ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Графитовые щётки. Элемент жизни электроинструмента. Двигатель щеточный


Коллекторный двигатель переменного тока: схема подключения

Коллекторные двигатели переменного тока достаточно широко применяются как силовые агрегаты бытовой техники, ручного электроинструмента, электрооборудования автомобилей, систем автоматики. Схема подключения двигателя, а также его устройство напоминают схему и устройство электродвигателя постоянного тока с последовательным возбуждением.

Область применения таких моторов обусловлена их компактностью, малым весом, легкостью управления, сравнительно невысокой стоимостью. Наиболее востребованы в этом производственном сегменте электродвигатели малой мощности с высокой частотой вращения.

ОГЛАВЛЕНИЕ

Особенности конструкции и принцип действия

Конструкция коллекторного двигателя

По сути, коллекторный двигатель представляет собой достаточно специфичное устройство, обладающее всеми достоинствами машины постоянного тока и, в силу этого, обладающее схожими характеристиками. Отличие этих двигателей состоит в том, что корпус статора мотора переменного тока для снижения потерь на вихревые токи выполняется из отдельных листов электротехнической стали. Обмотки возбуждения машины подключаются последовательно для оптимизации работы в бытовой сети 220в.

Могут быть как одно-, так и трехфазными; благодаря способности работать от постоянного и переменного тока называются ещё универсальными. Кроме статора и ротора конструкция включает щеточно-коллекторный механизм и тахогенератор. Вращение ротора в коллекторном электродвигателе возникает в результате взаимодействия тока якоря и магнитного потока обмотки возбуждения. Через щетки ток подается на коллектор, собранный из пластин трапецеидального сечения и является одним из узлов ротора, последовательно соединенного с обмотками статора.

В целом принцип работы коллекторного мотора можно наглядно продемонстрировать с помощью известного со школы опыта с вращением рамки, помещенной между полюсами магнитного поля. Если через рамку протекает ток, она начинает вращаться под действием динамических сил. Направление движения рамки не меняется при изменении направления движения тока в ней.

Последовательное подсоединение обмоток возбуждения дает большой максимальный момент, но появляются большие обороты холостого хода, способные привести к преждевременному выходу механизма из строя.

Упрощенная схема подключения

Типовая схема подключения может предусматривать до десяти выведенных контактов на контактной планке. Ток от фазы L протекает до одной из щеток, затем передается на коллектор и обмотку якоря, после чего проходит вторую щетку и перемычку на обмотки статора и выходит на нейтраль N. Такой способ подключения не предусматривает реверс двигателя вследствие того, что последовательное подсоединение обмоток ведет к одновременной замене полюсов магнитных полей и в результате момент всегда имеет одно направление.

Схема подключения коллекторного двигателя

Направление вращения в этом случае можно изменить, только поменяв местами выхода обмоток на контактной планке. Включение двигателя «напрямую» выполняется только с подсоединенными выводами статора и ротора (через щеточно-коллекторный механизм). Вывод половины обмотки используется для включения второй скорости. Следует помнить, что при таком подключении мотор работает на полную мощность с момента включения, поэтому эксплуатировать его можно не более 15 секунд.

Наши читатели рекомендуют! Для экономии на платежах за электроэнергию наши читатели советуют "Экономитель энергии Electricity Saving Box". Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

загрузка...

Управление работой двигателя

На практике используются двигатели с различными способами регулирования работы. Управление коллекторным мотором может осуществляться с помощью электронной схемы, в которой роль регулирующего элемента выполняет симистор, «пропускающий» заданное напряжение на мотор. Симистор работает, как быстросрабатывающий ключ, на затвор которого приходят управляющие импульсы и открывают его в заданный момент.

