Из бесед с одним из старейших членов нашей команды Александром Зохрэ мы узнали, что еще в 1982 году он с учениками из кружка испытал ... простой детонационный пульсирующий двигатель работающий на низкооктановом топливе (72 бензине). Сейчас детонационные двигатели активно разрабатываются многими ведущими авиационными фирмами. Как известно, основная неприятность обычного пульсирующего двигателя (ПуВРД) - очень низкая степень сжатия рабочей смеси перед вспышкой - приблизительно 1.5-1.9 атмосферы. Из-за этого КПД двигателя не велик, и большая часть энергии выходит в виде раскаленной газовой струи, т.е. топливо не успевает сгореть в камере и бесполезно горит в атмосфере в виде "красивого факела". Детонационные двигатели используют не режим горения а режим взрыва, который позволяет за ничтожно малый промежуток времени отдать почти всю энергию двигателю. Выбрасываются практически холодные ...ну условно конечно (250-350 градусов), газы.Однако получить режим устойчивой детонации в таком двигателе довольно трудно, что и является предметом исследований и поисков. Многие уже реально работающие детонационные двигатели используют для возбуждения детонации хитрые акустические и сверхзвуковые эффекты в газах.Детонационный пульсирующий двигатель Александра Зохрэ устроен иначе. Как то раз перестраивая свою легковую машину на низкооктановый бензин, А. Зохрэ заметил что поршневой двигатель может довольно устойчиво работать при выключенном зажигании, - хотя это и не безболезненно для обычного двигателя...Так появилась идея сверхкомпактного реактивного двигателя высокой мощности работающего на взрывных эффектах. Построить такой двигатель используя детали от авиамодельного компрессионного движка и немного дополнительных трубок оказалось довольно легко. Двигатель настолько прост, что практически любой авиамоделист способен сам его повторить.На схеме показано устройство Детонационного пульсирующего двигателя Александра Зохрэ.В массивном глухом цилиндре ходит компрессионный поршень подпружиненный сзади компрессионной пружиной. Если первоначально каким то образом (например подачей сжатого воздуха) в головку цилиндра или штоком сзади поршня (пусковое устройство не показано) эту пружину сжать, а потом резко отпустить, то двигатель может запуститься в работу.Для этого должна быть достаточная компрессия и низкооктановое топливо. Принцип работы этого двигателя напоминает обычный двухтактный компрессионный двигатель. Только вместо шатуна, коленчатого вала и маховика используется возвратная компрессионная пружина.Взрывные газы отводятся через укороченное обратное сопло.Следует так же иметь ввиду, что при детонационном горении сопловый аппарат должен быть сильно укороченным, не таким как длинная выходная труба обычного пульсирующего двигателя.Вероятно разумно использовать кольцевое сопло прямо на корпусе цилиндра сжатия.Поскольку поршень в таком двигателе совершает колебательные движения без нагрузки (если он работает с пружиной в резонансе) то практически вся энергия отдается входному потоку.Как считает конструктор этого двигателя А. Зохрэ, двигатель построенный ими когда-то был всего лишь моделью, а для реального двигателя все таки нужно использовать довольно толстый взрывной цилиндр и поршень, т.к. в режиме детонации давление может достигать 200 атмосфер.Конструктивно такой двигатель можно выполнить имея доступ к токарному станку.ВНИМАНИЕ ОПАСНОСТЬ!!!В отличии от обычного ПуВРД, в детонационном пульсирующем двигателе действуют высокие давления. Если вы попытаетесь собрать такой двигатель объемом больше 10-15 см, то скорее всего вы без должного опыта получите гранату, и судебным медикам придется собирать вас по частям - если найдут конечно все части...
ОБСУЖДАЕМ НА ФОРУМЕ
owalon.com
Опытно-конструкторское бюро имени Люльки разработало, изготовило и испытало опытный образец пульсирующего резонаторного детонационного двигателя с двухстадийным сжиганием керосиновоздушной смеси. Как сообщает ИТАР-ТАСС, средняя измеренная тяга двигателя составила около ста килограммов, а длительность непрерывной работы ─ более десяти минут. До конца текущего года ОКБ намерено изготовить и испытать полноразмерный пульсирующий детонационный двигатель.
По словам главного конструктора ОКБ имени Люльки Александра Тарасова, в ходе испытаний моделировались режимы работы, характерные для турбореактивного и прямоточного двигателей. Измеренные величины удельной тяги и удельного расхода топлива оказались на 30-50 процентов лучше, чем у обычных воздушно-реактивных двигателей. В ходе экспериментов производилось многократное включение и выключение нового двигателя, а также регулирование тяги.
На основе проведенных исследований, полученных при испытании данных, а также схемно-конструкторского анализа ОКБ имени Люльки намерено предложить разработку целого семейства пульсирующих детонационных авиационных двигателей. В частности, могут быть созданы двигатели с коротким ресурсом работы для беспилотных летательных аппаратов и ракет и самолетные двигатели с крейсерским сверхзвуковым режимом полета.
В перспективе на основе новых технологий могут быть созданы двигатели для ракетно-космических систем и комбинированных силовых установок самолетов, способных выполнять полеты в атмосфере и за ее пределами.
Детонационные двигатели сэкономят топливо ВМС США
По оценке конструкторского бюро, новые двигатели позволят увеличить тяговооруженность самолетов в 1,5-2 раза. Кроме того, при использовании таких силовых установок дальность полета или масса авиационных средств поражения могут увеличиться на 30-50 процентов. При этом удельный вес новых двигателей будет в 1,5-2 раза меньше аналогичного показателя обычных реактивных силовых установок.
О том, что в России ведутся работы по созданию пульсирующего детонационного двигателя, сообщалось в марте 2011 года. Об этом заявил тогда Илья Федоров, управляющий директор научно-производственного объединения «Сатурн», в состав которого входит ОКБ имени Люльки. О каком именно типе детонационного двигателя шла речь, Федоров не уточнил.
В настоящее время известны три вида пульсирующих двигателей ─ клапанные, бесклапанные и детонационные. Принцип работы этих силовых установок заключается в периодической подаче в камеру сгорания топлива и окислителя, где происходит воспламенение топливной смеси и истечение продуктов сгорания из сопла с образованием реактивной тяги. Отличие от обычных реактивных двигателей заключается в детонационном горении топливной смеси, при котором фронт горения распространяется быстрее скорости звука.
Пульсирующий воздушно-реактивный двигатель был изобретен еще в конце XIX века шведским инженером Мартином Вибергом. Пульсирующий двигатель считается простым и дешевым в изготовлении, однако из-за особенностей горения топлива ─ малонадежным. Впервые новый тип двигателя был использован серийно во время Второй мировой войны на немецких крылатых ракетах Фау-1. На них устанавливался двигатель Argus As-014 компании Argus-Werken.
В настоящее время несколько крупных оборонных фирм мира занимаются исследованиями в области создания высокоэффективных пульсирующих реактивных двигателей. В частности, работы ведут французская компания SNECMA и американские General Electric и Pratt & Whitney. В 2012 году Научно-исследовательская лаборатория ВМС США объявила о намерении разработать спиновый детонационный двигатель, который должен будет заменить на кораблях обычные газотурбинные силовые установки.
Спиновые детонационные двигатели отличаются от пульсирующих тем, что детонационное горение топливной смеси в них происходит непрерывно ─ фронт горения перемещается в кольцевой камере сгорания, в которой топливная смесь постоянно обновляется.
