Г. С. Скубачевский.
Рис. 1. Схема пульсирующего воздушно-реактивного двигателя (ПуВРД): 1 — воздух; 2 — горючее; 3 — клапанная решётка; 4 — форсунки; 5 — свеча; 6 — камера сгорания; 7 — выходное (реактивное) сопло.
Рис. 2. Схема прямоточного воздушно-реактивного двигателя (ПВРД): 1 — воздух; 2 — диффузор; 3 — впрыск горючего; 4 — стабилизатор пламени; 5 — камера сгорания; 6 — сопло; 7 — истечение газов.
Рис. 3. Области применения двигателей различных типов в зависимости от скорости полёта: H — высота полёта; М — число Маха; 1 — турбореактивные двигатели; 2 — турбореактивные двигатели с форсажной камерой; 3 — прямоточные воздушно-реактивные двигатели.
dic.academic.ru
Оглавление:1. Воздушно-реактивный двигатель2. Общие принципы работы ВРД3. Прямоточный воздушно-реактивный двигатель4. Турбореактивный двигатель5. Двухконтурный турбореактивный двигатель6. Винтовентиляторный двигатель7. Пульсирующий воздушно-реактивный двигатель8. Основные характеристики ВРД
Несмотря на многообразие ВРД, существенно отличающихся друг от друга конструкцией, характеристиками и областью применения, можно выделить ряд принципов, общих для всех ВРД и отличающих их от тепловых двигателей других типов.
ВРД как реактивный двигатель.
ВРД реактивный двигатель, развивающий тягу за счёт реактивной струи рабочего тела, истекающего из сопла двигателя. С этой точки зрения ВРД подобен ракетному двигателю, но отличается от последнего тем, что большую часть рабочего тела он забирает из окружающей среды атмосферы, в том числе и окислитель, необходимый для горения топлива. В качестве окислителя в ВРД используется кислород, содержащийся в воздухе. Благодаря этому ВРД обладает преимуществом в сравнении с ракетным двигателем при полётах в атмосфере: если летательный аппарат, оборудованный ракетным двигателем должен транспортировать как горючее, так и окислитель, масса которого больше массы горючего в 2-8 раз, в зависимости от вида горючего, то аппарат, оснащённый ВРД должен иметь на борту только запас горючего. Следовательно, при одной и той же массе топлива аппарат с ВРД энергетически в несколько раз более обеспечен, чем аппарат с ракетным двигателем, и на активном участке полёта может преодолеть в несколько раз большее расстояние.
Рабочее тело ВРД на выходе из сопла представляет собой смесь продуктов сгорания горючего с оставшимися после выгорания кислорода фракциями воздуха. Если для полного окисления 1 кг керосина требуется около 3,4 кг чистого кислорода, то, учитывая, что атмосферный воздух содержит лишь 23 % кислорода по массе, для полного окисления этого горючего требуется 14,8 кг воздуха, и, следовательно, рабочее тело, как минимум, на 94 % своей массы состоит из исходного атмосферного воздуха. На практике в ВРД, как правило, имеет место избыток расхода воздуха, например, в турбореактивных двигателях массовый расход горючего составляет 1 % 2 % от расхода воздуха. Это позволяет при анализе работы ВРД, во многих случаях, без большого ущерба для точности, считать рабочее тело ВРД, как на выходе, так и на входе, одним и тем же веществом атмосферным воздухом, а расход рабочего тела через любое сечение проточной части двигателя одинаковым.
Динамику ВРД можно представить следующим образом: рабочее тело, поступает в двигатель со скоростью полёта, а покидает его со скоростью истечения реактивной струи из сопла. Из баланса импульса, получается простое выражение для реактивной тяги ВРД:
Где сила тяги, скорость полёта,
Скорость истечения газа из сопла теплового реактивного двигателя зависит от химического состава рабочего тела, его абсолютной температуры на входе в сопло, и от степени расширения рабочего тела в сопле двигателя.
Химический состав рабочего тела для всех ВРД можно считать одинаковым, что же касается температуры, и степени расширения, которые достигаются рабочим телом в процессе работы двигателя имеют место большие различия для разных типов ВРД и разных образцов ВРД одного типа. Во всяком случае, для каждого ВРД существует некоторая максимальная, специфическая для данного двигателя скорость истечения рабочего тела из сопла, которая ограничивает сверху диапазон скоростей полёта, при которых данный ВРД эффективен.
С учётом вышесказанного можно сформулировать и главные недостатки ВРД в сравнении с РД:
ВРД как тепловой двигатель
В основу большинства ВРД как тепловой машины положен цикл Брайтона, в котором сначала происходит адиабатическое сжатие рабочего тела. Потом производится изобарический подвод теплоты за счёт сжигания топлива в камере сгорания. После чего следует адиабатическое расширение во время которого и формируется реактивная струя. Завершает цикл адиабатический отвод теплоты в процессе охлаждения реактивной струи в атмосфере.
Наиболее рациональным является формирование реактивной струи в процессе расширения до достижения статического давления рабочего тела, равного забортному атмосферному давлению.. Таким образом, для ВРД обязательно условие: давление в камере сгорания перед началом фазы расширения рабочего тела должно превышать атмосферное, и чем больше тем лучше, тем выше полезная работа термогазодинамического цикла и его КПД. Но в окружающей среде, из которой забирается рабочее тело, оно находится при атмосферном давлении. Следовательно, чтобы ВРД мог работать, необходимо тем или иным способом повысить давление рабочего тела в камере сгорания по отношению к атмосферному.
Эффективность ВРД.
Эффективность ВРД определяют несколько КПД или коэффициентов полезного действия.
Эффективность ВРД как теплового двигателя определяет эффективный КПД двигателя.
Где Q1 количество теплоты отданное нагревателем, Q2 количество теплоты полученное холодильником.
Зависимость полётного КПД от отношенияЭффективность ВРД как движителя определяет полётный или тяговый КПД.
Сравнивая формулы и можно прийти к выводу, что чем выше разница между скоростью истечения газов из сопла и скоростью полета, тем выше тяга двигателя и тем ниже полетный КПД. При равенстве скоростей полета и истечения газов из сопла полетный КПД будет равен 1, то есть 100 %, но тяга двигателя будет равна 0. По этой причине проектирование ВРД является компромиссом между создаваемой им тягой и его полетным КПД.
Общий или полный КПД ВРД является произведением двух приведеных выше КПД.
Воздушно-реактивные двигатели можно разбить на две основные группы. ВРД прямой реакции, в которых тяга создается исключительно за счёт реактивной струи истекающей из сопла. И ВРД непрямой реакции, в которых тяга кроме или вместо реактивной струи создается посредством использования специального движителя, например пропеллера или несущего винта вертолёта. Применяется также классификация по признаку наличия механического воздушного компрессора в тракте двигателя: в этом случае ВРД подразделяются на бескомпрессорные и компрессорные, где компрессор приводится от газовой турбины ТРД, ТРДД, ТВД с их вариантами, а также мотокомпрессорный воздушно-реактивный двигатель, в котором компрессор приводится не от турбины, а от отдельного двигателя внутреннего сгорания.
