ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Микроволновая печь. Двигатель из магнетрона


Как из колокольни сделать магнетрон. Пособие для чайников.

А может и не только магнетрон.

Время идет. Некогда не складываемые вместе запчасти великолепно притянулись к друг другу. И уже никогда не смогут быть раздельно.

Началось всё достаточно, уже можно сказать, давно. С цикла коротких постов в которых всё пытались как-то пошатать устои возможности или невозможности применения предками видов вооружений, большую часть которых ныне мы считаем за фантастику.Цикл статей назывался- По мотивам «И была Страна до России».

В общей сложности получилось 18-ть постов с пояснительными ответвлениями. Набралось достаточно большое число изображений, которые трактовать, как историки, рука не поднимается. Чаша весов давно опрокинулась в сторону, что явно предки пользовались вооружением как-то не по "назначению" историков. Пересказывать весь цикл статей не вижу смысла, но дальше двигаться будем на частичном их использовании.

С нашей стороны были попытки более гладкого уложения набранного материала. В качестве примера:Готовы ли мы принимать правду

Понятно, что царь-пушка работала совместно с царь-колоколом и что они являются запчастями одной единой системы.Понятно, что колокольня Ивана Великого выполняла роль корпуса. Но внимания разбору назначения систем элементов корпуса колокольни было уделено мало. Следует чуть расширить.

Получили мы такой вот гибрид в предыдущих изысканиях. Странным образом габариты запчастей именуемых "царь-пушка" и "царь-колокол", совпали. То есть, сомнений, что это было некогда единым целым, у нас не осталось.Но если присмотреться к схеме, надо бы заняться более корректной расстановкой элементов.

Рисунок нам схематично показывает Гласс Грааяля в работе.Пресловутое СВЧ которому тогда, как нас уверяют историки, взяться было неоткуда. Точнее, просто по умолчанию считается, что электричество тогда знать не могли и по умолчанию возможность его использования нашими предками попусту не рассматривается. Ибо это еретическое направление, которые выбивает самые фундаментальные истины из фундамента. Как так, мол, было, а академики про то, что было, ничего нам не написали. Ну да ладно. Не сказали и бог с ними.

Колокольня.

Изображение кликабельно.

У кого ни будь есть объяснение наличия двух лестниц? От зачем они две нужны? К чему эти излишества?Восмигранное образование внутри. Так то вроде все логично, восемь стен снаружи, столько же изнутри. А выборки полукругом для красоты а вон те прорези узенькие для освещения внутреннего пространства.

Красиво.Хорошо видно основание полукруглой ниши с малопонятной прорезью.Пол в процессе реставрации явно обновили, и не видно, что там было по центру данного помещения. А судя по первоначальной схеме этажа, там что-то должно быть.

Ряд изображений отсюда:http://www.future.museum.ru/part03/belltower.htm

Не, определенно этот ярус колокольни что-то напоминает.

Да не может быть. Или может.Тот кусок трубы, что все знают как царь пушка есть всего лишь катод магнетрона этой системы?

Дружбу с графическими редакторами не водил. Первый опыт.Стояло это как-то так.

Леонардо соврать не даст.Листая старые трактаты. Часть 12. http://pro-vladimir.livejournal.com/75663.html

У него вон когда уже было изображено, вертикальный "пушечный" ствол в здании в окружении тороидальных трансформаторов. Стоит себе на шарнирной опоре, что есть у многих стволов. Даже можно сказать у большинства стволов.

dmitrijan: Пимпочка напоминает ручку крышки, но жутко неудобная для этого. Но в целом обычный шарнир, для поворачивания. Такой и мы ставим на не очень массивных системах. На более массивных стоят с боков "подвесы", на очень массивных применяются зеркала, что перенаправляют. Ведь вот в лазерных принтереах вращают зеркало, а не излучающий диод.

dmitrijan: Чем не подходит аля александровский столп?dmitrijan: Местами дырка под него есть, местами круговая лестница, местами что-то торчит. По сути это труба, ей же могут быть стены, с вьющейся вдоль них лестницей.dmitrijan: Достаточно обеспечить волновод, канал между нижней частью и верхней, как колба лампы, где наверху анод, внизу катод, между ними сетки и шевелящаяся масса, что модулирует сигнал.

dmitrijan: У классического кинескопа - длинная труба, а "частицы", ударившись в люминофор, отлетают к анноду, что сбоку, в идеале по кругу и ниже самого экрана.dmitrijan: Ставим кинескоп на попа - внизу катод - трубка с излучателем. Где-то выше сетки с фокусировкой и массой приблуд для магнитиков. Выше отклоняющие обмотки висят кучей, выше на самом верху экран, ввиде сферы, на котором изображение, только мы смотрим его снаружи, но ничего не мешает смотреть изнутри. И всё туда попавшее и нарисовавшее, отлетает вниз и в стороны, ионизируя анод по краям кинескопа.