Изобретение относится к пульсирующим воздушно-реактивным двигателям детонационного горения и может быть использовано, например, в качестве двигателя газореактивного электрогенератора или летательного аппарата с дозвуковыми скоростями полета, в частности вертолета. Пульсирующий двигатель детонационного горения содержит корпус и размещенные в нем камеру сгорания с входом, кольцевой канал с входом и выходом, преобразователь внутренней энергии рабочего тела в механическую работу силы тяги в виде газодинамического резонатора, сопло двигателя, механизм инициирования детонации и кольцевое сопло для подачи топливной смеси. Камера сгорания выполнена в виде полусферического газодинамического резонатора и сопла двигателя. Механизм инициирования детонации выполнен в виде трубки, заглушенной с одной стороны, свободный выход которой соединен с центром газодинамического резонатора, при этом отношение скорости продуктов детонации к скорости подачи топливной смеси должно быть больше или равно отношению двух длин механизма инициирования детонации к радиусу резонатора. Изобретение позволяет сократить массогабариты в условиях действия значительных центробежных сил и повысить эффективность и надежность двигателя в этих условиях. 7 з.п. ф-лы, 3 ил.
Изобретение относится к пульсирующим воздушно-реактивным двигателям детонационного горения и может быть использовано, например, в качестве двигателя газореактивного электрогенератора или летательного аппарата с дозвуковыми скоростями полета, в частности вертолета.
Известны пульсирующие двигатели детонационного горения - патент РФ №2078974, в котором частота пульсаций и тяга увеличиваются за счет применения большого количества детонационных трубок, управляемых электронной схемой (1). Однако такая конструкция неприемлема, когда двигатель подвергается большим центробежным перегрузкам.
Известен детонационный двигатель по патенту РФ №2080466, включающий комбинированную камеру, позволяющую с помощью твердого тела управлять вектором тяги, но данное решение имеет значительную инерциальность системы, вызванную механическим перемещением твердого тела (2).
Наиболее близким по принципу действия и техническому исполнению является устройство по патенту РФ №2034996, содержащее корпус, камеру сгорания с входом, кольцевой канал с входом и выходом, преобразователь внутренней энергии рабочего тела в механическую работу силы тяги в виде газодинамического резонатора, сопло двигателя, механизм инициирования детонации и кольцевое сопло для подачи топливной смеси (3). Однако и данный двигатель обладает указанными выше недостатками.
Задачей настоящего изобретения является максимальное сокращение массогабаритов в условиях действия значительных центробежных сил, а результатом - повышение эффективности и надежности двигателя в этих условиях.
Для этого предложен пульсирующий двигатель детонационного горения, включающий корпус и размещенные в нем камеру сгорания с входом, кольцевой канал с входом и выходом, преобразователь внутренней энергии рабочего тела в механическую работу силы тяги в виде газодинамического резонатора, сопло двигателя, механизм инициирования детонации и кольцевое сопло для подачи топливной смеси, характеризующийся тем, что камера сгорания выполнена в виде полусферического газодинамического резонатора и сопла двигателя, механизм инициирования детонации выполнен в виде трубки, заглушенной с одной стороны, свободный выход которой соединен с центром газодинамического резонатора, при этом соблюдены следующие соотношения:
V1/V2≤2L/R,
где V1 - скорость продуктов детонации,
V2 - скорость подачи топливной смеси,
2L - две длины механизма инициирования детонации 10 и радиуса резонатора 1,
R - радиус кольцевого сверхзвукового сопла 9.
Пульсирующий двигатель характеризуется тем, что двигатель снабжен вращающимся посредством крыльчатки полусферическим кавитатором, расположенным позади, с зазором, газодинамического резонатора, при этом крыльчатка крепится на наружной поверхности кавитатора.
Пульсирующий двигатель характеризуется тем, что кавитатор установлен в подшипниковом узле, расположенном на резонаторе.
Пульсирующий двигатель характеризуется тем, что двигатель снабжен воздушным патрубком для подачи воздуха, расположенном на корпусе двигателя радиально в плоскости вращения рабочего органа.
Пульсирующий двигатель характеризуется тем, что воздушный патрубок имеет центробежный переключатель.
Пульсирующий двигатель характеризуется тем, что центробежный переключатель имеет запирающую пружину, расположенную в опоре на внутренней поверхности патрубка, и направляющие для его перемещения по внутренней поверхности воздушного патрубка.
Пульсирующий двигатель характеризуется тем, что воздушный патрубок имеет отверстия для забора воздуха из атмосферы.
Пульсирующий двигатель характеризуется тем, что патрубок имеет запиратель воздуха высокого давления.
На прилагаемых иллюстрациях представлен двигатель: фиг.1 - общая схема, фиг.2 - система снабжения двигателя воздухом, фиг.3 - сечение по А-А фиг.2.
Цифрами на чертежах обозначено:
1 - сферический резонатор, 2 - сопло, 3 - крыльчатка, 4 - корпус, 5 - подшипниковый узел, 6 - вращающийся полусферический кавитатор, 7 - свеча первоначального поджига, 8 - реактор, 9 - кольцевое сверхзвуковое сопло, 10 - механизм инициирования детонации, 11 - воздушный патрубок, 12 - патрубок воздуха высокого давления, 13 - пружина, 14 - центробежный переключатель, 15 - отверстия для забора воздуха из атмосферы, 16 - отверстия в воздушном патрубке 11, 17 - опора для пружины 13, 18 - направляющая центробежного переключателя, 19 - запиратель воздуха высокого давления.
Двигатель устанавливается на рабочий орган (лопасть вертолета или штангу электрогенератора) и работает следующим образом.
Для запуска двигателя одновременно включается подача воздуха высокого давления (ВВД), газа (например, метана) и высокое напряжение на свечу поджига 7. ВВД попадает в воздушный патрубок 11, находящийся внутри рабочего органа (лопасти или штанги - не показаны), где давление воздуха падает до низкого из-за значительно большего сечения патрубка. Нижняя часть патрубка 11 заперта пружинным затвором, состоящим из опоры для пружины 17, пружины 13, центробежного запирателя 14 и кольцевого сопла 16. Воздух через патрубок попадает в корпус 4 двигателя и, смешиваясь с топливом (газом), истекает через вращающуюся крыльчатку 3, которая приводит во вращение полусферический кавитатор 6 на подшипниковом узле 5. Часть топлива подается также в полость реактора 8, где в кавитационных вихрях (включая холодное сотояние) частично подвергается пиролизу. Продукты пиролиза смешиваются с топливовоздушной смесью и через кольцевое сверхзвуковое сопло 9 попадают в камеру сгорания, которая состоит из резонатора 1 и сопла 2. При попадании топливовоздушной смеси на свечу 7 последняя инициирует детонацию смеси. Продукты детонации как прямые, так и отраженные от резонатора 1 через сопло 2 истекают в атмосферу. В образующуюся область пониженного давления поступает новая порция топливовоздушной смеси из кольцевого сверхзвукового сопла 9. Отраженный в механизме инициирования детонации 10, выполненном в данном случае в виде трубки, импульс давления воздействует на топливовоздушную смесь, и процесс повторяется.
Двигатель снабжен вращающимся посредством крыльчатки полусферическим кавитатором, расположенным позади газодинамического резонатора, с зазором (крыльчатка крепится на наружной поверхности кавитатора и способствует качественному смешению топливной смеси).
В ходе работы двигателя резонатор 1 нагревается свыше 700°С, что облегчает пиролиз топлива в реакторе 8. В реакторе 8 в кавитационных вихрях, вращающихся со скоростью более одного миллиона оборотов в минуту, происходит пиролиз части топлива, чем улучшаются условия детонации.
Под действием получаемой тяги лопасть вертолета или колесо газореактивного электрогенератора раскручивается, а под действием центробежных сил центробежный переключатель 14 преодолевает запирающее воздействие пружины 13 и открывает отверстие 16, закрывая поступление ВВД. Воздух из атмосферы через заборные отверстия 15 поступает в патрубок 11, где под действием центробежных сил сжимается, обеспечивая работу двигателя, при этом воздушный патрубок 11 выполняет роль центробежного радиального компрессора.
