В большинстве приспособлений, вырабатывающих энергию за счет горения, используется метод сжигания топлива в воздухе. Однако существуют два обстоятельства, когда может оказаться желательным или необходимым применение не воздуха, а иного окислителя: 1) при необходимости генерирования энергии в таком месте, где снабжение воздухом ограничено, например под водой или высоко над поверхностью земли; 2) когда желательно получить в течение короткого времени очень большое количество энергии из компактных ее источников, например в орудийных метательных ВВ, в установках для взлета самолетов (ускорителях) или в ракетах. В некоторых таких случаях в принципе можно использовать воздух, предварительно сжатый и хранящийся в соответствующих сосудах под давлением; однако такой метод часто является непрактичным, так как вес баллонов (или хранилищ других видов) составляет около 4 кг на 1 кг воздуха; вес же тары для жидкого или твердого продукта равен 1 кг/кг или даже меньше.
В том случае, когда применяется небольшое приспособление и основное внимание уделяется простоте конструкции, например в патронах огнестрельного оружия или в небольшой ракете, используется твердое топливо, содержащее тесно смешанные между собой горючее и окислитель. Системы жидкого топлива сложнее, но обладают двумя определенными преимуществами по сравнению с системами твердого топлива:
Идеальный жидкий окислитель должен обладать многими желательными свойствами, но наиболее важны с практической точки зрения следующие три: 1) выделение значительного количества энергии при реакции, 2) сравнительная устойчивость к удару и повышенным температурам и 3) низкая производственная себестоимость. Вместе с тем желательно, чтобы окислитель не обладал коррозионными или токсическими свойствами, чтобы он быстро реагировал и обладал надлежащими физическими свойствами, например низкой точкой замерзания, высокой точкой кипения, большой плотностью, малой вязкостью и т. д. При применении в качестве составной части ракетного топлива особое значение имеет и достигаемая температура пламени и средний молекулярный вес продуктов сгорания. Очевидно, что ни одно химическое соединение не может удовлетворять всем требованиям, предъявляемым к идеальному окислителю. И очень мало веществ, которые вообще хотя бы приблизительно обладают желательной комбинацией свойств, причем только три из них нашли некоторое применение: жидкий кислород, концентрированная азотная кислота и концентрированная перекись водорода.
Перекись водорода обладает тем недостатком, что даже при 100%-ной концентрации она содержит лишь 47 вес.% кислорода, который может быть использован для сжигания топлива, тогда как в азотной кислоте содержание активного кислорода составляет 63,5%, а для чистого кислорода возможно даже 100%-ное использование. Этот недостаток компенсируется значительным выделением тепла при разложении перекиси водорода на воду и кислород. Фактически мощности этих трех окислителей или силы тяги, развиваемые единицей веса их, в любой определенной системе и при любом виде горючего могут различаться максимум на 10—20%, а поэтому выбор того или иного окислителя для двухкомпонентной системы обычно определяется другими, соображениями Экспериментальное исследование применения перекиси водорода в качестве источника энергии было впервые поставлено в Германии в 1934 г. при поисках новых видов энергии (независимых от воздуха) для движения подводных лодок, Это потенциальное военное применение стимулировало промышленное развитие метода фирмы «Electrochemische Werke» в Мюнхене (Е. W. М.) по концентрированию перекиси водорода с получением водных растворов высокой крепости, которые можно было бы транспортировать и хранить с приемлемой низкой скоростью разложения. Сначала для военных нужд выпускали 60%-ный водный раствор, но впоследствии эту концентрацию повысили и наконец начали получать 85%-ную перекись. Увеличение доступности высококонцентрированной перекиси водорода в конце тридцатых годов текущего столетия привело к применению ее в Германии во время второй мировой войны в качестве источника энергии для других военных нужд. Так, перекись водорода впервые была использована в 1937 г. в Германии в качестве вспомогательного средства в топливе для двигателей самолетов и ракет.
Высококонцентрированные растворы, содержащие до 90% перекиси водорода, производились также в промышленном масштабе к концу второй мировой войны фирмами «Buffalo Electro-Chemical Со» в США и «В. Laporte, Ltd.» в Великобритании. Воплощение идеи процесса генерирования тяговой мощности из перекиси водорода в более ранний период представлено в схеме Лишолма, предложившего методику генерирования энергии путем термического разложения перекиси водорода с последующим сжиганием горючего в полученном кислороде. Однако на практике эта схема, по-видимому, не нашла применения.
Концентрированную перекись водорода можно использовать и в качестве однокомпонентного топлива (в этом случае она подвергается разложению под давлением и образует газообразную смесь кислорода и перегретого пара) и в качестве окислителя для сжигания горючего. Механически однокомпо- нертная система проще, но она дает меньше энергии на единицу веса топлива. В двухкомпойентной системе можно сначала разложить перекись водорода, а затем сжечь горючее в горячих продуктах разложения или же ввести в реакцию обе жидкости непосредственно без предварительного разложения перекиси водорода. Второй метод проще механически оформить, но при нем может оказаться затруднительным обеспечение воспламенения, а также равномерное и полное сгорание. В любом случае энергия или тяга создается за счет расширения горячих газов. Различные виды ракетных двигателей, основанных на действии перекиси водорода и использованных в Германии во время второй мировой войны, весьма подробно описаны Вальтером, который был непосредственно связан с разработкой многих видов военного применения перекиси водорода в Германии. Опубликованный им материал иллюстрируется также рядом чертежей и фотоснимков.