Просмотров: 19866
www.vonovke.ru
Министерство Высшего и Среднего Специального Образования Республики Узбекистан Ташкентский автомобильно-дорожный институт Кафедра: «Автомобили» на тему: Воздушно-реактивный двигатель. Выполнил: ст.группы 235-07 Султанов С. Ташкент 2010 Содержание
Воздушно-реактивный двигатель (ВРД) — тепловой реактивный двигатель, в качестве рабочего тела которого используется атмосферный воздух, нагреваемый за счёт химической реакции окисления горючего кислородом, содержащимся в самом рабочем теле. Впервые этот термин в печатной публикации, по-видимому, был использован Б. С. Стечкиным в журнале «Техника Воздушного Флота», где была помещена его статья «Теория воздушного реактивного двигателя» (1929 г.) В английском языке этому термину наиболее точно отвечает словосочетание air-breathing jet engine (буквально — реактивный двигатель, дышащий воздухом). Воздушно-реактивные двигатели используются, как правило, для приведения в движение воздушных летательных аппаратов. История История ВРД неразрывно связана с историей авиации. Прогресс в авиации на всём протяжении её существования обеспечивался, главным образом, прогрессом авиационных двигателей, а всё возраставшие требования, предъявляемые авиацией к двигателям, являлись мощным стимулятором развития авиационного двигателестроения. Первый самолёт, самостоятельно оторвавшийся от Земли («Флайер-1» конструкции братьев Райт США 1903г), был оснащён поршневым двигателем внутреннего сгорания, и это техническое решение на протяжении сорока лет оставалось непременным в авиации. Всё это время авиационные поршневые двигатели совершенствовались, возрастала их мощность и тяговооруженность. Однако, к концу Второй мировой войны требование ещё бо́льшего повышения мощности поршневых ДВС вошло в неразрешимое противоречие с другими требованиями, предъявляемыим к авиамоторам — компактностью и ограничением массы.[1] Дальнейшее развитие авиации по пути совершенствования поршневых двигателей становилось невозможным, и почти одновременно со смертью младшего из братьев Райт — Орвилла (1948г) закончилась и эпоха поршневой авиации. В двигателестроении ожили идеи, предложенные намного раньше поршневого двигателя внутреннего сгорания, но не привлекавшие внимания авиаконструкторов, пока поршневой двигатель сохранял перспективу развития. Ещё в эскизах Леонардо да Винчи (XV век) было найдено изображение колеса с лопастями, приводимого в движение тягой каминной трубы (прообраз газовой турбины), и вращавшего через зубчатую передачу шампур для жарки мяса. Первый патент на газотурбинный двигатель был выдан англичанину Джону Барберу в 1791 году. В 1913 году француз Рене Лорен получил патент на прямоточный воздушно-реактивный двигатель. Следует отметить, что ряд инженеров и учёных разных стран ещё в 30-е, и даже в 20-е годы XX века предвидели надвигающийся кризис в авиационном двигателестроении, и искали пути выхода из него, в том числе и за счёт ВРД. К ним можно отнести Ф. Уиттла (Великобритания), фон Охайна (Германия), Рене Ледюка (René Leduc) (Франция). В СССР этой проблемой занимались Ф. А. Цандер, Б. С. Стечкин, Ю. А. Победоносцев, А. М. Люлька и др. В большинстве случаев главным ресурсом этих разработок был энтузиазм разработчиков. Для получения практических результатов необходимы были существенные инвестиции, а инвестиции без обнадёживающих практических результатов никто не решался делать — извечный замкнутый круг всех изобретателей. Первый турбореактивный самолёт He 178. Немецкие конструкторы и учёные, работавшие в этой и смежных областях (ракетостроение), оказались в предпочтительном положении. Третий рейх планировал войну со всем миром, и выиграть её рассчитывал за счёт технического превосходства в вооружениях. Поэтому в Германии новые разработки в области авиации и ракетной техники субсидировались более щедро, чем в других странах, и достижения оказались соответственными. Первым самолётом, поднявшимся в небо с турбореактивным двигателем (ТРД) HeS 3 конструкции фон Охайна, был He 178 (фирма Хейнкель Германия), управляемый лётчиком-испытателем Эрихом Варзицем (27 августа 1939 года). Этот самолёт превосходил по скорости (700 км/час) все поршневые истребители своего времени, максимальная скорость которых не превышала 650 км/час, но при этом был менее экономичен, и вследствие этого имел меньший радиус действия. К тому же у него были бо́льшие скорости взлёта и посадки, чем у поршневых самолётов, из-за чего ему требовалась более длинная взлётно-посадочная полоса с качественным покрытием. Двигатель Jumo-004 — первый в мире крупносерийный ТРД. . Работы по этой тематике неспешно продолжались почти до конца войны, когда Третий рейх, утратив своё былое преимущество в воздухе, предпринял безуспешную попытку восстановить его за счёт серийного выпуска с августа 1944 года реактивного истребителя-бомбардировщика Мессершмитт Me.262, оборудованного 2-мя турбореактивными двигателями Jumo-004 производства фирмы Юнкерс. Этот самолёт значительно превосходил всех своих «современников» по скорости и скороподъёмности. А с ноября 1944 года начал выпускаться ещё и первый реактивный бомбардировшик Arado Ar 234 Blitz с теми же двигателями, который из-за его скорости не могли перехватывать поршневые истребители того времени. Но всё это уже не могло спасти Третий рейх от краха. Единственным реактивным самолетом союзников по антигитлеровской коалиции, принимавшим участие во Второй мировой войне, был Глостер Метеор (Великобритания) с ТРД Rolls-Royce Derwent 8 конструкции Ф. Уиттла. После войны во всех странах, имевших авиационную промышленность, начинаются интенсивные разработки в области воздушно-реактивных двигателей. Реактивное двигателестроение открыло новые возможности в авиации: полёты на скоростях, превышающих скорость звука[3], и создание самолётов с грузоподъёмностью, многократно превышающей грузоподъёмность поршневых самолётов, как следствие более высокой удельной мощности газотурбинных двигателей в сравнении с поршневыми. Первым отечественным серийным реактивным самолётом был истребитель Як-15 (1946г), разработанный в рекордные сроки на базе планера Як-3 и адаптации трофейного двигателя Jumo-004, выполненной в моторостроительном КБ В. Я. Климова под обозначением РД-10. А уже через год прошёл государственные испытания первый, полностью оригинальный, отечественный турбореактивный двигатель ТР-1, разработанный в КБ А. М. Люльки (ныне НПО «Сатурн»). Такие быстрые темпы освоения совершенно новой сферы двигателестроения имеют объяснение: группа А. М. Люльки занималась этой проблематикой ещё с довоенных времён, но «зелёный свет» этим разработкам был дан, только когда руководство страны вдруг обнаружило отставание СССР в этой области. Первым отечественным реактивным пассажирским авиалайнером был Ту-104 (1955г), оборудованный двумя турбореактивными двигателями РД-3М-500 (АМ-3М-500), разработанными в КБ А. А. Микулина. К этому времени СССР был уже в числе мировых лидеров в области авиационного моторостроения. Leduc 010 первый аппарат, летавший с ПВРД (Музей в Ле Бурже). Первый полёт — 19 ноября 1946 Запатентованный ещё в 1913 г, прямоточный воздушно-реактивный двигатель (ПВРД) привлекал конструкторов простотой своего устройства, но главное — своей потенциальной способностью работать на гиперзвуковых скоростях и в самых высоких, наиболее разреженных слоях атмосферы, то есть в условиях, в которых ВРД других типов неработоспособны или малоэффективны. В 1930-е годы с этим типом двигателей проводились эксперименты в США (Уильям Эвери), в СССР (Ф. А. Цандер, Б. С. Стечкин, Ю. А. Победоносцев). В 1937 году французский конструктор Рене Ледюк получил заказ от правительства Франции на разработку экспериментального самолёта с ПВРД. Эта работа была прервана войной и возобновилась после её окончания. 