Центробежный переключатель 14 имеет запирающую пружину 13, расположенную в опоре 17 на внутренней поверхности воздушного патрубка 11.
Конструкция пульсирующего двигателя детонационного горения характеризуется следующими соотношениями:
V1/V2≤2L/R,
где V1 - скорость продуктов детонации,
V2 - скорость подачи топливной смеси,
2L - две длины механизма инициирования детонации 10 и радиуса резонатора 1,
R - радиус кольцевого сверхзвукового сопла 9.
Источники информации
1. Пат. РФ №2078974, F 02 K 7/04, F 23 R 7/00, опубл. 10.05.1997.
2. Пат. РФ №2080466, F 02 K 3/08, опубл. 27.05.1997.
3. Пат. РФ №2034996, F 02 K 3/08, опубл. 10.05.1995.
1. Пульсирующий двигатель детонационного горения, включающий корпус и размещенные в нем камеру сгорания с входом, кольцевой канал с входом и выходом, преобразователь внутренней энергии рабочего тела в механическую работу силы тяги в виде газодинамического резонатора, сопло двигателя, механизм инициирования детонации и кольцевое сопло для подачи топливной смеси, отличающийся тем, что камера сгорания выполнена в виде полусферического газодинамического резонатора и сопла двигателя, механизм инициирования детонации выполнен в виде трубки, заглушенной с одной стороны, свободный выход которой соединен с центром газодинамического резонатора, при этом соблюдены следующие соотношения:
V1/V2≤2L/R,
где V1 - скорость продуктов детонации;
V2 - скорость подачи топливной смеси;
2L - две длины механизма инициирования детонации 10 и радиуса резонатора 1;
R - радиус кольцевого сверхзвукового сопла 9.
2. Пульсирующий двигатель по п.1, отличающийся тем, что двигатель снабжен вращающимся посредством крыльчатки полусферическим кавитатором, расположенным позади с зазором, газодинамического резонатора, при этом крыльчатка крепится на наружной поверхности кавитатора.
3. Пульсирующий двигатель по п.3, отличающийся тем, что кавитатор установлен в подшипниковом узле, расположенном на резонаторе.
4. Пульсирующий двигатель по п.1, отличающийся тем, что двигатель снабжен воздушным патрубком для подачи воздуха, расположенным на корпусе двигателя радиально в плоскости вращения рабочего органа.
5. Пульсирующий двигатель по п.4, отличающийся тем, что воздушный патрубок имеет центробежный переключатель.
6. Пульсирующий двигатель по п.5, отличающийся тем, что центробежный переключатель имеет запирающую пружину, расположенную в опоре на внутренней поверхности патрубка, и направляющие для его перемещения по внутренней поверхности воздушного патрубка.
7. Пульсирующий двигатель по п.4, отличающийся тем, что воздушный патрубок имеет отверстия для забора воздуха из атмосферы.
8. Пульсирующий двигатель по п.4, отличающийся тем, что патрубок имеет запиратель воздуха высокого давления.
www.findpatent.ru
Пульсирующий двигатель детонационного горения содержит смонтированные в едином корпусе и образующие блочную конструкцию двухрежимный прямоточный воздушно-реактивный двигатель с входным диффузором и соплом и расположенный во внутреннем корпусе пульсирующий двигатель с центральным телом и корпусом. Пульсирующий двигатель выполнен детонационного горения. Внутренний корпус выполнен с окнами, а конус - выдвижным. На центральном теле размещены элементы системы подачи компонентов пульсирующего двигателя детонационного горения и системы инициирования. На входе в пульсирующий и прямоточный двигатели и на выходе из последнего установлены створки. Внутренний корпус закреплен в едином корпусе с помощью пилонов, за которыми установлены исполнительные элементы системы подачи компонентов в камеру сгорания прямоточного двигателя и их воспламенения. Элементы управления створками и всеми системами двигателя входят в состав общей системы управления. Такое выполнение двигателя расширяет диапазоны режимов его работы. 1 ил.
Изобретение относится к энергосиловым установкам, не имеющим турбин или иных двигателей, приводящих компрессор или нагнетатель, а точнее - к комбинированным прямоточно-пульсирующим воздушно-реактивным двигателям.
Имеется опыт применения двигателей, состоящих, например, из турбореактивных (ТРД) и ракетных (РД) двигателей или их комбинаций, имеющих общий привод и размещенных в едином корпусе. В массовом отношении такие двигатели выгоднее, чем простая комбинация ТРД и РД. Известен ракетно-турбинный двигатель комбинированного типа, представленный на рис. 5.3. Р.И.Курзинера "Реактивные двигатели для больших сверхзвуковых скоростей полета". М.: Машиностроение, 1989, с. 167. Данный двигатель ATR предложен для перспективного одноступенчатого ВКС военного назначения и может быть отработан, как утверждают зарубежные специалисты, через 10...15 лет. Для такого типа двигателя характерно расширение диапазона достигаемых скоростей и высот полета. Несмотря на то, что данный тип двигателя еще не освоен ни одной страной, дальнейшее развитие ракетной и космической техники уже сейчас требует своего дальнейшего совершенствования, например, при разработке и создании аэродинамического самолета. Для летательных аппаратов, перспективных до 2000 г. и далее, требуется широкий диапазон плавного изменения скорости их полета, начиная от дозвуковых и кончая гиперзвуковым, а также, чтобы их двигатели работали экономично на любых высотах вплоть до безвоздушного пространства. Наиболее близким по принципу работы и техническому устройству является решение, описанное в заявке DE 3644020 A1, МПК F 02 K 7/10, 1987 г. Однако существенным недостатком существующих и предполагаемых в обозримом будущем схем и конструкций комбинированных двигателей является наличие в них подвижных частей, что усложняет и утяжеляет их устройство, уменьшает ресурс работы и т.д. Задача изобретения состоит в реализации полета летательного аппарата (ЛА) в широком диапазоне высот и скоростей. Решение поставленной задачи осуществляется за счет объединения в одной конструкции различных типов двигателей. Поставленная задача достигается тем, что в единой блочной конструкции размещены двухрежимный прямоточный воздушно-реактивный двигатель с входным диффузором и соплом совместно с пульсирующим двигателем с центральным телом и конусом. Отличительной особенностью конструкции является то, что пульсирующий двигатель использует детонационное горение. Элементы системы подачи компонентов пульсирующего двигателя детонационного горения размещены на центральном теле с выдвижным конусом. На входе в пульсирующий и прямоточный двигатели и на выходе из последнего установлены створки, при этом внутренний корпус, имеющий окна, закреплен в едином корпусе с помощью пилонов, за которыми установлены исполнительные элементы системы подачи компонентов в камеру сгорания прямоточного двигателя и их воспламенения, причем элементы управления створками и всеми системами двигателя входят в состав общей системы управления. На чертеже представлена конструктивно-компоновочная схема комбинированного ПДДГ, которая представляет собой комбинацию двух двигателей: ПДДГ и двухрежимного ПВРД, объединенных в единой конструкции. ПДДГ (1) предназначен для создания тяги на малых скоростях полета летательного аппарата (ЛА) в условиях космического пространства и на всех промежуточных режимах работы двигателя. ПВРД (2) предназначен для создания тяги на больших скоростях полета ЛА. ПДДГ состоит из корпуса 3 с окнами, центрального тела 4, системы подачи компонентов топлива 5, системы инициирования 6, выдвижного конуса 7, створок 8. Двухрежимный ПВРД состоит из корпуса 9 со створками 10 и элементов системы подачи компонентов топлива 11. Комбинированный ПДДГ может функционировать в нескольких режимах работы. При этом подачу компонентов топлива в ПВРД и в ПДДГ осуществляет единая система подачи компонентов топлива и по команде от общей системы управления работой комбинированного двигателя. Первый режим работы комбинированного двигателя - совместный режим ПДДГ с эжекторным усилителям тяги. Исходное положение. ЛА находится в предстартовом положении. При этом створки 8 ПДДГ находятся в исходном (нейтральном) положении, передние створки 10 ПВРД подняты, а задние (выходные) - в