Концентрированная перекись водорода (концентрации 80—90%) нашла применение в качестве вспомогательного топлива в жидкостных реактивных двигателях (для приведения в действие турбонасосов), в качестве однокомпонентного топлива стартовых авиационных двигателей и раньше (в Германии) применялась как окислитель реактивных топлив. [c.296]
Однокомпонентное топливо — перекись водорода [c.264]
К однокомпонентным относятся топлива, к-рые при сгорании не нуждаются в подаче окислителя извне, В этот класс топлив входят (см. табл. 1) вещества, молекулы к-рых содержат горючие элементы и необходимый для горения кислород (напр., метилнитрат, этилнитрат, изопропилнитрат, нитрометан, нитроэтан и др.) р-ры горючих и окислителей, не взаимодействующие друг с другом при обычных темн-рах (смеси перекиси водорода, этилового спирта и воды четырехокиси азота и бензола) соединения, выделяющие при своем распаде большое количество тепла и газообразных продуктов без участия окислителя (перекись водорода, гидразин, окись этилена). [c.249]
По-видимому, в дальнейшем перекись водорода не найдет применения в качестве окислителя двухкомпонентных топлив. Однако концентрированную перекись водорода можно применять в качестве однокомпонентного топлива. При этом перекись водорода разлагается с выделением большого количества газов, нагретых до высокой температуры. Но удельная тяга при этом значительно ниже той, которую можно получить от обычных ракетных топлив (табл. 127). [c.295]
Перекись водорода — единственное вещество, которое используется как однокомпонентное топливо. Она разлагается каталитически под действием растворов перманганата натрия или ка- [c.234]
Другие виды однокомпонентных топлив. В качестве однокомпонентного топлива, кроме рассмотренных, можно использовать ряд других веществ, участвующих в химических реакциях, протекающих с большим выделением тепла. Такими химическими реакциями являются, например, разложение некоторых эндотермических соединений (перекись водорода), ассоциация некоторых простейших атомов в молекулу и др. [c.407]
Остается под вопросом, является ли такая классификация достаточной и исчерпывающей, особенно если учесть дальнейшее развитие. Мы будем рассматривать одно- и двухкомпонентные ракетные топлива с учетом следующих положений. Понятие однокомпонентное топливо не должно приниматься как синоним индивидуального жидкого соединения, наоборот, как будет показано ниже, вещества эти, особенно те, которые предназначены для создания сильной тяги (например, для удельных импульсов выше 140), состоят большей частью из смесей жидкостей. Что же касается двухкомпонентных систем, особенно тех, которые содержат перекись водорода в качестве окислителя, то в них могут быть смеси, содержащие три жидкости. [c.16]
Перекись водорода широко применяется для получения парогаза для работы турбонасосного агрегата двигательной установки ракеты. К топливу, обеспечивающему работу ТНА, предъявляются требования с одной стороны, иметь достаточно высокие энергетические показатели, чтобы при минимальных расходах обеспечить работу насосов с другой— иметь относительно невысокую температуру сгорания. Наибольшее распространение как однокомпонентное топливо для привода турбонасосного агрегата получила 80—85% перекись водорода. При разложении 80% пе)ре-киси водорода получается парогаз с температурой 450— 500° С. Помимо перекиси, при получении парогаза расходуется катализатор. Для разложения одного килограмма перекиси расходуется 0,05 кг жидкого катализатора, представляющего собой 35% спиртовой раствор КаМп04 (перманганат натрия). [c.57]
В качестве однокомпонентного топлива могут быть использованы также вещества, тепловая энергия которых выделяется в результате их разложения. Например, перекись водорода, которая при разложении выделяет значительное количество тепла [c.189]
Повысить энергетические показатели однокомпонент-гюго топлива на основе перекиси водорода можно и путем приготовления смесей, содержащих, помимо перекиси и воды, горючие компоненты — этиловый спирт, глицерин, ацетон и др. Так, если ввести в 50% водный раствор перекиси водорода 8% этилового спирта, можно получить однокомпонентное топливо с температурой горения около 800° С, обладающее более высокими энергетическими по-казателями, чем 80% перекись, более безопасное в обращении. [c.58]
Концентрированная перекись водорода (80—90%-ная) за рубежом применяется как однокомпонентное топливо в стартовых авиационных двигателях, но главным образом как вспомогательное топливо, приводящее в действие турбонасосные установки ЖРД, и в некоторых случаях как окислитель ракетных топлив [1, 2]. [c.397]
Перекись водорода и метанол. Цель прибавления горючего к HgOg заключается в том, чтобы привести топливо к стехиометрическому составу, улучшая тем самым моторную характеристику. Так, прибавление 21, 4% по весу СНдОН к 87% HgOg повышает удельную тягу от 126 до 225 сек fl9]. Серьезной помехой, одпако, является высокая чувствительность этой смеси. Присутствие горючего сильно повышает выделение тепла в процессе термического разложения, что делает термические взрывы очень вероятными. Стехиометрическую слтесь соединения, указанного выше, можно довести до состояния детонационного горения прибавлением несколькпх капель раствора перманганата, который инициирует термическое разложение перекиси. Вследствие столь большо] чувствительности однокомпонентные топлива, содери ащие перекись водорода и горючее, но могут быть рекомендованы для использования. [c.419]
Перекись водорода (90—98%) 1а рубежом применяется как однокомпонентное топливо в стартовых авиационных двигателях, главнвш образом как вспомогательное топливо, приводящее в действие турбонасоише установки КРД, и в некоторых сл ,чаях — как окислитель ракетных топлив [1—3, 8]. [c.107]
Первые форсированные исследования однокомпонентных систем в США были связаны с запуском в Германии самолета-снаряда Фау-1. Когда военно-химическому управлению поручили исследовать и разработать жидкие ракетные топлива для подобного снаряда, было известно, что в Германии применяется 80—90%-ная перекись водорода, каталитически разлагаемая перманганатом. Однако США не располагали технологией производства, методами хранения и работы с перекисью водорода концентрацией более 50%. Одновременно были начаты работы [61 по производству и изучению свойств и способов применения концентрированной НпОг и изысканию возможности замены перекиси водорода нитрометаном или двухкомпонентной системой дымящая красная азотная кислота — анилин. [c.273]
Горючее и окислитель из баков 7 и 2 перекачивают под давлением в камеру сгорания 12 при помощи насосов 4 п 5 центробежного типа. Центробежные насосы развивают 15 ООО—18 ООО об1мин и создают напор до 100 кПсм , обладая в то же время большой производительностью. Подача компонентов топлива регулируется клапанами 9, 10, 11. Насосы приводятся в движение турбиной 8. Газ, являющийся рабочим телом, вырабатывается в газогенераторе 7. Газогенератор работает на специальном однокомпонентном топливе, которое из бака 3 прп помощи центробежного насоса 6 подается в камеру газогенератора 7. В качестве однокомпонентного топлива может быть использована перекись водорода (Н2О2) 80— 90%-пой концентрации. Перекись водорода разлагается на кислород [c.181]
Перекись водорода применялась как однокомпонентное топливо совместно с водным раствором перманганата кальция или натрия в качестве катализатора. Такое топливо применялось для самолетов Фокке-Вульф и Хенкель с тягой двигателей 300, 500 и 1000 кг и в пусковых устройствах для самолетов-снарядов. [c.300]
Концентрированная перекись водорода—80—90%-ная Р12О2. В настоящее время применяется главным образом как вспомогательное однокомпонентное топливо для приведения в действие турбонасосов ракет известно ее применение в стартовых двигателях для самолетов, указывается на возможность применения перекиси водорода в авиационных ЖРД- [c.385]
chem21.info
Первый образец нашего жидкостного ракетного двигателя (ЖРД), работающего на керосине и высококонцентрированной перекиси водорода, собран и готов к испытаниям на стенде в МАИ.