Схема управления работой электродвигателя

В схемах с использованием симистора реализован принцип действия, основанный на двухполупериодном фазовом регулировании, при котором величина подаваемого на мотор напряжения привязана к импульсам, поступающим на управляющий электрод. Частота вращения якоря при этом прямо пропорциональна приложенному к обмоткам напряжению. Принцип работы схемы управления коллекторным двигателем упрощенно описывается следующими пунктами:

Принцип работы схемы управления коллекторным двигателем

Помимо симисторной существует фазоимпульсная тиристорная схема управления.

Преимущества и недостатки

К неоспоримым достоинствам таких машин следует отнести:

Недостатком этих двигателей принято считать использование щеточно-коллекторного перехода, который обуславливает:

Типичные неисправности

Наибольшего внимания к себе требует щеточно-коллекторный механизм, в котором наблюдается искрение даже при работе нового двигателя. Сработанные щетки следует заменить для предотвращения более серьезных неисправностей: перегрева ламелей коллектора, их деформации и отслаивания. Кроме того, может произойти межвитковое замыкание обмоток якоря или статора, в результате которого происходит значительное падение магнитного поля или сильное искрение коллекторно-щеточного перехода.

Избежать преждевременного выхода из строя универсального коллекторного двигателя может грамотная эксплуатация устройства и профессионализм изготовителя в процессе сборки изделия.

electricvdele.ru

Ремонт коллекторного двигателя

Большая часть бытовых электродвигателей – коллекторного типа. Они занимают небольшой объем и скорость вращения можно регулировать без потери мощности. Сфера их использования – электроинструмент, пылесосы, миксеры и так далее.

Отличительная особенность коллекторных электродвигателей – наличие ротора с коллектором, напряжение на который подается через щеточный аппарат через последовательно соединенную обмотку статора.

Повреждения шнура питания коллекторного двигателя

Слабое место у электроинструмента – шнур питания. В процессе эксплуатации его часто сматывают и разматывают. При этом он чаще всего перегибается в одном и том же месте – у входа в корпус. Несмотря на то, что шнур в этом месте защищен резиновой вставкой, со временем гибкие провода в нем переламываются.

Иногда неисправность заявляет о себе заранее: инструмент периодически останавливается и вновь запускается в работу. Лучше не ждать полного обрыва провода, а сразу разобрать инструмент, подтянуть в него часть шнура так, чтобы вырезать место обрыва и подключит его снова.

Если инструмент перестал работать – первым делом проверяйте шнур на целостность мультиметром. Если он не прозванивается, то место повреждения, скорее всего, у корпуса.

Как пользоваться мультиметром читайте статью: «Как пользоваться мультиметром?».

Проверка шнура питанияПроверка шнура питания

Неисправности регуляторов скорости вращения

В электродрелях и шуруповертах скорость вращения регулируется устройством, представляющим единый узел с кнопкой управления. В нее иногда встраивается устройство реверса. Поэтому все неисправности, связанные с резкими изменениями скорости при регулировке и проблемами с реверсом, решаются заменой этого узла. Но основная его неисправность – отсутствие контакта, в результате которой инструмент не вращается. Проверить исправность кнопки включения можно мультиметром в режиме измерения напряжения. Для аккумуляторного инструмента измеряется постоянное напряжение после кнопки, с питанием от сети – переменное.

Регулятор скорости вращенияРегулятор скорости вращения

Поскольку для проверки инструмент придется разобрать, заранее предотвратите случайное включение инструмента. Исправность его может восстановиться, и вы получите травму. Для исключения такого варианта снимите с выключателя выходные клеммы с проводами (те, на которых предполагается провести измерения).

Пример схемы регулятора скорости вращенияПример схемы регулятора скорости вращения

Для миксеров и им подобной техники, имеющей механическое переключение ответвлений обмоток статора, лучше воспользоваться мультиметром в режиме измерения сопротивлений. Проверьте исправность переключателя и целостность коммутируемых им обмоток.