исходном (нейтральном) положении. Выдвижной конус 7 в исходном (задвинутом) положении. Перед запуском двигателя детонационная камера ПДДГ первоначально заполняется рабочей смесью из системы подачи компонентов топлива 5. Происходит заполнение полости "б". По окончании ее заполнения система инициирования 6 выдает детонационный импульс, под действием которого рабочая смесь детонирует. Образовавшаяся детонационная волна распространяется только в сторону выходного сопла. Распространению ее вперед препятствует система скачков уплотнений, образовавшаяся в результате взаимодействия детонационной волны с центральным телом 4. Детонационная волна, выходя из сопла ПДДГ, превращается в ударную волну, которая, направляясь к выходной части корпуса 9, создает на его входе разрежение. За счет возникающего эффекта эжекции создается дополнительная составляющая тяги. Кроме того, за счет движения детонационной волны в корпусе 3 ПДДГ создается эжектирующий эффект в полости "а", что обеспечивает процессы продувки, подачи компонента топлива и смесеобразования, а также заполнения внутреннего объема корпуса 3 очередной порцией рабочей смеси. Далее процесс повторяется. При этом в детонационную камеру ПДДГ в качестве топлива подается только горючее, а в качестве окислителя используется воздух из окружающей среды. Тяга комбинированного двигателя на первом режиме его работы создается за счет взаимодействия детонационной волны с центральным телом, за счет истечения продуктов детонации через сопло и за счет эжектирующего эффекта, возникающего на входе в ПВРД. За счет создавшейся тяги ЛА трогается с места. Второй режим работы комбинированного ПДДГ - совместный режим ПДДГ и ПВРД. Данный режим осуществляется в процессе полета ЛА до скоростей с M 3. Исходное положение. ЛА находится в полете на траектории. При этом створки 8 ПДДГ прикрыты, а выдвижной конус 7 выдвинут настолько, что обеспечивается заданный режим работы ПДДГ. Передние и задние створки 10 ПВРД прикрыты. Передние створки обеспечивают заданный расход воздуха, а задние - требуемое значение площади критического сечения, образуемой между срезом сопла ПДДГ и створками 10. Работает ПДДГ аналогично вышеописанному режиму. Компонентами топлива для ПВРД являются горючее из системы подачи 5 и в качестве окислителя воздух окружающей среды. Запуску ПВРД предшествует процесс заполнения полости "а" рабочей смесью. По мере ее заполнения подается команда на воспламенение. Как подача горючего, так и воспламенение рабочей смеси осуществляются элементами подачи компонентов топлива и их воспламенения 11. Тяга ПВРД создается за счет истечения продуктов сгорания из камеры сгорания. Общая тяга, необходимая для перемещения ЛА и создаваемая комбинированным двигателем, складывается из тяг, создаваемых как ПДДГ, так и ПВРД. Третий режим работы комбинированного двигателя - совместный режим ПДДГ и гиперзвукового прямоточного воздушно-реактивного двигателя (ГПВРД). Данный режим осуществляется в процессу полета ЛА со скоростями M > 3. Исходное положение. ЛА находится в полете, при этом передние створки 10 ПВРД находятся в нейтральном положении, а задние - в открытом положении, что обеспечивает процесс сверхзвукового горения рабочей смеем в камере ПВРД и дальнейший разгон продуктов сгорания. Положение остальных подвижных частей соответствует второму режиму работы, но с настройкой их на заданный режим работы двигателя, соответствующий требуемой скорости полета ЛА. Отличительной особенностью работы двигателя на данном режиме является то, что сверхзвуковой поток воздуха практически не тормозится в камере ПВРД, что обеспечивает в ней процесс сверхзвукового горения. Так как течение продуктов сгорания в ПВРД сверхзвуковое, то необходимость в создании критического сечения отпадает и дальнейший разгон продуктов сгорания осуществляется за счет увеличения площади поперечного сечения выходного канала сопла. Общая тяга комбинированного двигателя складывается из тяги ПДДГ и ГПВРД, однако основную составляющую тяги создает ГПВРД. Четвертый режим работы комбинированного двигателя - двухконтурный ПДДГ. Данный режим работы используется в процессе полета ЛА в разреженных слоях атмосферы или в космическом пространстве. Исходное положение. ЛА находится в полете в разреженных слоях атмосферы или в космическом пространстве. При этом створки 8 ПДДГ закрыты полностью, выдвижной конус 7 находится в исходном положении, передние створки 10 ПВРД закрыты, а задние - открыты, что образует второй контур ПДДГ. Двухкомпонентная рабочая смесь, состоящая как из горючего, так и из окислителя заполняет полости "а", "б" и "в" двигателя с помощью системы подачи компонентов 5. По мере их заполнения от системы инициирования 6 по команде системы управления двигателем поступает детонационный импульс. Рабочая смесь, находящаяся в полости "б", детонирует. Образовавшаяся детонационная волна начинает распространяться в сторону сопла ПДДГ. Кроме того, она через специальные окна, выполненные в корпусе 3, распространяется во второй контур ПДДГ (полость "в" ПВРД) и вызывает в нем детонацию рабочей смеси. Образовавшаяся детонационная волна устремляется в сторону сопла ПВРД. В дальнейшем процесс повторяется вновь с частотой, задаваемой системой управления двигателем. Тяга комбинированного двигателя создается как за счет взаимодействия детонационных волн с закрытыми створками 8 и 10, так и за счет истечения продуктов детонации через выходные сопла обоих контуров. Предложенная конструктивная схема комбинированного двигателя даст возможности для разработки в следующем столетии как нового пилотируемого транспортно-космического и аэрокосмического летательных аппаратов, так и новых видов оружия. Предложенная схема позволит расширить диапазон изменения скорости летательного аппарата, начиная от дозвуковых ее значений и кончая гиперзвуковым на различных высотах его полета. Конструктивное выполнение различных типов двигателей в едином устройстве позволяет значительно улучшить массовые и геометрические характеристики летательных аппаратов по сравнению с автономным их использованием. Кроме того, для пульсирующих двигателей детонационного горения характерны малые расходы компонентов топлива и низкие давления их подачи в детонационную камеру, простота конструкции и отсутствие подвижных частей, высокая экономичность и сложность обнаружения летательного аппарата средствами ПВО и ПРО. Данный тип двигателя работает на всей траектории полета и может использовать такие компоненты топлива, которые имеют широкую, разнообразную и дешевую сырьевую базу.Формула изобретения
Пульсирующий двигатель детонационного горения, содержащий смонтированные в едином корпусе и образующие блочную конструкцию двухрежимный прямоточный воздушно-реактивный двигатель с входным диффузором и соплом, и расположенный во внутреннем корпусе пульсирующий двигатель с центральным телом и конусом, отличающийся тем, что пульсирующий двигатель выполнен детонационного горения, внутренний корпус - с окнами, конус - выдвижным, на центральном теле размещены элементы системы подачи компонентов пульсирующего двигателя детонационного горения и системы иницирования, на входе в пульсирующий и прямоточный двигатели и на выходе из последнего установлены створки, при этом внутренний корпус закреплен в едином корпусе с помощью пилонов, за которыми установлены исполнительные элементы системы подачи компонентов в камеру сгорания прямоточного двигателя и их воспламенения, причем элементы управления створками и всеми системами двигателя входят в состав общей системы управления.РИСУНКИ
Рисунок 1www.findpatent.ru
Опытно-конструкторское бюро имени Люльки разработало, изготовило и испытало опытный образец пульсирующего резонаторного детонационного двигателя с двухстадийным сжиганием керосиновоздушной смеси. Как сообщает ИТАР-ТАСС, средняя измеренная тяга двигателя составила около ста килограммов, а длительность непрерывной работы ─ более десяти минут. До конца текущего года ОКБ намерено изготовить и испытать полноразмерный пульсирующий детонационный двигатель.