19 ноября 1946 года состоялся первый в истории полёт аппарата с маршевым ПВРД, Leduc 010. Далее в течение 10 лет было изготовлено и испытано ещё несколько экспериментальных аппаратов этой серии, в том числе, пилотируемые Leduc 021 и Leduc 022, а в 1957 году правительство Франции отказалось от продолжения этих работ — бурно развивавшееся в то время направление ТРД представлялось более перспективным. Обладая рядом недостатков для использования на пилотируемых самолётах (нулевая тяга на месте, низкая эффективность на малых скоростях полёта), ПВРД является предпочтительным типом ВРД для беспилотных одноразовых снарядов и крылатых ракет, благодаря своей простоте, а, следовательно, дешевизне и надёжности. Начиная с 50-х годов ХХ века в США было создан ряд экспериментальных самолётов и серийных крылатых ракет разного назначения с этим типом двигателя. Крылатая ракета «Буря» с ускорителями. В СССР с 1954 по 1960гг разрабатывалась крылатая ракета «Буря», предназначавшаяся для доставки ядерных зарядов на межконтинентальные расстояния, и использовавшая в качестве маршевого двигателя ПВРД, разработанный группой М. М. Бондарюка, и имевший уникальные для своего времени характеристики: эффективная работа на скорости свыше 3М, и на высоте 17 км. В 1957 году проект вступил в стадию лётных испытаний, в ходе которых выявился ряд проблем, в частности, с точностью наведения, которые предстояло разрешить, и на это требовалось время, которое трудно было определить. Между тем, в том же году на вооружение уже поступила МБР Р-7, имевшая то же назначение, разработанная под руководством С. П. Королёва. Это ставило под сомнение целесообразность дальнейшей разработки «Бури». Смерть генерального конструктора С. А. Лавочкина в 1960 г окончательно похоронила проект. Из числа более современных отечественных разработок можно упомянуть противокорабельные крылатые ракеты с маршевыми ПВРД: П-800 Оникс, П-270 Москит. Пульсирующий воздушно-реактивный двигатель (ПуВРД) был изобретён в XIX веке шведским изобретателем Мартином Вибергом. Немецкие конструкторы, ещё накануне Второй мировой войны проводившие широкий поиск альтернатив поршневым авиационным двигателям, не обошли вниманием и это изобретение, долгое время остававшееся невостребованным. Наиболее известным летательным аппаратом (и единственным серийным) c ПуВРД Argus As-014 производства фирмы Argus-Werken, явился немецкий самолёт-снаряд Фау-1. Главный конструктор Фау-1 Роберт Люссер выбрал для него ПуВРД не ради эффективности (поршневые авиационные двигатели той эпохи обладали лучшими характеристиками), а, главным образом, из-за простоты конструкции и, как следствие, малых трудозатрат на изготовление, что было оправдано при массовом производстве одноразовых снарядов, серийно выпущенных за неполный год (с июня 1944 по март 1945) в количестве свыше 10 000 единиц. После войны исследования в области пульсирующих воздушно-реактивных двигателей продолжились во Франции (компания SNECMA) и в США (Pratt & Whitney, General Electric), кроме того, благодаря простоте и дешевизне, маленькие двигатели этого типа стали очень популярны среди авиамоделистов, и в любительской авиации, и появились коммерческие фирмы, производящие на продажу для этих целей ПуВРД и клапаны к ним (быстроизнашивающаяся запчасть).[1] Общие принципы работы ВРД Несмотря на многообразие ВРД, существенно отличающихся друг от друга конструкцией, характеристиками и областью применения, можно выделить ряд принципов, общих для всех ВРД и отличающих их от тепловых двигателей других типов. ВРД – как реактивный двигатель. ВРД – реактивный двигатель, развивающий тягу за счёт реактивной струи рабочего тела, истекающего из сопла двигателя. С этой точки зрения ВРД подобен ракетному двигателю (РД), но отличается от последнего тем, что большую часть рабочего тела он забирает из окружающей среды – атмосферы, в том числе и окислитель, необходимый для горения топлива. В качестве окислителя в ВРД используется кислород, содержащийся в воздухе. Благодаря этому ВРД обладает преимуществом в сравнении с ракетным двигателем при полётах в атмосфере: если летательный аппарат, оборудованный ракетным двигателем должен транспортировать как горючее, так и окислитель, масса которого больше массы горючего в 2–8 раз, в зависимости от вида горючего, то аппарат, оснащённый ВРД должен иметь на борту только запас горючего. Следовательно, при одной и той же массе топлива аппарат с ВРД энергетически в несколько раз более обеспечен, чем аппарат с ракетным двигателем, и на активном участке полёта может преодолеть в несколько раз большее расстояние (иногда – в десятки раз). Рабочее тело ВРД на выходе из сопла представляет собой смесь продуктов сгорания горючего с оставшимися после выгорания кислорода фракциями воздуха. Если для полного окисления 1 кг керосина (обычного топлива для ВРД) требуется около 3,4 кг чистого кислорода, то, учитывая, что атмосферный воздух содержит лишь 23% кислорода по массе, для полного окисления этого горючего требуется 14,8 кг воздуха, и, следовательно, рабочее тело, как минимум, на 94% своей массы состоит из исходного атмосферного воздуха. На практике в ВРД, как правило, имеет место избыток расхода воздуха (иногда — в несколько раз, по сравнению с минимально необходимым для полного окисления горючего), например, в турбореактивных двигателях массовый расход горючего составляет 1% — 2% от расхода воздуха.[5]. Это позволяет при анализе работы ВРД, во многих случаях, без большого ущерба для точности, считать рабочее тело ВРД, как на выходе, так и на входе, одним и тем же веществом – атмосферным воздухом, а расход рабочего тела через любое сечение проточной части двигателя – одинаковым. Динамику ВРД можно представить следующим образом: рабочее тело, поступает в двигатель со скоростью полёта, а покидает его со скоростью истечения реактивной струи из сопла. Из баланса импульса, получается простое выражение для реактивной тяги ВРД: (1) Где – сила тяги, – скорость полёта, – скорость истечения реактивной струи (относитеьно двигателя), – секундный расход массы рабочего тела через двигатель. Очевидно, ВРД эффективен (создаёт тягу) только в случае, когда скорость истечения рабочего тела из сопла двигателя превышает скорость полёта: Скорость истечения газа из сопла теплового реактивного двигателя зависит от химического состава рабочего тела, его абсолютной температуры на входе в сопло, и от степени расширения рабочего тела в сопле двигателя (отношения давления на входе в сопло к давлению на его срезе). Химический состав рабочего тела для всех ВРД можно считать одинаковым, что же касается температуры, и степени расширения, которые достигаются рабочим телом в процессе работы двигателя — имеют место большие различия для разных типов ВРД и разных образцов ВРД одного типа. Во всяком случае, для каждого ВРД существует некоторая максимальная, специфическая для данного двигателя скорость истечения рабочего тела из сопла, которая ограничивает сверху диапазон скоростей полёта, при которых данный ВРД эффективен. С учётом вышесказанного можно сформулировать и главные недостатки ВРД в сравнении с РД:
В основу большинства ВРД как тепловой машины положен цикл Брайтона, в котором сначала происходит адиабатическое сжатие рабочего тела. Потом производится изобарический подвод теплоты за счёт сжигания топлива в камере сгорания. После чего следует адиабатическое расширение во время которого и формируется реактивная струя. Завершает цикл адиабатический отвод теплоты в процессе охлаждения реактивной струи в атмосфере. Наиболее рациональным является формирование реактивной струи в процессе расширения до достижения статического давления рабочего тела, равного забортному атмосферному давлению.[6]. Таким образом, для ВРД обязательно условие: давление в камере сгорания перед началом фазы расширения рабочего тела должно превышать атмосферное, и чем больше – тем лучше, тем выше полезная работа термогазодинамического цикла и его КПД. Но в окружающей среде, из которой забирается рабочее тело, оно находится при атмосферном давлении. Следовательно, чтобы ВРД мог работать, необходимо тем или иным способом повысить давление рабочего тела в камере сгорания по отношению к атмосферному.. Эффективность ВРД. Эффективность ВРД определяют несколько КПД или коэффициентов полезного действия. Эффективность ВРД как теплового двигателя определяет эффективный КПД двигателя. (2) Где Q1 - количество теплоты отданное нагревателем, Q2 - количество теплоты полученное холодильником. Зависимость полётного КПД от отношения Эффективность ВРД как движителя определяет полётный или тяговый КПД. (3) Сравнивая формулы (1) и (2) можно прийти к выводу, что чем выше разница между скоростью истечения газов из сопла и скоростью полета, тем выше тяга двигателя и тем ниже полетный КПД. При равенстве скоростей полета и истечения газов из сопла полетный КПД будет равен 1, то есть 100%, но тяга двигателя будет равна 0. По этой причине проектирование ВРД является компромиссом между создаваемой им тягой и его полетным КПД. Общий или полный КПД ВРД является произведением двух приведеных выше КПД. (4) Воздушно-реактивные двигатели можно разбить на две основные группы. ВРД прямой реакции, в которых тяга создается исключительно за счёт реактивной струи истекающей из сопла. И ВРД непрямой реакции, в которых тяга кроме или вместо реактивной струи создается посредством использования специального движителя, например пропеллера или несущего винта вертолета. Прямоточный воздушно-реактивный двигатель Принцип действия и устройство ПВРД Огневые испытания ПВРД в лаборатории NASA Прямоточный воздушно-реактивный двигатель (ПВРД англоязычный термин – Ramjet) является самым простым в классе ВРД по устройству. Необходимое для работы двигателя повышение давления в камере сгорания достигается за счёт торможения встречного потока воздуха. Рабочий процесс ПВРД кратко можно описать следующим образом: Воздух, поступая со скоростью полёта во входное устройство двигателя, затормаживается (на практике, до скоростей 30 — 60 м/сек, что соответствует числу Маха 0,1 — 0,2), его кинетическая энергия преобразуется во внутреннюю энергию – его температура и давление повышаются. В предположении того, что воздух – идеальный газ, и процесс сжатия является изоэнтропийным, степень повышения давления (отношение статического давления в заторможенном потоке к атмосферному) выражается уравнением:[5] (5) где – давление в полностью заторможенном потоке; – атмосферное давление; |