«Энергию следует передавать при помощи пучка электронов…» — пишет Вадим.http://coollib.net/b/264900/read#t8Юный техник, 2009 № 08"Однако Вадим, к сожалению, не учел так называемый пинч-эффект. Поток электронов можно представить себе как множество проводников, по которым в одном направлении течет ток. Они, как известно, притягиваются друг к другу. В результате поток электронов начинает сжиматься. Но это сжатие происходит неравномерно по длине потока. В результате поток скручивается и рвется на части."

dmitrijan:И такое скрученное "дуло" после валяется, а историки чешут репу и уверяют, что огромный бронзовый ствол скрутило при помощи пороха.Еще мы тут сволы все рассматривали:Осмотр "пушечных" стволов. http://pro-vladimir.livejournal.com/78712.htmlВот это две проушины, что в привеликом множестве есть на бронзовых стволах. И сделаны они в аккурат рядом с "запальным" отверстием. Мне не удалось обнаружить ни одного изображения, что туда крепилось. Есть версия, что это делалось для закрытия запального отверстия, чтоб уберечь от влаги. Мол, крышечка и всё. В свете использования стволов для катода Электронно лучевой трубки они вполне себе подходят для контактного крепления проводов.И у царь-пушки эти проушины имеются в том числе.

Электронно лучевая трубка?

http://polymus.ru/ru/pop-science/news/vse-elektrony--odin-elektron/

Волновая техника? Вы пробовали листать учебные пособия по волновой технике?Очень удивитесь от количества весьма знакомых элементов. Размеры правда разные, от того сложно себе представить, кинескоп в виде какого храмового комплекса. С экраном под куполом. С нарисованными "застывшими" сценами, некогда показываемо фильма. И внутри этого всего кто-то ходит. Свечки жгут. Звон выбивают из запчастей в сломанном корпусе тогдашнего телевизора. Вы можете себе представить, как в пополаме катаются, глядя на всё это, те, кто эти системы храмов и колоколен расставлял по этой территории.

Вернемся к лестницам. Излишняя винтовая лестница с уровня установки катода царь-пушки- не может ли это быть элемент системы?Если посмотреть вот на такую картинку:

Похожие элементы. Понятно, что система колокольни должна иметь управление. А раз в её основе лежит колебательный контур с катодом царь-пушки, то для изменения параметров должен быть конденсатор. Так эта винтовая лестница не может служить в роли конденсатора? Переменного такого.

После всего этого уже не так бредово смотрятся и остальные изображения.

Листая старые трактаты. Часть 16. http://pro-vladimir.livejournal.com/82646.html

От другой ярус колокольни Ивана Великого.

То есть, все эти ярусы так или иначе, могли как и излучать так и светить. На некоторых ярусах раструбы имеют круглое сечение. Неужели туда можно было вставить линзы?

То что царь-колокол в рабочем положении установлен юбкой вверх на демпфирующих пружинах короны колокола и что все свои трещены он заработал именно в таком положении, Мы рассматривали это тут:http://pro-vladimir.livejournal.com/2301.html По мотивам «И была Страна до России» часть 6.

У колокола, диаграмма излучения идёт от боковых поверхностей, и если он звучит как нынче принято, то звук уходит в небо, ибо фокус изогнутости поверхностей смотрит вверх. А если его перевернуть, то расходится вниз, покрывая этаким зонтиком округу, соответственно логично поднять выше, дабы било дальше.

Это всё лежит себе.А между делом наши современники во многом, сами того не зная, подходят к этапу воссоздания тех технических элементов, что давно были. Открывают заново так сказать.Вот пример:Дальнодействующее акустическое устройство (LRAD – «Long Range Acoustic Device») является устройством контроля толпы, и разработано American Technology Corporation. Создано в 2000 году для защиты кораблей от нападения террористов, пиратов, воинственных демонстрантов. Между тем, оно совершенно безопасно для самого экипажа: эхо в море не грозит. Используется звук низкой частоты, дабы не повредить ухо. Для воздействия на людей используется же сила звука. LRAD поражает людей мощным звуком в 150 децибел, для сравнения: шум двигателей реактивного самолета составляет около 120 децибел, шум в 130 децибел может повредить слуховой аппарат человека.

В соответствии с характеристиками завода-изготовителя, оборудование весит 45 фунтов (20 кг) и может излучать звук в 30° (только на высоких частотах, 2,5 kHz) из устройства 33 дюймов (83 см) в диаметре. На максимальной громкости, она может излучать сигнал предупреждения о том, что это 146 dBSPL (1000 W/m²) на 1 метр, уровня, который способен перманентно нанести ущерб слуху, и выше нормального человека до порога боли (120–140 дБ). Изменение предупреждающего сигнала на 300 метров составляет менее 90 дБ.

Закольцовываем излучающую антенну сего девайса как юбку у колокола и получаем...ба! так это мы уже знаем. Поле, которое накрывает местность этаким зонтиком с колокольни. Правда характеристика излучения была видать несколько отличной.Так вон чем была покрыта вся территория Русей Тартарии. Вот чем столбили-то. И реально иноземцев селили в слободы, то есть, места со слабым воздействием защитного поля колоколен, чтобы те могли пообвыкнуть.