По словам главного конструктора ОКБ имени Люльки Александра Тарасова, в ходе испытаний моделировались режимы работы, характерные для турбореактивного и прямоточного двигателей. Измеренные величины удельной тяги и удельного расхода топлива оказались на 30-50 процентов лучше, чем у обычных воздушно-реактивных двигателей. В ходе экспериментов производилось многократное включение и выключение нового двигателя, а также регулирование тяги.
На основе проведенных исследований, полученных при испытании данных, а также схемно-конструкторского анализа ОКБ имени Люльки намерено предложить разработку целого семейства пульсирующих детонационных авиационных двигателей. В частности, могут быть созданы двигатели с коротким ресурсом работы для беспилотных летательных аппаратов и ракет и самолетные двигатели с крейсерским сверхзвуковым режимом полета.
В перспективе на основе новых технологий могут быть созданы двигатели для ракетно-космических систем и комбинированных силовых установок самолетов, способных выполнять полеты в атмосфере и за ее пределами.
По оценке конструкторского бюро, новые двигатели позволят увеличить тяговооруженность самолетов в 1,5-2 раза. Кроме того, при использовании таких силовых установок дальность полета или масса авиационных средств поражения могут увеличиться на 30-50 процентов. При этом удельный вес новых двигателей будет в 1,5-2 раза меньше аналогичного показателя обычных реактивных силовых установок.
О том, что в России ведутся работы по созданию пульсирующего детонационного двигателя, сообщалось в марте 2011 года. Об этом заявил тогда Илья Федоров, управляющий директор научно-производственного объединения «Сатурн», в состав которого входит ОКБ имени Люльки. О каком именно типе детонационного двигателя шла речь, Федоров не уточнил.
В настоящее время известны три вида пульсирующих двигателей ─ клапанные, бесклапанные и детонационные. Принцип работы этих силовых установок заключается в периодической подаче в камеру сгорания топлива и окислителя, где происходит воспламенение топливной смеси и истечение продуктов сгорания из сопла с образованием реактивной тяги. Отличие от обычных реактивных двигателей заключается в детонационном горении топливной смеси, при котором фронт горения распространяется быстрее скорости звука.
Пульсирующий воздушно-реактивный двигатель был изобретен еще в конце XIX века шведским инженером Мартином Вибергом. Пульсирующий двигатель считается простым и дешевым в изготовлении, однако из-за особенностей горения топлива ─ малонадежным. Впервые новый тип двигателя был использован серийно во время Второй мировой войны на немецких крылатых ракетах Фау-1. На них устанавливался двигатель Argus As-014 компании Argus-Werken.
В настоящее время несколько крупных оборонных фирм мира занимаются исследованиями в области создания высокоэффективных пульсирующих реактивных двигателей. В частности, работы ведут французская компания SNECMA и американские General Electric и Pratt & Whitney. В 2012 году Научно-исследовательская лаборатория ВМС США объявила о намерении разработать спиновый детонационный двигатель, который должен будет заменить на кораблях обычные газотурбинные силовые установки.
Научно-исследовательская лаборатория (NRL) ВМС США намерена разработать ротационный, или спиновый, детонационный двигатель (Rotating Detonation Engine, RDE), который в перспективе сможет заменить на кораблях обычные газотурбинные силовые установки. Как сообщает NRL, новые двигатели позволят военным снизить потребление топлива, одновременно повысив энергетическую отдачу силовых установок.
В настоящее время ВМС США используют 430 газотурбинных двигателей (ГТД) на 129 кораблях. Ежегодно они потребляют топлива на два миллиарда долларов. По оценке NRL, благодаря RDE военные смогут экономить на топливе до 400 миллионов долларов в год. RDE смогут вырабатывать на десять процентов больше энергии, чем обычные ГТД. Прототип RDE уже создан, однако когда такие двигатели начнут поступать на флот, пока неизвестно.
В основу RDE легли наработки NRL, полученные при создании пульсирующего детонационного двигателя (Pulse Detonation Engine, PDE). Работа таких силовых установок основана на устойчивом детонационном горении топливной смеси.
Спиновые детонационные двигатели отличаются от пульсирующих тем, что детонационное горение топливной смеси в них происходит непрерывно ─ фронт горения перемещается в кольцевой камере сгорания, в которой топливная смесь постоянно обновляется.
konsul-777-999.livejournal.com
Пульсирующий детонационный прямоточный воздушно-реактивный двигатель содержит сверхзвуковой воздухозаборник, сверхзвуковую камеру смешения, сверхзвуковую камеру сгорания, выходное сверхзвуковое сопло, воспламенитель топливовоздушной смеси и систему подачи топлива. Система подачи топлива включает коллекторы и пилоны с топливными каналами и соплами, установленные в сверхзвуковой камере смешения. Двигатель также содержит расположенный между сверхзвуковым воздухозаборником и сверхзвуковой камерой смешения канал газовоздушного тракта. Пилоны системы подачи топлива размещены на выходе из последнего. Воспламенитель топливовоздушной смеси размещен в сверхзвуковой камере сгорания в поперечной нише и выполнен постоянно работающим. Каналы системы подачи топлива выполнены открытыми с возможностью газодинамического перекрытия. Изобретение позволяет уменьшить теплонапряженность тракта рабочего тела двигателя на больших сверхзвуковых скоростях полета, обеспечить саморегулируемую подачу топлива в двигатель и расширить диапазон скоростей полета от сверхзвуковых до дозвуковых. 2 н.п. ф-лы, 3 ил.
Изобретение относится к установкам, где рабочее тело используется для создания реактивной струи, а также к устройствам для сжигания топлива.
Известно пульсирующее устройство для сжигания топлива по авт. св. СССР №687313, 1979. Однако это устройство не может быть использовано для создания тяги.
Известен прямоточный воздушно-реактивный двигатель (заявка ФРГ №4139338, МПК F02K 1/04 и F02K 7/10, 1991). Двигатель создает тягу за счет импульсного (пульсирующего) режима истечения рабочего тела, получаемого в результате сгорания топливовоздушной (ТВС) смеси. Данный режим работы реализуется в резонансной трубе, создающей разрежение благодаря колебаниям столба рабочего тела, а подвод воздуха осуществляется через кольцевые щели. Несмотря на то, что данное устройство имеет много общего с заявляемым техническим решением, оно не может реализовать детонационный режим горения.
Наиболее близким к заявленному двигателю по устройству и способу функционирования является сверхзвуковой пульсирующий детонационный прямоточный воздушно-реактивный двигатель (СПДПД) и способ функционирования СПДПД (Патент РФ №2 157 909, МПК7 F02K 7/14). Этот двигатель содержит сверхзвуковой воздухозаборник, сверхзвуковую камеру смешения, сверхзвуковую камеру сгорания, сверхзвуковое сопло, устройство запуска двигателя, систему подачи топлива, включающую пилоны с соплами и клапаны изменения режима подачи топлива, связанные через систему управления подачей топлива с датчиками регистрации прохождения детонационными волнами заданных расстояний от входа и выхода камеры сгорания.
