии расширяющейся газовоздушной смеси идёт на ускорение газового потока в сопле и создание реактивной тяги.

Чем выше температура сгорания, тем выше КПД двигателя. Для предупреждения разрушения деталей двигателя для их изготовления используют жаропрочные сплавы и термобарьерные покрытия. А также применяется система охлаждения воздухом, отбираемым от средних ступеней компрессора.

Турбореактивный двигатель с форсажной камерой[ | код]

Турбореактивный двигатель с форсажной камерой (ТРДФ) — модификация ТРД, применяемая в основном на сверхзвуковых самолётах. Между турбиной и соплом устанавливается дополнительная форсажная камера, в которой сжигается дополнительное горючее. В результате происходит увеличение тяги (форсаж) до 50 %, но расход топлива резко возрастает. Двигатели с форсажной камерой, как правило, не используются в коммерческой авиации по причине их низкой экономичности.

Основные параметры турбореактивных двигателей различных поколений Поколение/ период Температура газа перед турбиной, °C Степень сжатия газа, πк* Характерные представители Где установлены
1 поколение1943-1949 гг. 730-780 3-6 BMW 003, Jumo 004 Me 262, Ar 234, He-162
2 поколение1950-1960 гг. 880-980 7-13 J 79, Р11-300 F-104, F4, МиГ-21
3 поколение1960-1970 гг. 1030-1180 16-20 TF 30, J 58, АЛ-21Ф-3 F-111, SR 71,МиГ-23Б, Су-24
4 поколение1970-1980 гг. 1200-1400 21-25 F 100, F 110, F404,РД-33, АЛ-31Ф F-15, F-16, МиГ-29, Су-27
5 поколение2000-2020 гг. 1500-1650 25-30 F119-PW-100, EJ200, F414, АЛ-41Ф1 F-22, F-35, ПАК ФА,Су-35С

Начиная с 4-го поколения рабочие лопатки турбины выполняются из монокристаллических сплавов, охлаждаемые.

Двухконтурный турбореактивный двигатель[ | код]

Схема турбореактивного двухконтурного двигателя (ТРДД) со смешением потоков: 1 — компрессор низкого давления; 2 — внутренний контур; 3 — выходной поток внутреннего контура; 4 — выходной поток внешнего контура.

В турбореактивном двухконтурном двигателе (ТРДД) воздушный поток попадает в компрессор низкого давления, после чего часть потока проходит по обычной схеме через турбокомпрессор, а остальная часть (холодная) проходит через внешний контур и выбрасывается без сгорания, создавая дополнительную тягу. В результате снижается температура выходного газа, снижается расход топлива и уменьшается шум двигателя. Отношение количества воздуха, прошедшего через внешний контур, к количеству прошедшего через внутренний контур воздуха называется степенью двухконтурности (m). При степени двухконтурности <4 потоки контуров на выходе, как правило, смешиваются и выбрасываются через общее сопло, если m>4 — потоки выбрасываются раздельно, так как из-за значительной разности давлений и скоростей смешение затруднительно. Применение второго контура в двигателях для военной авиации позволяет охлаждать горячие части двигателя, это позволяет увеличивать температуру газов перед турбиной, что способствует дополнительному повышению тяги.

Двигатели с малой степенью двухконтурности (m<2) применяются для сверхзвуковых самолётов, двигатели с m>2 для дозвуковых пассажирских и транспортных самолётов.

Турбовентиляторный двигатель[ | код]

Схема турбореактивного двухконтурного двигателя без смешения потоков (Турбовентиляторного двигателя): 1 — вентилятор; 2 — защитный обтекатель; 3 — турбокомпрессор; 4 — выходной поток внутреннего контура; 5 — выходной поток внешнего контура.

Турбовентиляторный реактивный двигатель (ТВРД) — это ТРДД со степенью двухконтурности m=2—10. Здесь компрессор низкого давления преобразуется в вентилятор, отличающийся от компрессора меньшим числом ступеней и большим диаметром, и горячая струя практически не смешивается с холодной. Применяется в гражданской авиации, двигатель имеет большой назначенный ресурс и малый удельный расход топлива на дозвуковых скоростях.

Турбовинтовентиляторный двигатель[ | код]

Дальнейшим развитием ТВРД с увеличением степени двухконтурности m=20—90 является турбовинтовентиляторный двигатель (ТВВД). В отличие от турбовинтового двигателя, лопасти двигателя ТВВД имеют саблевидную форму, что позволяет перена часть воздушного потока в компрессор и повысить давление на входе компрессора. Такой двигатель получил название винтовентилятор и может быть как открытым, так и закапотированным кольцевым обтекателем. Второе отличие — винтовентилятор приводится от турбины не напрямую, а, как винт, через редуктор. Двигатель наиболее экономичен, но при этом крейсерская скорость полёта ЛА, с такими типами двигателей, обычно не превышает 550 км/ч, имеются более сильные вибрации и "шумовое загрязнение".

Пример ТВВД — Д-27 грузового самолёта Ан-70.

Турбовинтовой двигатель[ | код]

Схема турбовинтового двигателя: 1 — воздушный винт; 2 — редуктор; 3 — турбокомпрессор

В турбовинтовом двигателе (ТВД) основное тяговое усилие обеспечивает воздушный винт, соединённый через редуктор с валом турбокомпрессора.[7] Для этого используется турбина с увеличенным числом ступеней, так что расширение газа в турбине происходит почти полностью и только 10—15 % тяги обеспечивается за счёт газовой струи.

Турбовинтовые двигатели гораздо более экономичны на малых скоростях полёта и широко используются для самолётов, имеющих большую грузоподъёмность и дальность полёта — например, Ан-12, Ан-22, C-130. Крейсерская скорость самолётов, оснащённых ТВД, 500—700 км/ч.

Вспомогательная силовая установка (ВСУ)[ | код]

ВСУ — небольшой газотурбинный двигатель, являющийся автономным источником энергии на борту. Простейшие ВСУ могут выдавать только сжатый воздух, отбираемый от компрессора турбины, который используется для запуска маршевых (основных) двигателей, либо для работы системы кондиционирования на земле (пример, ВСУ типа АИ-9, применяемая на вертолётах и самолёте Як-40). Более сложные ВСУ, помимо источника сжатого воздуха, выдают электрический ток в бортовую сеть, то есть являются полноценным автономным энергоузлом, обеспечивающем нормальное функционирование всех бортовых систем самолёта без запуска основных двигателей, а также при отсутствии наземных аэродромных источников энергии. Такова, например, ВСУ ТА-12 самолётов Ан-124[8], Ту-95МС, Ту-204, Ан-74 и других.