Неисправности щеточного аппарата

Щетки – слабое место коллекторного электродвигателя. В процессе работы они стираются, а графитовая пыль оседает на коллекторе и окружающих предметах. Пружины, которыми осуществляется прижим, либо объединены в один узел со щеткой и ее контактным поводком, либо входят в состав держателя. По мере стирания щеток пружины растягиваются и прижимают их слабее, контакт ухудшается. Этому еще способствует угольная пыль, попадающая в направляющие пазы. Возникают ситуации, когда пыль блокирует щетку, а силы пружины не достаточно, чтобы протолкнуть ее через это препятствие. Щетка «подвисает», и двигатель останавливается. При небольшом сотрясении контакт возобновляется, и двигатель работает снова.

Стертые щетки нужно заменить на новые. Желательно купить те, которые предназначены для данного устройства, но такое не всегда возможно. Поэтому приобретаются щетки большего размера и подгоняются под нужный. Для этого используется мелкая наждачная бумага, расстеленная на ровной поверхности. Щетка плотно прижимается к ней и стирается до нужного размера, желательно — поточнее.

Старые и новые щетки
Старые и новые щетки

После замены щетки притирают к коллектору, подкладывая под них наждачную бумагу и прокручивая туда-сюда коллектор вместе с ней. В результате рабочая поверхность щетки должна полностью повторять форму коллектора. Но для большинства бытовых приборов и электроинструмента такая операция не потребуется, притирка произойдет сама на начальном этапе эксплуатации.

Неисправности коллектора

При интенсивной эксплуатации щетки под собой вырабатывают на коллекторе кольцевую впадину. Она негативно влияет на их работу. У мощных двигателей приходится снимать якорь, устанавливать его в токарный станок и протачивать коллектор, выравнивая его. Но для бытовых электроприборов такая операция экономически не оправдана – проще купить новую технику. К тому же износ коллектора скажется через несколько лет, когда электроприбор морально устареет, и новое устройство будет более функциональным.

Коллектор со стертыми ламелямиКоллектор со стертыми ламелями

В бытовых условиях коллектор можно только почистить. Для этого используется очень мелкая наждачная бумага. Она оборачивается вокруг коллектора, плотно прижимается рукой. Чистка производится проворачиванием коллектора в разные стороны, с периодической сменой положения.

Неисправности якоря и подшипников

Витковое замыкание или нарушение изоляции обмотки якоря приводит к искрению щеток. При серьезных повреждениях возникает эффект «кругового огня», когда искры «замыкаются», переходя с одной щетки на другую.

Искрение будет и при выходе из строя подшипников, поэтому сначала проверяются они. Если подшипники целы, то измеряют сопротивление изоляции якоря мегаомметром на 500 В. Если изоляция в норме, измеряют сопротивление обмоток якоря.

Про ремонт подшипников читайте: «Подшипник качения: замена в двигателе».

Между двумя соседними ламелями исправного якоря сопротивление одинаковое. При витковом замыкании в одной обмотке на одной паре ламелей будет меньшее сопротивление. При обрыве обмотки сопротивление многократно вырастет, так как прибор покажет суммарное сопротивление всех остальных обмоток.

Ни мультиметром, ни тестером нельзя определить витковое замыкание в якоре. Сопротивление одной обмотки – единицы Ом, а отсутствие одного витка прибор не заметит. Для проверки якорей в мастерских по ремонту двигателей пользуются способом косвенных измерений. К обмоткам подключают небольшое напряжение от регулируемого источника через амперметр. Величина напряжения выставляется на первой обмотке такой, чтобы амперметр показывал целое число ампер, это облегчает проверку. Не изменяя выходного напряжения, переключают щупы от устройства на соседнюю пару ламелей, и далее – пока не пройдут по всем. Резкое увеличение показаний амперметра свидетельствует о витковом замыкании, а уменьшение – об обрыве.

Неисправный якорь перематывают. Но стоимость работ соизмерима со стоимостью нового электроприбора.