Способ функционирования двигателя заключается в том, что в момент запуска подают топливо и инициируют детонационную волну. Дальнейшую работу двигателя обеспечивают последовательно - периодически, изменяя подачу топлива клапанами, реализуя в камере сгорания богатую и бедную топливовоздушную смесь и вызывая изменение направления и скорости перемещения волны относительно камеры сгорания от выхода ко входу камеры сгорания по богатой смеси и в обратном направлении по бедной смеси, в предельном случае - по чистому воздуху, при сохранении направления движения волны против потока.
Данный двигатель решает задачу увеличения удельного импульса и уменьшения теплонапряженности тракта рабочего тела на больших сверхзвуковых скоростях полета. Однако клапаны в этом двигателе должны работать с высокой частотой (порядка 100 Гц) и обеспечивать заданный ресурс работы, что трудно выполнить.
В основу изобретения положено решение задач уменьшения теплонапряженности тракта двигателя на больших сверхзвуковых скоростях полета, обеспечения саморегулируемой подачи топлива в двигатель и расширения диапазона скоростей полета, охватывающего как сверхзвуковые, так и дозвуковые скорости полета.
Поставленные задачи для конструкции решаются тем, что двигатель выполнен в виде пульсирующего детонационного прямоточного воздушно-реактивного. Двигатель содержит сверхзвуковой воздухозаборник, сверхзвуковую камеру смешения, сверхзвуковую камеру сгорания, выходное сверхзвуковое сопло, воспламенитель топливовоздушной смеси и систему подачи топлива. Система подачи топлива включает коллекторы и пилоны с топливными каналами и соплами. Пилоны с топливными каналами и соплами установлены в сверхзвуковой камере смешения.
Согласно изобретению двигатель содержит расположенный между сверхзвуковым воздухозаборником и сверхзвуковой камерой смешения канал газовоздушного тракта. Пилоны системы подачи топлива размещены на выходе из последнего. Воспламенитель топливовоздушной смеси расположен в сверхзвуковой камере сгорания в поперечной нише и выполнен постоянно работающим. Каналы системы подачи топлива выполнены открытыми с возможностью газодинамического перекрытия.
При такой конструкции двигателя:
- расположение между сверхзвуковым воздухозаборником и сверхзвуковой камерой смешения канала газовоздушного тракта и размещение на выходе из последнего пилонов системы подачи топлива обеспечивает газодинамическое регулирование подачи топлива и ослабление ударной волны при ее движении по каналу газовоздушного тракта;
- расположение воспламенителя топливовоздушной смеси в сверхзвуковой камере сгорания в поперечной нише и выполнение воспламенителя постоянно работающим обеспечивает инициирование горения, переходящего в детонацию, при заполнении ниши топливовоздушной смесью;
- выполнение каналов системы подачи топлива открытыми с возможностью их газодинамического перекрытия обеспечивает саморегулируемую подачу топлива в двигатель в импульсно-периодическом режиме с более высокой частотой, чем у систем подачи топлива с клапанами.
Для решения поставленных задач способ функционирования пульсирующего детонационного прямоточного воздушно-реактивного двигателя заключается в том, что на вход сверхзвуковой камеры смешения через сверхзвуковой воздухозаборник и канал газовоздушного тракта подают воздух, а через пилоны с соплами - топливо. За пилонами в сверхзвуковой камере смешения формируют топливовоздушную смесь и направляют ее в сверхзвуковую камеру сгорания. В сверхзвуковой камере сгорания воспламенителем инициируют горение топливовоздушной смеси. Далее фронт пламени горящей топливовоздушной смеси ускоряется до уровня сотни метров в секунду и переходит в детонацию. Эффект возбуждения горения или детонации обычно носит «пороговый» характер («да»-«нет») для любого инициатора.
(см. 1. А.А.Васильев. Особенности применения детонации в двигательных установках, с. 129, 141-145. 2. Ф.А. Быковский и др. Инициирование детонации в потоках водородно-воздушных смесей, с. 521-539 / Импульсные Детонационные Двигатели. Под редакцией д.ф.м.н. С.М.Фролова. ТОРУС-ПРЕСС, М., 2006).
Были проведены численные исследования прямого инициирования детонации электрическими разрядами в плоском канале, заполненном неподвижной или движущейся со сверхзвуковой скоростью стехиометрической водородно-воздушной смесью (см. В.А.Левин и др. Инициирование газовой детонации электрическими разрядами / Импульсные Детонационные Двигатели. Под редакцией д.ф.м.н. С.М.Фролова. ТОРУС-ПРЕСС, 2006, М., с.235-254).
Дальнейшую работу двигателя обеспечивают последовательно - периодически путем прерывистого изменения подачи топлива, вызывая изменение направления и скорости перемещения детонационной волны относительно тракта двигателя по потоку и в обратном направлении. Детонационную волну, распространяющуюся по потоку, направляют к выходу из двигателя через выходное сверхзвуковое сопло, обеспечивая сжигание несгоревшей топливовоздушной смеси. Детонационную волну, распространяющуюся против потока, направляют в сторону воздухозаборника. Реализуют в камере сгорания богатую и бедную топливовоздушную смесь и вызывают изменение направления, скорости и давления волны относительно камеры сгорания (см., например, К.И.Щелкин, Я.К.Трошин. Газодинамика горения, издательство Академии наук СССР, М., 1963, стр. 14-19).
Согласно изобретению топливо подают при постоянном давлении и открытой системе подачи топлива. Детонационную волну инициируют постоянно работающим в нише воспламенителем. Обеспечивают прохождение детонационной волны через сверхзвуковые камеру сгорания и камеру смешения и канал газовоздушного тракта с торможением детонационной волны в зоне пилонов. При обтекании пилонов с торможением давление потока в зоне пилонов становится выше постоянного давления топлива в системе подачи. Под действием этого перепада давления воздух и остатки продуктов сгорания затекают в открытые топливные каналы пилонов и коллектора, обеспечивая газодинамическое перекрытие топливных каналов и прекращение подачи топлива в камеру смешения. Зона горения в камере сгорания перестает существовать. Детонационная волна преобразуется в ударную волну. Ударная волна продолжает свое движение с ослаблением против потока еще на некотором участке канала газовоздушного тракта, а потом сносится потоком к выходу сверхзвуковой камеры сгорания. Нетлетон. Детонация в газах. Под редакцией д.ф.м.н. Гвоздевой. Мир, М., 1989, с.15, 33-39.
При обратном прохождении сносимой потоком от воздухозаборника мимо пилонов, ослабленной ударной волны с пониженным давлением постоянное давление подачи топлива превышает давление потока в зоне пилонов. Возникает перепад давления, которым коллектора, топливные каналы и сопла пилонов освобождают вытеснением топливом от затекших в них воздуха, несгоревшей топливовоздушной смеси и продуктов сгорания и заполняют новым топливом. Новое топливо подают в камеру смешения и прерывисто повторяют циклы работы. Причем новая порция смеси или догоняет в камере сгорания сносимый фронт ударной волны, воспламеняется и превращается в детонационную волну, или доходит до ниши и воспламеняется в нише от постоянно работающего воспламенителя. При таком способе функционирования:
- последовательно-периодическое изменение расхода топлива, при открытой системе топливоподачи, прохождением детонационной и ударной волн в зоне пилонов системы подачи топлива обеспечивает периодическое заполнение камеры смешения топливовоздушной смесью;
- процесс поджигания, при наличии перемешенной топливовоздушной смеси, от постоянно работающего в нише воспламенителя создает условия для инициирования ее сгорания в детонационных волнах, что обеспечивает реализацию саморегулируемого пульсирующего режима работы;
- для рабочего процесса с горением топлива в детонационной волне, распространяющейся в самоуправляемом пульсирующем режиме с высокой частотой характерна высокая топливная экономичность и эффективность двигателя с высокой полнотой сгорания, которая обеспечивается высокой степенью сжатия потока в детонационных волнах, большой скоростью горения топливовоздушной смеси и высокой температурой продуктов сгорания.