Турбовальный двигатель[ | код]

Такой двигатель чаще всего имеет свободную турбину. Вся турбина поделена на две части, между собой механически несвязанные. Связь между ними только газодинамическая. Газовый поток, вращая первую турбину, отдает часть своей мощности для вращения компрессора и далее, вращая вторую, тем самым через вал этой (второй) турбины приводит в действие полезные агрегаты. Реактивное сопло на турбовальном двигателе отсутствует. Выходное устройство для отработанных газов соплом не является и тяги не создаёт.

Выходной вал ТВаД, с которого снимается вся полезная мощность, может быть направлен как назад, через канал выходного устройства, так и вперед, либо через полый вал турбокомпрессора, либо через редуктор вне корпуса двигателя.

Редуктор — непременная принадлежность турбовального двигателя. Скорость вращения как ротора турбокомпрессора, так и ротора свободной турбины велика настолько, что это вращение не может быть напрямую передано на приводимые агрегаты. Они просто не смогут выполнять свои функции и даже могут разрушиться. Поэтому между свободной турбиной и полезным агрегатом обязательно ставится редуктор для снижения частоты вращения приводного вала.

Компрессор у ТВаД может быть осевым (если двигатель мощный) либо центробежным. Часто компрессор бывает и смешанным по конструкции, в нём есть как осевые, так и центробежные ступени. В остальном принцип работы этого двигателя такой же, как и у ТРД.

Основное применение турбовальный двигатель находит в авиации, по большей части, на вертолётах. Полезная нагрузка в этом случае — несущий винт вертолёта. Известным примером могут служить широко распространённые вертолёты Ми-8 и Ми-24 с двигателями ТВ2-117 и ТВ3-117.

Турбостартёр[ | код]

ТС — агрегат, устанавливаемый на газотурбинном двигателе и предназначенный для его раскрутки при запуске.

Такие устройства представляют собой миниатюрный, простой по конструкции турбовальный двигатель, свободная турбина которого раскручивает ротор основного двигателя при его запуске. В качестве примера: турбостартёр ТС-21, используемый на двигателе АЛ-21Ф-3, который устанавливается на самолёты типа Су-24[9], или ТС-12, устанавливаемый на авиационные двигатели НК-12 самолётов Ту-95 и Ту-142. ТС-12 имеет одноступенчатый центробежный компрессор, двухступенчатую осевую турбину привода компрессора и двухступенчатую свободную турбину. Номинальные обороты ротора компрессора в начале запуска двигателя — 27 тысяч мин–1, по мере раскрутки ротора НК-12 за счёт роста оборотов свободной турбины ТС-12 противодавление за турбиной компрессора падает и обороты возрастают до 30 тысяч мин–1.

Турбостартёр ГТДЭ-117 двигателя АЛ-31Ф также выполнен со свободной турбиной, а стартёр С-300М двигателя АМ-3, стоявшего на самолётах Ту-16, Ту-104 и М-4 — одновальный и раскручивает ротор двигателя через гидромуфту.[10]

Судовые установки[ | код]

Используются в судовой промышленности для снижения веса. General Electric LM2500 и LM6000 — характерные модели этого типа машин.

Суда, использующие турбовальные газотурбинные двигатели называют газотурбоходами. Они являются разновидностью теплохода. Это чаще всего суда на подводных крыльях, у которых гребной винт приводит в движение турбовальный двигатель механически через редуктор или электрически через генератор, который он вращает. Либо это суда на воздушной подушке, которая создаётся при помощи ГТД.

Например, газотурбоход «Циклон-М» с 2 газотурбинными двигателями ДО37. Пассажирских газотурбоходов за российскую историю было всего два. Последнее очень перспективное судно «Циклон-М» появилось в 1986 году. Более таких судов не строили. В военной сфере в этом плане дела обстоят несколько лучше. Примером является десантный корабль «Зубр», самое большое в мире судно на воздушной подушке.

Железнодорожные установки[ | код]

Локомотивы, на которых стоят турбовальные газотурбинные двигатели, называются газотурбовозами (разновидность тепловоза). На них используется электрическая передача. ГТД вращает электрогенератор, а вырабатываемый им ток, в свою очередь, питает электродвигатели, приводящие локомотив в движение. В 1960-е годы в СССР проходили довольно успешную опытную эксплуатацию три газотурбовоза. Два пассажирских и один грузовой. Однако они не выдержали соревнования с электровозами и в начале 1970-х годов проект был свёрнут. Но в 2007 году по инициативе ОАО «РЖД» был изготовлен опытный образец грузового газотурбовоза, работающий на сжиженном природном газе. ГТ1 успешно прошёл испытания, позднее был построен второй газотурбовоз, с той же силовой установкой, но на другой ходовой части, машины эксплуатируются.

Перекачка природного газа[ | код]

Принцип работы газоперекачивающей установки практически не отличается от турбовинтовых двигателей, ТВаД используются здесь в качестве привода мощных насосов, а в качестве топлива используется тот же самый газ, который они перекачивают. В отечественной промышленности для этих целей широко применяются двигатели, созданные на базе авиационных — НК-12 (НК-12СТ)[11], НК-32 (НК-36СТ), так как на них можно использовать детали авиадвигателей, выработавшие свой лётный ресурс.

Электростанции[ | код]

Основу газотурбинной электростанции составляют один или несколько газотурбинных двигателей. Газотурбинная электростанция может иметь электрическую мощность от двадцати киловатт до сотен мегаватт. Она способна также отдавать потребителю значительное количество (вдвое больше электрической мощности) тепловой энергии, если установить на выхлопе турбины котёл-утилизатор; в этом случае установка называется ГТУ-ТЭЦ.

Танкостроение[ | код]

Первые исследования в области применения газовой турбины в танковых двигателях проводились в Германии Управлением вооружённых сухопутных сил начиная с середины 1944 года. Первым массовым танком с газотурбинным двигателем стал С-танк.

Установка блочного силового агрегата (двигатель - трансмиссия) в танк M1A1

Турбовальные двигатели (ТВаД) установлены на советском танке Т-80 (двигатель ГТД-1000Т) и американском М1 Абрамс. Газотурбинные двигатели, устанавливаемые на танках, имеют при схожих с дизельными размерах гораздо бо́льшую мощность, меньший вес и меньшую шумность, меньшую дымность выхлопа. Также ТВаД лучше удовлетворяет требованиям многотопливности, гораздо легче запускается, — оперативная готовность танка с ГТД, то есть запуск двигателя и последующий вход в рабочий режим всех его систем, занимает несколько минут, что для танка с дизельным двигателем в принципе невозможно, а в зимних условиях при низких температурах дизелю требуется достаточно длительный предпусковой прогрев, который не требуется ТВаД. Из-за отсутствия жёсткой механической связи турбины и трансмиссии на застрявшем или просто упёршемся в препятствие танке двигатель не глохнет. В случае попадания воды в двигатель (утоплении танка) достаточно выполнить так называемую холодную прокрутку ГТД для удаления воды из газовоздушного тракта и после этого двигатель можно запускать — на танке с дизельным двигателем в аналогичной ситуации происходит гидроудар, ломающий детали цилиндро-поршневой группы и непременно требующий замены двигателя.

