Работа трехфазных электродвигателей считается гораздо более эффективной и производительной, чем однофазных двигателей, рассчитанных на 220 В. Поэтому при наличии трех фаз, рекомендуется подключать соответствующее трехфазное оборудование. В результате, подключение трехфазного двигателя к трехфазной сети обеспечивает не только экономичную, но и стабильную работу устройства. В схему подключения не требуется добавление каких-либо пусковых устройств, поскольку сразу же после запуска двигателя, в обмотках его статора образуется магнитное поле. Основным условием нормальной эксплуатации таких устройств является правильное выполнение подключения и соблюдение всех рекомендаций.
Магнитное поле, создаваемое тремя обмотками, обеспечивает вращение ротора электродвигателя. Таким образом, электрическая энергия преобразуется в механическую.
Подключение может выполняться двумя основными способами – звездой или треугольником. Каждый из них имеет свои достоинства и недостатки. Схема звезды обеспечивает более плавный пуск агрегата, однако мощность двигателя падает примерно на 30% от номинальной. В этом случае подключение треугольником имеет определенные преимущества, поскольку потеря мощности отсутствует. Тем не менее, здесь тоже есть своя особенность, связанная с токовой нагрузкой, которая резко возрастает во время пуска. Подобное состояние оказывает негативное влияние на изоляцию проводов. Изоляция может быть пробита, а двигатель полностью выходит из строя.
Особое внимание следует уделить европейскому оборудованию, укомплектованному электродвигателями, рассчитанными на напряжения 400/690 В. Они рекомендованы к подключению в наши сети 380 вольт только методом треугольника. В случае подключения звездой, такие двигатели сразу же сгорают под нагрузкой. Данный метод применим только к отечественным трехфазным электрическим двигателям.
В современных агрегатах имеется коробка подключения, в которую выводятся концы обмоток. Их количество может составлять три или шесть. В первом случае схема подключения изначально предполагается методом звезды. Во втором случае электродвигатель может включаться в трехфазную сеть обоими способами. То есть, при схеме звезда три конца, расположенные в начале обмоток соединяются в общую скрутку. Противоположные концы подключаются к фазам сети 380 В, от которой поступает питание. При варианте треугольник все концы обмоток последовательно соединяются между собой. Подключение фаз осуществляется к трем точкам, в которых концы обмоток соединяются между собой.
Сравнительно редко используется комбинированная схема подключения, известная как «звезда-треугольник». Она позволяет производить плавный пуск при схеме звезда, а в процессе основной работы включается треугольник, обеспечивающий максимальную мощность агрегата.
Данная схема подключения довольно сложная, требующая использования сразу трех магнитных пускателей. устанавливаемых в соединения обмоток. Первый МП включается в сеть и с концами обмоток. МП-2 и МП-3 соединяются с противоположными концами обмоток. Подключение треугольником выполняется ко второму пускателю, а подключение звездой – к третьему. Категорически запрещается одновременное включение второго и третьего пускателей. Это приведет к короткому замыканию между фазами, подключенными к ним. Для предотвращения подобных ситуаций между этими пускателями устанавливается блокировка. Когда включается один МП, у другого происходит размыкание контактов.
Работа всей системы происходит по следующему принципу: одновременно с включением МП-1, включается МП-3, подключенный звездой. После плавного пуска двигателя, через определенный промежуток времени, задаваемый реле, происходит переход в обычный рабочий режим. Далее происходит отключение МП-3 и включение МП-2 по схеме треугольника.
Подключение трехфазного двигателя с помощью магнитного пускателя, осуществляется также, как и через автоматический выключатель. Просто эта схема дополняется блоком включения и выключения с соответствующими кнопками ПУСК и СТОП.
Одна нормально замкнутая фаза, подключенная к двигателю, соединяется с кнопкой ПУСК. Во время нажатия происходит смыкание контактов, после чего ток поступает к двигателю. Однако, следует учесть, что в случае отпускания кнопки ПУСК, контакты окажутся разомкнутыми и питание поступать не будет. Чтобы не допустить этого, магнитный пускатель оборудуется еще одним дополнительным контактным разъемом, так называемым контактом самоподхвата. Он выполняет функцию блокировочного элемента и препятствует разрыву цепи при выключенной кнопке ПУСК. Окончательно разъединить цепь можно только с помощью кнопки СТОП.
Таким образом, подключение трехфазного двигателя к трехфазной сети может быть выполнено различными способами. Каждый из них выбирается в соответствии с моделью агрегата и конкретными условиями эксплуатации.
Всем электрикам известно, что трехфазные электродвигатели работают эффективнее, чем однофазные на 220 вольт. Поэтому если в вашем гараже проведена подводка питающего кабеля на три фазы, то оптимальный вариант – установить любой станок с мотором на 380 вольт. Это не только эффективно в плане экономичности работы, но и в плане стабильности. При этом нет необходимости добавлять в схему подключения какие-то пусковые устройства, потому что магнитное поле будет образовываться в обмотках статора сразу же после пуска двигателя. Давайте рассмотрим один вопрос, который сегодня встречается часто на форумах электриков. Вопрос звучит так: как правильно провести подключение трехфазного электродвигателя к трехфазной сети?
Начнем с того, что рассмотрим конструкцию трехфазного электродвигателя. Нас здесь будут интересовать три обмотки, которые и создают магнитное поле, вращающее ротор мотора. То есть, именно так и происходит преобразование электрической энергии в механическую.
Существует две схемы подключения:
Сразу же оговоримся, что подключение звездой делает пуск агрегата более плавным. Но при этом мощность электродвигателя будет ниже номинальной практически на 30%. В этом плане подключение треугольником выигрывает. Мощность подключенный таким образом мотор не теряет. Но тут есть один нюанс, который касается токовой нагрузке. Эта величина резко возрастает при пуске, что негативно влияет на обмотку. Высокая сила тока в медном проводе повышает тепловую энергию, которая влияет на изоляцию провода. Это может привести к пробивке изоляции и выходу из строя самого электродвигателя.
Хотелось бы обратить ваше внимание на тот факт, что большое количество европейского оборудования, завезенного на просторы России, укомплектовано европейскими электрическими двигателями, которые работают под напряжением 400/690 вольт. Кстати, снизу фото шильдика такого мотора.
Так вот эти трехфазные электродвигатели надо подключать к отечественной сети 380В только по схеме треугольник. Если подключить европейский мотор звездой, то под нагрузкой он сразу же сгорит. Отечественные же трехфазные электродвигатели к трехфазной сети подключаются по схеме звезда. Иногда подключение производят треугольником, это делается для того, чтобы выжать из мотора максимальную мощность, необходимую для некоторых видов технологического оборудования.
Производители сегодня предлагают трехфазные электродвигатели, в коробке подключения которых сделаны выводы концов обмоток в количестве трех или шести штук. Если концов три, то это значит, что на заводе внутри мотора уже сделана схема подключения звезда. Если концов шесть, то трехфазный двигатель можно подключать к трехфазной сети и звездой, и треугольником. При использовании схемы звезда необходимо три конца начала обмоток соединить в одной скрутке. Три остальных (противоположных) подключить к фазам питающей трехфазной сети 380 вольт. При использовании схемы треугольник нужно все концы соединить между собой по порядку, то есть последовательно. Фазы подключаются к трем точкам соединения концов обмоток между собой. Внизу фото, где показаны два вида подключения трехфазного двигателя.