Все началось около года назад с создания 3D-моделей и выпуска конструкторской документации.
Готовые чертежи мы отправили нескольким подрядчикам, в том числе нашему основному партнеру по металлообработке «АртМеху». Все работы по камере дублировались, а изготовление форсунок вообще было получено нескольким поставщикам. К сожалению, тут мы столкнулись со всей сложностью изготовления казалось бы простых металлических изделий.
Особенно много усилий пришлось потратить на центробежные форсунки для распыления горючего в камере. На 3D-модели в разрезе они видны как цилиндры с гайками синего цвета на конце. А вот так они выглядят в металле (одна из форсунок показана с открученной гайкой, карандаш дан для масштаба).
Об испытаниях форсунок мы уже писали. В результате из многих десятков форсунок были выбраны семь. Через них в камеру будет поступать керосин. Сами керосиновые форсунки встроены в верхнюю часть камеры, которая является газификатором окислителя — областью, где пероксид водорода будет проходить через твердый катализатор и разлагаться на водяной пар и кислород. Затем получившаяся газовая смесь тоже поступит в камеру ЖРД.
Чтобы понять, почему изготовление форсунок вызвало такие сложности, надо заглянуть внутрь — внутри канала форсунки находится шнековый завихритель . То есть поступающий в форсунку керосин не просто ровно течет вниз, а закручивается. Шнековый завихритель имеет много мелких деталей, и от того, насколько точно удается выдержать их размеры, зависит ширина зазоров, через которые будет течь и распыляться в камеру керосин. Диапазон возможных исходов — от «через форсунку жидкость вообще не течет» до «распыляется равномерно во все стороны». Идеальный исход — керосин распыляется тонким конусом вниз. Примерно так, как на фото ниже.
Поэтому получение идеальной форсунки зависит не только от мастерства и добросовестности изготовителя, но и от используемого оборудования и, наконец, мелкой моторики специалиста. Несколько серий испытаний готовых форсунок под разным давлением позволили нам выбрать те, конус распыла которых близок к идеальному. На фото — завихритель, который не прошел отбор.
Посмотрим, как наш двигатель выглядит в металле. Вот крышка ЖРД с магистралями для поступления перекиси и керосина.
Если приподнять крышку, то можно увидеть, что через длинную трубку прокачивается перекись, а через короткую — керосин. Причем керосин распределяется по семи отверстиям.
Снизу к крышке присоединен газификатор. Посмотрим на него со стороны камеры.
То, что нам с этой точки представляется дном детали, на самом деле является ее верхней частью и будет присоединено к крышке ЖРД. Из семи отверстий керосин по форсункам польется в камеру, а из восьмого (слева, единственное несимметрично расположенное) на катализатор хлынет перекись. Точнее она хлынет не напрямую, а через специальную пластину с микроотверстиями, равномерно распределяющими поток.
На следующем фото эта пластина и форсунки для керосина уже вставлены в газификатор.
Почти весь свободный объем газификатора будет занят твердым катализатором, через который потечет пероксид водорода. Керосин будет идти по форсункам, не смешиваясь с перекисью.
На следующем фото мы видим, что газификатор уже закрыли крышкой со стороны камеры сгорания.
Через семь отверстий, заканчивающихся специальными гайками, потечет керосин, а через мелкие отверстия пойдет горячий парогаз, т.е. уже разложившаяся на кислород и водяной пар перекись.
Теперь давайте разберемся с тем, куда они потекут. А потекут они в камеру сгорания, которая представляет собой полый цилиндр, где керосин воспламеняется в кислороде, разогретом в катализаторе, и продолжает гореть.
Разогретые газы поступят в сопло, в котором разгонятся до высоких скоростей. Вот сопло с разных ракурсов. Большая (сужающаяся) часть сопла называется докритической, затем идет критическое сечение, а потом расширяющаяся часть — закритическая.
В итоге собранный двигатель выглядит так.
Красавец, правда?
Мы изготовим еще как минимум один экземпляр ЖРД из нержавеющей стали, а затем перейдем к изготовлению ЖРД из инконеля.
Внимательный читатель спросит, а для чего нужны штуцеры по бокам двигателя? У нашего ЖРД есть завеса — жидкость впрыскивается вдоль стенок камеры, чтобы та не перегревалась. В полете в завесу будет течь перекись либо керосин (уточним по результатам испытаний) из баков ракеты. Во время огневых испытаний на стенде в завесу может как керосин, так и перекись, а также вода или вообще ничего не подаваться (для коротких тестов). Именно для завесы и сделаны эти штуцера. Более того, завесы две: одна для охлаждения камеры, другая — докритической части сопла и критического сечения.
Если вы инженер или просто хотите узнать подробнее характеристики и устройство ЖРД, то далее специально для вас приведена инженерная записка.
ЖРД-100С
Двигатель предназначен для стендовой отработки основных конструктивных и технологических решений. Стендовые испытания двигателя запланированы на 2016 год.
Двигатель работает на стабильных высококипящих компонентах топлива. Расчетная тяга на уровне моря — 100 кгс, в вакууме — 120 кгс, расчетный удельный импульс тяги на уровне моря — 1840 м/с, в вакууме — 2200 м/с, расчетный удельный вес — 0,040 кг/кгс. Действительные характеристики двигателя будут уточняться в ходе испытаний.
Двигатель однокамерный, состоит из камеры, комплекта агрегатов системы автоматики, узлов и деталей общей сборки.
Двигатель крепится непосредственно к несущим элементам стенда через фланец в верхней части камеры.
Основные параметры камерытопливо:– окислитель — ПВ-85– горючее — ТС-1тяга, кгс:– на уровне моря — 100,0– в пустоте — 120,0удельный импульс тяги, м/с:– на уровне моря — 1840– в пустоте — 2200секундный расход, кг/с:– окислителя — 0,476– горючего — 0,057весовое соотношение компонентов топлива (О:Г) — 8,43:1коэффициент избытка окислителя — 1,00давление газов, бар:– в камере сгорания — 16– в выходном сечении сопла — 0,7масса камеры, кг — 4,0внутренний диаметр двигателя, мм:– цилиндрической части — 80,0– в районе среза сопла — 44,3
Камера представляет собой сборную конструкцию и состоит из форсуночной головки с интегрированным в нее газификатором окислителя, цилиндрической камеры сгорания и профилированного сопла. Элементы камеры имеют фланцы и соединяются между собой болтами.