Однако из-за низкого КПД газотурбинных двигателей, установленных на тихоходных (в отличие от самолётов) транспортных средствах, требуется гораздо большее количество возимого топлива для сравнимого с дизельным двигателем километрового запаса хода. Именно из-за расхода топлива, невзирая на все достоинства, танки типа Т-80 поэтапно выводятся из эксплуатации. Неоднозначным оказался опыт эксплуатации танковых ТВаД М1 Абрамс в условиях высокой запылённости (например в песчаных пустынях). В отличие от него, Т-80 благополучно может эксплуатироваться в условиях высокой запылённости, — конструктивно хорошо продуманная система очистки поступающего в двигатель воздуха на Т-80 надёжно защищает ГТД от песка и пыли. «Абрамсы», напротив, «задохнулись» — во время двух кампаний против Ирака при прохождении пустынь довольно много «Абрамсов» встали, так как их двигатели забились песком[источник не указан 129 дней].

Автостроение[ | код]
STP Oil Treatment Special на выставке в зале славы музея трассы Indianapolis Motor Speedway показана вместе с газотурбинным двигателем Pratt & Whitney. A 1968 Howmet TX — единственный в истории газотурбинный двигатель, принёсший победу в автомобильной гонке.

Множество экспериментов проводилось с автомобилями, оснащёнными газовыми турбинами.

В 1950 году дизайнер Ф. Р. Белл и главный инженер Морис Вилкс в британской компании Rover Company анонсировали первый автомобиль с приводом от газотурбинного двигателя. Двухместный JET1 имел двигатель, расположенный позади сидений, решётки воздухозаборника по обеим сторонам машины, и выхлопные отверстия на верхней части хвоста. В ходе испытаний автомобиль достиг максимальной скорости 140 км/ч, на скорости турбины 50000 об/мин. Автомобиль работал на бензине, парафиновом или дизельном маслах, но проблемы с потреблением топлива оказались непреодолимыми для производства автомобилей. В настоящее время он выставлен в лондонском Музее науки.

Команды Rover и British Racing Motors (Формула-1) объединили усилия для создания Rover-BRM, автомобиля с приводом от газовых турбин, который принял участие в гонке 24 часа Ле-Мана 1963 года, управляемого Грэмом Хиллом и Гитнером Ричи. Этот автомобиль показал среднюю скорость 173 км/ч, максимальную — 229 км/ч.

Американские компании Ray Heppenstall, Howmet Corporation и McKee Engineering объединились для совместной разработки собственных газотурбинных спортивных автомобилей в 1968 году, Howmet TX приняла участие в нескольких американских и европейских гонках, в том числе завоевав две победы, а также принимала участие в гонке 24 часа Ле-Мана 1968 года. Автомобили использовали газовые турбины Continental Motors Company, благодаря которым, в конечном итоге, ФИА было установлено шесть посадочных скоростей для машин с приводом от турбин.

На гонках автомобилей с открытыми колёсами, революционное полноприводное авто 1967 года STP Oil Treatment Special с приводом от турбины, специально подобранной легендой гонок Эндрю Гранателли и управляемое Парнелли Джонсом, почти выиграло в гонке «Инди-500»; авто с турбиной STP компании Pratt & Whitney обгоняло почти на круг авто, шедшее вторым, когда у него неожиданно отказала коробка передач за три круга до финишной черты. В 1971 году глава компании Lotus Колин Чепмен представил авто Lotus 56B F1, с приводом от газовой турбины Pratt & Whitney. У Чепмена была репутация создателя машин-победителей, но он вынужден был отказаться от этого проекта из-за многочисленных проблем с инерционностью турбин (турболагом).

Оригинальная серия концептуальных авто General Motors Firebird была разработана для автовыставки Моторама 1953, 1956, 1959 годов, с приводом от газовых турбин.

Единственная серийная модель «семейного» газотурбинного автомобиля для использования на дорогах общего пользования была выпущена Chrysler в 1963-1964 года. Компания передала пятьдесят собранных вручную машин в кузовах итальянского ателье Ghia добровольцам, которые испытывали новинку в обычных дорожных условиях до января 1966 года. Эксперимент прошёл удачно, но компания, не располагавшая средствами для постройки нового моторного производства, отказалась от массового выпуска автомобиля с ГТД. После ужесточения экологических стандартов и взрывного роста цен на нефть компания, с трудом пережившая финансовый кризис, отказалась от продолжения разработок[12].

Контроль параметров работы ГТД[ | код]

Как и у любого теплового двигателя, у ГТД есть множество параметров, которые необходимо контролировать для эксплуатации двигателя в безопасных, а по возможности и экономичных режимах. Измеряются с помощью приборов контроля.

Конструкторы газотурбинных двигателей и основанные ими КБ[ | код]

См. также[ | код]

Источники[ | код]

Ссылки[ | код]

Литература[ | код]

ru.wikibedia.ru

ОБЛАСТИ ПРИМЕНЕНИЯ И ОСНОВНЫЕ ПАРАМЕТРЫ ТУРБОВАЛЬНЫХ ДВИГАТЕЛЕЙ

Турбовальными в общем случае называются такие газотурбинные двигатели, у которых вся развиваемая мощность через выходной вал передается потребителю. Основная область применения турбовальных двигателей в авиации – силовые установки вертолетов. Помимо этого в авиации турбовальные двигатели применяются в качестве вспомогательных газотурбинных двигателей (ВГТД), где они являются источником мощности для запуска основных двигателей, привода генераторов электрического тока, а также для снабжения ЛА сжатым воздухом. К этому же типу двигателей относятся турбостартеры. Помимо авиации в настоящее время турбовальные двигатели находят все более широкое применение в наземном и водном транспорте.

Рис.41.4

На вертолетах используются преимущественно турбовальные двигатели, состоящие из одно- или двухвального газогенератора и свободной (силовой) турбины (рис.41.4, а и в).