uz.denemetr.com
Воздушно-реактивный двигатель содержит корпус, к которому крепятся неподвижные части двигателя, вал двигателя с установленным на нем компрессором, диффузор, устройства, создающие крутящий момент на валу двигателя в виде прямоточных воздушно-реактивных двигателей, расположенных на расстоянии от оси вращения вала двигателя и закрепленных на нем. Система подачи топлива двигателя состоит из насоса, подающего топливо по топливопроводам во внутреннюю полость вала двигателя, из которой топливо под действием центробежной силы подается в прямоточные воздушно-реактивные двигатели. Воздухозаборники прямоточных воздушно-реактивных двигателей направлены вперед и по направлению вращения вала двигателя, а их сопла выходят назад в общее сопло двигателя, состоящее из раструба и центрального тела -"иглы", в зазор между которыми истекают из прямоточных воздушно-реактивных двигателей продукты сгорания. В стенках устройства крепления прямоточных воздушно-реактивных двигателей выполнены отверстия для прохода воздуха в их диффузор и для выхода продуктов сгорания из сопел. Прямоточные воздушно-реактивные двигатели имеют связь с одним из рабочих колёс компрессора и вращаются вместе с ним. Впереди компрессора в обтекателе двигателя расположен стартер-генератор. Маслонасос находится в кожухе шестерёнчатого редуктора. Устройство крепления прямоточных двигателей выполнено в виде фланцев или барабана. Изобретение повышает экономичность двигателя на больших высотах и на больших сверхзвуковых скоростях полета летательного аппарата. 3 з.п. ф-лы, 2 ил.
Изобретение относится к авиации, в частности к двигателестроению.
Известен воздушно-реактивный двигатель (ВРД), содержащий корпус, к которому крепятся неподвижные части двигателя, вал двигателя с установленным на нем компрессором, диффузор, устройства, создающие крутящий момент на валу двигателя в виде прямоточных воздушно-реактивных двигателей, расположенных на расстоянии от оси вращения вала двигателя и закрепленных на нем, систему подачи топлива, состоящую из насоса, подающего топливо по топливопроводам во внутреннюю полость вала двигателя, из которой топливо под действием центробежной силы подается в прямоточные воздушно-реактивные двигатели, средства для создания воздушно-топливной смеси и сжигания этой смеси, при этом воздухозаборники прямоточных воздушно-реактивных двигателей направлены вперед и по направлению вращения вала двигателя, а их сопла выходят назад в общее сопло двигателя, состоящее из раструба и центрального тела - "иглы", в зазор между которыми истекают из прямоточных воздушно-реактивных двигателей продукты сгорания, в стенках устройства крепления прямоточных воздушно-реактивных двигателей выполнены отверстия для прохода воздуха в их диффузор и для выхода продуктов сгорания из сопел, прямоточные воздушно-реактивные двигатели имеют связь с одним из рабочих колес компрессора и вращаются вместе с ним (см. патент США 2709889, Н.кл. 60-35.6, 1955).
Известны недостатки таких двигателей - большие гидравлические потери в трактах компрессора и турбин, состоящих из большого числа рабочих колес и направляющих аппаратов. Эти недостатки делают экономически невыгодными полеты летательных аппаратов на больших высотах и на больших сверхзвуковых скоростях.
Также ТРД имеют довольно большой вес и это также ограничивает их применение, например, в малой авиации.
Задачей, на решение которой направлено настоящее изобретение, является устранение указанных недостатков.
Поставленная задача решается за счет того, что воздушно-реактивный двигатель, содержащий корпус, к которому крепятся неподвижные части двигателя, вал двигателя с установленным на нем компрессором, диффузор, устройства, создающие крутящий момент на валу двигателей, в виде прямоточных воздушно-реактивных двигателей, расположенных на расстоянии от оси вращения вала двигателя и закрепленных на нем, систему подачи топлива, состоящую из насоса, подающего топливо по топливопроводам во внутреннюю полость вала двигателя, из которой топливо под действием центробежной силы подается в прямоточные воздушно-реактивные двигатели, средства для создания воздушно-топливной смеси и сжигания этой смеси, при этом воздухозаборники прямоточных воздушно-реактивных двигателей направлены вперед и по направлению вращения вала двигателя, а их сопла выходят назад в общее сопло двигателя, состоящее из раструба и центрального тела - "иглы", в зазор между которыми истекают из прямоточных воздушно-реактивных двигателей продукты сгорания, в стенках устройства крепления прямоточных воздушно-реактивных двигателей выполнены отверстия для прохода воздуха в их диффузор и для выхода продуктов сгорания из сопел, прямоточные воздушно-реактивные двигатели имеют связь с одним из рабочих колес компрессора и вращаются вместе с ним, согласно изобретению двигатель также содержит стартер-генератор, расположенный впереди компрессора в обтекателе двигателя, системы смазки, системы управления, маслонасос, находящийся в кожухе шестеренчатого редуктора, последний выполнен герметичным и снабжен устройствами для подвода и отвода масла или гидравлической жидкости, при этом устройство крепления прямоточных двигателей выполнено в виде фланцев или барабана.
Поставленная задача решается также за счет того, что прямоточные воздушно-реактивные двигатели вращаются встречно с ближним к ним рабочим колесом компрессора, а вал двигателя разделен редуктором, синхронизирующим встречное вращение рабочего колеса и прямоточных воздушно-реактивных двигателей.
Поставленная задача решается также за счет того, что прямоточные воздушно-реактивные двигатели снабжены сверхзвуковыми диффузорами.
Поставленная задача решается также за счет того, что прямоточные воздушно-реактивные двигатели вращаются вместе с ближайшим к ним рабочим колесом компрессора, а предыдущее рабочее колесо вращается через редуктор встречно им.
Прямоточные воздушно-реактивные двигатели (ПВРД) отличаются небольшим весом, они просты и имеют небольшие гидравлические потери во внутреннем тракте, но ПВРД не имеют статической тяги, т.е. они не могут работать на месте. Работа ПВРД происходит в условиях наличия скоростного наддува, когда летательный аппарат уже движется в атмосфере. Поэтому ПВРД не может быть использован на самолетах, для взлета которых требуется наличие на двигателе статической тяги на месте.
Как известно, для запуска ПВРД требуется сообщить ему некоторую начальную скорость движения, после чего набегающий поток создает необходимую энергию в диффузоре ПВРД и от этого поднимается рабочее давление в камере сгорания (КС) ПВРД.
Для получения такого эффекта предлагается установить два или несколько прямоточных воздушно-реактивных двигателей на фланцах или в барабане, закрепленном на валу воздушно-реактивного двигателя таким образом, чтобы диффузоры ПВРД были бы направлены вперед, в сторону компрессора ВРД и по направлению вращения вала двигателя.
При этом прямоточные двигатели располагаются на некотором расстоянии от оси вращения вала двигателя, чтобы в работе ВРД они имели бы поступательное движение относительно воздуха, поступающего от компрессора ВPД. При вращении вала ВРД происходит cкopocтной наддув ПBPД, а ввиду того, что сопла прямоточных воздушно-реактивных двигателей выходят назад и под углом к оси вращения вала двигателя, создаваемая ПВРД реактивная сила суммируется на валу ВРД в виде крутящего момента и реактивной тяги. Для того чтобы продукты сгорания из сопел ПВРД не ударялись в стенки корпуса двигателя и чтобы направить их более упорядоченно назад, с целью увеличения реактивной силы двигателя ВРД снабжен общим для всех ПВРД соплом, состоящим из раструбной части и центрального тела, так называемой "иглы".