Кстати. Попалось еще тут. Египтологи оценят.http://www.findpatent.ru/patent/60/609405.html

Элемент настройки сверхвысокочастотного тракта, содержащий винт с продольной прорезью, отличающийся тем, что, с целью обеспечения плавного изменения усилия стопорения, винт выполнен из упругого материала полукруглого профиля в виде петли, в которой размещена пластина с возможностью перемещения вдоль петли.Изобретение относится к радиотехнике и может использоваться в волноводах, сверхвысокочастотных (СВЧ) фильтрах и резонаторах.Известен элемент настройки сверхвысокочастотного тракта, содержащий винт с продольной прорезью [1] Однако в известном элементе настройки не обеспечивается плавного изменения усилия стопорения.Целью изобретения является обеспечение плавного изменения усилия стопорения.Для этого в элементе настройки СВЧ тракта, содержащем винт с продольной прорезью, винт выполнен из упругого материала полукруглого профиля в виде петли, в которой размещена пластина с возможностью перемещения вдоль петли.На чертеже показан предложенный элемент настройки, общий вид.Элемент настройки СВЧ тракта содержит винт 1 с продольной прорезью, выполненный из упругого материала полукруглого профиля в виде петли, в которой размещена пластина 2 с возможностью перемещения вдоль петли. Винт 1 размещен в резьбовой втулке 3 отрезка волновода 4.Элемент настройки работает следующим образом.Полное сопротивление отрезка волновода 4 изменяется до нужного значения винтом 1, который для этого приводится во вращение. При этом изменяется глубина погружения винта 1 в полость отрезка волновода 4. За счет упругости материала, из которого выполнен винт 1, возникает поперечное усилие на резьбу втулки 3, что обеспечивает стабильность положения винта 1 в отрезке волновода 4.С помощью пластины 2, имеющей в области винта 1 профиль клина, регулируют величину поперечного усилия на резьбу втулки 3. Перед настройкой пластины 2 располагают в удалении от отрезка волновода 4, что уменьшает поперечное усилие на резьбу втулки 3. По окончании настройки пластину 2 сдвигают в сторону отрезка волновода 4. Этим осуществляют плавное стопорение настроечного винта 1.Формула изобретенияЭлемент настройки сверхвысокочастотного тракта, содержащий винт с продольной прорезью, отличающийся тем, что, с целью обеспечения плавного изменения усилия стопорения, винт выполнен из упругого материала полукруглого профиля в виде петли, в которой размещена пластина с возможностью перемещения вдоль петли.

Снова про колокольню

dmitrijan: Так цеж не балки, а резонаторы! Они выходят на балки на балкон, где звонница, где винтовая лестница по центру. Так обычно фильтруют или модулируют звук по частотам. Балки либо вибрируют, либо резонируют под свою частоту, соотвественно выдавая сигнал дальше.dmitrijan: Аха, причём зачем-то с целями в центр.dmitrijan: Как смотровые окна или стравливающие отверстия. А может как впрыск.dmitrijan: Слишком узкие для обычных окон, но достаточные для маркерных отверстий, чтобы не мешать процессу.dmitrijan: Почему-то нет "окошка" такого на 3-м витке.dmitrijan: Зато на 3-м витке в колбе есть квадратные отверстия под балки. Чем-то напоминает управляющие сетки в лампах.dmitrijan: Непомерно узкие и длинные проёмы "окон", причём канты на них лишь по наружней стороне, как если бы туда вставляли линзы. А вот в другие проёмах кантов нету.

dmitrijan: "Окна" второго яруса колбы, имеют круглые отверстия, причём торчат они прямо в парапет, и не имеют ровного подъёма, но при этом отличаются двойным кантом. Как в оптике делают на 2-е линзы.dmitrijan: А винтовая в стене это никакая не лестница. Это переменный конденсатор, где вокруг оси разворачиваются пластины. Только они сильно загрязнены. Если поколупать, то там внутри каждой ступени наверняка есть что-то типа металла.

Владимир Мамзерев. 11.09.2014 г.

pro-vladimir.livejournal.com

Магнетрон из микроволновки и СВЧ оружие

Магнетрон из микроволновки Основным элементом обычной микроволновки является магнетрон, вакуумный прибор для генерирования СВЧ-излучения. Его старшие родственники стоят во всяких радарах и системах радиолокации. Именно за счёт испускаемого им СВЧ микроволновки разогревают еду: частота подобрана так, что вызывает резонансные явления в молекулах воды, которые содержатся почти в любой пище, и те начинают разогреваться. Из-за большой мощности магнетрона нагрев оказывается весьма ощутимым, что и даёт искомый эффект.