Оцените качество статьи. Нам важно ваше мнение:

electric-tolk.ru

Графитовые щётки для электроинструмента. Тонкости выбора

графитовые щётки для электроинструментаШирокое распространение электроинструмента облегчило работу всем — как профессионалам, так и любителям. Часто даже у людей, неработающих с автоматическим инструментом каждый день, для бытовых целей дома есть электролобзик, дрель или шуруповёрт. Интенсивное использование различных электрических аппаратов приводит со временем к износу и поломкам. Соответственно, появляется необходимость ремонта. Одной из самых частых поломок является отказ электродвигателя инструмента из-за износа графитовых щёток.

 

Назначение и свойства щёток для электроинструмента

Графитовые щётки — элемент, используемый для создания скользящего контакта у электродвигателей. Основным их предназначением является подведение и отвод электрического тока на коллекторах различных устройств, агрегатов, инструментов, где применяются электродвигатели. Щётки являются деталью практически любого электроинструмента, они служат проводником тока.

Щётки для электроинструмента должны обладать высокими значениями теплопроводности, надёжности, стойкости к истиранию, а также хорошим сопротивлением химическим, механическим и температурным воздействиям. Помимо этого, они обязаны быть долговечными, доступными по стоимости, и как можно меньше искрить. Размеры их могут быть весьма разнообразными, поэтому при выборе нужно быть очень внимательным. Лучше всего применять щётки под конкретную модель инструмента и того же производителя.

графитовые щётки для электроинструмента

Распространённые неисправности и причины их появления

Щётки выходят из строя регулярно — это обусловлено самим принципом их работы. При работе они постоянно трутся о коллектор, соответственно, подвергаются износу. Качественно изготовленные графитовые щётки для электроинструмента сделаны так, чтобы их истирание происходило медленно. Поэтому агрегаты, применяемые в быту, редко требуют ремонта — значительный ресурс работы при редком использовании инструмента в итоге приводят к тому, что износ щёток до критического уровня происходит лишь в исключительных случаях.

Износ графитовых щёток вызывает потерю или нарушение их контакта с коллектором. При частичной потере контакта часто возникает повышенное искрение. Иногда появляется «дёрганье», двигатель вращается неравномерно. В тяжёлых случаях мотор вовсе не запускается — в цепи разрыв. Нередко появляется эффект «зависания» щёток, когда они заклиниваются в направляющих и пружина не может обеспечить надёжный прижим к коллектору.

Поломки вроде обрыва поводка щётки, сломанной прижимной пружины или повреждения коллекторно-щёточного узла несложно определить визуально.

Причинами неисправностей являются:

Самой распространённой из перечисленных причин бывает обычный износ, как говорят, «от времени». Устраняется заменой щёток.

Как грамотно выбрать графитовые щётки?

Производители электроинструмента гарантируют безотказную эксплуатацию только при использовании рекомендуемых запчастей. Щётки при возникновении неисправностей подлежат замене на аналогичные. Всякого рода подгонка нестандартных изделий под оригинальный щёточный узел компаниями-производителями инструмента не приветствуются.

Щётки делятся на жёсткие и мягкие. При выборе это может иметь решающее значение, потому что коллекторная медь тоже делится на мягкую и жёсткую. При несоответствии этого параметра между коллектором и щётками происходит быстрый износ одного из элементов — либо жёсткий коллектор «сожрёт» мягкие щётки, либо слишком твёрдые щётки повредят коллектор. Ни то, ни другое к нормальной работе не имеет отношения.

Следует учитывать при выборе активное сопротивление щёток — этот параметр влияет при расчёте обмоток двигателя, свойств регулирующих и пусковых устройств (плавный старт, регулировка оборотов и прочие).