Такая схема подключения к трехфазной сети используется достаточно редко. Но она существует, поэтому есть смысл сказать о ней несколько слов. Для чего она используется? Весь смысл такого соединения основан на позиции, что при пуске электродвигателя используется схема звезда, то есть плавный пуск, а для основной работы используется треугольник, то есть выжимается максимум мощности агрегата.
Правда, такая схема достаточно сложная. При этом обязательно устанавливаются в соединение обмоток три магнитных пускателя. Первый соединяется с питающей сетью с одной стороны, а с другой стороны к нему подсоединяются концы обмоток. Ко второму и третьему подключаются противоположные концы обмоток. Ко второму пускателю производится подсоединение треугольником, к третьему звездой.
Внимание! Одновременно включать второй и третий пускатели нельзя. Произойдет короткое замыкание между подключенными к ним фазами, что приведет к сбрасыванию автомата. Поэтому между ними устанавливается блокировка. По сути, все будет происходить так – при включении одного, размыкаются контакты у другого.
Принцип работы таков: при включении первого пускателя временное реле включает и пускатель номер три, то есть, подключенного по схеме звезда. Происходит плавный пуск электродвигателя. Реле времени задет определенный промежуток, в течение которого мотор перейдет в обычный режим работы. После чего пускатель номер три отключается, а включается второй элемент, переводя на схему треугольник.
В принципе, схема подключения 3 фазного двигателя через магнитный пускатель практически точно такая же, как и через автомат. Просто в нее добавляется блок включения и выключения с кнопками «Пуск» и «Стоп».
Одна из фаз подключения к электродвигателю проходит через кнопку «Пуск» (она нормально замкнутая). То есть, при ее нажатии смыкаются контакты, и ток начинает поступать на электродвигатель. Но тут есть один момент. Если отпустить Пуск, то контакты разомкнуться, и ток поступать не будет по назначению. Поэтому в магнитном пускателе есть еще один дополнительный контактный разъем, который называется контактом самоподхвата. По сути, это блокировочный элемент. Он необходим для того чтобы при отжатой кнопке «Пуск» цепь подачи электроэнергии на электродвигатель не прерывалась. То есть, разъединить ее можно было бы только кнопкой «Стоп».
Что можно дополнить к теме, как подключить трехфазный двигатель к трехфазной сети через пускатель? Обратите внимание вот на какой момент. Иногда после долгой эксплуатации схемы подключения трехфазного электродвигателя кнопка «пуск» перестает работать. Основная причина – подгорели контакты кнопки, ведь при пуске двигателя появляется пусковая нагрузка с большой силой тока. Решить эту проблему можно очень просто – почистить контакты.
Как правильно провести подключение электродвигателя звездой и треугольником
Подключение звезда и треугольник – в чем разница?
Схема подключения электродвигателя на 220В через конденсатор
Трёхфазные электродвигатели получили большое распространение как в промышленном использовании, так и в личных целях благодаря тому что они значительно эффективнее двигателей для обычной двухфазной сети.
Трехфазный асинхронный двигатель представляет собой устройство, состоящее из двух частей: статора и ротора, которые разделены воздушным зазором и не имеют никакой механической связи друг с другом.
На статоре расположены три обмотки, намотанные на специальном магнитопроводе, который набран из пластин специальной электротехнической стали. Обмотки намотаны в пазах статора и расположены под углом в 120 градусов друг к другу.
Ротор представляет собой конструкцию, опирающуюся на подшипники, имеющую крыльчатку для вентиляции. В целях электропривода ротор может иметь прямую связь с механизмом либо через редукторы или другие системы передачи механической энергии. Роторы в асинхронных машинах могут быть двух видов:
Главной движущей силой в трехфазном асинхронном двигателе является вращающееся магнитное поле, которое возникает, во-первых, благодаря трехфазному напряжению, а, во-вторых, взаимному расположению обмоток статора. Под его воздействием в роторе возникают токи, создающее поле, которое взаимодействует с полем статора.
Асинхронным двигатель называют из-за того, что частота вращения ротора отстает от частоты вращения магнитного поля, ротор постоянно пытается «догнать» поле, но его частота всегда меньше.
Для того чтобы заставить работать двигатель существует несколько различных схем подключения, наиболее используемые среди них — звезда и треугольник.
Такой способ подключения применяется в основном в трехфазных сетях с линейным напряжением 380 вольт. Концы всех обмоток: C4, C5, C6 (U2, V2, W2), — соединяются в одной точке. К началам обмоток: C1, C2, C3 (U1, V1, W1), — через аппаратуру коммутации подключаются фазные проводники A, B, C (L1, L2, L3). При этом напряжение между началами обмоток будет 380 вольт, а между местом подключения фазного проводника и местом соединения обмоток буде составлять 220 вольт.
На табличке электродвигателя указывается возможность подключения по способу «звезда» в виде символа Y, а также может указываться и можно ли подключить по другой схеме. Соединение по такой схеме может быть с нейтралью, которая подключается к точке соединения всех обмоток.
Такой подход позволяет эффективно защитить электродвигатель от перегрузок при помощи четырехполюсного автоматического выключателя.
Соединение «звездой» не позволяет электродвигателю, приспособленному для сетей 380 вольт развить полную мощность в силу того, что на каждой отдельной обмотке будет напряжение в 220 вольт. Однако, такое соединение позволяет не допустить перегрузки по току, старт электродвигателя происходит плавно.
В клеммной коробке будет сразу видно, когда электродвигатель соединен по схеме «звезда». Если есть перемычка между тремя выводами обмоток, то это однозначно говорит о том, что применяется именно эта схема. В любых других случаях применяется другая схема.
Для того чтобы трехфазный двигатель мог развить свою максимальную паспортную мощность используют подключение, которое получило название «треугольник». При этом конец каждой обмотки соединяют с началом последующей, что в действительности образует на принципиальной схеме треугольник.
Выводы обмоток соединяют следующим образом: C4 соединяют с C2, С5 с C3, а С6 с C1. При новой маркировке это выглядит так: U2 соединяется с V1, V2 с W1, а W2 cU1.
В трехфазных сетях между выводами обмоток будет линейное напряжение 380 вольт, а соединение с нейтралью (рабочим нулем) не требуется. Такая схема имеет особенность еще и в том, что возникают большие пусковые токи, которые может не выдержать проводка.
На практике иногда применяют комбинированное подключение, когда на этапе запуска и разгона используется подключение «звездой», а в рабочем режиме специальные контакторы переключают обмотки на схему «треугольник».
В клеммной коробке подключение треугольником определяется наличием трех перемычек между клеммами обмоток. На табличке двигателя возможность подключения треугольником обозначается символом Δ, а также может указываться мощность, развиваемая при схеме «звезда» и «треугольник».
Трехфазные асинхронные двигатели занимают значительную часть среди потребителей электроэнергии благодаря своим очевидным достоинствам.
Источники: http://electric-220.ru/news/podkljuchenie_trekhfaznogo_dvigatelja_k_trekhfaznoj_seti/2016-09-28-1073, http://onlineelektrik.ru/eoborudovanie/edvigateli/sxema-podklyucheniya-trexfaznogo-elektrodvigatelya-k-trexfaznoj-seti.html, http://elektrik24.net/elektrooborudovanie/elektrodvigateli/triohfaznye/asinkhronnyj-princip-raboty.html
electricremont.ru
Трёхфазные электродвигатели получили большое распространение как в промышленном использовании, так и в личных целях благодаря тому что они значительно эффективнее двигателей для обычной двухфазной сети.