На головке размещены 88 однокомпонентных струйных форсунок окислителя и 7 однокомпонентных центробежных форсунок горючего. Форсунки расположены по концентрическим окружностям. Каждая форсунка горючего окружена десятью форсунками окислителя, оставшиеся форсунки окислителя размещены на свободном пространстве головки.
Охлаждение камеры внутреннее, двухступенчатое, осуществляется жидкостью (горючим или окислителем, выбор будет произведен по результатам стендовых испытаний), поступающей в полость камеры через два пояса завесы — верхний и нижний. Верхний пояс завесы выполнен в начале цилиндрической части камеры и обеспечивает охлаждение цилиндрической части камеры, нижний — выполнен в начале докритической части сопла и обеспечивает охлаждение докритической части сопла и области критического сечения.
В двигателе применяется самовоспламенение компонентов топлива. В процессе запуска двигателя обеспечивается опережение поступления окислителя в камеру сгорания. При разложении окислителя в газификаторе его температура поднимается до 900 K, что существенно выше температуры самовоспламенения горючего ТС-1 в атмосфере воздуха (500 К). Горючее, подаваемое в камеру в атмосферу горячего окислителя, самовоспламеняется, в дальнейшем процесс горения переходит в самоподдерживающийся.
Газификатор окислителя работает по принципу каталитического разложения высококонцентрированного пероксида водорода в присутствии твердого катализатора. Образующийся в результате разложения пероксида водорода парогаз (смесь водяного пара и газообразного кислорода) является окислителем и поступает в камеру сгорания.
Основные параметры газогенераторакомпоненты:– стабилизированный пероксид водорода (концентрация по весу), % — 85±0,5расход пероксида водорода, кг/с — 0,476удельная нагрузка, (кг/с пероксида водорода)/(кг катализатора) — 3,0время непрерывной работы, не менее, с — 150параметры парогаза на выходе из газификатора:– давление, бар — 16– температура, К — 900
Газификатор интегрирован в конструкцию форсуночной головки. Ее стакан, внутреннее и среднее днища образуют полость газификатора. Днища связаны между собой форсунками горючего. Расстояние между днищами регулируется высотой стакана. Объем между форсунками горючего заполнен твердым катализатором.
sk.ru
Высококонцентрированная перекись водорода находит применение в ракетной технике как окислитель жидкого ракетного топлива. [c.197]
В настоящее время перекись водорода как окислитель ракетных топлив не применяется, так как такие топлива (при 80—85% концентрации перекиси) обладают значительно худшими энергетическими показателями, чем топлива на основе кислорода и азотной кислоты с окислами азота. Однако, когда будет освоена эксплуатация 100% перекиси водорода, не исключено применение ее в качестве компонента основного топлива. Расчеты показывают, что топлива на основе 100% перекиси водорода не уступают по плотности топливам яй основе азотнокнслотного окислителя (азотная кислота 4-22% окислов азота) и превосходят их на 7—9 кгсек1кг по удельной тяге. [c.57]
В химической промышленности перекись водорода применяют как окислитель при получении кубовых красителей, в медицине —как дезинфицирующее средство, в аналитической практике — как реактив. Высококонцентрированная перекись водорода находит применение как окислитель жидкого ракетного топлива. [c.240]
По-видимому, в дальнейшем перекись водорода не найдет применения в качестве окислителя двухкомпонентных топлив. Однако концентрированную перекись водорода можно применять в качестве однокомпонентного топлива. При этом перекись водорода разлагается с выделением большого количества газов, нагретых до высокой температуры. Но удельная тяга при этом значительно ниже той, которую можно получить от обычных ракетных топлив (табл. 127). [c.295]
Однако эти методы уступгют очистке с помощью растворов серной кислоты. Заслуживает внимания непрерывный экстракционный метод очистки НСО смесью водных растворов ароматических сульфокислот и серной кислоты, детали которого требуют дальнейшего изучения. Этот способ пригоден как для очистки НСО, полученных из сульфидных концентратов, так и для выделения НСО из окисленных перекисью водорода фракций дизельного топлива. Непосредственное окисление фракций дизельного топлива с последующим выделением из них НСО в настоящее время разработано Институтом нефтехимического синтеза им. Топчиева, Казанским химико-технологическим институтом и значительно усовершенствовано НИИНефтехимом. Мы в своей рабоге также получали НСО этим способом в периодическом режиме при нагревании реакционной смеси (диз. топлива + перекись водорода) до 80—90 "С, используя в качестве катализатора серную кислоту, и считаем, что этот метод значительно технологичнее, чем применение уксусной кислоты, ввиду отсутствия промывок диз. топлива и сульфоксидов от уксусной кислоты. [c.35]
Основными веществами, использующимися в настоящее время в качестве окислителей в топливах для ЖРД, являются жидкий кислород, перекись водорода н азотная кислота. Кроме того, могут найти применение тетранитрометан и четырехокись азота. [c.420]
Топливо по возможности не должно оказывать корродирующего действия на обычные конструкционные материалы (сталь и др.). В противном случае в качестве конструктивного материала ракетных двигателей приходится применять специальные материалы алюминий или нержавеющую сталь. Однако это требование не исключает применение в настоящее время таких окислителей, как концентрированная азотная кислота и перекись водорода, которые требуют для хранения специальных материалов. [c.208]
При непрерывном полном разложении перекиси водорода гюлучается смесь кислорода с перегретым паром, имеющая постоянную температуру, определяемую концентрацией использованной перекиси водорода, и поэтому перекись водорода может быть простым, надежным и компактным вспомогательным источником энергии. В качестве такого источника перекись водорода нашла применение в германской ракете V-2 для привода топливных насосов, которые нагнетали основные компоненты топлива (жидкий кислород и смесь 75% этилового спирта и 25% воды) в камеру сгорания. В этой ракете погок [c.507]
Концентрированная перекись водорода получила широкое применение в ракетной технике как окислитель и как средство получения нарогаза, необходимого для вращ,ения турбины турбонасосного агрегата некоторых видов ракет. При использовании перекиси в качестве окислителя получается дополнительный тепловой эффект при сгорании топлива в камере сгорания. Этот эффектобус-ловлен тем, что молекула перекиси водорода перед вступлением в реакцию окисления распадается с выделением значительного количества тепла. [c.126]