При истечении продуктов сгорания из сопла ПВРД они попадают в зазор между элементами сопла ВРД и истекают из него наружу из двигателя.
Система подачи топлива предложенного двигателя также имеет свои особенности. Поскольку ПВРД вращаются вокруг оси двигателя, то возникающая при этом центробежная сила может помочь подаче топлива в камеры сгорания ПВРД, являющиеся рабочими органами двигателя. Так как давление газов в камерах сгорания прямоточных воздушно-реактивных двигателей достаточно большое, то для преодоления этого давления и подачи топлива в зону горения топливная система двигателя имеет насосы низкого давления, от которых топливо идет по топливопроводам во внутреннюю полость вала двигателя, во внутренний канал вала и далее подается по топливопроводам в камеры сгорания ПВРД. Ввиду того, что в топливной системе предложенного двигателя отсутствуют насосы высокого давления, могущие служить источниками отказов и аварийных ситуаций, то подобное упрощение топливной системы двигателя также является его преимуществом.
Компрессор предлагаемого двигателя может иметь несколько вариантов его исполнения. Например, фланец с ПВРД может быть связан с одним из рабочих колес компресcopa и вращаться вместе с ним. Тогда воздух будет попадать в воздухозаборники ПВРД непосредственно с рабочего колеса компрессора и число этих рабочих колес может быть доведено до одного. В таком случае лопатки рабочего колеса компрессора, например сверхзвукового, становятся сверхзвуковым диффузором ПВРД, так как входящий в такое рабочее колесо воздух имеет скорость больше звуковой до скачка уплотнения между лопатками колеса, а далее скорость потока падает к дозвуковому значению, отчего плотность и давление воздуха при этом растет. Примерно также работают и сверхзвуковые воздухозаборники у известных ПВРД.
Возможен и такой вариант устройства компрессора, где имеется два рабочих колеса или несколько, а фланец с ПВРД вращается с одним из этих колес. Для уменьшения потерь и увеличения компрессии рабочие колеса могут вращаться встречно, например входное активного типа, а выходное - сверхзвуковое колесо, а между ними нет направляющего аппарата.
При более сложном устройстве ВРД фланец с ПВРД вращается встречно с ближним к нему рабочим колесом компрессора, отчего скорость набегающего на ПВРД потока увеличивается, но для того чтобы реализовать такую схему, требуется оснастить каждый прямоточный двигатель собственным сверхзвуковым диффузором.
В среднем для работы предлагаемого воздушно-реактивного двигателя достаточно иметь от одной до трех ступеней компрессора, что позволяет строить легкие и надежные двигатели.
Также исключается во многом и пожар двигателя, потому что протекание топлива под высоким давлением возможно лишь в очень небольшой зоне, близкой к соплам всех двигателей. От этого топливо, нагнетаемое центробежной силой, при прогорании камер сгорания или топливопроводов высокого давления может протекать в основном в полость общего сопла, откуда пламя будет сноситься назад в атмосферу. Попадание топлива на стартер или в систему смазки или еще куда-то на возгораемые узлы почти полностью исключается.
На фиг.1 изображен воздушно-реактивный двигатель с устройством крепления прямоточных воздушно-реактивных двигателей в виде фланцев.
На фиг.2 изображен воздушно-реактивный двигатель с устройством крепления прямоточных воздушно-реактивных двигателей в виде барабана.
Воздушно-реактивный двигатель содержит компрессор, имеющий входной направляющий аппарат 1, рабочее колесо 2, фланцы 3 подвески прямоточных воздушно-реактивных двигателей 19, общее сопло, состоящее из раструба 4 и центрального тела - "иглы" 5. Вал 6 двигателя выполнен с внутренним каналом 7, в котором движется топливо 8. Топливо поступает в этот канал через топливопроводы 9 и после через канал и топливопpoвoды высокого давления 10 осуществляется питание прямоточных воздушно-реактивных двигателей 19 двигателя. Стартер двигателя, служащий и генератором тока 11, расположен в переднем обтекателе 12 впереди компрессора. Корпус двигателя 13, служащий также кожухом для смешивания и выравнивания струй от прямоточных воздушно-реактивных двигателей 19 и компрессора, в двухконтурном варианте двигателя имеет устройства для крепления 14 его к летательному аппарату. Подшипники 15 служат для передачи реактивной силы от сопла ВРД на корпус двигателя и далее на летательный аппарат.
Изображенный на фиг.2 воздушно-реактивный двигатель имеет компрессор, состоящий из входного аппарата 1, рабочих колес 2. Барабан 3 с навешенными в нем прямоточными воздушно-реактивными двигателями 19, являющийся здесь как бы заменой фланцев по фиг.1, имеет отверстия для прохода воздуха и газов.
Общее сопло двигателя состоит из раструба 4 и "иглы" 5. Вал двигателя 6 с внутренним каналом 7 изображен с топливом 8 в этом канале. Топливопроводы 9 и 10 служат для питания прямоточных воздушно-реактивных двигателей 19. Стартер-генератор 11 расположен впереди компрессора в обтекателе 12. Двигатель собран в корпусе 13 с устройствами для крепления 14 на летательном аппарате. Подшипники 15 обеспечивают вращение вала двигателя. Редуктор 16 служит для приведения во встречное вращение рабочих колес 2 компрессора двигателя, а редуктор 17 - для обеспечения также встречного вращения барабана с прямоточно-воздушными двигателями 19 с ближним к нему рабочим колесом 2 компрессора. Оба редуктора 16, 17 заключены в герметичные кожухи 18 и являются маслонасосами двигателя.
Изобретение достаточно простое, не требующее для его реализации никаких сверхсложных технологий.
Формула изобретения
1. Воздушно-реактивный двигатель, содержащий корпус, к которому крепятся неподвижные части двигателя, вал двигателя с установленным на нем компрессором, диффузор, устройства, создающие крутящий момент на валу двигателя в виде прямоточных воздушно-реактивных двигателей, расположенных на расстоянии от оси вращения вала двигателя и закрепленных на нем, систему подачи топлива, состоящую из насоса, подающего топливо по топливопроводам во внутреннюю полость вала двигателя, из которой топливо под действием центробежной силы подается в прямоточные воздушно-реактивные двигатели, средства для создания воздушно-топливной смеси и сжигания этой смеси, при этом воздухозаборники прямоточных воздушно-реактивных двигателей направлены вперед и по направлению вращения вала двигателя, а их сопла выходят назад в общее сопло двигателя, состоящее из раструба и центрального тела - "иглы", в зазор между которыми истекают из прямоточных воздушно-реактивных двигателей продукты сгорания, в стенках устройства крепления прямоточных воздушно-реактивных двигателей выполнены отверстия для прохода воздуха в их диффузор и для выхода продуктов сгорания из сопел, прямоточные воздушно-реактивные двигатели имеют связь с одним из рабочих колёс компрессора и вращаются вместе с ним, отличающийся тем, что двигатель содержит стартер-генератор, расположенный впереди компрессора в обтекателе двигателя, системы смазки, системы управления, маслонасос, находящийся в кожухе шестерёнчатого редуктора, последний выполнен герметичным и снабжён устройствами для подвода и отвода масла или гидравлической жидкости, при этом устройство крепления прямоточных двигателей выполнено в виде фланцев или барабана.
2. Двигатель по п.1, отличающийся тем, что прямоточные воздушно-реактивные двигатели вращаются встречно с ближним к ним рабочим колесом компрессора, а вал двигателя разделён редуктором, синхронизирующим встречное вращение рабочего колеса и прямоточных воздушно-реактивных двигателей.
3. Двигатель по любому из пп.1 и 2, отличающийся тем, что прямоточные воздушно-реактивные двигатели снабжены сверхзвуковыми диффузорами.