Магнетрон из этой самой печки, понятно, можно извлечь. Выглядит он как вот такая вот забавная штуковина с мощным радиатором. Торчащий сверху штырь — собственно СВЧ-излучатель, от которого и прёт излучение. Типичная мощность — около 700-800 ватт, что, надо сказать, очень и очень дохрена много и легко вскипятит незрелые мозги (а точнее, глаза) попавшего в фокус такого излучателя. К счастью, от штыря магнетрона излучение всенаправленное и потому относительно безопасно, если не подходить слишком близко.

Магниты и собственно магнетрон Если содрать радиатор, то останется довольно небольшая меднокерамическая хренька с двумя магнитами. Если же разбирать и дальше, и распилить её пополам, внутри окажется довольно любопытная ромашковидная структура. За конкретными принципами её действия и генерации там микроволн отсылаю в более специализированные источники, здесь этому уже не место. Разрезанный магнетрон Кстати, интересная особенность магнетрона: на накал (катод) у него идёт минус, а корпус, он же анод — заземляется. Из той же микроволновки можно полностью выдрать и питание для магнетрона — МОТ, конденсатор и диод, и, собственно, подключить — так же, как он был подключен в печке. Накальная обмотка МОТа питает накал, корпуса МОТа и магнетрона соединены, конденсатор и диод образуют шифтер, причём подключенный горячим выводом (точка соединения кондёра и диода) к одному из накальных выводов магнетрона (именно поэтому накальная обмотка у мота выполнена высоковольным проводом).

[Not a valid template] При включениях следует таки соблюдать осторожность, надолго не врубать и беречь глаза, особенно при запусках в помещениях. Если поставить наверх вывода острый кусочек металла, можно получить факел на 2.4 ГГц. Только обгорает этот вывод очень быстро.

[Not a valid template] Но просто развлекаться с магнетроном довольно скучно. Куда интереснее приспособить к нему антенну для получения более или менее направленного потока излучения. Идеальной была бы параболическая тарелка. Вот только диаметр требуется метров в пять. Чуть хуже, но тоже неплоха антенна типа «рупор», но её изготовление довольно утомительно и она оказывается изрядно громоздкой, хотя, конечно, меньше параболы. Я в итоге остановился на баночной антенне (гуглим «cantenna»), снискавшей любовь у любителей усиления вайфая. [Not a valid template] Поскольку магнетрон работает ровно на той же частоте, что и вайфай, можно просто считать банку как для вайфай-антенны. Усиление от неё не очень велико, форма потока тоже оставляет желать лучшего, но зато ей можно очень приятственно засвечивать газоразрядные приборы, кипятить глаза мышам небольшие объёмы воды, и сбрасывать соседский wifi-роутер. Кстати, в метре от банки антенны вырубается фотоаппарат. Для лучшего охлаждения поставлен кулер к магнетрону, ибо последний изрядно нагревается во время работы.

[Not a valid template] [Not a valid template] [Not a valid template]

СВЧ-пушка и коробка ИН-19А YouTube Трейлер

 

YouTube Трейлер Метки отсутствуют.

teslacoil.ru

1.6.1. Источник питания магнетрона. Микроволновые печи нового поколения [Устройство, диагностика неисправностей, ремонт]

1.6.1. Источник питания магнетрона

На рис. 1.13 представлена типовая электрическая схема источника питания магнетронов типа 2М-219хх.

Рис. 1.13. Типовая электрическая схема источника питания магнетронов типа 2М-219хх

Узел соединения магнетрона с источником питания содержит переходные конденсаторы, которые вместе с дросселем образуют СВЧ-фильтр для защиты от проникновения СВЧ-излучения из магнетрона.

Источник питания магнетрона обеспечивает выработку питающих напряжений: анодное напряжение Uа = 4000 В, ток I = 300 мА. Напряжение накала U = 3,15 В, I = 10 А.

Переменное напряжение 220 В подается на первичную обмотку силового трансформатора Т1 через схему управления.

Далее с помощью силового трансформатора Т1 (который выполняет также роль стабилизатора) напряжение подается на схему удвоения напряжения, собранную на элементах VD1, C1. Сопротивление R1 выбрано от 0,1 до 1 мОм. Оно обеспечивает разряд конденсатора С1 при выключенной печи. Это резистор смонтирован внутри высоковольтного конденсатора. Предохранительный диод VD2 служит для защиты трансформатора от перегрузки в случае внутреннего замыкания в магнетроне или чрезмерного повышения напряжения на конденсаторе С1.

При внутреннем замыкании в магнетроне резко повышается ток во вторичных обмотках Т1, что ведет к увеличению тока в первичных обмотках, и тогда выходит из строя предохранитель.

Диод VD2 можно не устанавливать, но в этом случае необходимо устанавливать предохранитель строго по номиналу. Если замерить напряжение на катоде магнетрона, оно будет равно -4000 В (отрицательное), значит, на аноде относительно катода напряжение будет примерно равно +4000 В.