Преимущество турбовальных двигателей со свободной турбиной состоит в том, что вал свободной турбины механически не связан с газогенератором. Это позволяет поддерживать постоянство частоты вращения вала свободной турбины nс.т = const при различных загрузках несущего винта независимо от частот вращения валов газогенератора, что при изменении этой загрузки позволяет не тратить время на раскрутку несущего винта, а также облегчает запуск двигателя.

Для передачи крутящего момента с вала двигателя к несущему и рулевому винтам вертолета применяется трансмиссия с редуктором. Преимущество схемы со свободной турбиной и здесь проявляется в том, что редуктор в этом случае имеет меньшее передаточное отношение, так как частота вращения nс.т делается меньшей, чем роторов газогенератора. Это дает экономию в размерах и массе редуктора, но приводит к снижению окружных скоростей ступеней свободной турбины, а следовательно, к увеличению их числа (и соответственно к утяжелению двигателя).

Основными параметрами турбовальных двигателей являются: мощность на валу свободной турбины в стендовых условиях, которая у большинства современных ТВаД составляет ≈ 1000…2000 кВт, удельный расход топлива ≈ 0,27…0,30 кг/(кВт ч) и удельная масса 0,15…0,2 кг/кВт.

Температура газа перед турбиной ГГ в современных ТВаД равна обычно 1500 … 1600 К при (при САУ) порядка 14 … 17. Соответственно удельная мощность составляет 220…280 кВт∙с/кг, что при ≈ 1000…2000 кВт требует расхода воздуха не более ≈ 10 кг/с. (Исключением является двигатель Д-136 мощностью 8380 кВт). В этом случае при использовании осевых компрессоров высота лопаток их последних ступеней получается очень малой, что снижает их КПД из-за сильного влияния перетекания воздуха в радиальных зазорах и наличия относительно более толстого пристеночного пограничного слоя.

Поэтому во многих вертолётных ГТД применяются компрессоры комбинированной схемы, состоящие из нескольких осевых и одной центробежной или диагональной ступени.

Практически не всех вертолетных ГТД устанавливаются пылезащитные устройства (ПЗУ) инерционного типа. Схема установки такого ПЗУ на двигателе показана на рис.41.5. Воздух из окружающей атмосферы засасывается двигателем через искривленный канал l-образной формы 1, в котором частицы пыли, подхватываемые потоком воздуха, разгоняются и по инерции проскакивают в пылеулавливающий канал 4, в котором для усиления потока воздуха устанавливается эжектор 5, работающий на сжатом воздухе, отбираемом от компрессора 3 по шлангу 6.

Рис.41.5

Необходимо учитывать влияние ПЗУ на данные и характеристики двигателя. Это влияние заключается в снижении sвх и отборе воздуха для работы эжектора (только при взлете и посадке). Отбор воздуха может составлять 2…3%, а снижение sвх – 1,5…2,0%.

Особенность рабочего процесса турбовальных вертолётных двигателей, как мы уже говорили, состоит в том, что, вследствие малых скоростей полета вертолетов, скорость истечения из сопла у них желательно иметь как можно меньшей. По этой причине за свободной турбиной устанавливается не сопло, а диффузорный выходной патрубок (затурбинный диффузор). Его назначение - максимально снизить скорость истечения газовой струи на выходе из двигателя и за счет этого увеличить степени понижения давления на свободной турбине pс.т и повысить работу Lс.т.

Термодинамический цикл турбовального ГТД в p,v- координатах представлен на рис.41.6. Вследствие малых скоростей полета вертолета (или при V = 0 в стационарных ГТУ) у них обычно рв<рН. Линия Н–в соответствует процессу расширения воздуха во ВУ. Линия в–к изображает процесс политропного сжатия воздуха в компрессоре, к–Г – подвода теплоты в камере сгорания, Г–ТК – политропного расширения газа в турбине ГГ, а ТК-Т – в свободной турбине. Линия Т–С соответствует процессу повышения давления в затурбинном диффузоре, сопровождающемуся уменьшением скорости газа. Наличие диффузора уменьшает работу цикла на величину площади Т¢ –Т–C (цикл Т¢ –Т–C–Т¢ является обратным), но благодаря уменьшению потерь с выходной скоростью и увеличению pс.т = работа на валу Lс.т получается большей, чем без диффузора.

 

Похожие статьи:

poznayka.org

Турбовальный двигатель - Википедия

Газотурбинный двигатель (ГТД) — тепловой двигатель, в котором газ сжимается и нагревается, а затем энергия сжатого и нагретого газа преобразуется в механическую работу на валу газовой турбины.

В отличие от поршневого двигателя, в ГТД процессы происходят в потоке движущегося газа.

Сжатый атмосферный воздух из компрессора поступает в камеру сгорания, куда также подаётся топливо, которое, сгорая, образует большое количество газообразных продуктов сгорания под высоким давлением. Затем в газовой турбине энергия давления продуктов сгорания преобразуется в механическую работу за счёт вращения лопаток, часть которой расходуется на сжатие воздуха в компрессоре. Остальная часть работы передаётся на приводимый агрегат. Работа, потребляемая этим агрегатом, и считается полезной работой двигателя. Газотурбинные двигатели имеют самую большую удельную мощность среди ДВС, до 6 кВт/кг.

В качестве топлива может использоваться любое горючее, которое можно диспергировать: бензин, керосин, дизельное топливо, мазут, природный газ, судовое топливо, водяной газ, спирт и измельчённый уголь.

Основные принципы работы[ | ]

Одну из простейших конструкций газотурбинного двигателя, для понятия его работы, можно представить как вал, на котором находится два диска с лопатками, первый диск — компрессора, второй — турбины, в промежутке между ними установлена камера сгорания.

Простейшая схема газотурбинного двигателя Схема турбореактивного двигателя

Принцип работы газотурбинного двигателя:

Увеличение количества подаваемого топлива (добавление «газа») вызывает генерирование большего количества газов высокого давления, что, в свою очередь, ведёт к увеличению числа оборотов турбины и диска(ов) компрессора и, вследствие этого, увеличению количества нагнетаемого воздуха и его давления, что позволяет подать в камеру сгорания и сжечь больше топлива. Количество топливо-воздушной смеси зависит напрямую от количества воздуха поданного в камеру сгорания. Увеличение количества ТВС приведёт к увеличению давления в камере сгорания и температуры газов на выходе из камеры сгорания и, вследствие этого, позволяет создать бо́льшую энергию выбрасываемых газов, направленную для вращения турбины и повышения реактивной силы.