Теперь рассмотрим еще одно неустойчивое и при обычных условиях лишь слабо замороженное вещество — перекись водорода Н2О2 она легко разлагается на воду и кислород при самом незначительном нагревании и соприкосновении с положительными катализаторами — ускорителями реакций. Лет 15 тому назад перекись водорода имела еще сравнительно небольшое значение, но теперь это вещество привлекло- себе внимание в связи с расширяющимся применением реактивных самолетов и трансконтинентальных снарядов, высотных ракет и искусственных спутников земли, снабженных реактивными двигателями, с помощью которых они способны перемещаться даже в совершенно безвоздушном пространстве, набирая скорости, в несколько раз превышающие скорость звука, что, как известно, было в свое время предложено еще К. Э. Циолковским. Теперь техника реактивного полета является реальностью и быстро развивается, требуя все более и более мощного топлива, причем особенностью последнего является то, что не только горючее, но и жидкий окислитель впрыскивается в камеру сгорания из резервуаров, находящихся на самолете или в теле ракеты. Перекись водорода (100% концентрации) и является одним из материалов, применяемых в настоящее эремя в качестве окислителя для сжигания спирта, бен-, зина или других горючих материалов в реактивных двигателях. [c.99]
Разработаны теоретические основы рационального выбора топлива для ЖРД, дана оценка качества наиболее вероятных компонентов топлив в отношении эффективности и надеяшостл работы двигателя. В 1930 г. впервые предложено использовать как окислители для ЖРД азотную кислоту, четырехокись азота, перекись водорода, получившие в последующем наиболее широкое применение в ракетной технике, а также тетранитрометан и хлорную кислоту. Основываясь на теоретических и экспериментальных исследованиях, пришли к выводу, что из исследованных ветцеста наибольшую ценность в качестве горючего для ЖРД представляют тяжелые, но не слишком вязкие погоны нефти и буроугольной смолы, метиловый и этиловый спирт, аятробеазол, нитротолуол и некоторые углеводороды. [c.591]
Первые форсированные исследования однокомпонентных систем в США были связаны с запуском в Германии самолета-снаряда Фау-1. Когда военно-химическому управлению поручили исследовать и разработать жидкие ракетные топлива для подобного снаряда, было известно, что в Германии применяется 80—90%-ная перекись водорода, каталитически разлагаемая перманганатом. Однако США не располагали технологией производства, методами хранения и работы с перекисью водорода концентрацией более 50%. Одновременно были начаты работы [61 по производству и изучению свойств и способов применения концентрированной НпОг и изысканию возможности замены перекиси водорода нитрометаном или двухкомпонентной системой дымящая красная азотная кислота — анилин. [c.273]
В отличие от техно.погии многих других неорганических веществ технология перекиси водорода за последние годы быстро развивалась. Получавшийся в начале XX столетия разбавленный нестабильный продукт находил лишь ограниченное применение, главным образом в качестве дезинфицирующего средства и отбеливающего агента (для таких веществ, как волосы, перья и шерсть, которые разрушаются при обработке их другими отбеливающими средствами). Электрохимический процесс производства перекиси водорода, введенный в 1908 г., дал возможность получать сравнительно чистый и стабильный продукт, который постепенно находил все большее применение. Широкое использование в Еермании но время второй мировой войны концентрированной перекиси водорода в качестве компонента топлива для военных целей показало, что перекись можно безопасно хранить и перерабатывать в больших количествах. Это возбудило интерес многих потегщиальных потребителей, ранее считавших, что перекись водорода, даже гораздо менее концентрированная, отличается нестабильностью и чувствительностью к внешним воздействиям. К тому же промышленное освоение за последние годы новых производственных процессов открыло перспективы снижения цен на перекись водорода. Рост интереса к этому продукту доказан пятикратным увеличением производства и потребления его в США в последнее десятилетие и быстро возрастающим числом публикуемых сообщений по перекиси водорода. И то, и другое показывает, насколько необходима критическая сводка всех имеющихся данных по перекиси водорода. [c.7]
Для невоенных целей наибольшее значение имело и имеет потребление перекиси водорода в качестве отбеливающего вещества. Отбелка веществ животного происхождения чаще всего осуществляется перекисью водорода. При отбелке целлюлозных веществ перекись водорода постепенно вытесняет гипохлориты или дополняет их. Так, в 1954 г. основная масса хлопчатобумажных тканей в США отбелена перекисью водорода. За последние несколько лет стали широко применять перекись иатрия и перекись водорода для отбелки древесной массы, а частично и химической целлюлозы как дополнение к обработке хлором и гинохлоритом. Все большее количество перекиси водорода. применяют и в ироизводстве органических химических веществ. Во время второй мировой войны очень большие количества концентрироваипой перекиси водорода были использованы в качестве ракетного топлива (особешю в Германии). Эти виды применения, так же как и другие, описаны ниже более подробно. [c.474]
ЛИЯ, образуя перегретый пар и кислород. Этот пар приводил в движение турбины на У-2. Возможно также применение брикетных катализаторов, состоящих из цемента и перманганатов. Такие катализаторы могут вызвать разложение Н2О2 в количестве, в 1000 раз превышающем их вес. Перекись водорода применяется также с различными топливами как главный окислитель, например с метиловым спиртом, с гидразин-гидратом и катализатором в виде медно-цианистого калия. Перекись можно применять с керосином (парафином), но при этом зажигание должно производиться от внешнего источника. [c.235]
Концентрированная перекись водорода—80—90%-ная Р12О2. В настоящее время применяется главным образом как вспомогательное однокомпонентное топливо для приведения в действие турбонасосов ракет известно ее применение в стартовых двигателях для самолетов, указывается на возможность применения перекиси водорода в авиационных ЖРД- [c.385]
chem21.info