Трехфазный асинхронный двигатель представляет собой устройство, состоящее из двух частей: статора и ротора, которые разделены воздушным зазором и не имеют никакой механической связи друг с другом.
На статоре расположены три обмотки, намотанные на специальном магнитопроводе, который набран из пластин специальной электротехнической стали. Обмотки намотаны в пазах статора и расположены под углом в 120 градусов друг к другу.
Ротор представляет собой конструкцию, опирающуюся на подшипники, имеющую крыльчатку для вентиляции. В целях электропривода ротор может иметь прямую связь с механизмом либо через редукторы или другие системы передачи механической энергии. Роторы в асинхронных машинах могут быть двух видов:
Главной движущей силой в трехфазном асинхронном двигателе является вращающееся магнитное поле, которое возникает, во-первых, благодаря трехфазному напряжению, а, во-вторых, взаимному расположению обмоток статора. Под его воздействием в роторе возникают токи, создающее поле, которое взаимодействует с полем статора.
Асинхронным двигатель называют из-за того, что частота вращения ротора отстает от частоты вращения магнитного поля, ротор постоянно пытается «догнать» поле, но его частота всегда меньше.
Для того чтобы заставить работать двигатель существует несколько различных схем подключения, наиболее используемые среди них — звезда и треугольник.
Такой способ подключения применяется в основном в трехфазных сетях с линейным напряжением 380 вольт. Концы всех обмоток: C4, C5, C6 (U2, V2, W2), — соединяются в одной точке. К началам обмоток: C1, C2, C3 (U1, V1, W1), — через аппаратуру коммутации подключаются фазные проводники A, B, C (L1, L2, L3). При этом напряжение между началами обмоток будет 380 вольт, а между местом подключения фазного проводника и местом соединения обмоток буде составлять 220 вольт.
На табличке электродвигателя указывается возможность подключения по способу «звезда» в виде символа Y, а также может указываться и можно ли подключить по другой схеме. Соединение по такой схеме может быть с нейтралью, которая подключается к точке соединения всех обмоток.
Такой подход позволяет эффективно защитить электродвигатель от перегрузок при помощи четырехполюсного автоматического выключателя.
Соединение «звездой» не позволяет электродвигателю, приспособленному для сетей 380 вольт развить полную мощность в силу того, что на каждой отдельной обмотке будет напряжение в 220 вольт. Однако, такое соединение позволяет не допустить перегрузки по току, старт электродвигателя происходит плавно.
В клеммной коробке будет сразу видно, когда электродвигатель соединен по схеме «звезда». Если есть перемычка между тремя выводами обмоток, то это однозначно говорит о том, что применяется именно эта схема. В любых других случаях применяется другая схема.
Для того чтобы трехфазный двигатель мог развить свою максимальную паспортную мощность используют подключение, которое получило название «треугольник». При этом конец каждой обмотки соединяют с началом последующей, что в действительности образует на принципиальной схеме треугольник.
Выводы обмоток соединяют следующим образом: C4 соединяют с C2, С5 с C3, а С6 с C1. При новой маркировке это выглядит так: U2 соединяется с V1, V2 с W1, а W2 cU1.
В трехфазных сетях между выводами обмоток будет линейное напряжение 380 вольт, а соединение с нейтралью (рабочим нулем) не требуется. Такая схема имеет особенность еще и в том, что возникают большие пусковые токи, которые может не выдержать проводка.
На практике иногда применяют комбинированное подключение, когда на этапе запуска и разгона используется подключение «звездой», а в рабочем режиме специальные контакторы переключают обмотки на схему «треугольник».
В клеммной коробке подключение треугольником определяется наличием трех перемычек между клеммами обмоток. На табличке двигателя возможность подключения треугольником обозначается символом Δ, а также может указываться мощность, развиваемая при схеме «звезда» и «треугольник».
Трехфазные асинхронные двигатели занимают значительную часть среди потребителей электроэнергии благодаря своим очевидным достоинствам.
Возможно не все знают, что существует несколько способов подключения трёхфазного асинхронного электродвигателя к трёхфазной сети. Давайте с Вами их разберём и посмотрим на те достоинства и недостатки, которыми они обладают. Итак, есть такие варианты подключения — прямой пуск, пуск по схеме звезда/треугольник, пуск электродвигателя через устройство плавного пуска и запуск его через частотный преобразователь (частотник, векторный преобразователь, частотный преобразователь, частотный инвертор).
Самым простым типом подключения трёхфазного двигателя к сети с тремя фазами является схема прямого пуска. В данном способе подключения берутся просто три провода, идущие от электродвигателя через переключающее устройство (автоматический выключатель, контактор, магнитный пускатель) подсоединяются к питающей трёхфазной электрической сети. К достоинству этого варианта подключения электродвигателя относится его простота и дешевизна (нужно минимум дополнительных устройств). К минусам можно отнести тот факт, что при таком соединении в момент включения двигателя возникает эффект токовой перегрузки по причине больших пусковых токов (в момент старта они в 7 раз превышают номинальное значение). При небольших мощностях электродвигателя (примерно до 4 кВт) этот негативный эффект не приносит больших неприятностей, а вот уже свыше 4 кВт, лучше этот феномен исключать.
Классическим способом (типом) подключения трёхфазного двигателя к трёхфазной сети является вариант звезда/треугольник. То есть, как известно обмотки асинхронного электродвигателя можно подключить по схеме звезды и по схеме треугольника. Когда подключение происходит по схеме звезда, при номинальном напряжении мощность двигателя равна 0.59 (от 1). То есть, она меньше возможной мощности этого движка. Когда мы электрический двигатель (его обмотки) включаем по схеме треугольника, то в этом случае движёк выдаёт полную свою мощность.
Следовательно, что бы избежать больших пусковых токов при старте движка мы сначала включаем электродвигатель по схеме звезды, а когда он наберёт нужные обороты, переключаем схему на треугольник, что позволит сделать более плавный пуск, а после выйти на свои полные обороты и мощность. При таком типе подключения трёхфазного электрического двигателя к трёхфазной сети используется более сложная схема (следовательно и дополнительных устройств управления будет больше, что скажется на общей стоимости данной схемы подключения).
Третьим способом подключения электродвигателя к сети (трёхфазной) будет вариант с использованием плавного пуска. Плавный пуск представляет собой симисторное устройство, которое не позволяет в момент пуска движка нарастать току. Естественно, это рациональный вариант подключения электродвигателя, но оно и по стоимости будет дороже обходиться чем применение вышеописанных вариантов.
Ну и наиболее дорогостоящий, но и наиболее лучший способ подключения трёхфазного двигателя к трёхфазной сети будет с использованием преобразователя частоты, которое также называют частотниками, инверторами частоты, векторными преобразователями. Его применение имеет массу преимуществ. Он способен в полном диапазоне частоты вращения электродвигателя регулировать обороты. При чём содержит в себе много режимов работы, имеет управление через внешние электронные и информационные системы. Само собой частотник содержит все защиты от токовых перегрузок, коротких замыканий, неправильного подключения фаз и т.д. Если нет ограничений на бюджет, это самый лучший вариант способа подключения двигателя к трёхфазной электрической сети.
P.S. Как видно каждый тип подключения имеет свои достоинства и недостатки. И всё в основном упирается именно в бюджет, ну и в целесообразность, конечно же. При небольших мощностях электродвигателя дешевле использовать простое прямое включение. Что бы избежать чрезмерных пусковых токов, применяйте схему звезда/треугольник. Если позволяют денежные средства, ставьте плавные пуски и частотные преобразователи.