Поделитесь на страничке

Следующая глава >

tech.wikireading.ru

Микроволновая печь

2014-09-11 Статьи  

Искрение и треск внутри микроволновых печей — это самые частые явления, возникающие при их поломке.Почему же так происходит? Знающий об этом производитель, не внёс вовремя изменения в проектирование оных или нарушаются правила по их эксплуатации пользователем? Подтверждается и то, и другое.

Но так как печь приобретена и уже используется по назначению, то необходимо не допускать второй причины и неуклонно придерживаться правила:«Мы в ответе за того, кого приручаем».

Для того чтобы понять процессы, происходящие при работе СВЧ-печей и их поломках, чтения этой страницы будет мало.Постараюсь, как можно кратко изложить суть одной, но часто возникающей проблемы. Примером послужит, появившаяся на столе ремонта, микроволновая печь Samsung M1974NR.

Для начала рассмотрим основной принцип работы СВЧ-печи.

Напряжение ~220 вольт через специальную схему управления подается на первичную обмотку силового трансформатора. Далее с помощью силового трансформатора (который выполняет также роль стабилизатора) напряжение подается на схему удвоения напряжения собранную на VD1, C1 (Рис.2).

Рис.2 Блок питания магнетрона

Рис.2 Блок питания магнетрона

Сопротивление R1 имеет номинал от 1 до 10 Мом и нужно для того чтобы обеспечивать разряд конденсатора С1 при выключенной печи.В импортных конденсаторах резистор монтируется внутри.

Предохранительный диод VD2 служит для защиты трансформатора от перегрева в случае замыкания в магнетроне или чрезмерном повышении напряжения на конденсаторе С1.

При замыкании резко повышается ток во вторичных обмотках, что ведёт к увеличению тока в первичных обмотках и перегорает предохранитель.

Данным диодом можно пренебречь, т.е. не устанавливать его, но в этом случае необходимо устанавливать предохранитель строго по номиналу.

Если замерить напряжение на катоде магнетрона оно будет равно -4000 вольт (отрицательное), значит, на аноде относительно катода напряжение будет равно +4000 вольт.Блок питания магнетрона обеспечивает выработку питающих напряжений:Анодное напряжение Uа = 4000 вольт A = 300 мА.Напряжение накала U = 3,15 вольт А = 10 Ампер.

Магнетрон

Магнетрон (Рис.3) — это вакуумный диод, анод которого выполнен в виде медного цилиндра.Магнетрон крепится непосредственно на волноводе.1. Металлический колпачок насажан на керамический изолятор 2.3. Внешний кожух магнетрона.4. Фланец с отверстиями для крепления.5 Кольцевые магниты служат для распределения магнитного поля.6. Керамический цилиндр для изоляции антенны.7. Радиатор служит для лучшего охлаждения.8. Коробочка фильтра.9. Узел соединения магнетрона с источником питания содержит переходные конденсаторы, которые вместе с дросселями образуют СВЧ фильтр для защиты от проникновения СВЧ излучения из магнетрона.10. Выводы питания.

Магнетрон

Рис.2 Магнетрон

 

Дефекты магнетронов:1. При пробое прокладки часто бывают случаи, когда колпачок расплавляется. Можно заменить колпачком с другого магнетрона.2. Как любая лампа он может терять свою эмиссию, вследствие долгой работы или из-за включения магнетрона на пустую камеру, в результате чего значительно сокращается мощность энергии и увеличивается время приготовления. Можно увеличить продолжительность срока службы магнетрона, добавив напряжения накала.Для этого необходимо домотать 0,5 виток накальной обмотки. (В некоторых случаях удается продлить срок службы до 3 лет).К сожалению, не каждый трансформатор позволяет проделать такую манипуляцию.

3. Пробой переходных конденсаторов можно обнаружить с помощью тестера. Пробой происходит на корпус магнетрона. Лечится путем замены узла 9 (см рисунок).

При замене магнетрона необходимо строго соблюдать правила.1. Диаметр антенны и крепеж должны точно совпадать с оригиналом.2. Магнетрон должен плотно соприкасаться с волноводом.3. Длина антенны должна точно соответствовать оригиналу.4. Мощность магнетрона должна совпадать.

В некоторых источниках говорится о том, что колпачок с антенны можно не ставить, но при этом, если прогорит, то уже сама антенна (прищемленный конец трубки) и магнетрон придется выкинуть. Лучше покупать магнетроны на фирмах где дадут возможность обменять его, если, например, не подойдет посадочное место.

В тех печах, где производитель располагает магнетрон с коротким волноводом можно наблюдать такой дефект как пробой слюдяной крышки (Рис.4).

Рис.4 Пробой слюдяной крышки

Рис.4 Пробой слюдяной крышки

Первая и основная причина — это включение при недостаточной загрузке или вовсе без нее.Какими бы малыми ни были поглощающие свойства крышки, но, если в камере печи больше нет объектов, где бы микроволновая энергия могла продемонстрировать свою мощь, она начинает перегреваться, а из-за повышенной напряженности электрического поля, существующей при недостаточном объеме загрузки, на ее поверхности возникают пробои.Результатом таких пробоев будет обугливание некоторой части крышки, поэтому в дальнейшем процесс может лавинообразно нарастать, даже если последующие включения печи производить в соответствии с правилами.