4. Двигатель по любому из пп.1-3, отличающийся тем, что прямоточные воздушно-реактивные двигатели вращаются вместе с ближайшим к ним рабочим колесом компрессора, а предыдущее рабочее колесо вращается через редуктор встречно им.
РИСУНКИ
www.findpatent.ru
Изобретение относится к области авиации и может быть использовано в двигателестроении летательных аппаратов. Прямоточный воздушно-реактивный двигатель содержит корпус, основной воздухозаборник, первичную камеру переменного сечения, вторичную камеру, основной инжектор топлива. Прямоточный воздушно-реактивный двигатель также содержит серию мини воздушно-реактивных двигателей, примыкающих к внутренним стенкам первичной камеры переменного сечения. Во внутреннем пространстве воздухозаборника расположена обратимая турбина с лопастями, закрепленная на аэродинамических стойках. Вторичная камера выполнена в форме расходящегося диффузора. Изобретение направлено на повышение коэффициента полезного действия двигателя, возможной скорости летательного аппарата, надежности. 4 з.п. ф-лы, 4 ил.
Изобретение относится к области авиации и может быть использовано в двигателестроении летательных аппаратов.
Известен ««ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ» RU 2243400 [2], содержащий корпус, вал двигателя с установленным на нем компрессором, диффузор, прямоточные воздушно-реактивные двигатели, расположенные на расстоянии от оси вращения вала двигателя и закрепленные на нем, систему подачи топлива, при этом воздухозаборники прямоточных воздушно-реактивных двигателей направлены вперед, а их сопла выходят назад в общее сопло двигателя, состоящее из раструба и центрального тела - "иглы", в зазор между которыми истекают из прямоточных воздушно-реактивных двигателей продукты сгорания, двигатель содержит стартер-генератор, расположенный впереди компрессора в обтекателе двигателя.
Недостатком является низкая надежность и пожаробезопасность, обусловленная наличием системы подачи горючего через полый вал.
Наиболее близким к заявляемому техническому решению является «СВЕРХЗВУКОВОЙ ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ С ПУЛЬСИРУЮЩИМ РЕЖИМОМ ГОРЕНИЯ (СПВРД С ПРГ) И СПОСОБ ЕГО РАБОТЫ» RU 2446305 [2], содержащий воздухозаборник, камеру сгорания, состоящую из участков (постоянного и) переменного сечения, сопло, несколько инжекторов (поясов подачи) топлива, размещенных по длине камеры сгорания, устройство инициирования пульсирующего режима горения (и датчики регистрации прохождения волн давления на участке камеры сгорания постоянного сечения), первый инжектор (пояс подачи) топлива расположен в начале участка постоянного сечения, а последующие - на участках переменного сечения камеры сгорания.
Недостатком известной конструкции является низкий коэффициент полезного действия двигателя. Другим недостатком является низкая скорость движения газов внутри двигателя, что ограничивает скорость движения летательного аппарата, снабженного таким двигателем. Недостатком также является повышенная сложность двигателя, приводящая к снижению надежности двигателя.
Техническим результатом предлагаемого изобретения является повышение коэффициента полезного действия двигателя, повышение возможной скорости летательного аппарата, повышение надежности.
Технический результат достигается тем, что прямоточный воздушно-реактивный двигатель, содержащий корпус, основной воздухозаборник, первичную камеру переменного сечения, вторичную камеру, основной инжектор топлива, характеризуется тем, что содержит серию мини воздушно-реактивных двигателей, примыкающих к внутренним стенкам первичной камеры переменного сечения, во внутреннем пространстве воздухозаборника расположена обратимая турбина с лопастями, закрепленная на аэродинамических стойках, вторичная камера выполнена в форме расходящегося диффузора.
Расходящийся диффузор может быть выполнен в форме фигуры вращения гиперболы. Выполнение диффузора указанной формы позволит повысить эффективность двигателя.
Аэродинамические стойки могут быть выполнены в форме лопаток, расположенных под углом к оси основного двигателя, например 45 градусов. Установка аэродинамических стоек под наклоном позволит направить поток набегающего воздуха по спирали, угол наклона которой соответствует наклону минидвигателей, что позволить дополнительно повысить эффективность двигателя в целом. Угол 45 градусов при этом является наиболее оптимальным. Воздухозаборник может иметь острые передние кромки, что позволит снизить лобовое сопротивление двигателя и дополнительно повысить его эффективность.
На фиг. 1 изображен поперечный разрез предлагаемого двигателя, изготовленного с применением П. 1-5, на фиг. 2 - вид со стороны воздухозаборника, на фиг. 3 - разрез воздухозаборника, на фиг. 4 - вид минидвигателя (МВРД), где:
1 - корпус;
2 - основной воздухозаборник;
3 - первичная камера переменного сечения;
4 - вторичная камера;
5 - основной инжектор топлива;
6 - обратимая турбина с лопастями;
7 - аэродинамические стойки;
8 - минидвигатель;
9 - первичная камера минидвигателя;
10 - вторичная камера минидвигателя;
11 - инжектор минидвигателя;
12 - направление потока газов минидвигателя.
Устройство действует следующим образом: В торцевой части корпуса 1 расположен основной воздухозаборник 2, переходящий в широкую часть первичной камеры переменного сечения 3 (аэродинамический диффузор). Камера переменного сечения монотонно сужается от воздухозаборника к вторичной камере. Первичная камера имеет форму сходящегося гиперболического диффузора, образованного гиперболой вращения. Вторичная камера 4 имеет форму расходящегося гиперболического диффузора, образованного гиперболой вращения. Вторичная камера выполняет функции камеры сгорания и выходного сопла. Обе камеры в своей узкой части плавно переходят друг в друга. В самом узком месте двух сочлененных диффузоров двойной камеры обоих двигателей располагается основной инжектор топлива 5 (форсунка, жиклер). Этот узкий участок двух диффузоров выполняет так же функции смесительной камеры. Внутри воздухозаборника 2 размещена обратимая турбина с лопастями 6, установленная на аэродинамических стойках 7. Прямоточный воздушно-реактивный двигатель имеет набор из мини прямоточных воздушно-реактивных двигателей 8, которые располагаются в первичной камере 3 по направлению спиралей воздушного потока на внутренней стенке первичной камеры основного двигателя, например, в три ряда. Каждый мини прямоточный воздушно-реактивный двигатель имеет первичную 9 и вторичную 10 камеры переменного сечения. Первичная камера имеет форму сходящегося гиперболического диффузора, образованного гиперболой вращения. Вторичная камера имеет форму расходящегося гиперболического диффузора, образованного гиперболой вращения. Вторичная камера выполняет функции камеры сгорания и выходного сопла. Обе камеры в своей узкой части плавно переходят друг в друга, в наиболее узком месте расположен инжектор минидвигателя 11. Направление потока газов через минидвигатель показано поз. 12.
Запуск (ПВРД) происходит путем переключения обратимой турбины в режим компрессора (турбина работает в качестве электродвигателя). Происходит первоначальное нагнетание воздушного потока. В узкой части диффузора основного двигателя и минидвигателя происходит трансформация потенциальной энергии набегающего потока воздуха в его кинетическую энергию. Описывается уравнением Бернулли k x2/2↓+m v2/2↑=const. Так как в этой части диффузора скорость потока воздуха наибольшая, возникает режим инжекции и впрыска топлива в минидвигателях и в основном двигателе. В этой части канала воздух и топливо смешиваются. Смесь вырывается в расширяющуюся вторичную камеру обоих двигателей. Происходит обратная трансформация кинетической энергии в потенциальную энергию. Описывается уравнением Бернулли k x2/2↓+m v2/2↑=const. Давление увеличивается. Происходит направленный взрыв во вторичной камере минидвигателя и вторичной камере основного двигателя. Из этой же камеры как сопла газы выводятся наружу. Как минимум первые три минидвигателя снабжены средствами воспламенения рабочей смеси (например, свечами зажигания). Возникает серия направленных взрывов от минидвигателей и один направленный взрыв от основного двигателя. Энергия направленных взрывов создает эффект бегущей волны, увлекая воздух и рабочее тело наподобие турбины, что приводит к повышению силы тяги двигателя. Взрывы минидвигателей усиливают взрыв основного двигателя, а взрыв внутри основного двигателя усиливает взрывы минидвигателей. Например, вектор тяги от 18 минидвигателей Fм и вектор тяги от основного двигателя Fo создают общий результирующий вектор Fpeз=18Fм+Fo. Поток воздуха и топлива кроме линейной составляющей имеет также круговую составляющую. Путь движения потока по спирали увеличивает длину движения рабочего тела, увеличивает время сгорания и сгораемость топлива, что позволяет применять горючее с более тяжелыми и длинными молекулами. Расширяющая вторичная гиперболическая камера, помимо создания условия для направленного взрыва, выводит газы наружу теперь уже как сопло. Если длина прямоточного воздушно-реактивного двигателя, например, 3 м то общая длина Вторичной камеры сгорания составляет 1,5 м. Этого достаточно, чтобы произвести взрыв и вывести газы наружу.