Работа трехфазных электродвигателей считается гораздо более эффективной и производительной, чем однофазных двигателей, рассчитанных на 220 В. Поэтому при наличии трех фаз, рекомендуется подключать соответствующее трехфазное оборудование. В результате, подключение трехфазного двигателя к трехфазной сети обеспечивает не только экономичную, но и стабильную работу устройства. В схему подключения не требуется добавление каких-либо пусковых устройств, поскольку сразу же после запуска двигателя, в обмотках его статора образуется магнитное поле. Основным условием нормальной эксплуатации таких устройств является правильное выполнение подключения и соблюдение всех рекомендаций.
Магнитное поле, создаваемое тремя обмотками, обеспечивает вращение ротора электродвигателя. Таким образом, электрическая энергия преобразуется в механическую.
Подключение может выполняться двумя основными способами – звездой или треугольником. Каждый из них имеет свои достоинства и недостатки. Схема звезды обеспечивает более плавный пуск агрегата, однако мощность двигателя падает примерно на 30% от номинальной. В этом случае подключение треугольником имеет определенные преимущества, поскольку потеря мощности отсутствует. Тем не менее, здесь тоже есть своя особенность, связанная с токовой нагрузкой, которая резко возрастает во время пуска. Подобное состояние оказывает негативное влияние на изоляцию проводов. Изоляция может быть пробита, а двигатель полностью выходит из строя.
Особое внимание следует уделить европейскому оборудованию, укомплектованному электродвигателями, рассчитанными на напряжения 400/690 В. Они рекомендованы к подключению в наши сети 380 вольт только методом треугольника. В случае подключения звездой, такие двигатели сразу же сгорают под нагрузкой. Данный метод применим только к отечественным трехфазным электрическим двигателям.
В современных агрегатах имеется коробка подключения, в которую выводятся концы обмоток. Их количество может составлять три или шесть. В первом случае схема подключения изначально предполагается методом звезды. Во втором случае электродвигатель может включаться в трехфазную сеть обоими способами. То есть, при схеме звезда три конца, расположенные в начале обмоток соединяются в общую скрутку. Противоположные концы подключаются к фазам сети 380 В, от которой поступает питание. При варианте треугольник все концы обмоток последовательно соединяются между собой. Подключение фаз осуществляется к трем точкам, в которых концы обмоток соединяются между собой.
Сравнительно редко используется комбинированная схема подключения, известная как «звезда-треугольник9raquo;. Она позволяет производить плавный пуск при схеме звезда, а в процессе основной работы включается треугольник, обеспечивающий максимальную мощность агрегата.
Данная схема подключения довольно сложная, требующая использования сразу трех магнитных пускателей. устанавливаемых в соединения обмоток. Первый МП включается в сеть и с концами обмоток. МП-2 и МП-3 соединяются с противоположными концами обмоток. Подключение треугольником выполняется ко второму пускателю, а подключение звездой – к третьему. Категорически запрещается одновременное включение второго и третьего пускателей. Это приведет к короткому замыканию между фазами, подключенными к ним. Для предотвращения подобных ситуаций между этими пускателями устанавливается блокировка. Когда включается один МП, у другого происходит размыкание контактов.
Работа всей системы происходит по следующему принципу: одновременно с включением МП-1, включается МП-3, подключенный звездой. После плавного пуска двигателя, через определенный промежуток времени, задаваемый реле, происходит переход в обычный рабочий режим. Далее происходит отключение МП-3 и включение МП-2 по схеме треугольника.
Подключение трехфазного двигателя с помощью магнитного пускателя, осуществляется также, как и через автоматический выключатель. Просто эта схема дополняется блоком включения и выключения с соответствующими кнопками ПУСК и СТОП.
Одна нормально замкнутая фаза, подключенная к двигателю, соединяется с кнопкой ПУСК. Во время нажатия происходит смыкание контактов, после чего ток поступает к двигателю. Однако, следует учесть, что в случае отпускания кнопки ПУСК, контакты окажутся разомкнутыми и питание поступать не будет. Чтобы не допустить этого, магнитный пускатель оборудуется еще одним дополнительным контактным разъемом, так называемым контактом самоподхвата. Он выполняет функцию блокировочного элемента и препятствует разрыву цепи при выключенной кнопке ПУСК. Окончательно разъединить цепь можно только с помощью кнопки СТОП.
Таким образом, подключение трехфазного двигателя к трехфазной сети может быть выполнено различными способами. Каждый из них выбирается в соответствии с моделью агрегата и конкретными условиями эксплуатации.
Различают несколько типов электродвигателей – трехфазные и однофазные. Главное отличие трехфазных электродвигателей от однофазных заключается в том, что они более производительные. Если у вас дома есть розетка на 380 В, то лучше всего купить оборудование с трехфазным электродвигателем.
Использование такого типа двигателя позволит вам сэкономить на электроэнергии и получить прирост мощности. Также вам не придется использовать различные устройства для запуска двигателя, так как благодаря напряжению в 380 В вращающее магнитное поле появляется сразу после подключения в электросеть.
Если у вас нет сети на 380 В, то вы все равно сможете подключить трехфазный электродвигатель в стандартную электросеть на 220 В. Для этого вам понадобиться конденсаторы, которые нужно подключить по данной схеме. Но при подключении в обычную электросеть вы будете наблюдать потерю мощности. Об этом бы можете почитать здесь .
Электродвигатели на 380 В устроены таким образом, что в статоре у них есть три обмотки, которые соединяются по типу треугольника или звезды и уже к их вершинам осуществляется подключение трех различных фаз.
Нужно помнить, что, используя подключение по типу звезды, ваш электродвигатель не будет работать на полную мощность, но зато его запуск будет плавным. При использовании схемы треугольник вы получите прирост мощности по сравнению со звездой в полтора раза, но при таком подключении возрастает шанс повредить обмотку при запуске.
Перед использованием электродвигателя нужно в первую очередь ознакомиться с его характеристиками. Все необходимые сведения можно найти в техпаспорте и на шильдике двигателя. Особое внимание следует обратить на трех фазные двигатели западноевропейского образца, так как они предназначены для работы от напряжения в 400 или 690 вольт. Для того, чтобы подключить такой электродвигатель к отечественным сетям, необходимо использовать только подключение по типу треугольник.
Но в большинстве случаев при монтаже брезгуют этим правилом и подключают по типу звезда, и вследствие этого большинство электромоторов сгорают под нагрузкой. Что касается отечественных электродвигателей, рассчитанных на напряжение в 380 В, то их следует подключать звездой. Также бывает комбинированное подключение, для того чтобы получить максимум мощности, но это встречается крайне редко.
Некоторые отечественные электродвигатели собираются по типу звезды, это легко определить по трем концам, которые выходят из статора. И чтобы начать работать нужно всего лишь присоединить к этим концам три фазы. Если вы хотите собрать звезду, то вам необходимы два конца, каждой обмотки или шесть выводов.
На схемах обычно концы обмотки нумеруются с лева на право. Поэтому к номерам 4,5 и 6 нужно подключать фазы A, B и С. Для того, чтобы запустить электродвигатель по схеме звезда, необходимо обмотки статора соединить в одной точке и к концам подключить три фазы от сети в 380 В.