Вторая причина, приводящая к аналогичным последствиям, может служить чрезмерная загрязненность крышки. Диэлектрические свойства грязи далеки от идеальных, поэтому она будет поглощать энергию и перегреваться.При определенных условиях температура загрязнений может дойти до такого значения, при котором они начнут обугливаться.В нашем случае были видны следы жира, затекшего между слюдяной крышкой и корпусом и вытекшем прямо на середину окна (Рис.4).Явное короткое замыкание и вызвало уже прогорание колпачка (Рис.5).

Прогоревший колпачок

Рис.5 Прогоревший колпачок

 Если процесс обугливания не зашел слишком далеко, восстановить работоспособность микроволновой печи можно, сняв крышку и удалив загрязненные и обуглившиеся места.

Выражение «не слишком далеко» означает, что в процессе зачистки вы удалили все лишнее и при этом не дошли до сквозных отверстий.

Качество своей работы вы легко можете проверить, посмотрев крышку на просвет. Обугленные участки менее прозрачны и поэтому затемнены.

В нашем случае слюдяную крышку-прокладку я протёр бензином и поставил прогоревшим местом вниз — перевернул.

Колпачок тоже перевернул прогаром вниз, так как с нижней части колпачка расстояние до корпуса намного больше. Вот и всё.Samsung M1974NR — это микроволновая печь с электронным управлением.Схема соединений печи приведена на Рис.6.

Схема соединений печей CE2974R и М1974NR

Рис.6 Схема соединений печей CE2974R и М1974NR

Блок управленияСхема электрическая принципиальная блока управления типа F209 приведена на Рис.7.

 Схема электрическая принципиальная блока управления типа F209

Рис.7 Схема электрическая принципиальная блока управления типа F209

electric-blogger.ru

Ремонт СВЧ

Древние люди открыли огонь и с его помощью согрелись, защитились и приготовили еду. В плане готовки процесс приготовления пищи не менялся тысячелетиями. Прорыв произошел в двадцатом веке, когда придумали генератор сверх высоких частот (СВЧ) размером с кулак. Тогда решили, что можно приготовить еду и с помощью СВЧ. Электромагнитная волна заставляет колебаться молекулы воды, которые из-за трения разогреваются. Процесс разогревания пищи стал быстрым и СВЧ вошли в нашу жизнь. Бытует мнение, что в СВЧ можно готовить, а не только разогревать. Это мнение ошибочно, т.к. в процессе кипения, жаренья одни химические вещества в пище переходят в другие. Микроволнами этот процесс заменить нельзя. Суть работы СВЧ в том, что генератор, он же магнетрон, генерирует высокую частоту порядка 2,4 ГГц под действием большого управляющего напряжения около 4,2 кВ. Магнетрон по сути лампа. В любой лампе есть нагревательная спираль, которая разогревается и служит источником электронов. Напряжение нагревательной спирали 3 В при токе 20 А. Чтобы электроны пришли в движение нужно электромагнитное поле, которое генерируется трансформатором и составляет 2,1 кВ. Конденсатор и диод составляют умножитель напряжения, которое на магнетроне равно 4,2 кВ при токе 0,5 А.

Микроволновка прочно вошел в нашу жизнь. Очень обидно, когда этот прибор ломается. Схема микроволновки не сложная, поэтому весь ремонт можно сделать самому, но следует соблюдать осторожность – напряжение на вторичной обмотке трансформатора 2,1 кВ.

Микроволновая печь

Табличка с паспортными данными на задней стороне печи сообщает, что напряжение в сети не должно превышать 230 В. Советская энергосистема допускает колебания напряжения в сети от 198 В (10% от 220) до 231 В (105% от 220). Частота тока в сети постоянная и составляет 50 Гц. Печь потребляет от сети 1200 Вт из которых только 800 Вт идет на разогревание пищи. Оставшиеся 400 Вт тратятся на потери в трансформаторе и раскачку магнетрона.

Паспортные данные СВЧ

Кожух СВЧ закреплен тремя саморезами. Видимо из целей экономии решили не делать крепление под еще один саморез. Саморезы расположены несимметрично за счет чего и достигается надежное крепление кожуха.

Крепление кожуха СВЧ

После выкручивания саморезов и сдергивания на себя кожуха обнажаются внутренности печки. Самое почетное место занимает магнетрон – лампа-излучатель для ультракоротких волн. Под магнетроном располагается трансформатор. Немного слева виден большой в виде свертка конденсатор от которого на корпус выведен диод.

Видно, что магнетрон имеет два вывода. Один вывод - провод от низковольтной обмотки трансформатора, а второй - и с низкой и с высокой. Если вскрыть магнетрон, то можно увидеть что контакт с высоковольтной обмотки уходит глубже в сам резонатор. Менять местами концы проводов на магнетрон нельзя.