Перекись водорода h3O2 — прозрачная бесцветная жидкость, заметно более вязкая, чем вода, с характерным, хотя и слабым запахом. Безводную перекись водорода трудно получить и хранить, и она является слишком дорогой для использования в качестве ракетного топлива. Вообще, дороговизна — один из главных недостатков перекиси водорода. Зато, по сравнению с другими окислителями, она более удобна и менее опасна в обращении. Склонность перекиси к самопроизвольному разложению традиционно преувеличивается. Хотя мы и наблюдали снижение концентрации с 90% до 65% за два года хранения в литровых полиэтиленовых бутылках при комнатной температуре, но в больших объёмах и в более подходящей таре (например, в 200-литровой бочке из достаточно чистого алюминия) скорость разложения 90%-й перекиси составила бы менее 0,1% в год. Плотность безводной перекиси водорода превышает 1450 кг/м3, что значительно больше, чем у жидкого кислорода, и немногим меньше, чем у азотнокислых окислителей. К сожалению, примеси воды быстро уменьшают её, так что 90%-й раствор имеет плотность 1380 кг/м3 при комнатной температуре, но это всё ещё очень неплохой показатель. Перекись в ЖРД может применяться и как унитарное топливо, и как окислитель — например, в паре с керосином или спиртом. Ни керосин, ни спирт не самовоспламеняются с перекисью, и для обеспечения зажигания в горючее приходится добавлять катализатор разложения перекиси — тогда выделяющегося тепла достаточно для воспламенения. Для спирта подходящим катализатором является ацетат марганца (II). Для керосина тоже существуют соответствующие добавки, но их состав держится в секрете. Применение перекиси как унитарного топлива ограничено её сравнительно низкими энергетическими характеристиками. Так, достигаемый удельный импульс в вакууме для 85%-й перекиси составляет лишь порядка 1300…1500 м/с (для разных степеней расширения), а для 98%-й — примерно 1600…1800 м/с. Тем не менее, перекись была применена сначала американцами для ориентации спускаемого аппарата космического корабля «Меркурий», затем, с той же целью, советскими конструкторами на СА КК «Союз». Кроме того перекись водорода используется как вспомогательное топливо для привода ТНА — впервые на ракете V-2, а затем на её «потомках», вплоть до Р-7. Все модификации «семёрок», включая самые современные, по-прежнему используют перекись для привода ТНА. В качестве окислителя перекись водорода эффективна с различными горючими. Хотя она и даёт меньший удельный импульс, нежели чем жидкий кислород, но при применении перекиси высокой концентрации значения УИ превышают таковые для азотнокислотных окислителей с теми же горючими. Из всех ракет-носителей космического назначения лишь одна использовала перекись (в паре с керосином) — английская «Black Arrow». Параметры её двигателей были скромны — УИ двигателей I ступени немногим превышал 2200 м/с у земли и 2500 м/с в вакууме, — так как в этой ракете использовалась перекись всего лишь 85% концентрации. Сделано это было из-за того, что для обеспечения самовоспламенения перекись разлагалась на серебряном катализаторе. Более концентрированная перекись расплавила бы серебро. Несмотря на то, что интерес к перекиси время от времени активизируется, перспективы её остаются туманными. Так, хотя советский ЖРД РД-502 (топливная пара — перекись плюс пентаборан) и продемонстрировал удельный импульс 3680 м/с, он так и остался экспериментальным. В наших проектах мы ориентируемся на перекись ещё и потому, что двигатели на ней оказываются более «холодными», чем аналогичные двигатели с таким же УИ, но на других топливах. Например, продукты сгорания «карамельного» топлива имеют почти на 800° большую температуру при том же достигаемом УИ. Это связано с большим количеством воды в продуктах реакции перекиси и, как следствие, с низкой средней молекулярной массой продуктов реакции.
обновлено 11.10.2007
www.mosgird.ru
http://mosgird.ru/
is2006.livejournal.com
Использование: в двигателях внутреннего сгорания, в частности в способе обеспечения улучшенного сгорания топлив с участием углеводородных соединений. Сущность изобретения: в способе предусматривается введение в композицию 10-80 об. % перекиси или пероксо-соединения. Композицию вводят отдельно от топлива. 1 з.п. ф-лы, 2 табл.
Изобретение относится к способу и жидкой композиции для инициирования и оптимизации сжигания углеводородных соединений и снижения концентрации вредных соединений в выхлопных газах и выбросах, где жидкую композицию, содержащую пероксид или пероксо-соединение, подают в воздух сжигания или в топливновоздушную смесь.
Предпосылки к созданию изобретения. В последние годы все большее внимание уделяется загрязнению окружающей среды и высокому энергорасходу особенно из-за драматической гибели лесов. Однако выхлопные газы всегда были проблемой населенных центров. Несмотря на постоянное совершенствование моторов и нагревательной техники с меньшими выбросами или выхлопными газами, все возрастающее число автомобилей и установок сжигания привело к общему увеличению количества выхлопных газов. Первичной причиной загрязнения выхлопных газов и большого расхода энергии является неполное сгорание. Схема процесса сжигания, эффективность системы зажигания, качество топлива и топливновоздушной смеси определяет эффективность сжигания и содержание несгоревших и опасных соединений в газах. Для снижения концентрации этих соединений применяют различные способы, например рециркуляцию и хорошо известные катализаторы, приводящие к дожиганию выхлопных газов вне зоны основного сжигания. Сжигание - это реакция соединения с кислородом (О2) под действием теплоты. Такие соединения, как углерод (С), водород (Н2), углеводороды и серы (S) генерируют достаточно теплоты для поддержания своего горения, а например азот (N2) требует подвода теплоты для окисления. При высокой температуре 1200-2500оС и достаточном количестве кислорода достигается полное сгорание, где каждое соединение связывает максимальное количество кислорода. Конечными продуктами являются СО2(двуокись углерода), Н2О (вода), SО2 и SО3 (оксиды серы) и иногда NО и NО2 (оксиды азота, NОх). Оксиды серы и азота ответственны за закисление окружающей среды, их опасно вдыхать и особенно последние (NОх) поглощают энергию сгорания. Можно также получать холодные пламена, например голубое колеблющееся пламя свечи, где температура лишь около 400оС. Окисление здесь не является полным и конечными продуктами могут быть Н2О2(перекись водорода), СО (моноокись углерода) и возможно С (копоть). Два последних указанных соединения, как и NО, вредны и могут давать энергию при полном сгорании. Бензин - это смесь углеводородов сырой нефти с температурами кипения в интервале 40-200оС. Он содержит около 2000 различных углеводородов с 4-9 атомами углерода. Подробный процесс сжигания очень сложен и для простых соединений. Молекулы топлива разлагаются на более мелкие фрагменты, большинство из которых представляют собой так называемые свободные радикалы, т.