Система регулирования работы ПВРД
Процессом работы прямоточного воздушно-реактивного двигателя управляет система инжекции топлива. Применение минидвигателей позволяет расширить режимы работы реактивного двигателя на каждом этапе полета летательного аппарата. Когда двигатель стоит или движется с малой скоростью, обратимая турбина 6 (выполненная как электрическая машина) в режиме электродвигателя, нагнетает воздух, облегчая пуск двигателя. На этом этапе включается последовательная импульсная система впрыска топлива. Пульсирующий режим горения реактивного двигателя это общее название всех режимов горения. Непрерывное горение это частный случай пульсирующего режима горения, поскольку абсолютно непрерывное горение практически получить невозможно. На начальном этапе, когда двигатель трогается с места или двигается с малой скоростью, преобладает вынужденный пульсирующий режим горения с большими пульсациями интенсивности горения. На большой скорости система управления двигателем (не показана) выбирает оптимальный режим работы. Горение превращается в непрерывное. Для улучшения запуска реактивного двигателя можно применять в качестве топлива, например, водород. В прямоточном воздушно-реактивном двигателе, при его общей симметрии система направленных взрывов и система движения по спирали рабочего тела создает асимметричность внутренних процессов, что предотвращает движение газов в обратном направлении.
Работа воздухозаборника, аэродинамических стоек и обратимой турбины
Воздухозаборник и аэродинамические стойки имеют острые кромки, что позволит снизить лобовое сопротивление двигателя и дополнительно повысить его эффективность. Острые кромки могут разрушать посторонние предметы воздушного потока. Обратимая имеет два режима работы.
Первый режим. Когда двигатель стоит или движется с малой скоростью. В этом случае электрическая машина работает как электродвигатель, приводящий в движение лопасти для первоначального нагнетания воздушного потока.
Второй режим. После набора крейсерской скорости летательным аппаратом электрическая машина работает как генератор для питания систем летательного аппарата.
Охлаждение двигателя
В предлагаемом ПВРД энергия сгорания топлива распределена по всему объему корпуса двигателя, а не только в камере сгорания как в типичном реактивном двигателе. Это уменьшает перегрев элементов и их механическое напряжение. Топливо поступает со стороны корпуса на инжектор-жиклер-форсунку. Топливо проходит через корпус, охлаждает его и повышает свою температуру, что способствует горению.
Достоинством данного ПВРД является то, что первичная камера и вторичная камера прямоточного двигателя и минидвигателя несут в себе универсальные, совмещенные функции. Отпадает необходимость в многоконтурном компрессоре, в специальном сопле. Задача этого минимального набора элементов заключается в том, чтобы не тормозить, а увеличивать скорость рабочего тела на всем пути его продвижения.
Технический результат - повышение коэффициента полезного действия двигателя достигается уменьшением потерь на турбулентность при работе двигателя благодаря отсутствию резкого изменения направления движения потока газов через двигатель.
Технический результат - повышение возможной скорости летательного аппарата достигается благодаря меньшему перемещению газов в направлении, перпендикулярном направлению полета и более высокой скорости протекания реакции горения внутри двигателя.
Технический результат - повышение надежности достигается более простой конструкцией двигателя.
Промышленное применение. Изобретение может с успехом применяться при производстве реактивных двигателей с универсальным режимом горения для летательных аппаратов.
1. Прямоточный воздушно-реактивный двигатель, содержащий корпус, основной воздухозаборник, первичную камеру переменного сечения, вторичную камеру, основной инжектор топлива, отличающийся тем, что содержит серию мини воздушно-реактивных двигателей, примыкающих к внутренним стенкам первичной камеры переменного сечения, во внутреннем пространстве воздухозаборника расположена обратимая турбина с лопастями, закрепленная на аэродинамических стойках, вторичная камера выполнена в форме расходящегося диффузора.
2. Двигатель по п. 1, отличающийся тем, что расходящийся диффузор выполнен в форме фигуры вращения гиперболы.
3. Двигатель по п. 1, отличающийся тем, что аэродинамические стойки выполнены в форме лопаток, расположенных под углом к оси.
4. Двигатель по п. 1, отличающийся тем, что аэродинамические стойки расположены под углом 45 градусов к оси основного двигателя.
5. Двигатель по п. 1, отличающийся тем, что воздухозаборник снабжен острыми передними кромками.
www.findpatent.ru
Изобретение относится к газотурбинным двигателям и может быть применимо для сверхзвуковой военной авиации и гиперзвуковых самолетов. Водородный воздушно-реактивный двигатель содержит воздухозаборник, корпус, по меньшей мере, один компрессор, камеру сгорания с топливным коллектором, установленную за компрессором и соединенную с ним воздушным трактом, по меньшей мере, одну турбину и, по меньшей мере, один вал, соединяющий компрессор и турбину, реактивное сопло и систему подачи водорода к камере сгорания. Корпус камеры сгорания выполнен заодно с теплообменником кольцевой формы с входным и выходным коллекторами. Выходной коллектор соединен с топливным коллектором. Изобретение направлено на повышение энергетических возможностей газотурбинного двигателя, работающего на водороде, повышение степени сжатия компрессора, увеличение силы тяги двигателя и улучшение его удельных характеристик. 3 з.п. ф-лы, 2 ил.
Изобретение относится к двигателестроению, конкретно к водородному воздушно-реактивному двигателю.
Изобретение относится к двигателестроению, конкретно к авиационным двигателям для сверхзвуковых и гиперзвуковых самолетов.
Известен водородный газотурбинный двигатель по патенту РФ на изобретение №2029118, МПК F02С 3/04, опубл. 20.05.1995 г., со вспомогательным контуром, работающим на водороде, во вспомогательный контур введен дополнительный воздушный тракт, связывающий выход из свободного компрессора со вспомогательной камерой. Водород в контуре двигателя играет роль хладагента. Для охлаждения турбины основного контура используется воздух высокого давления, который после охлаждения турбины подается в камеру сгорания промежуточного перегрева, куда поступает одновременно перешедший в газообразное состояние сжиженный воздух.
Недостаток - низкие удельные характеристики двигателя вследствие малой степени сжатия воздуха в компрессоре.
Известен водородный газотурбинный двигатель по патенту РФ на изобретение №2320889, МПК F02K 3/04, опубл. 27.03.2008 г. (прототип), который содержит вентилятор, высоконапорный скоростной компрессор, мультипликатор, пароводяной нагреватель (генератор пара), форсажную камеру, турбодетандер с тепломассообменным аппаратом. Двигатель также имеет трехступенчатую активно-реактивную турбину, у которой третья ступень радиально-осевая, проточная часть которой переходит в критическое сверхзвуковое сечение сопла Лаваля, окруженное аккумулятором пара. Высоконапорный скоростной компрессор выполнен комбинированным со степенью повышения давления, равной 60. Двигатель рассчитан на тягу не менее 150 тонн с расходом воздуха через первый контур 600 кг/с, через второй контур - 1200 кг/с, температурой газа пред турбиной 2000 K. Вентилятор имеет наружный диаметр лопастей первого ряда 4000 мм. Внутри корпуса сопла Лаваля установлены форсунки подачи атомарного водорода для дожигания несгоревшего окислителя. Диски высоконапорного скоростного компрессора выполнены комбинированными - к осевым ступеням добавлены центробежные нагнетающие. Сопло Лаваля снабжено центральным телом, через отверстия которого подается паровоздушная смесь, создающая внешнюю упругую «оболочку-подушку», что позволяет изменять площадь проходного критического сечения сопла Лаваля.