Если вы хотите сделать схему треугольник, то вам необходимо соединить обмотки последовательно. Нужно соединить конец одной обмотки с началом следующей и затем к трем местам соединений нужно подключить три фазы электросети.Подключение схемы звезда-треугольник.
Благодаря этой схеме мы можем получить максимальную мощность, но у нас не будет возможности изменить направление вращения. Для того, чтобы схема заработала будут нужны три пускателя. На первый (К1) с одной стороны подключается питание, а с другой подключаются концы обмоток. К К2 и к К3 подключаются их начала. С пускателя К2 начала обмоток присоединяются на другие фазы по типу соединения треугольник. Когда К3 включается, то все три фазы закорачиваются и, в итоге, электродвигатель работает по схеме звезда.
Важно, чтобы К2 и К3 не запускались одновременно, так ка это может привести к аварийному отключению. Данная схема работает следующим образом. При запуске К1 реле временно включает К3 и запуск двигателя происходит по типу звезда. После запуска двигателя отключается К3 и запускается К2. И электромотор начинает работать по схеме треугольник. Прекращение работы происходит путем отключения К1.
Трехфазный асинхронный двигатель представляет собой устройство, состоящее из двух частей: статора и ротора, которые разделены воздушным зазором и не имеют никакой механической связи друг с другом.
На статоре расположены три обмотки, намотанные на специальном магнитопроводе, который набран из пластин специальной электротехнической стали. Обмотки намотаны в пазах статора и расположены под углом в 120 градусов друг к другу.
Ротор представляет собой конструкцию, опирающуюся на подшипники, имеющую крыльчатку для вентиляции. В целях электропривода ротор может иметь прямую связь с механизмом либо через редукторы или другие системы передачи механической энергии. Роторы в асинхронных машинах могут быть двух видов:
Главной движущей силой в трехфазном асинхронном двигателе является вращающееся магнитное поле, которое возникает, во-первых, благодаря трехфазному напряжению, а, во-вторых, взаимному расположению обмоток статора. Под его воздействием в роторе возникают токи, создающее поле, которое взаимодействует с полем статора.
Асинхронным двигатель называют из-за того, что частота вращения ротора отстает от частоты вращения магнитного поля, ротор постоянно пытается «догнать» поле, но его частота всегда меньше.
Для того чтобы заставить работать двигатель существует несколько различных схем подключения, наиболее используемые среди них — звезда и треугольник.
Такой способ подключения применяется в основном в трехфазных сетях с линейным напряжением 380 вольт. Концы всех обмоток: C4, C5, C6 (U2, V2, W2), — соединяются в одной точке. К началам обмоток: C1, C2, C3 (U1, V1, W1), — через аппаратуру коммутации подключаются фазные проводники A, B, C (L1, L2, L3). При этом напряжение между началами обмоток будет 380 вольт, а между местом подключения фазного проводника и местом соединения обмоток буде составлять 220 вольт.
На табличке электродвигателя указывается возможность подключения по способу «звезда» в виде символа Y, а также может указываться и можно ли подключить по другой схеме. Соединение по такой схеме может быть с нейтралью, которая подключается к точке соединения всех обмоток.
Такой подход позволяет эффективно защитить электродвигатель от перегрузок при помощи четырехполюсного автоматического выключателя.
Соединение «звездой» не позволяет электродвигателю, приспособленному для сетей 380 вольт развить полную мощность в силу того, что на каждой отдельной обмотке будет напряжение в 220 вольт. Однако, такое соединение позволяет не допустить перегрузки по току, старт электродвигателя происходит плавно.
В клеммной коробке будет сразу видно, когда электродвигатель соединен по схеме «звезда». Если есть перемычка между тремя выводами обмоток, то это однозначно говорит о том, что применяется именно эта схема. В любых других случаях применяется другая схема.
Для того чтобы трехфазный двигатель мог развить свою максимальную паспортную мощность используют подключение, которое получило название «треугольник». При этом конец каждой обмотки соединяют с началом последующей, что в действительности образует на принципиальной схеме треугольник.
Выводы обмоток соединяют следующим образом: C4 соединяют с C2, С5 с C3, а С6 с C1. При новой маркировке это выглядит так: U2 соединяется с V1, V2 с W1, а W2 cU1.
В трехфазных сетях между выводами обмоток будет линейное напряжение 380 вольт, а соединение с нейтралью (рабочим нулем) не требуется. Такая схема имеет особенность еще и в том, что возникают большие пусковые токи, которые может не выдержать проводка.
На практике иногда применяют комбинированное подключение, когда на этапе запуска и разгона используется подключение «звездой», а в рабочем режиме специальные контакторы переключают обмотки на схему «треугольник».
В клеммной коробке подключение треугольником определяется наличием трех перемычек между клеммами обмоток. На табличке двигателя возможность подключения треугольником обозначается символом. а также может указываться мощность, развиваемая при схеме «звезда» и «треугольник».
Трехфазные асинхронные двигатели занимают значительную часть среди потребителей электроэнергии благодаря своим очевидным достоинствам.
Что такое магнитный пускатель – это коммутационный аппарат, предназначенный для автоматического включения и отключения потребителей электроэнергии многократно таких, как электрокотел, электра тэна, электродвигатель и т. п.
Магнитный пускатель позволяет осуществить дистанционное управление, включать и отключать потребителя на расстоянии с пульта управления. Самое распространенное применение магнитного пускателя получили асинхронные двигателя, при помощи его осуществляется пуск, стоп и реверс (смена направления вращение вала) двигателя.
Еще магнитный пускатель служит для разгрузки маломощных контактов. Например, возьмем простой выключатель, который стоит дома, он рассчитан включать и отключать нагрузку не более 10 Ампер, определяем мощность: ток умножаем на напряжение 10*220 = 2200 Вт. Это значит, что через этот выключатель, можно, включить не более двадцати двух лампочек мощностью 100Вт.
Разгрузим контакт простого выключателя с помощью магнитного пускателя третьей величины, у которого силовые контакты рассчитаны включать и отключать ток 40 Ампер, мощность, которую он сможет включать и отключать: 40*220 = 8800 Вт. В итоге сможем одним щелчком выключателя, включать и отключать всю алею уличного освещения через контакты магнитного пускателя.
Управляется магнитный пускатель третьей величины с помощью электромагнитной катушки, которая потребляет 200Вт в момент срабатывания, а в сработанном состоянии потребляет всего 25Вт, что получается 200/380 = 0,52 А — это ток которым необходим, чтобы пускатель сработал и включил основную силовую цепь. Теперь представьте, что можно поставить маленький компактный выключатель, который будет управлять магнитным пускателем, а он своими силовыми контактами будет включать и отключать большие мощности.
Еще у магнитного пускателя катушки управления бывают на напряжения 380В, 220В и 36В в целях безопасности человека от поражения электрическим током. На токарных станках устанавливают магнитные пускатели с катушками на 36В. Это необходимо, для того чтобы на пульте управление токарным станком было безопасное напряжение, на случай пробоя изоляции.
Для чего нужно тепловое реле в комплекте с магнитным пускателем. Тепловое реле защищает двигатель от перегруза и от неполнофазного режима работы. Что такое неполнофазный режим – это когда при работе электродвигателя исчезла одна из трех фаз.
Причины однофазного режима: перегорела плавкая вставка на одной фазе, подгорел контакт на клемме или выкрутился винт на клеммнике магнитного пускателя и выпал фазный провод от вибрации, плохой контакт на силовых контактах пускателя.