Кроме того, деталь не работает сама по себе — для нормального функционирования требуется согласованное действие всех элементов щёточного узла, который состоит из прижимного устройства, направляющих и группы контактов. Важен расчётный прижим щётки. Слишком сильное прижатие — перегревается коллектор и щёточный узел. Слабый прижим — причина излишнего искрения, не говоря уж о том, что слабо сжатая пружина может выскочить и попасть между вращающимися элементами. Последствия бывают печальны.

графитовые щётки для электроинструмента

Не следует применять для электроинструмента генераторные медно-графитовые щётки. Ток в генераторах гораздо выше, и щёточный узел рассчитан на высокие значения тока. Применение генераторных щёток при ремонте инструмента ведёт к выходу из строя обмоток из-за нерасчетных высоких температур и большого тока.

Инструмент для профессионального использования оборудуется автоматически отключающимися щётками. Использование обычных в таком случае тоже не рекомендовано. Бывают также графитовые щётки для электроинструмента с дополнительными контактами, нужными для нормальной работы электрических цепей агрегата. Их следует заменять только на такие же.

Однозначно избежать ошибок при выборе можно в двух случаях — это покупка щёток у официального дилера или установка их в фирменном сервисном центре.

Замена — собственноручно или в сервисном центре?

Заменить щётки можно самому или обратиться в сервисный центр. Оба варианта имеют свои достоинства и недостатки. Сервис хорош следующим:

Однако на сервисный центр нужно ещё добраться, а также придётся заплатить, если случай негарантийный.

Собственноручная замена щёток позволяет сэкономить время на поездках в сервис и деньги на оплате труда специалистов. Но здесь есть свои трудности — запчасти придётся искать самому, гарантия при самостоятельном ремонте снимается, а также, если опыта недостаточно, — есть шанс вместо устранения неисправности ещё больше навредить инструменту.

proinstrumentinfo.ru

Щётки электродвигателей » Портал инженера

Из электроугольных изделий наибольшее применение имеют электрощетки, которые чаще всего называют просто щетками.

Применяемые в настоящее время угольные электрощетки делятся на четыре основные группы: - графитные, - угольно-графитные, - металло-графитные,- электрографитированные.

Графитные щетки (марки 611М, Г1, Г3, высокоомные и др.) изготовляют из натурального графита без применения (мягкие сорта) и с применением связующих. Графитные щетки, получаемые без связующего, после прессования не подвергают спеканию (обжигу).

Графитные щетки обладают мягкостью и при работе вызывают незначительный шум. Они могут применяться при окружных скоростях коллектора или колец от 12до 40 м/сек, а натурально-графитные до 70 м/сек. Удельное электрическое сопротивление гранитных щеток колеблется в пределах от 10 до 45 ом·мм2/м, а у высокоомных от 200 до 1000 ом·мм2/м.

Высокоомные графитные щетки применяются в машинах высокого напряжения. Остальные сорта графитных щеток находят применение главным образом в машинах постоянного тока небольшой и средней мощности. Натурально-графитные щетки применяют также в быстроходных турбогенераторах со стальными кольцами.

Допустимая плотность тока для всех графитных щеток (за исключением высокоомных) 7 ÷ 12 а/см2, для высокоомных 4 ÷ 5 и/см2. Удельное нажатие: 200 — 250 г/см2. Угольно-гранитные щетки (марки Т2, Т6 и др) изготовляют из графита с введением других углеродистых материалов (сажа, кокс) и связующих веществ (смолы, пеки). После прессования исходной смеси, щетки или их блоки подвергаются спеканию при температуре 1000 — 1200°С. Полученные щетки омедняются в электролитической ванне.

Угольно-графитные щетки имеют повышенную твердость и механическую прочность. Они обладают некоторой абразивностью, т. е. могут сами очищать окисные пленки на коллекторах и кольцах, подверженных загрязнению (тяговые электродвигатели и др.). Эти щетки могут применяться при окружных скоростях коллектора или колец от 10 до 12 м/сек. Удельное электрическое сопротивление щеток равно 40 ÷ 60 ом·мм2/м, а допускаемая плотность тока 6 — 8 a/cм2. Удельное нажатие 200 — 250 г/см2.