Недостатки - низкий уровень силы тяги, относительно низкие удельные параметры, например удельный расход топлива, недостаточная степень сжатия компрессора.
Низкие удельные параметры объясняются тем, что создать компрессор со степенью сжатия более 30…40 невозможно, из-за того что температура воздуха на выходе из него превысит 800°C. Кроме того, энергетического потенциала газовой турбины недостаточно для привода более мощного компрессора из-за ограничений температуры газов на выходе из турбины диапазоном 1700…1800 K в первую очередь из-за снижения ресурса рабочих лопаток газовой турбины. Рабочие лопатки газовой турбины находятся на большом диаметре, вращаются с огромными окружными скоростями, следовательно, на них действуют значительные центробежные нагрузки. Прочностные свойства материалов при увеличении температуры ухудшаются.
Задачи создания изобретения: повышение энергетических возможностей газотурбинного двигателя и улучшение его удельных характеристик.
Достигнутые технические результаты: повышение степени сжатия компрессора, увеличение силы тяги двигателя и улучшение его удельных характеристик.
Решение указанных задач достигнуто в водородном воздушно-реактивном двигателе, содержащем воздухозаборник, корпус, по меньшей мере, один компрессор, камеру сгорания с топливным коллектором, установленную за компрессором и соединенную с ним воздушным трактом, по меньшей мере, одну турбину и, по меньшей мере, один вал, соединяющий компрессор и турбину, реактивное сопло и систему подачи водорода к камере сгорания, тем, что корпус камеры сгорания выполнен заодно с теплообменником кольцевой формы с входным и выходным коллекторами, при этом выходной коллектор соединен с топливным коллектором.
Турбина, установленная непосредственно после камеры сгорания может быть выполнена охлаждаемой. Турбина может содержать охлаждаемый сопловой аппарат и охлаждаемые рабочие лопатки. Реактивное сопло может быть выполнено сверхзвуковым.
Сущность изобретения поясняется фиг. 1 и 2, где:
- на фиг. 1 приведена схема водородного газотурбинного двигателя,
- на фиг. 2 приведена схема камеры сгорания и охлаждаемой турбины.
Предложенное техническое решение (фиг. 1 и 2) содержит воздухозаборник 1, корпус 2, по меньшей мере, один компрессор 3, воздушный тракт 4, камеру сгорания 5, по меньшей мере, одну турбину 6 и реактивное сопло 7 с центральным обтекателем 8. Реактивное сопло 7 предпочтительно выполнить сверхзвуковым.
Компрессор 3 содержит статор 9 и ротор 10. Камера сгорания 5 содержит жаровую трубу 11, форсуночную головку 12, топливный коллектор 13 и форсунки 14 (фиг. 2). Турбина 6 содержит статор 15 и ротор 16. Вал 17 соединяет роторы 10 и 16 компрессора 3 и газовой турбины 6 и установлен на опорах 18 и 19. Возможно применение двух компрессоров 3 и двух турбин 6.
Водородный воздушно-реактвный двигатель (фиг. 1) содержит систему подачи топлива, имеющую бак 20, для хранения топлива, топливопровод низкого давления 21, подключенный к выходу из бака 20. К топливопроводу низкого давления 21 присоединены насос 22, топливопровод высокого давления 23, регулятор расхода 24 и отсечной клапан 25. Топливопровод высокого давления 23 соединен с теплообменником 26, который выполнен заодно с корпусом 27 камеры сгорания 5 и содержит внешнюю стенку 28, внутреннюю стенку 29, установленные концентрично и с зазором 30 между ними, входной коллектор 31 и выходной коллектор 32. К входному коллектору 31 присоединен топливопровод высокого давления 23, а к выходному коллектору 32 посредством трубопровода 33 присоединен топливный коллектор 13, сообщающийся с форсунками 14.
Камера сгорания 5 кроме жаровой трубы 11, топливного коллектора 12, форсуночной плиты 13 и форсунок 14 содержит внутренний кожух 34, между которым и жаровой трубой 11 образован внутренний канал 35, а между жаровой трубой 11 и внутренней стенкой 29 образован внешний канал 36.
Турбина 5, непосредственно установленная за камерой сгорания 5 выполнена охлаждаемой и содержит сопловой аппарат 37 с полостью 38, которая отверстиями 39 соединена с внешним каналом 36. Кроме того, турбина 6 содержит рабочие лопатки 40, установленные на диске 41. Рабочие лопатки 40 выполнены также охлаждаемыми. Полость 38 соплового аппарата 37 соединена каналами 42 с аппаратом закрутки 43, предназначенным для подачи охлаждающего воздуха к диску 41 и рабочим лопаткам 40. На жаровой трубе 11 выполнены отверстия 44.
Возможно выполнение реактивного сопла 7 сверхзвуковым. Это целесообразно для сверхзвуковых летательных аппаратов.
РАБОТА ДВИГАТЕЛЯ
При работе водородного воздушно-реактивного двигателя (фиг. 1 и 2) осуществляют его запуск путем подачи электроэнергии на стартер от внешнего источника энергии (на фиг. 1 и 2 стартер и источник энергии не показаны). Потом включают насос 22 и водород из бака 20 подается в топливный коллектор 13 и далее в теплообменник 26, где газифицируется и из выходного коллектора 32 поступает в топливный коллектор 13 и далее в форсунки 14 для сгорания.
Продукты сгорания приводят в действие ротором 16 турбины 6 и через вал 17 ротором 10 компрессора 3. Компрессор 3 обеспечивает степень сжатия до 30….40, при этом температура воздуха на его выходе может достичь 800 K.
Высокое давление после камеры сгорания 5 позволяет обеспечить перепад давления на турбине 6 и истечение продуктов сгорания из реактивного сопла 7 со сверхзвуковыми скоростями, тем самым создать большую реактивную тягу.
Вследствие большого хладоресурса водорода он охлаждает часть воздуха, идущего по внешнему каналу 36 на 200…400°C. Охлажденный воздух поступает в сопловой аппарат 37 и рабочие лопатки 40 охлаждаемой турбины 6. Это компенсирует увеличение температуры продуктов сгорания перед турбиной 6. В итоге сила тяги двигателя и его удельные характеристики значительно возрастают.
Очень высокая сила тяги при малых габаритах двигателя позволяет достичь летательным аппаратам, оборудованным таким двигателем, скоростей М=5…10 и значительно повысить высотность работы двигателя.
Регулирования силы тяги осуществляется регулятором расхода 24.
При останове воздушно-реактивного двигателя все операции осуществляются в обратной последовательности, т.е. закрывают отсечной клапан 25.
Применение изобретения позволило:
1. повысить силу тяги двигателя при его форсировании;
2. обеспечить достижение самолетами, оборудованными этими двигателями гиперзвуковых скоростей М=5…10;
3. повысить высотность двигателя за счет применения жидкого кислорода.
1. Водородный воздушно-реактивный двигатель, содержащий воздухозаборник, корпус, по меньшей мере, один компрессор, камеру сгорания с топливным коллектором, установленную за компрессором и соединенную с ним воздушным трактом, по меньшей мере, одну турбину и, по меньшей мере, один вал, соединяющий компрессор и турбину, реактивное сопло и систему подачи водорода к камере сгорания, отличающийся тем, что корпус камеры сгорания выполнен заодно с теплообменником кольцевой формы с входным и выходным коллекторами, при этом выходной коллектор соединен с топливным коллектором.
2. Водородный воздушно-реактивный двигатель по п. 1, отличающийся тем, что турбина, установленная непосредственно после камеры сгорания, выполнена охлаждаемой.
3. Водородный воздушно-реактивный двигатель по п. 1, отличающийся тем, что турбина содержит охлаждаемый сопловой аппарат и охлаждаемые рабочие лопатки.
4. Водородный воздушно-реактивный двигатель по п. 1, отличающийся тем, что реактивное сопло выполнено сверхзвуковым..
www.findpatent.ru