При перегрузке двигателя или работе в неполнофазном режиме увеличивается ток, проходящий через тепловое реле. В тепловом реле нагреваются токопроводящие биметаллические пластины, под действием тепла они выгибаются, и механически воздействует на размыкание контакта в тепловом реле, который отключает питание катушки магнитного пускателя, происходит отключение двигателя по средствам пускателя.
СЕМА ПОДКЛЮЧЕНИЕ АСИНХРОННОГО ДВИГАТЕЛЯ ЧЕРЕЗ МАГНИТНЫЙ ПУСКАТЕЛЬ.
Схема состоит:из QF — автоматического выключателя; KM1 — магнитного пускателя; P — теплового реле; M — асинхронного двигателя; ПР — предохранителя; кнопки управления (С-стоп, Пуск). Рассмотрим работу схемы в динамике.Включаем питание QF — автоматическим выключателем, нажимаем кнопку «Пуск» своим нормально разомкнутым контактом подает напряжение на катушку КМ1 — магнитного пускателя.
КМ1 – магнитный пускатель срабатывает и своими нормально разомкнутыми, силовыми контактами подает напряжение на двигатель. Для того чтобы не удерживать кнопку «Пуск», чтобы двигатель работал, нужно ее зашунтировать, нормально разомкнутым блок контактом КМ1 – магнитного пускателя.При срабатывании пускателя блок контакт замыкается и можно отпустить кнопку «Пуск» ток побежит через блок контакт на КМ1 — катушку.
Отключаем двигатель, нажимаем кнопу «С – стоп», нормально замкнутый контакт размыкается и прекращается подача напряжение к КМ1 – катушке, сердечник пускателя под действием пружин возвращается в исходное положение, соответственно контакты возвращаются в нормальное состояние, отключая двигатель. При срабатывании теплового реле — «Р», размыкается нормально замкнутый контакт «Р», отключение происходит аналогично.
Не реверсивная схема магнитного пускателя с катушкой 380В.
РЕВЕРСИВНАЯ СХЕМА МАГНИТНОГО ПУСКАТЕЛЯ.
Схема состоит аналогично, так же, как на не реверсивной схеме, единственно добавилась кнопка реверса и магнитный пускатель.
Принцип работы схемы немного сложнее, рассмотрим в динамике. Что требуется от схемы, реверс двигателя за счет переворачивания местами двух фаз. При этом нужна блокировка, которая не давала бы включиться второму пускателю, если первый находится в работе и наоборот. Если включить два пускателя одновременно то произойдет КЗ – короткое замыкание на силовых контактах пускателя.
Включаем QF – автоматический выключатель, давим кнопку «Пуск[1]» подаем напряжение на КМ1 катушку пускателя, пускатель срабатывает. Силовыми контактами включает двигатель, при этом шунтируется пусковая кнопка «Пуск [1]».
Блокировка второго пускателя — КМ2 осуществляется, нормально замкнутым КМ1 — блок контактом. При срабатывании КМ1 — пускателя, размыкается КМ1 — блок контакт тем самым размыкает подготовленную цепочку катушки второго КМ2 — магнитного пускателя.
Чтобы осуществить реверс двигателя, его необходимо отключить. Отключаем двигатель, нажатием кнопку «С — стоп», снимается напряжение с катушки, которая находилась в работе. Пускатель и блок контакты под действием пружин возвращаются в исходное положение.
Схема готова к реверсу, нажимаем кнопку «Пуск[2]», подаем напряжение на катушку — КМ2, пускатель — КМ2 срабатывает и включает двигатель в противоположном вращение. Кнопка «Пуск[2]» шунтируется блок контактом — КМ2, а нормально замкнутый блок контакт КМ2 размыкается и блокирует готовность катушки магнитного пускателя — КМ1. При срабатывании теплового реле — «Р», размыкается нормально замкнутый контакт «Р», отключение происходит аналогично.
Реверсивная схема магнитного пускателя с катушкой 380В.
Принцип работы схемы магнитного пускателя с катушкой на 220В тот же, что и с катушкой на 380В.
Не реверсивная схема магнитного пускателя с катушкой 220В.
Реверсивная схема магнитного пускателя с катушкой 220В.
studvesna73.ru
Собираемся рассмотреть, как производится подключение трехфазного двигателя к однофазной сети, дать рекомендации по управлению агрегатом. Чаще люди хотят варьировать скорость вращения или направление. Как это сделать? Описывали размыто ранее, как подключить трехфазный двигатель на 230 вольт, теперь озаботимся деталями.
Процесс подключения трехфазного двигателя к напряжению 230 вольт прост. Обычно ветка несет синусоиду, разница составляет 120 градусов. Формируется фазовый сдвиг, равномерный, обеспечивает плавность вращения электромагнитного поля статора. Действующее значение каждой волны составляет 230 вольт. Это позволит подключить трехфазный двигатель к домашней розетке. Фокус цирковой: получить три синусоиды, используя одну. Сдвиг фаз равен 120 градусов.
На практике означенное сделать можно, заручившись помощью специальных приборов фазовращателей. Не тех, что используются высокочастотными трактами волноводов, а специальных фильтров, сформированных пассивными, реже активными элементами. Любители заморочкам предпочитают применение заправского конденсатора. Если обмотки двигателя соединить треугольником, сформировав единое кольцо, получим сдвиги фаз 45 и 90 градусов, хватает худо-бедно для неуверенной работы вала:
Схема подключения трехфазного двигателя коммутацией обмоток треугольником
Итого, третья обмотка отстоит от первой по фазе на 180 градусов. Показывает практика, расклада хватает нормально работать. Разумеется, двигатель иногда «залипает», сильно греется, мощность падает, хромает КПД. Пользователи мирятся, когда подключение асинхронного двигателя к трехфазной сети исключено.
Из чисто технических нюансов добавим: схема правильной раскладки проводов приводится на корпусе прибора. Чаще украшает внутреннюю сторону кожуха, скрывающего колодку, либо вычерчена неподалеку на шильдике. Руководствуясь схемой, поймем, как подключить электродвигатель с 6 проводами (по паре на каждую обмотку). Когда сеть трёхфазная (часто называют 380 вольт), обмотки соединяются звездой. Образуется одна общая катушкам точка, куда стыкуется нейтраль (условный схемный электрический нуль). На прочие концы подаются фазы. Получается три — по числу обмоток.
Как обращаться с треугольником для подключения трехфазного двигателя на 230 вольт, понятно. Дополнительно приводим рисунок, изображающий:
Подключение трехфазного двигателя 230 вольт треугольником
Картинка показывает: обмотка А находится под напряжением 230 вольт. На С подается со сдвигом фаз 90 градусов. Благодаря разности потенциалов, концы обмотки В формируют напряжение, сдвинутое на 90 градусов. Очертания далеки привычной школьным физикам синусоиде. Опущены в целях упрощения пусковой конденсатор, шунтирующий резистор. Считаем, расположение очевидно из сказанного выше. Подобная методика худо-бедно позволит добиться от двигателя нормальной работы. Клавишей пусковой конденсатор замыкается, осуществляя пуск, отключается от фазы, разряжается шунтом.