Угольно-графитные щетки средней твердости находят применение в генераторах и электродвигателях небольшой и средней мощности. Щетки с повышенной твердостью применяют в электрических машинах с толчкообразной нагрузкой.

Металло-графитные щетки (марки М-1, М-З, М-6, МГ, М20, МГС5 и др.) изготовляют из порошков графита и меди. В некоторые из них вводят еще порошки свинца (МГС5), олова и серебра. В щетках с большой допустимой плотностью тока содержание меди доходит до 80 — 90 %. Этим достигается уменьшение величины удельного электрического сопротивления щеток и малое падение напряжения.

Эта группа щеток отличается малым удельным сопротивлением 1 ÷ 6 ом·мм2/м и даже 0,03 ÷ 0,25 ом·мм2/м. У щеток этой группы с пониженным содержанием меди (меньше 50 %) удельное электрическое сопротивление достигает значений 6 ÷ 12 ом·мм2/м (М-3). Допустимая плотность тока для щеток этой группы лежит в пределах от от 12 до 20 а/см2. Удельное нажатие: 180 ÷ 230г/см2.

Металло-графитные щетки применяют при окружных скоростях от 20 до 35 м/сек в автомобильных и авиационных генераторах и электродвигателях, а также в синхронных машинах и в тяговых машинах с пониженным напряжением (рудничные электровозы).

Электрографитированные щетки (марки ЭГ-2а, ЭГ4, ЭГ8, ЭГ14 и др.) изготовляют из порошков графита и других углеродистых материалов (кокс, сажа) с введением связующих. После прессования и обжига (спекания) изделия поступают в электрические печи для графитизации. Процесс графитизации протекает при температуре 2500 — 2600°С. При этом углерод исходных материалов переводится в графит.

Электрографитированные щетки хорошо переносят толчкообразное изменение нагрузки и могут работать при больших скоростях 40 ÷ 50 м/сек.

Удельное электрическое сопротивление щеток этой группы равно 9 ÷ 70 ом·мм2/м. Они применяются:

- в электрических машинах средней и большой мощности;

- в машинах с изменяющейся нагрузкой и тяжелыми условиями коммутации тока;

- в тяговых электродвигателях;

- в быстроходных электрических машинах со стальными кольцами (ЭГ-74).

Группа электрографитированных щеток имеет самую большую область применения в электротехнике.

 

"Электроматериаловедение" Н.Дроздов

Обсудить на форуме

ingeneryi.info

Двигатель постоянного тока

Многие великие открытия не выходят в массы по причине того, что нет применения этому открытию. Поэтому и стали вручать награды в области теоретического обоснования. Но даже в позапрошлом веке, если не было материальной выгоды от изобретения или открытия, то его забывали и приходилось открывать или изобретать его вновь. С начала открытия электричества все ломали голову над полезностью открытия и в итоге придумали электрический двигатель. Именно двигатель сделал электричество самым популярным видом энергии.

Электрические двигатели постоянного тока все еще применимы в производстве и сельском хозяйстве. Хотя на мой взгляд их применение обходится дороже, чем использование переменных двигателей. Постоянные двигатели используют из-за очень простой схемы регулирования оборотов, но из-за использования щеток эти двигатели ненадежны в условиях повышенной влажности и грязи.

Двигатели постоянного тока бывают всех размеров. В детских игрушках используются только двигатели постоянного тока, ведь батарейки с переменным током пока не изобрели.

двигатель постоянного тока

У всех двигателей постоянного тока есть щетки, которые подводят ток к якорю - вращающейся детали двигателя. Обычно щетки прикрыты быстросъемной круглой пластиной - кожухом, для быстрого осмотра и замены щеток.