Как и во всех циклических тепловых двигателях, чем выше температура сгорания, тем выше топливный коэффициент полезного действия (Если точнее, чем выше разница между «нагревателем» и «охладителем»). Сдерживающим фактором является способность стали, никеля, керамики или других материалов, из которых состоит двигатель, выдерживать температуру и давление. Значительная часть инженерных разработок направлена на то, чтобы отводить тепло от частей турбины. Большинство турбин также пытаются рекуперировать тепло выхлопных газов, которое, в противном случае, теряется впустую. Рекуператоры — это теплообменники, которые передают тепло выхлопных газов сжатому воздуху перед сгоранием. При комбинированном цикле тепло передается системам паровых турбин. И при комбинированном производстве тепла и электроэнергии (когенерация) отработанное тепло используется для производства горячей воды.

Чем меньше двигатель, тем выше должна быть частота вращения вала(ов), необходимая для поддержания максимальной линейной скорости лопаток, так как длина окружности (путь, проходимый лопатками за один оборот), прямо зависит от радиуса ротора. Максимальная скорость турбинных лопаток определяет максимальное давление, которое может быть достигнуто, что приводит к получению максимальной мощности, независимо от размера двигателя. Реактивный двигатель вращается с частотой около 10000 об/мин и микротурбина — с частотой около 100000 об/мин.[2][3]

Для дальнейшего развития авиационных и газотурбинных двигателей рационально применять новые разработки в области высокопрочных и жаропрочных материалов для возможности повышения температуры и давления. Применения новых типов камер сгорания, систем охлаждения, уменьшения числа и массы деталей и двигателя в целом, возможно в прогрессе применение альтернативных видов топлива, изменение самого представления конструкции двигателя.

Газотурбинная установка (ГТУ) с замкнутым циклом[ | ]

В ГТУ с замкнутым циклом рабочий газ циркулирует без контакта с окружающей средой. Нагрев (перед турбиной) и охлаждение (перед компрессором) газа производится в теплообменниках. Такая система позволяет использовать любой источник тепла (например, газоохлаждаемый ядерный реактор). Если в качестве источника тепла используется сгорание топлива, то такое устройство называют двигателем внешнего сгорания. На практике ГТУ с замкнутым циклом используются редко.

Газотурбинная установка (ГТУ) с внешним сгоранием[ | ]

Большинство ГТУ представляют собой двигатели внутреннего сгорания, но также возможно построить ГТУ внешнего сгорания, которая, фактически, является газотурбинной версией теплового двигателя.[источник не указан 2111 дней]

При внешнем сгорании в качестве топлива используется или мелкоистолчённая биомасса (например, опилки). Внешнее сжигание газа используется как непосредственно, так и косвенно. В прямой системе сквозь турбину проходят продукты сгорания. В косвенной системе используется теплообменник, и через турбину проходит чистый воздух. ниже в системе внешнего сгорания косвенного типа, однако лопасти не подвергаются воздействию продуктов сгорания.

Одновальные и многовальные газотурбинные двигатели[ | ]

Простейший газотурбинный двигатель имеет только один вал, куда устанавливается турбина которая приводит во вращение компрессор и одновременно является источником полезной мощности. Это накладывает ограничение на режимы работы двигателя.

Иногда двигатель выполняется многовальным. В этом случае имеется несколько последовательно стоящих турбин, каждая из которых приводит свой вал. Турбина высокого давления (первая после камеры сгорания) всегда приводит в движение компрессор двигателя, а последующие могут приводить как внешнюю нагрузку (винты вертолёта[4] или корабля, мощные электрогенераторы и так далее), так и дополнительные каскады компрессора самого двигателя, расположенные перед основным. Разбиение компрессора на каскады (каскад низкого давления, каскад высокого давления — КНД и КВД соответственно[5], иногда между ними помещается каскад среднего давления, КСД, как, например, в двигателе НК-32 самолёта Ту-160) позволяет избежать помпажа на частичных режимах.

Также преимущество многовального двигателя в том, что каждая турбина работает при оптимальной скорости вращения и нагрузке. При нагрузке, приводимой от вала одновального двигателя, была бы очень плохая приёмистость двигателя, то есть способность к быстрой раскрутке, так как турбине требуется поставлять мощность и для обеспечения двигателя большим количеством воздуха (мощность ограничивается количеством воздуха), и для разгона нагрузки. При двухвальной схеме лёгкий ротор высокого давления быстро выходит на режим, обеспечивая двигатель воздухом, а турбину низкого давления большим количеством газов для разгона. Также есть возможность использовать менее мощный стартёр для разгона при пуске только ротора высокого давления.

Система запуска[ | ]

Для запуска ГТД нужно раскрутить его ротор до определённых оборотов, чтобы компрессор начал подавать достаточное количество воздуха (в отличие от объёмных компрессоров, подача инерционных (динамических) компрессоров квадратично зависит от частоты вращения и поэтому на малых оборотах практически отсутствует), и поджечь подаваемое в камеру сгорания топливо. Со второй задачей справляются свечи зажигания, зачастую установленные на специальных пусковых форсунках, а раскрутка выполняется стартёром той или иной конструкции:

Типы газотурбинных двигателей[ | ]

Турбореактивный двигатель[ | ]

Схема турбореактивного двигателя: 1 — входное устройство; 2 — осевой компрессор; 3 — камера сгорания; 4 — рабочие лопатки турбины; 5 — сопло

В полёте поток воздуха тормозится во входном устройстве перед компрессором, в результате чего его температура и давление повышается. На земле во входном устройстве воздух ускоряется, его температура и давление снижаются.

Проходя через компрессор, воздух сжимается, его давление повышается в 10—45 раз, возрастает его температура. Компрессоры газотурбинных двигателей делятся на осевые и центробежные. В наши дни в двигателях наиболее распространены многоступенчатые осевые компрессоры. Центробежные компрессоры, как правило, применяются в малогабаритных силовых установках.

Далее сжатый воздух попадает в камеру сгорания, в так называемые жаровые трубы, либо в кольцевую камеру сгорания, которая не состоит из отдельных труб, а является цельным кольцевым элементом. В наши дни кольцевые камеры сгорания являются наиболее распространёнными. Трубчатые камеры сгорания используются гораздо реже, в основном на военных самолётах. Воздух на входе в камеру сгорания разделяется на первичный, вторичный и третичный. Первичный воздух поступает в камеру сгорания через специальное окно в передней части, по центру которого расположен фланец крепления форсунки, и участвует непосредственно в окислении (сгорании) топлива (формировании топливо-воздушной смеси). Вторичный воздух поступает в камеру сгорания сквозь отверстия в стенках жаровой трубы, охлаждая, придавая форму факелу и не участвуя в горении. Третичный воздух подаётся в камеру сгорания уже на выходе из неё, для выравнивания поля температур. При работе двигателя в передней части жаровой трубы всегда вращается вихрь раскалённого газа (что обусловлено специальной формой передней части жаровой трубы), постоянно поджигающего формируемую топливовоздушную смесь, происходит сгорание топлива (керосина, газа), поступающего через форсунки в парообразном состоянии.