Внутренности СВЧ

Силовая схема имеет вид. С1 и R1 помещены в один запаянный кожух – конденсатор. Резистор 10 Мом предназначен для быстрой разрядки конденсатора и ограничения тока при работе магнетрона. VD1 – диодный столб, состоящий из нескольких тысяч последовательно соединенных диодов, поэтому тестером прозвонить этот диод нельзя. FU1 – предохранитель, который срабатывает при ненормальной работе конденсатора, магнетрона и диода.

Электрическая схема СВЧ

В самом начале цепи микроволновки стоит фильтр с предохранителем. Фильтр гасит все высокочастотные составляющие, которые проникают из трансформатора в электрическую сеть. Предохранитель защищает по большому счету первичную обмотку трансформатора.

Фильтр СВЧ

Микроволны большой мощности являются очень опасными, поэтому в печке существует достаточно много всяких блокировок. Блокировки объединяют открывание дверцы, регулятор уровня мощности и времени, двигатель поворота блюда в один узел. Если хотя бы одна из этих блокировок не сработает, то печь не включится и лампочка освещения не засветится.

Блокировки СВЧ

Блокировки СВЧ

В современных СВЧ-печах вместо большого и тяжелого трансформатора вставляют более легкий и компактный импульсный блок питания. Но у меня печь с трансформатором, поэтому чинить я буду именно ее. Входная обмотка трансформатора (слева) выполнена тонкими проводами, а две вторичные обмотки (справа) имеют толстую высоковольтную изоляцию. В красном разборном контейнере размещается высоковольный предохранитель.

Блокировки СВЧ

Для того чтобы убедиться в исправности трансформатора нужно вначале прозвонить все обмотки. Вторичная высоковольная обмотка должна прозваниваться на корпус. Один конец выведен на предохранитель, а второй – прикручен к корпусу. Вторичная низковольная обмотка и первичная не должны прозваниваться на корпус. Если под рукой есть высоковольный вольтметр, то можно смело подключить трансформатор к сети 220 В и проверить на вторичной обмотке 2100 В. Если такого тестера нет, то можно изготовить делитель напряжения. Такой делитель уменьшит все показания в 10 раз (9+1). Тогда померив напряжение показания прибора должны быть примерно 210 В. Только резисторы нужно брать высоковольтные.

Делитель напряжения

Еще один способ измерить выходное напряжение трансформатора – подать меньшее переменное напряжение на вход трансформатора и по расчету вычислить напряжение на вторичной обмотке. У меня под рукой был трансформатор на 36 В. Измерив его напряжение при нагрузке на трансформатор от СВЧ получилось 38,4 В. Выходное напряжение получилось 380 В, а напряжение для нагрева спирали магнетрона – 0,6 В.

Измерение напряжения на трансформаторе

Составив пропорцию я получил полную картину напряжений трансформатора СВЧ.

38,4 – 220

380 – X

0,6 – Y

 

X = 380X220/38,4 = 2183 В

Y = 0,6X220/38,4 = 3,45 В

Пропорции напряжений

Если под рукой нет трансформатора для проверки можно использовать свойство сетевого трансформатора, заключающееся в обратимости входа трансформатора. Если на вход сетевого трансформатора подается 220 В, а снимается с высоковольтного выхода 2 кВ, то значит вторичная высоковольтная обмотка способна выдержать высокое напряжение без поломок. Значит, для проверки сетевого повышающего трансформатора можно подать напряжение Uф=220 В из розетки на высоковольтный выход и измерить наведенные напряжения на низковольтных входах (24,2 В и 0,38 В). Проблема в том, что у трансформатора СВЧ один вывод вторичной обмотки выведен на корпус. Подключать 220 В нужно к корпусу и выводу с предохранителем при этом на корпусе будет потенциал. Тестеровать трансформатор нельзя на проводящей поверхности и нельзя прикасаться к корпусу трансформатора при включенном напряжении. Лучше всего вначале подключить тестер, а затем включить напряжение на трансформатор.

Составив пропорцию я получил полную картину напряжений трансформатора СВЧ.

220 – 2000

24,2 – X

0,38 – Y

 

X = 24,2X2000/220 = 220 В

Y = 0,38X2000/220 = 3,46 В

Если в микроволновке используется импульсный блок питания - маленький, легкий и на транзисторах, то не нужно подавать 220 В на его выход. Также, не нужно подавать 220 В на обмотку накала магнетрона (3,5 В), она не выдержит и сгорит.

Высоковольный предохранитель располагается в разборном корпусе. Сам предохранитель состоит из стеклянной колбы с подпружиненной вставкой на 550 мА. Предохранитель вставляется в латунные держатели. Часто латунные держатели припаяны к контактным предохранителям.