Благодаря высокой степени сжигания топлива в детонационной волне и самоуправляемому режиму ее распространения достигается высокая топливная экономичность как на сверхзвуковых, так и на дозвуковых режимах работы двигателя.
Реализуемый процесс горения топлива в детонационной волне, распространяющейся в пульсирующем режиме с высокой частотой, не требует значительного торможения потока в воздухозаборнике и в камере сгорания, благодаря чему снижается теплонапряженность тракта двигателя.
Для изменения уровня тяги двигателя, при открытой системе топливоподачи, последовательно изменяют расход топлива изменением уровня постоянного давления подачи топлива в коллекторах.
Величину давления подачи топлива в коллекторе задают такого уровня, чтобы в зоне пилонов давление потока при движении детонационной волны от ниши в сторону воздухозаборника было выше давления подачи топлива, а при движении ослабленной ударной волны (в сверхзвуковом потоке) или волны разрежения (в дозвуковом потоке) от воздухозаборника в сторону ниши - ниже давления подачи топлива.
Таким образом решены поставленные в изобретении задачи:
- достигнуто уменьшение теплонапряженности тракта рабочего тела двигателя на больших сверхзвуковых скоростях полета при бесклапанной системе подачи топлива;
- расширен диапазон скоростей полета летательных аппаратов, охватывающий как дозвуковые, так и сверхзвуковые области;
- обеспечена саморегулируемая подача топлива в двигатель.
Настоящее изобретение поясняется последующим подробным описанием конструкции двигателя и способа его функционирования со ссылкой на иллюстрации, представленные на фиг.1-3, где:
на фиг.1 изображен продольный разрез пульсирующего детонационного прямоточного воздушно-реактивного двигателя;
на фиг.2 - сечение А-А на фиг.1;
на фиг.3 - элемент I на фиг.1.
Пульсирующий детонационный прямоточный воздушно-реактивный двигатель содержит (см. фиг.1) сверхзвуковой воздухозаборник 1, сверхзвуковую камеру смешения 2, сверхзвуковую камеру сгорания 3, выходное сверхзвуковое сопло 4, воспламенитель 5 топливовоздушной смеси и систему подачи топлива. Система подачи топлива включает коллекторы 6 и пилоны 7 с топливными каналами 8 и соплами 9 (см. фиг.2). Пилоны 7 установлены в сверхзвуковой камере смешения 2. Двигатель содержит расположенный между сверхзвуковым воздухозаборником 1 и сверхзвуковой камерой смешения 2 канал 10 газовоздушного тракта. Пилоны 7 системы подачи топлива размещены на выходе из последнего. Воспламенитель 5 топливовоздушной смеси расположен в сверхзвуковой камере сгорания 3 в поперечной нише 11 (см. фиг.3) и выполнен постоянно работающим. Коллекторы 6 и каналы 8 системы подачи топлива выполнены открытыми с возможностью газодинамического перекрытия. Воспламенитель 5 может быть размещен в концевой части сверхзвуковой камеры сгорания 3.
Способ функционирования пульсирующего детонационного прямоточного воздушно-реактивного двигателя заключается в том, что на вход сверхзвуковой камеры смешения 2 через сверхзвуковой воздухозаборник 1 и канал 10 газовоздушного тракта подают воздух, а через пилоны 7 - топливо. Топливо подают через коллекторы 6 и каналы 8 в пилонах 7 при постоянном давлении и открытой системе подачи топлива. За пилонами 7 в сверхзвуковой камере смешения 2 формируют топливовоздушную смесь. Полученную смесь направляют в сторону выхода сверхзвуковой камеры сгорания 3 и заполняют нишу 11 топливовоздушной смесью. В нише 11 топливовоздушную смесь поджигают постоянно работающим воспламенителем 5. Инициируют в нише 11 воспламенение и горение топливовоздушной смеси, переходящее в детонацию. Детонация распространяется в тракте двигателя по и против потока. Детонационную волну, распространяющуюся по потоку, направляют к выходу из двигателя через сверхзвуковое сопло 4 и обеспечивают сжигание несгоревшей топливовоздушной смеси. Детонационную волну, распространяющуюся против потока, направляют из ниши 11 в сторону воздухозаборника 1 через сверхзвуковые камеру сгорания 3, камеру смешения 2 и канал 10 газовоздушного тракта с торможением детонационной волны и повышением давления в потоке в зоне пилонов 7. Реализуют в камере сгорания 3 богатую и бедную топливовоздушную смесь. Дальнейшую работу двигателя обеспечивают последовательно - периодически, путем прерывистого изменения подачи топлива, вызывая изменение направления и скорости перемещения детонационной волны по потоку и в обратном направлении. газодинамическим перекрытием коллекторов 6 и топливных каналов 8 в пилонах 7.
По данному двигателю была создана экспериментальная установка. На установке был проведен комплекс исследований по определению характеристик детонационной волны - скорости ее распространения в зависимости от коэффициента избытка воздуха α, времени индукции и толщины детонационного фронта.
Проведенные эксперименты показали принципиальную возможность получения (инициирования) детонационной волны в сверхзвуковом потоке, а полученные зависимости скорости детонационной волны D от значений α демонстрируют возможность получения управляемого рабочего процесса в широком диапазоне скоростей полета - от дозвуковых до гиперзвуковых. В проверенном рабочем процессе пульсирующий режим задавался детонационной волной за счет того, что детонационная волна сама перекрывала подачу топлива, запирая топливные каналы пилонов и коллекторы. При этом никакие системы управления не были задействованы. Процесс пульсации осуществлялся на заданной концентрации топливовоздушной смеси. Регулирование постоянного давления подачи топлива осуществляли для изменения уровня тяги двигателя, но не для создания пульсаций. Электроискровой источник воспламенения топливовоздушной смеси работал в нише на выходе из камеры сгорания постоянно, поддерживая горение и переход в детонацию подающейся топливовоздушной смеси.
1. Пульсирующий детонационный прямоточный воздушно-реактивный двигатель, содержащий сверхзвуковой воздухозаборник, сверхзвуковую камеру смешения, сверхзвуковую камеру сгорания, выходное сверхзвуковое сопло, воспламенитель топливовоздушной смеси и систему подачи топлива, включающую коллекторы и пилоны с топливными каналами и соплами, установленные в сверхзвуковой камере смешения, отличающийся тем, что двигатель содержит расположенный между сверхзвуковым воздухозаборником и сверхзвуковой камерой смешения канал газовоздушного тракта, пилоны системы подачи топлива размещены на выходе из последнего, воспламенитель топливовоздушной смеси размещен в сверхзвуковой камере сгорания в поперечной нише и выполнен постоянно работающим, а каналы системы подачи топлива выполнены открытыми с возможностью газодинамического перекрытия.