Газовоздушная смесь расширяется и часть её энергии преобразуется в турбине через рабочие лопатки в механическую энергию вращения основного вала. Эта энергия расходуется, в первую очередь, на работу компрессора, а также используется для привода агрегатов двигателя (топливных подкачивающих насосов, масляных насосов и т. п.) и привода электрогенераторов, обеспечивающих энергией различные бортовые системы.

Основная часть энергии расширяющейся газовоздушной смеси идёт на ускорение газового потока в сопле и создание реактивной тяги.

Чем выше температура сгорания, тем выше КПД двигателя. Для предупреждения разрушения деталей двигателя для их изготовления используют жаропрочные сплавы и термобарьерные покрытия. А также применяется система охлаждения воздухом, отбираемым от средних ступеней компрессора.

Турбореактивный двигатель с форсажной камерой[ | ]

Турбореактивный двигатель с форсажной камерой (ТРДФ) — модификация ТРД, применяемая в основном на сверхзвуковых самолётах. Между турбиной и соплом устанавливается дополнительная форсажная камера, в которой сжигается дополнительное горючее. В результате происходит увеличение тяги (форсаж) до 50 %, но расход топлива резко возрастает. Двигатели с форсажной камерой, как правило, не используются в коммерческой авиации по причине их низкой экономичности.

Основные параметры турбореактивных двигателей различных поколений Поколение/период Температура газаперед турбиной, °C Степень сжатиягаза, πк* Характерныепредставители Где установлены
1 поколение1943-1949 гг. 730-780 3-6 BMW 003, Jumo 004 Me 262, Ar 234, He-162
2 поколение1950-1960 гг. 880-980 7-13 J 79, Р11-300 F-104, F4, МиГ-21
3 поколение1960-1970 гг. 1030-1180 16-20 TF 30, J 58, АЛ-21Ф-3 F-111, SR 71,МиГ-23Б, Су-24
4 поколение1970-1980 гг. 1200-1400 21-25 F 100, F 110, F404,РД-33, АЛ-31Ф F-15, F-16,МиГ-29, Су-27
5 поколение2000-2020 гг. 1500-1650 25-30 F119-PW-100, EJ200,F414, АЛ-41Ф F-22, F-35,ПАК ФА

Начиная с 4-го поколения рабочие лопатки турбины выполняются из монокристаллических сплавов, охлаждаемые.

Двухконтурный турбореактивный двигатель[ | ]

Схема турбореактивного двухконтурного двигателя (ТРДД) со смешением потоков: 1 — компрессор низкого давления; 2 — внутренний контур; 3 — выходной поток внутреннего контура; 4 — выходной поток внешнего контура.

В турбореактивном двухконтурном двигателе (ТРДД) воздушный поток попадает в компрессор низкого давления, после чего часть потока проходит по обычной схеме через турбокомпрессор, а остальная часть (холодная) проходит через внешний контур и выбрасывается без сгорания, создавая дополнительную тягу. В результате снижается температура выходного газа, снижается расход топлива и уменьшается шум двигателя. Отношение количества воздуха, прошедшего через внешний контур, к количеству прошедшего через внутренний контур воздуха называется степенью двухконтурности (m). При степени двухконтурности <4 потоки контуров на выходе, как правило, смешиваются и выбрасываются через общее сопло, если m>4 — потоки выбрасываются раздельно, так как из-за значительной разности давлений и скоростей смешение затруднительно. Применение второго контура в двигателях для военной авиации позволяет охлаждать горячие части двигателя, это позволяет увеличивать температуру газов перед турбиной, что способствует дополнительному повышению тяги.

Двигатели с малой степенью двухконтурности (m<2) применяются для сверхзвуковых самолётов, двигатели с m>2 для дозвуковых пассажирских и транспортных самолётов.

Турбовентиляторный двигатель[ | ]

Схема турбореактивного двухконтурного двигателя без смешения потоков (Турбовентиляторного двигателя): 1 — вентилятор; 2 — защитный обтекатель; 3 — турбокомпрессор; 4 — выходной поток внутреннего контура; 5 — выходной поток внешнего контура.

Турбовентиляторный реактивный двигатель (ТВРД) — это ТРДД со степенью двухконтурности m=2—10. Здесь компрессор низкого давления преобразуется в вентилятор, отличающийся от компрессора меньшим числом ступеней и большим диаметром, и горячая струя практически не смешивается с холодной. Применяется в гражданской авиации, двигатель имеет большой назначенный ресурс и малый удельный расход топлива на дозвуковых скоростях.

Турбовинтовентиляторный двигатель[ | ]

Дальнейшим развитием ТВРД с увеличением степени двухконтурности m=20—90 является турбовинтовентиляторный двигатель (ТВВД). В отличие от турбовинтового двигателя, лопасти двигателя ТВВД имеют саблевидную форму, что позволяет перенаправить часть воздушного потока в компрессор и повысить давление на входе компрессора. Такой двигатель получил название винтовентилятор и может быть как открытым, так и закапотированным кольцевым обтекателем. Второе отличие — винтовентилятор приводится от турбины не напрямую, а, как винт, через редуктор. Двигатель наиболее экономичен, но при этом крейсерская скорость полёта ЛА, с такими типами двигателей, обычно не превышает 550 км/ч, имеются более сильные вибрации и "шумовое загрязнение".

Пример ТВВД — Д-27 грузового самолёта Ан-70.

Турбовинтовой двигатель[ | ]

Схема турбовинтового двигателя: 1 — воздушный винт; 2 — редуктор; 3 — турбокомпрессор

В турбовинтовом двигателе (ТВД) основное тяговое усилие обеспечивает воздушный винт, соединённый через редуктор с валом турбокомпрессора.[7] Для этого используется турбина с увеличенным числом ступеней, так что расширение газа в турбине происходит почти полностью и только 10—15 % тяги обеспечивается за счёт газовой струи.

Турбовинтовые двигатели гораздо более экономичны на малых скоростях полёта и широко используются для самолётов, имеющих большую грузоподъёмность и дальность полёта — например, Ан-12, Ан-22, C-130. Крейсерская скорость самолётов, оснащённых ТВД, 500—700 км/ч.