е. нестабильные молекулы, быстро реагирующие, например, с кислородом. Наиболее важными радикалами являются атомарный кислород О, атомарный водород Н и гидроксильный радикал ОН. Последний особенно важен для разложения и окисления топлива как за счет прямого присоединения, так и отщепления водорода, в результате чего образуется вода. В начале инициирования сжигания вода вступает в реакцию h3O+M ___ H+CH+M где М - другая молекула, например азот, либо стенка или поверхность искрового электрода, с которой сталкивается молекула воды. Поскольку вода - это очень стабильная молекула, то для ее разложения требуется очень высокая температура. Лучшей альтернативой является добавление перекиси водорода, которая разлагается аналогичным образом h3O2+M ___ 2OH+M Эта реакция протекает намного легче и при более низкой температуре, особенно на поверхности, где поджигание топливно-воздушной смеси протекает легче и более контролируемым образом. Дополнительным положительным эффектом поверхностной реакции является то, что перекись водорода легко реагирует с копотью и смолой на стенках и свече зажигания с образованием диоксида углерода (СО2), что приводит к чистке электродной поверхности и лучшему зажиганию. Вода и перекись водорода сильно понижают содержание СО в выхлопных газах следующей схеме 1) CO+O2___ CO2+O : инициирование 2) O: +h3O ___ 2OH разветвление 3) OH+CO ___ CO2+H рост 4) H+O2___ OH+O ; разветвление Из реакции 2) видно, что вода играет роль катализатора и затем образуется снова. Поскольку перекись водорода приводит к во много тысяч раз более высокому содержанию ОН- радикалов, чем вода, то стадия 3) значительно ускоряется, приводя к удалению большей части образующегося СО. В результате освобождается дополнительная энергия, помогающая поддерживать горение. NО и NО2 являются высокотоксичными соединениями и приблизительно в 4 раза более токсичны, чем СО. При остром отравлении повреждаются легочные ткани. NО является нежелательным продуктом сгорания. В присутствии воды NО окисляется до НNО3 и в этой форме вызывает приблизительно половину закисления, а другая половина обусловлена Н2SО4. Кроме того, NОх могут разлагать озон в верхних слоях атмосферы. Большая часть NО образуется в результате реакции кислорода с азотом воздуха при высоких температурах и, следовательно, не зависит от состава топлива. Количество образующихся ПОх зависит от продолжительности поддержания условий сжигания. Если снижение температуры проводится очень медленно, то это приводит к равновесию при умеренно высоких температурах и к относительно низкой концентрации NО. Следующие способы можно использовать для достижения низкого содержания NО. 1. Двухстадийное сжигание обогащенной топливом смеси. 2. Низкая температура сжигания за счет: а) большого избытка воздуха, b) сильного охлаждения, с) рециркуляции газов сжигания. Как часто наблюдается при химическом анализе пламени, концентрация NО в пламени более высока, чем после него. Это процесс разложения О. Возможная реакция: СH3+ NO ___ ... H+h3O Таким образом, образование N2 поддерживается условиями, дающими высокую концентрацию CH3 в горячих обогащенных топливом пламенях. Как показывает практика, топлива, содержащие азот, например в форме таких гетероциклических соединений, как пиридин, дают большее количество NО. Содержание N в различных топливах (приблизительное), %: Cырая нефть 0,65 Асфальт 2,30 Тяжелые бензины 1,40 Легкие бензины 0,07 Уголь 1-2 В SE-В-429.201 описана жидкая композиция, содержащая 1-10 об.% перекиси водорода, а остальное - вода, алифатический спирт, смазочное масло и возможно ингибитор коррозии, где указанную жидкую композицию подают в воздух сжигания или в топливовоздушную смесь. При таком низком содержании перекиси водорода образующееся количество ОН-радикалов не достаточно как для реакции с топливом, так и с СО. За исключением составов, приводящих к самовозгоранию топлива, достигаемый здесь положительный эффект мал по сравнению с добавлением одной воды. B DЕ-А-2.362.082 описано добавление окисляющего агента, например, перекиси водорода, при сжигании, однако перекись водорода разлагают на воду и кислород с помощью катализатора перед ее вводом в воздух сжигания. Цель и наиболее важные признаки данного изобретения. Целью данного изобретения является улучшение сжигания и снижения выброса вредных выхлопных газов при процессах горения, вовлекающих углеводородные соединения, за счет улучшенного инициирования горения и поддержания оптимального и полного сгорания в таких хороших условиях, что содержание вредных выхлопных газов сильно снижается. Это достигается тем, что в воздух сжигания или в воздушно-топливную смесь подают жидкую композицию, содержащую пероксид или пероксо-соединение и воду, где жидкая композиция содержит 10-80 об.% пероксида или пероксо-соединения. В щелочных условиях перекись водорода разлагается на гидроксильные радикалы и пероксидные ионы по следующей схеме: h3O2+HO2___ HO+O2+h3O Образующиеся гидроксильные радикалы могут реагировать друг с другом, с пероксидными ионами или с перекисью водорода. В результате этих представленных ниже реакций образуются перекись водорода, газообразный кислород и гидроперекисные радикалы: HO+HO ___ h3O2 HO+O ___3O2+OH- HO+h3O2___ HO2+h3O Известно, что рКа пероксидных радикалов равно 4,88 0,10 и это означает, что все гидропероксирадикалы диссоциируют до пероксидных ионов. Пероксидные ионы могут также реагировать с перекисью водорода, друг с другом или захватывать образующийся синглетный кислород. O+h3O2___ O2+HO+OH- O+O2+h3O ___IO2+HO-2+OH- O+IO2 ___3O2+O+22 ккал. Таким образом образуется газообразный кислород, гидроксильные радикалы, синглетный кислород, перекись водорода и триплетный кислород с выделением энергии 22 ккал. Подтверждено также, что ионы тяжелых металлов, присутствующие при каталитическом разложении перекиси водорода, дают гидроксильные радикалы и пероксидные ионы. Имеются сведения о константах скорости, например следующие данные для типичных алканов нефти. Константы скоростей взаимодействия н-октана с Н, О и ОН. к = А ехp/E/RT Реакция А/см3/моль:c/ E/кДж/моль/ н-С8Н18 + Н 7,1:1014 35,3 +О 1,8:1014 19,0 +ОН 2,0:1013 3,9 Из этого примера мы видим, что атака ОН-радикалами протекает быстрее и при более низкой температуре, чем Н и О. Константа скорости реакции СО + + ОН _ СО2 + Н имеет необычную температурную зависимость в силу отрицательной энергии активации и высокого температурного коэффициента. Ее можно записать следующим образом: 4,4 х 106 х Т1,5ехр/3,1/RT. Скорость реакции будет почти постоянной и равной около 1011 см3/моль сек при температурах ниже 1000оК, т.