двигатель постоянного тока

Небольшие двигатели снабжаются небольшими щетками, расположенными соосно. Количество групп щеток - две. Якорь имеет обмотку, концы которой выведены на коллектор. Коллектор это медные пластинки в хвосте якоря к которым прижимаются щетки. Через эти пластинки - ламели щетки передают ток на обмотки двигателя. Статор в маломощных двигателях сделан из магнита. Постоянный магнит имеет постоянное магнитное поле. При подсоединении якоря к источнику напряжения, ток протекает по обмоткам якоря, создавая магнитное поле, которое взаимодействует с постоянным полем магнитов, в результате чего якорь поворачивается на небольшой угол чтобы линии магнитных полей совпали, но в результате поворота смещаются и ламели относительно щеток, магнитное поле якоря изменяет свое направление и якорь вновь поворачивается. Так работают все двигатели постоянного тока. Для осуществления сдвига якоря, количество ламелей должно быть нечетным. Хотя встречаются двигатели и с четным количеством ламелей (топливный электрический насос бензиновых двигателей). Здесь исключение только подтверждает правило.

двигатель постоянного тока

Большие двигатели постоянного тока рассчитаны на большие нагрузки, а следовательно и потребляют больше тока. Чем больше двигатель по размерам, тем больший у него момент и сила.

двигатель постоянного тока

На боку двигателя видны болты - два вряд. Этими болтами прикручиваются башмаки. Большим двигателям нужно большое магнитное поле статора, которое нельзя создать постоянными магнитами. В результате магниты статора - электрические. Они выполняются как обмотки на магнитопроводе. Магнитопровод и есть башмак у постоянного двигателя.

двигатель постоянного тока

Статор представляет собой кусок трубы в который прикручены башмаки. Башмаки прижимают обмотки к корпусу и не дают им вибрировать. Обмотки надежно изолированы от корпуса при помощи пропитки и хлопчатобумажной ленты. В мощных двигателях применяются четыре башмаки, а встречаются системы и с двумя. Башмаки соединяются последовательно. Но здесь есть один нюанс. Если все обмотки соединить последовательно с намоткой в одну сторону, то не получится большой магнит. Поэтому первый башмак наматывают в одну сторону, а второй - в противоположную (либо соединяют обмотки встречно на втором башмаке), затем третий башмак опять правильно, как первый, а четвертый - встречно, как третий. Получается, что обмотки статора соединяются последовательно и наматываются прямо - встречно - прямо - встречно. Получается, что каждые две обмотки напротив друг друга намотаны в одну сторону. Это очень напоминает магнит, что "плюс" всегда примагничивается к "минусу". Если представить, что прямые катушки это плюсы, а встречные - минусы, то в статоре идет постоянная чередовка: плюс - минус - плюс - минус - ... Цель магнита статора - создать постоянное электромагнитное поле в котором якорь из-за магнитных полей постоянно будет смещаться вдоль магнитных линий.

двигатель постоянного тока

Щетки располагаются в механизмах - щеткодержателях. В мощных двигателях щеточных групп четыре и они расположены попарно соосно. Все щеткодержатели крепятся к траверсе - подвижному механизму. Траверса нужна для выставления точки покоя двигателя. Известно, что в системе с двумя группами щеток для изменения направления вращения достаточно повернуть обе группы на четверть круга - 90 градусов. При повороте на другой угол двигатель не будет развивать достаточной мощности, а искрение на щетках будет даже на холостых оборотах. Короче, перед разборкой двигателя необходимо пометить установку траверсы. Короче, установка расположения щеточных групп - не просто так.

двигатель постоянного тока

Для уменьшения нагрузки на щетки, в одной группе может находится несколько щеток - в данном случае две. Щетки сверху прижимаются пружинами для уменьшения сопротивления перехода щетка- ламель.

двигатель постоянного тока

Якорь двигателя постоянного тока содержит обмотки, которые выведены на ламели.

двигатель постоянного тока

www.volt-220.com


Смотрите также