Вспомогательная силовая установка (ВСУ)[ | ]

ВСУ — небольшой газотурбинный двигатель, являющийся автономным источником энергии на борту. Простейшие ВСУ могут выдавать только сжатый воздух, отбираемый от компрессора турбины, который используется для запуска маршевых (основных) двигателей, либо для работы системы кондиционирования на земле (пример, ВСУ типа АИ-9, применяемая на вертолётах и самолёте Як-40). Более сложные ВСУ, помимо источника сжатого воздуха, выдают электрический ток в бортовую сеть, то есть являются полноценным автономным энергоузлом, обеспечивающем нормальное функционирование всех бортовых систем самолёта без запуска основных двигателей, а также при отсутствии наземных аэродромных источников энергии. Такова, например, ВСУ ТА-12 самолётов Ан-124[8], Ту-95МС, Ту-204, Ан-74 и других.

Турбовальный двигатель[ | ]

Такой двигатель чаще всего имеет свободную турбину. Вся турбина поделена на две части, между собой механически несвязанные. Связь между ними только газодинамическая. Газовый поток, вращая первую турбину, отдает часть своей мощности для вращения компрессора и далее, вращая вторую, тем самым через вал этой (второй) турбины приводит в действие полезные агрегаты. Реактивное сопло на турбовальном двигателе отсутствует. Выходное устройство для отработанных газов соплом не является и тяги не создаёт.

Выходной вал ТВаД, с которого снимается вся полезная мощность, может быть направлен как назад, через канал выходного устройства, так и вперед, либо через полый вал турбокомпрессора, либо через редуктор вне корпуса двигателя.

Редуктор — непременная принадлежность турбовального двигателя. Скорость вращения как ротора турбокомпрессора, так и ротора свободной турбины велика настолько, что это вращение не может быть напрямую передано на приводимые агрегаты. Они просто не смогут выполнять свои функции и даже могут разрушиться. Поэтому между свободной турбиной и полезным агрегатом обязательно ставится редуктор для снижения частоты вращения приводного вала.

Компрессор у ТВаД может быть осевым (если двигатель мощный) либо центробежным. Часто компрессор бывает и смешанным по конструкции, в нём есть как осевые, так и центробежные ступени. В остальном принцип работы этого двигателя такой же, как и у ТРД.

Основное применение турбовальный двигатель находит в авиации, по большей части, на вертолётах. Полезная нагрузка в этом случае — несущий винт вертолёта. Известным примером могут служить широко распространённые вертолёты Ми-8 и Ми-24 с двигателями ТВ2-117 и ТВ3-117.

Турбостартёр[ | ]

ТС — агрегат, устанавливаемый на газотурбинном двигателе и предназначенный для его раскрутки при запуске.

Такие устройства представляют собой миниатюрный, простой по конструкции турбовальный двигатель, свободная турбина которого раскручивает ротор основного двигателя при его запуске. В качестве примера: турбостартёр ТС-21, используемый на двигателе АЛ-21Ф-3, который устанавливается на самолёты типа Су-24[9], или ТС-12, устанавливаемый на авиационные двигатели НК-12 самолётов Ту-95 и Ту-142. ТС-12 имеет одноступенчатый центробежный компрессор, двухступенчатую осевую турбину привода компрессора и двухступенчатую свободную турбину. Номинальные обороты ротора компрессора в начале запуска двигателя — 27 тысяч мин–1, по мере раскрутки ротора НК-12 за счёт роста оборотов свободной турбины ТС-12 противодавление за турбиной компрессора падает и обороты возрастают до 30 тысяч мин–1.

Турбостартёр ГТДЭ-117 двигателя АЛ-31Ф также выполнен со свободной турбиной, а стартёр С-300М двигателя АМ-3, стоявшего на самолётах Ту-16, Ту-104 и М-4 — одновальный и раскручивает ротор двигателя через гидромуфту.[10]

Судовые установки[ | ]

Используются в судовой промышленности для снижения веса. General Electric LM2500 и  — характерные модели этого типа машин.

Суда, использующие турбовальные газотурбинные двигатели называют газотурбоходами. Они являются разновидностью теплохода. Это чаще всего суда на подводных крыльях, у которых гребной винт приводит в движение турбовальный двигатель механически через редуктор или электрически через генератор, который он вращает. Либо это суда на воздушной подушке, которая создаётся при помощи ГТД.

Например, газотурбоход «Циклон-М» с 2-мя газотурбинными двигателями ДО37. Пассажирских газотурбоходов за российскую историю было всего два. Последнее очень перспективное судно «Циклон-М» появилось в в 1986 году. Более таких судов не строили. В военной сфере в этом плане дела обстоят несколько лучше. Примером является десантный корабль «Зубр», самое большое в мире судно на воздушной подушке.

Железнодорожные установки[ | ]

Локомотивы, на которых стоят турбовальные газотурбинные двигатели, называются газотурбовозами (разновидность тепловоза). На них используется электрическая передача. ГТД вращает электрогенератор, а вырабатываемый им ток, в свою очередь, питает электродвигатели, приводящие локомотив в движение. В 1960-е годы в СССР проходили довольно успешную опытную эксплуатацию три газотурбовоза. Два пассажирских и один грузовой. Однако они не выдержали соревнования с электровозами и в начале 1970-х проект был свёрнут. Но в 2007 году по инициативе ОАО «РЖД» был изготовлен опытный образец грузового газотурбовоза, работающий на сжиженном природном газе. ГТ1 успешно прошёл испытания, позднее был построен второй газотурбовоз, с той же силовой установкой, но на другой ходовой части, машины эксплуатируются.

Перекачка природного газа[ | ]

Принцип работы газоперекачивающей установки практически не отличается от турбовинтовых двигателей, ТВаД используются здесь в качестве привода мощных насосов, а в качестве топлива используется тот же самый газ, который они перекачивают. В отечественной промышленности для этих целей широко применяются двигатели, созданные на базе авиационных — НК-12 (НК-12СТ)[11], НК-32 (НК-36СТ), так как на них можно использовать детали авиадвигателей, выработавшие свой лётный ресурс.

Электростанции[ | ]

Основу газотурбинной электростанции составляют один или несколько газотурбинных двигателей. Газотурбинная электростанция может иметь электрическую мощность от двадцати киловатт до сотен мегаватт. Она способна также отдавать потребителю значительное количество (вдвое больше электрической мощности) тепловой энергии, если установить на выхлопе турбины котёл-утилизатор; в этом случае установка называется ГТУ-ТЭЦ.

Танкостроение[ | ]

Первые исследования в области применения газовой турбины в танковых двигателях проводились в Германии Управлением вооружённых сухопутных сил начиная с середины 1944 года. Первым массовым танком с газотурбинным двигателем стал С-танк.