е. вплоть до комнатной температуры. Выше 1000оК скорость реакции возрастает в несколько раз. В силу этого реакция полностью доминирует в превращении СО в СО2 при сжигании углеводородов. В силу этого раннее и полное сгорание СО улучшает термическую эффективность. Пример, иллюстрирующий антагонизм между О2 и ОН - это реакция Nh4-h3О2-NО, где добавление Н2О2 приводит к 90% снижения NОх в бескислородной среде. Если же О2 присутствует, то даже при лишь 2% ПОхснижение сильно уменьшается. В соответствии с данным изобретением для генерирования ОН-радикалов используют Н2О2, диссоциирующую приблизительно при 500оС. Их время жизни равно максимум 20 мсек. При нормальном сжигании этанола 70% топлива расходуется на реакцию с ОН-радикалами и 30% - с Н-атомами. В данном изобретении, где уже на стадии инициирования горения образуются ОН-радикалы, резко улучшается сжигание за счет немедленной атаки топлива. При добавлении жидкой композиции с высоким содержанием перекиси водорода (выше 10%) имеется достаточно ОН-радикалов для немедленного окисления образующегося СО. При более низких содержаниях перекиси водорода образующихся ОН-радикалов недостаточно для взаимодействия как с топливом, так и с СО. Жидкая композиция подается таким образом, что отсутствует химическая реакция в промежутке между контейнером с жидкостью и камерой сгорания, т.е. разложение перекиси водорода на воду и газообразный кислород не протекает, и жидкость без изменений достигает непосредственно зоны сгорания или предкамеры, где смесь жидкости и топлива поджигается вне основной камеры сгорания. При достаточно высокой концентрации перекиси водорода (около 35%) может протекать самовозгорание топлива и поддержание горения. Поджигание смеси жидкости с топливом может протекать путем самовозгорания или контакта с каталитической поверхностью, при котором запал или что-то подобное не нужно. Поджигание может осуществляться через тепловую энергию, например, запал накапливающее тепло, открытое пламя и т.п. Смешение алифатического спирта с перекисью водорода может инициировать самовозгорание. Это особенно полезно в системе с предварительной камерой, где можно не допускать смешения перекиси водорода со спиртом до достижения предварительной камеры. Если снабдить каждый цилиндр инжекторным клапаном для жидкой композиции, то достигается очень точное и адаптированное для всех сервисных условий дозирование жидкости. С помощью контролирующего устройства, регулирующего инжекторные клапаны, и различных датчиков, соединенных с мотором, подающих в контролирующее устройство сигналы о положении вала двигателя, скорости мотора и нагрузке и, возможно, о температуре поджига, можно достичь последовательной инжекции и синхронизации открывания и закрывания инжекторных клапанов и дозирования жидкости не только зависимо от нагрузки и нужной мощности, а также со скоростью мотора и температурой инжектируемого воздуха, что приводит к хорошему движению во всех условиях. Жидкая смесь в некоторой степени заменяет подачу воздуха. Было проведено большое число испытаний для выявления различий в эффекте между смесями воды и перекиси водорода (23 и 35% соответственно). Нагрузки, которые выбраны, соответствуют движению по высокоскоростной трассе и в городах. Испытывался мотор В20Е с водяным тормозом. Мотор прогревался перед испытанием. При высокоскоростной нагрузке на мотор выделение NОх, СО и НС повышается при замене перекиси водорода на воду. Содержание NОхпонижается при увеличении количества перекиси водорода. Вода также снижает содержание NОх, однако при этой нагрузке требуется в 4 раза больше воды, чем 23% перекиси водорода для того же снижения содержания NОх. При нагрузке движения по городу сначала подают 35% перекиси водорода, при этом скорость и момент мотора несколько возрастают (20-30 оборотов в мин/0,5-1 нМ). При переходе на 23% перекись водорода момент и скорость мотора снижаются при одновременном возрастании содержания NОх. При подаче чистой воды трудно поддерживать вращение мотора. Содержание НС резко возрастает. Таким образом, перекись водорода улучшает сгорание, одновременно снижая содержание NОх. Испытания, проведенные в Шведской Инспекции моторов и транспорта на моделях SAAB 900i и VoIvo 760 Тurbo с примешиванием и без примешивания к топливу 35% перекиси водорода дали следующие результаты по выделению СО, НС, NОх и СО2. Результаты представлены в % величин, полученных при использовании перекиси водорода, относительно результатов без использования смеси (таблица 1). При испытании на Volvo 245 G14FK/84 при холостом ходе содержание СО было равно 4% и содержание НС 65 ч/млн без пульсации воздуха (очистка выхлопного газа). При смешении с 35% раствором перекиси водорода содержание СО снизилось до 0,05% , а НС-содержание - до 10 ч/млн. Время зажигания было равно 10о и обороты на холостом ходу были равны 950 об/мин в обоих случаях. В испытаниях, проведенных в Норвежском морском технологическом исследовательском институте А/S в Трондхайме выделение НС, СО и NОхпроверяли для Volvo 760 Turbo после ЕСЕ-регулирования N 15.03 с прогретым мотором, начиная с использования или без использования 35% раствора перекиси водорода при сжигании (таблица 2). Выше указано использование только перекиси водорода. Аналогичный эффект может быть достигнут также с другими перекисями и пероксо-соединениями, как неорганическими, так и органическими. Жидкая композиция, кроме перекиси и воды, может содержать также до 70% алифатического спирта с 1-8 атомами углерода и до 5% масла, содержащего ингибитор коррозии. Количество жидкой композиции, примешиваемое в топливу, может варьироваться от нескольких десятых долей процента жидкой композиции от количества топлива до нескольких сотен %. Большие количества используются, например, для трудновоспламеняемых топлив. Жидкую композицию можно использовать в двигателях внутреннего сгорания и в других процессах сжигания с участием таких углеводородов, как нефть, уголь, биомасса и пр., в сжигающих печах для более полного сгорания и снижения содержания вредных соединений в выбросах.Формула изобретения
1. СПОСОБ ОБЕСПЕЧЕНИЯ УЛУЧШЕННОГО СГОРАНИЯ С УЧАСТИЕМ УГЛЕВОДОРОДНЫХ СОЕДИНЕНИЙ, при котором в воздух для горения или топливовоздушную смесь соответственно вводят жидкую композицию, содержащую перекись или пероксосоединения и воду, отличающийся тем, что, с целью уменьшения содержания вредных соединений в выхлопных газах-выбросах, жидкая композиция содержит 10 - 60 об. % перекиси или пероксосоединения и ее вводят непосредственно и отдельно от топлива в камеру сгорания без предварительного разложения перекиси или пероксосоединения или ее вводят в предварительную камеру, где смесь топлива и жидкой композиции воспламеняют вне основной камеры сгорания. 2. Способ по п.1, отличающийся тем, что вводят алифатический спирт, содержащий 1 - 8 атомов углерода, в предварительную камеру отдельно.РИСУНКИ
Рисунок 1, Рисунок 2PC4A - Регистрация договора об уступке патента Российской Федерации на изобретение
Номер и год публикации бюллетеня: 31-2002
(73) Патентообладатель:ГРИН ГЛОБАЛ ЭНЕРДЖИ АС (NO)
Договор № 15154 зарегистрирован 25.09.2002
Извещение опубликовано: 10.11.2002
www.findpatent.ru