Высоковольтный предохранитель

Магнетрон представляет собой высоковольтную высокочастотную лампу. Для работы магнетрона нужно подать 3 В переменного напряжения для разогревания нити накала в лампе и сгенерировать 4,2 кВ переменного напряжения для работы лампы на нагрузку. Проверить работу магнетрона довольно сложно, поэтому вначале нужно прозвонить два вывода магнетрона на корпус. Ни один из выводов магнетрона на корпус прозваниваться не должен, т.е. сопротивление должно быть очень большим. Сами выводы между собой прозваниваются практически накоротко, образуя подогревающую обмотку с током 20 А при напряжении 3 В.

Магнетрон СВЧ

Магнетрон СВЧ

Сама лампа спрятана в корпусе с алюминиевыми радиаторами, которые охлаждают магнетрон во время работы.

Магнетрон СВЧ

На торце расположен сам излучатель прикрытый стальным колпачком. Под ним скрывается конец стальной сплющенной трубки в которой зажат отвод от лампы. Чтобы контакт между корпусом магнетрона и корпусом лампы был надежным, вставляют плетеное кольцо из медной проволоки. Колпачок является важной деталью - создает направленный луч из магнетрона в камеру печи. Иногда при включении СВЧ-печи из места где расположен магнетрон сыплются искры и слышны хлопки. Причиной этого может быть пробой колпачка. Колпачок стоит снять, почистить все нагары и установить. Не стоит заливать колпачок изоляционными материалами - на таких частотах они не могут быть диэлектриками.

Корпус магнетрона СВЧ

Корпус магнетрона СВЧ

После снятия кожуха, крепящегося на винтах обнаруживается магнит, который усиливает поле магнетрона. Точно такой же магнит стоит и в противоположном конце магнетрона. Магниты крепятся завальцованной пластиной, которая подковыривается отверткой и снимается.

Снятие завальцованного кольца

Так выглядит лампа магнетрона. Естественно, что ремонту в бытовых условиях не подвергается. Медные катушки с ферритовыми сердечниками являются фильтром. Корпус магнетрона сделан из меди, а по краям – стальные переходники для надежного крепления керамических контактов.

Лампа СВЧ магнетрона

Дальше разборка возможна только при помощи молотка. Если отбить керамику со стороны контактов, то из магнетрона вынимается два скрепленных контакта. Один более длинный, другой – короче. Оба контакта заканчиваются чашечками. Между чашечками должна стоять нихромовая спираль. Именно она прозванивается, если измерять сопротивление между контактами магнетрона. На картинке спираль отсутствует. Но по тому звонится или не звонится спираль нельзя делать вывод о работоспособности магнетрона. Спираль нужна только для нагрева среды внутри лампы.

Контакты лампы СВЧ магнетрона

Вместе с контактами вынимается и омедненная стальная пластина.

Контакты лампы СВЧ магнетрона

Со стороны сплющенной трубки можно рассмотреть медную полоску, соединяющую корпус лампы и трубку.

Лампа СВЧ магнетрона

Сам корпус сделан из меди и внутри разделен на отсеки. Точность в изготовлении довольно высокая, что вероятно определяют и стоимость магнетрона в 30$.

Лампа СВЧ магнетрона

Конденсатор имеет емкость 0,98 МкФ при входном напряжении 2100 В. У конденсатора есть один вход и два спаренных выхода для подключения диодного столба и магнетрона. Можно прозвонить конденсатор с помощью омметра. Как рабочий так и не рабочий оба набирали заряд. Емкость конденсатора в принципе не критична.

Конденсатор СВЧ

Конденсатор СВЧ

Лампа в СВЧ питается напряжением 220 В и имеет мощность 25 Вт. Лампа впаивается напрямую в контактную пластину. Можно использовать лампу для холодильника на 15 Вт. От такой лампы нужно срезать цоколь и припаять выводы в пластину.

Лампа СВЧ

Крепеж лампы СВЧ

В моем случае печь не грела. Магнетрон не прозванивался на корпус, конденсатор набирал заряд, все предохранители были целы. Вначале заменил магнетрон (30$), но греть не стала, зато перегорел высоковольный предохранитель. Вторым элементом я заменил конденсатор (5$). После этого печь заработала. Заодно, раз уж все детали итак новые поменял диодный столб. Из этого можно уяснить, что если выбивает высовольтный предохранитель и магнетрон не коротит на корпус нужно заменить конденсатор. Если просто не греет и все цепи исправны – заменить магнетрон, но перед этим нужно заменить диодный столб.

Неисправность

Причина

Устранение

Печь не греет, тарелка вращается, предохранитель магнетрона исправен

Неисправен магнетрон

Заменить магнетрон

Печь не греет, тарелка не вращается, предохранитель магнетрона исправен

Не срабатывает блокировка

Проверить все блокировки

Проверить предохранитель на входе печи

Заменить предохранитель

Неисправен питающий кабель

Срастить место пробоя и изолировать

Печь не греет, тарелка вращается, предохранитель магнетрона неисправен

Неисправен или конденсатор или диодный столб

Заменить конденсатор, диодный столб и предохранитель

www.volt-220.com


Смотрите также