Установка блочного силового агрегата (двигатель - трансмиссия) в танк M1A1

Турбовальные двигатели (ТВаД) установлены на советском танке Т-80 (двигатель ГТД-1000Т) и американском М1 Абрамс. Газотурбинные двигатели, устанавливаемые на танках, имеют при схожих с дизельными размерах гораздо большую мощность, меньший вес и меньшую шумность, меньшую дымность выхлопа. Также ТВаД лучше удовлетворяет требованиям многотопливности, гораздо легче запускается, — оперативная готовность танка с ГТД, то есть запуск двигателя и последующий вход в рабочий режим всех его систем, занимает несколько минут, что для танка с дизельным двигателем в принципе невозможно, а в зимних условиях при низких температурах дизелю требуется достаточно длительный предпусковой прогрев, который не требуется ТВаД. Из-за отсутствия жёсткой механической связи турбины и трансмиссии на застрявшем или просто упёршемся в препятствие танке двигатель не глохнет. В случае попадания воды в двигатель (утоплении танка) достаточно выполнить так называемую холодную прокрутку ГТД для удаления воды из газовоздушного тракта и после этого двигатель можно запускать — на танке с дизельным двигателем в аналогичной ситуации происходит гидроудар, ломающий детали цилиндро-поршневой группы и непременно требующий замены двигателя.

Однако из-за низкого КПД газотурбинных двигателей, установленных на тихоходных (в отличие от самолётов) транспортных средствах, требуется гораздо большее количество возимого топлива для сравнимого с дизельным двигателем километрового запаса хода. Именно из-за расхода топлива, невзирая на все достоинства, танки типа Т-80 поэтапно выводятся из эксплуатации. Производство танков М1 Абрамс также прекращено. Неоднозначным оказался опыт эксплуатации танковых ТВаД М1 Абрамс в условиях высокой запылённости (например в песчаных пустынях). В отличие от него, Т-80 благополучно может эксплуатироваться в условиях высокой запылённости, — конструктивно хорошо продуманная система очистки поступающего в двигатель воздуха на Т-80 надёжно защищает ГТД от песка и пыли. «Абрамсы», напротив, «задохнулись» — во время двух кампаний против Ирака при прохождении пустынь довольно много «Абрамсов» встали, так как их двигатели забились песком.

Автостроение[ | ]
STP Oil Treatment Special на выставке в зале славы музея трассы Indianapolis Motor Speedway показана вместе с газотурбинным двигателем Pratt & Whitney. A 1968  — единственный в истории газотурбинный двигатель, принёсший победу в автомобильной гонке.

Множество экспериментов проводилось с автомобилями, оснащёнными газовыми турбинами.

В 1950 году дизайнер Ф. Р. Белл и главный инженер Морис Вилкс в британской компании Rover Company анонсировали первый автомобиль с приводом от газотурбинного двигателя. Двухместный JET1 имел двигатель, расположенный позади сидений, решётки воздухозаборника по обеим сторонам машины, и выхлопные отверстия на верхней части хвоста. В ходе испытаний автомобиль достиг максимальной скорости 140 км/ч, на скорости турбины 50000 об/мин. Автомобиль работал на бензине, парафиновом или дизельном маслах, но проблемы с потреблением топлива оказались непреодолимыми для производства автомобилей. В настоящее время он выставлен в лондонском Музее науки.

Команды Rover и British Racing Motors (Формула-1) объединили усилия для создания Rover-BRM, автомобиля с приводом от газовых турбин, который принял участие в гонке 24 часа Ле-Мана 1963 года, управляемого Грэмом Хиллом и . Этот автомобиль показал среднюю скорость 173 км/ч, максимальную — 229 км/ч.

Американские компании , и объединились для совместной разработки собственных газотурбинных спортивных автомобилей в 1968 году, приняла участие в нескольких американских и европейских гонках, в том числе завоевав две победы, а также принимала участие в гонке 24 часа Ле-Мана 1968 года. Автомобили использовали газовые турбины , благодаря которым, в конечном итоге, ФИА было установлено шесть посадочных скоростей для машин с приводом от турбин.

На гонках автомобилей с открытыми колёсами, революционное полноприводное авто 1967 года STP Oil Treatment Special с приводом от турбины, специально подобранной легендой гонок и управляемое , почти выиграло в гонке «Инди-500»; авто с турбиной STP компании Pratt & Whitney обгоняло почти на круг авто, шедшее вторым, когда у него неожиданно отказала коробка передач за три круга до финишной черты. В 1971 году глава компании Lotus Колин Чепмен представил авто Lotus 56B F1, с приводом от газовой турбины Pratt & Whitney. У Чепмена была репутация создателя машин-победителей, но он вынужден был отказаться от этого проекта из-за многочисленных проблем с инерционностью турбин ().

Оригинальная серия концептуальных авто была разработана для автовыставки Моторама 1953, 1956, 1959 годов, с приводом от газовых турбин.

Единственная серийная модель «семейного» газотурбинного автомобиля для использования на дорогах общего пользования была выпущена Chrysler в 1963-1964 года. Компания передала пятьдесят собранных вручную машин в кузовах итальянского ателье Ghia добровольцам, которые испытывали новинку в обычных дорожных условиях до января 1966 года. Эксперимент прошёл удачно, но компания, не располагавшая средствами для постройки нового моторного производства, отказалась от массового выпуска автомобиля с ГТД. После ужесточения экологических стандартов и взрывного роста цен на нефть компания, с трудом пережившая финансовый кризис, отказалась от продолжения разработок[12].

Контроль параметров работы ГТД[ | ]

Как и у любого теплового двигателя, у ГТД есть множество параметров, которые необходимо контролировать для эксплуатации двигателя в безопасных, а по возможности и экономичных режимах. Измеряются с помощью приборов контроля.

Конструкторы газотурбинных двигателей и основанные ими КБ[ | ]

См. также[ | ]

Источники[ | ]

Ссылки[ | ]

encyclopaedia.bid

Турбовальный двигатель - это... Что такое Турбовальный двигатель?

 Турбовальный двигатель

Wikimedia Foundation. 2010.

Смотреть что такое "Турбовальный двигатель" в других словарях:

ushakov.academic.ru

Турбовальный двигатель - это... Что такое Турбовальный двигатель?

 Турбовальный двигатель

Wikimedia Foundation. 2010.

Смотреть что такое "Турбовальный двигатель" в других словарях:

dvc.academic.ru

Турбовальный двигатель - это... Что такое Турбовальный двигатель?

 Турбовальный двигатель

Wikimedia Foundation. 2010.

Смотреть что такое "Турбовальный двигатель" в других словарях:

dik.academic.ru


Смотрите также