Читайте также: Как собрать электрощиток
Пришло время сказать: емкость, обозначенная чертежом 100 мкФ, практически выбирается, учитывая:
Подбирать нужно конденсатор экспериментальным путем. Согласно нашему рисунку, напряжение обмоток В и С будет одинаковым. Напоминаем: тестер показывает действующее значение. Фазы напряжения будут различны, форма сигнала обмотки В несинусоидальная. Действующее значение показывает: в плечи отдается одинаковая мощность. Обеспечивается боле менее стабильная работа установки. Мотор меньше греется, оптимизируется КПД двигателя. Каждая обмотка сформирована индуктивным сопротивлением, которое также накладывает отпечаток на сдвиг фаз между напряжением и током. Вот почему важно подобрать правильное значение емкости. Можно добиться идеальных условий работы двигателя.
Три фазы напряжения 380 вольт
При подключении на три фазы смена направления вращения вала обеспечивается правильной коммутацией сигнала. Применяются специальные контакторы (три штуки). 1 на каждую фазу. В нашем случае коммутации подлежит всего одна цепь. Причем (руководствуясь утверждениями гуру) достаточно обменять местами любые два провода. Будь то питание, место стыковки конденсатора. Проверим правило прежде выдачи напутствия читателям. Результаты демонстрирует второй рисунок, схематично приводящий эпюры, показывающие распределение фаз указанного случая.
Изготавливая эпюры, предполагали: обмотка С соединена последовательно конденсатору, дающему напряжению положительный прирост фазы. Согласно векторной диаграмме, для сохранения баланса на обмотке С должен быть отрицательный знак относительно основного напряжения. С другой стороны конденсатор, катушка В соединены параллельно. Одна ветвь обеспечивают напряжению положительный прирост (конденсатор), другая – току. Сродни параллельному колебательному контуру, токи ветвей текут практически в противоположную сторону. Учитывая сказанное, приняли закон изменения синусоиды противофазно относительно обмотки С.
Эпюры показывают: максимумы, согласно схеме, обходят обмотки против часовой стрелки. Прошлым обзором показывали аналогичным контекстом: вращение идет иным направлением. Получается, действительно при смене полярности питания вал вращается в противоположную сторону. Не будем рисовать распределение магнитных полей, считаем излишним повторяться.
Точнее подобные вещи позволят просчитывать специальные компьютерные программы. Объяснение дали на пальцах. Получилось, что практики правы: поменяв полярность питания, направление движения вала обратим противоположно. Наверняка аналогичное утверждение годится случаю включения конденсатора ветвью другой обмотки. Жаждущим подробных графиков рекомендуем изучать специализированные программные пакеты наподобие бесплатной Electronics Workbench. В приложении проставите угодное число контрольных точек, отследите законы изменения токов, напряжений. Любителям поиздеваться над своим мозгом будет возможность просмотра спектра сигналов.
Потрудитесь правильно задать индуктивности обмоток. Разумеется, влияние вносит нагрузка, препятствующая запуску. Учесть потери подобными программами сложно. Практики рекомендуют избегать заострять внимание указанной точилкой, подбирать номиналы конденсаторов (эмпирическим) опытным путем. Таким образом, точная схема подключения трехфазного двигателя определена конструкцией, предполагаемым целевым назначением. Допустим, токарный станок будет отличаться от хлеборушки развивающимися нагрузками.
Чаще подключение трехфазного двигателя к однофазной сети нужно вести с участием пускового конденсатора. Особенно аспект касается мощных моделей, моторов под значительной нагрузкой на старте. В этом случае увеличивается собственное реактивное сопротивление, которое придется компенсировать при помощи емкостей. Проще подобрать опять же экспериментально. Нужно собрать стенд, на котором имеется возможность «на горячую» включать, исключать из цепи отдельные емкости.
Читайте также: Как подключить электрическую розетку на 380 вольт
Избегайте помогать двигателю запуститься рукой, как демонстрируют «бывалые» мастера. Просто найдите значение батареи, при котором вал бодро вращается, по мере раскрутки начинайте исключать из цепи конденсаторы один за другим. Пока останется такой набор, ниже которого двигатель не вращается. Отобранные элементы образуют пусковую емкость. А правильность своего выбора нужно контролировать при помощи тестера: напряжение в плечах обмоток со сдвинутой фазой (в нашем случае С и В) должно быть одинаковым. Это значит, что отдается примерно равная мощность.
Трехфазный двигатель с пусковым конденсатором
Что касается оценок и прикидок, емкость батарей растет с увеличением мощности, оборотов. А если говорить о нагрузке, большое влияние оказывает на старте. Когда вал раскрутится, в большинстве случаев малые препятствия преодолеваются за счёт инерции. Чем массивнее вал, тем выше шанс, что двигатель не «заметит» возникшего затруднения.
Обратите внимание, что подключение асинхронного двигателя обычно ведется через защитный автомат. Устройство, которое остановит вращение при превышении током некоторого значения. Это не только уберегает пробки местной сети от выгорания, но и спасет обмотки двигателя при заклинивании вала. В этом случае ток резко повысится, и работа устройства прекратится. Небесполезен автомат защиты и при подборе нужного номинала емкости. Очевидцы утверждают, что если подключение 3-фазного двигателя в однофазную сеть ведется через слишком слабые конденсаторы, то нагрузка резко возрастает. В случае наличия мощного мотора это очень важно, потому что даже в нормальном режиме потребление превышает номинальное в 3-4 раза.
И пара слов о том, как оценить заранее пусковой ток. Допустим, нужно подключить асинхронный двигатель на 230 мощностью 4 кВт. Но это для трех фаз. В случае штатной проводки ток по каждой из них течет отдельно. У нас же все это будет складываться. Поэтому смело делим мощность на напряжение сети и получаем 18 А. Понятно, что без нагрузки подобный ток вряд ли будет расходоваться, но для стабильной работы двигателя на полную катушку нужен защитный автомат потрясающей мощности. Что касается простого тестового запуска, то вполне сгодится устройство ампер на 16. И даже есть шанс, что старт пройдет без эксцессов.
Надеемся, читатели теперь знают, как подключить трехфазный двигатель в домашнюю сеть на 230 вольт. Осталось к этому добавить, что возможности стандартной квартиры не превышают с точки зрения отдачи мощности потребителю значения порядка 5 кВт. Это значит, описанный выше двигатель дома попросту включать опасно. Обратите внимание, что даже болгарки редко бывают мощнее 2 кВт. При этом двигатель оптимизирован для работы в однофазной сети 220 вольт. Проще говоря, слишком мощные устройства не только вызовут моргание света, но скорее всего, спровоцируют возникновение других нештатных ситуаций. В лучшем случае выбьет пробки, в худшем – случится возгорание проводки.
На этом говорим «до свидания» и хотим заметить: знание теории иной раз полезно практикам. Особенно если дело касается мощной техники, способной причинить немалый вред.
Заботливый хозяин частного дома не обходится без циркулярки, наждака, водяного насоса, но все это стоит немалых денег. А если голова и руки на месте, почему бы самому не собрать нужный агрегат? Чем многие и занимаются. Основная проблема — найти подходящий электродвигатель. Не секрет, что находим иногда и бесплатный, только чаще всего трехфазный.А каким образом подключить трехфазный двигатель к однофазной сети, если в доме всего 220V? Оказывается, и здесь нашли выход. Для этого придумали подключение трехфазного двигателя через конденсатор.Значительная масса трехфазных двигателей имеет обмотки статора, подключенные в звезду на напряжение 380V. Получается, что эффективное использование однофазной сети возможно при переключении обмоток со звезды на треугольник. Можно и звезду оставить, только мощность двигателя будет минимальной: разве что пропеллер запустить. Ведь при подключении трехфазного двигателя к однофазной сети теряется до 40% мощности, а тут звезда теряет еще и напряжение. Поэтому не любая находка подойдет для дома.После перемотки сгоревших движков часто в коробку выходит только три вывода звезды (видимо, перемотчики экономят на проводах, на клеммниках и на времени). Естественно, подобные агрегаты не совсем годятся. Случается, отсутствуют в коробке клеммы (разбиты и выброшены). Придется определять начала и концы обмоток .А сейчас делаем расчет конденсатора для трехфазного двигателя.Емкость конденсатора для треугольника (рис. а ) рассчитывается по формуле C1т = 4800*Iн.т /U ,для звезды (рис.в ) — C1зв = 2800*Iн.зв /U ,где Iн.т ; Iн.зв — номинальные токи на треугольнике и на звезде. Для тяжелого пуска применяется дополнительный пусковой конденсатор С2 емкостью в 2,5-3 раза больше, после разгона он отключается пусковой кнопкой SB .Напряжение, указанное на конденсаторе, должно быть на 15% выше напряжения сети. Тут и считать не надо — 300V, меньше не должно быть.Примерный расчет конденсатора для трехфазного двигателя мощностью 250Вт. На бирке читаем: 0,85А/0,6А. Это номинальный ток треугольника и звезды. По формуле рассчитываем емкость для треугольника:C1т = 4800*0,85A/220V. получаем около 19мкф, пусковой конденсатор — примерно 45мкф. Выбираем конденсаторы с допустимым напряжением 300V.Все. Подключение трехфазного двигателя к однофазной сети выполнено.Практические советы:
Бывают ситуации, когда нужно подключить электроприбор не так, как записано в его паспорте. К примеру, часто требуется подключение трехфазного двигателя к однофазной сети, что, хотя и снижает его мощность, иногда бывает вполне оправданным. Существуют основные схемы включения таких электродвигателей, которые широко и успешно применяются на практике. Также есть и некоторые нюансы, помогающие решать неожиданные трудности, связанные с отсутствием тех или иных материалов.
Для правильного понимания поставленной задачи нужно четко представлять, по какому принципу работают трехфазные электродвигатели. Имея три обмотки, смещенные относительно друг друга на 120 градусов, они находятся в идеальных условиях: магнитное поле равномерно вращается по окружности, создавая движущую силу без каких-либо рывков и пульсаций. После подачи в схему напряжения, появляется пусковой момент, и ротор начинает раскручиваться до рабочих оборотов.
Работа трехфазного двигателя
Трехфазный ток можно представить как три однофазные схемы, также смещенные друг относительно друга на 120 градусов. Понятно, почему двигатель будет работать без рывков: при повороте ротора на каждую треть, он «подхватывается» следующей фазой, которая «провожает» его еще на треть оборота. И как результат получается полный оборот.
Но вот возникла необходимость включения такого аппарата на одной фазе. Если просто взять, и на любые две обмотки подать такое напряжение, то ничего не произойдет. В одной из катушек статора будет пульсирующее магнитное поле, никак не влияющее ни на что больше. Пускового момента нет, крутящего тоже – двигатель будет только греться. Но теперь, зная принцип работы таких машин, несложно понять, что нужно. Необходимо задействовать все три обмотки, при этом должно быть смещение по фазам.
Подключение трехфазного двигателя к однофазной сети производится по самой распространенной схеме – с пусковым конденсатором. Такой метод позволяет задействовать все три обмотки, а также создать необходимый сдвиг по фазам.
Обмотки трехфазного электродвигателя можно включить по двум основным схемам: звезда и треугольник. В зависимости от этого различается и подключение конденсатора.
Можно было бы обойтись и одним конденсатором, но чаще всего электродвигатели имеют какую-то нагрузку, а значит, чтобы их запустить, нужна будет дополнительная емкость. Поэтому в цепь нужно кратковременно включить дополнительный емкостной элемент – пусковой конденсатор.
Понятно, что к цепи запуска нельзя подключать первый попавшийся конденсатор. Если емкость будет больше чем нужно, электродвигатель будет греться, если меньше – не будет устойчиво работать. Существуют специальные расчеты для нахождения нужных значений.
Пример расчетов для конденсатора
I – фазный ток статора. Его лучше всего измерить клещами, либо, если нет такой возможности, можно взять значения, указанные на шильде – бирке на станине двигателя.
Наши читатели рекомендуют!
Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.
Емкость пускового конденсатора берется из расчета 2–3 Сраб .
Однако все равно, лучшим вариантом будет дополнительный подбор нужных емкостей экспериментальным путем. В этом поможет таблица:
По напряжению конденсаторы должны быть в 1,5 раза выше напряжения сети. Это обусловлено тем, что 220В – это действующее напряжение, но ведь на конденсатор будет воздействовать полное, амплитудное напряжение. А оно в 2 выше действующего. Это приблизительно 1,4. Несложный математический подсчет помогает увидеть: 220*1,4=308 В. Ну а если учесть, что в розетке редко бывает ровно 220, чаще всего напряжение плавает в одну и другую сторону, то нужно брать большее значение.
Лучше всего, естественно, использовать металлобумажные конденсаторы. Если нет подходящих по емкости, их набирают из нескольких элементов. Но что, если нет и металлобумажных? Допустимо ли использование электролитических?
Для рабочих конденсаторов – однозначно нет. Электролитические емкости полярные, то есть, они для постоянного тока, и при подключении важно соблюдать полярность. В сети переменного тока, или при неправильном соединении, они попросту взрываются, забрызгивая бумагой и электролитом все окружающее пространство.
Но есть и свои хитрости. Что делать, если есть только электролиты, а запустить электродвигатель нужно прямо здесь и сейчас? Самая простая схема для превращения полярного элемента в неполярный:
Соединять необходимо отрицательными выводами. При этом стоит помнить, что при таком соединении их суммарная емкость будет в два раза ниже (если значения одинаковые, то можно просто разделить на два).
Но в нашей цепи присутствуют большие токи, поэтому лучше использовать другое соединение:
Применяется встречно – параллельное соединение, следовательно, нужно правильно посчитать результирующую емкость. Диоды также выбираются по току и напряжению.
Если двигатель будет работать на мощном станке, тогда лучше брать металлобумажные элементы. Для пусковой емкости используют электролиты, но здесь важно не передержать кнопку пуска.
На что стоит обратить внимание при включении в однофазную сеть трехфазных электродвигателей:
Чтобы сделать реверс трехфазного двигателя, подключенного к однофазной сети, нужно пусковой конденсатор переключить на другую обмотку. Делать это необходимо при снятом напряжении питания, и включать его только после полной остановки ротора. Это самая простая схема реверсирования.
Существуют и другие варианты решения этой проблемы, но они более сложные и дорогостоящие.
Как видно из вышесказанного, трехфазные асинхронники – это довольно универсальные электрические машины. Они хорошо зарекомендовали себя в работе, их можно включать не так, как записано в паспорте, а также в зависимости от варианта исполнения, могут работать в самых разных условиях.
Источники: http://vashtehnik.ru/elektrika/podklyuchenie-tryoxfaznogo-dvigatelya-k-odnofaznoj-seti.html, http://electriku.ru/odna-faza, http://electricvdele.ru/elektrooborudovanie/elektrodvigateli/podklyuchenie-trehfaznogo-dvigatelya-k-odnofaznoj-seti.html
electricremont.ru