2. Способ функционирования пульсирующего детонационного прямоточного воздушно-реактивного двигателя, заключающийся в том, что на вход сверхзвуковой камеры смешения через сверхзвуковой воздухозаборник и канал газовоздушного тракта подают воздух, а через пилоны с соплами - топливо, за пилонами в сверхзвуковой камере смешения формируют топливовоздушную смесь и на выходе сверхзвуковой камеры сгорания инициируют детонационную волну, а дальнейшую работу двигателя обеспечивают последовательно - периодически путем прерывистого изменения подачи топлива, вызывая изменение направления и скорости перемещения детонационной волны относительно тракта двигателя по потоку и в обратном направлении, отличающийся тем, что топливо подают при постоянном давлении и открытой системе подачи топлива, детонационную волну инициируют постоянно работающим воспламенителем, обеспечивают прохождение детонационной волны через сверхзвуковые камеру сгорания и камеру смешения и канал газовоздушного тракта с торможением детонационной волны в зоне пилонов, а прерывистое изменение подачи топлива обеспечивают газодинамическим перекрытием топливных каналов.
www.findpatent.ru
Изобретение относится к области авиастроения и может быть использовано при проектировании летательных аппаратов различного назначения, в двигателестроении самолетов. Камера пульсирующего двигателя детонационного горения включает корпус, воздухозаборник окружающего воздуха, устройства для инжекции окислителя и горючего в камеру, устройство инициирования детонационного горения. Тяговая стенка у камеры выполнена подвижной в виде поршня предварительного сжатия окружающего воздуха. В камере имеется перепускной канал для подачи сжатого воздуха в детонационную секцию камеры и пружинный толкатель обратного хода поршня. Воздухозаборник имеет канал в компрессорной секции камеры, сообщающий ее с атмосферой. Изобретение обеспечивает использование пульсирующих двигателей детонационного горения на режимах с низкими скоростями полета летательных аппаратов. 2 ил.
Изобретение относится к области авиационной техники и может быть использовано при проектировании летательных аппаратов (ЛА) различного назначения с пульсирующими двигателями детонационного горения (ПДДГ).
Известные камеры ПДДГ включают в себя детонационную трубу (камеру сгорания) с соплом, открытую с одного или двух торцов канала трубы, и снабженную инжекторами для горючего и окислителя, инициирующим устройством [1, 2]. Для повышения эффективности их работы в составе силовых установок с ПДДГ дополнительно применяются устройства (один или группа компрессоров) для подачи предварительно сжатого воздуха, используемого в качестве окислителя, что приводит к увеличению весогабаритных характеристик ЛА [3]. Известно, что устройство камеры по патенту №2034996, требующее для своего функционирования выполнение ряда условий, в частности, подачи на вход сжатого воздуха с начальным давлением Р0>2 кг/см2 на всех режимах от старта до полета ЛА с максимальной скоростью, накладывает ограничение на использование ПДДГ. Известна камера сгорания с воздухозаборным устройством, включающим дозвуковые диффузоры, при этом ПДДГ выполняет вспомогательную функцию создания тяги в ограниченном диапазоне скоростей полета ЛА с числом маха (М) в интервале 2<М<3 и не работает на остальных режимах полета, являясь при этом дополнительным грузом (патент 2130407). Известна камера ПДДГ по патенту 2059852 с воздухозаборником, состоящим из конической поверхности, переходящей в цилиндрическую, для увеличения подачи воздуха, что обеспечивает только дополнительный разгон и крейсерский режим при сверхзвуковых скоростях полета ЛА (М=3,5-4).
Наиболее близким к заявляемому изобретению по технической сущности (достигаемой цели и эффекту действия) и совокупности признаков (прототипом) является патент 2078969, в котором камера ПДДГ имеет плоскую форму тяговой (передней) стенки, переходящую в цилиндрическую форму, а противоположный (задний) торец камеры открыт и снабжен соплом типа сопла ракетного двигателя. Воздухозаборник (струйный ускоритель воздушного потока) выполнен в виде осесимметричного канала и заканчивается сверхзвуковым соплом, переходящим в полость камеры и соединяющим ее с источником воздуха, что позволяет достичь сверхзвуковой скорости подачи воздуха. Для работы камеры в этих условиях скорость воздушного потока на входе в нее должна быть достаточной для равномерного заполнения объема детонационной секции камеры, при этом поступление сверхзвукового потока воздуха через проточный канал входного устройства воздухозаборника обеспечивается после набора скорости полета ЛА в диапазоне чисел Маха М=2-4. Недостатком камеры прототипа является обеспечение работы ПДДГ только на гиперзвуковых скоростях полета ЛА и не использование ее на участках взлета, разгона, торможения и посадки.
Целью изобретения является расширение диапазона работы камеры ПДДГ на малых скоростях полета ЛА, когда не обеспечивается необходимое давление воздуха на входе камеры от дополнительного воздухозаборного устройства за счет введения компрессорной секции (предкамеры сжатого воздуха).
Заявленное изобретение направлено на улучшение характеристик ПДДГ за счет изменения конструкции его камеры, которая имеет в компрессорной секции воздухозаборник (в виде створки, окна, отверстия, пазов в боковой поверхности) для забора (ввода) окружающего воздуха и тяговую стенку в виде подвижного поршня для предварительного сжатия зашедшего туда окружающего воздуха и подачи его через перепускной канал в детонационную секцию.
Технический результат, достигаемый при реализации изобретения, состоит в повышении эффективности использования ПДДГ при низких скоростях полета ЛА. Указанный технический результат достигается усовершенствованием системы подачи воздуха в рабочий объем камеры ПДДГ и тем, что тяговая стенка закрытого торца детонационной секции камеры представляет собой подвижный поршень, который сжимает зашедший через воздузаборник окружающий воздух до давления 5 кг/см2 и обеспечивает его подачу в детонационную секцию камеры через перепускной канал. В предлагаемом устройстве компрессорная секция предназначена для предварительного сжатия затекающего воздуха, а детонационная секция - для сгорания горючего.
Устройство включает находящийся в корпусе камеры цилиндр с подвижно установленным в нем поршнем, рабочая (тяговая) поверхность которого ограничивает объем детонационной секции камеры, а компрессорная поверхность поршня - объем компрессорной секции камеры, при этом секции камеры сообщаются между собой посредством перепускного канала. Наличие перепускного канала позволяет периодически соединять объем детонационной секции для сгорания топлива с источником окислителя - компрессорной секции для сжатия воздуха.
Таким образом, камера выполнена с поршневой тяговой стенкой, а в стенках камеры выполнено отверстие для прохода воздуха, сообщающее камеру с атмосферой. Для возвращения поршня используется пружинный толкатель, размещенный на торце компрессорной секции камеры.
Предложенное изобретение иллюстрируется чертежами. На фиг.1 схематично представлена реализация устройства, состоящего из корпуса 1, поршня 2, воздухозаборника 3, пружинного толкателя 4, компрессорной секции 5, перепускного канала 6, перепускных отверстий 7, детонационной секции 8, сопла 9, а на фиг.2 изображена циклограмма работы устройства.
В целях наглядности представленных чертежей устройство для инжекции горючего, а также инициирования детонационного горения в секции сгорания не изображены. Способы выполнения и рациональные варианты конструктивного исполнения таких устройств известны и могут быть. использованы в данном случае. Камера ПДДГ условно показана цилиндрической, представляющей канал круглого поперечного сечения, имеющего воздухозаборник и сопло.
В омываемом снаружи потоком воздуха в стенке камеры показан воздузаборник, который может быть закрытым снаружи подвижным элементом и открывается при включении ПДДГ.
Работа камеры происходит следующим образом.
1. При запуске ПДДГ (первый такт на циклограмме работы, фиг.2) в компрессорную секцию 5 через воздухозаборник 3 поступает окружающий воздух, а в детонационной секции 8 создается давление от сжигания горючего, при этом поршень 2 начинает двигаться в сторону компрессорной секции камеры 5.
2. На втором такте работы стенки цилиндрического поршня 2 перекрывают отверстие воздухозаборника 3 и происходит сжатие воздуха до давления 5 кг/см2 в компрессорной секции камеры 5.
3. На третьем такте работы происходит подача сжатого воздуха в детонационную секцию камеры 8 при совмещении отверстий перепускного канала 6 с перепускными отверстиями 7 поршня 2, имеющих больший диаметр по сравнению с диаметром отверстий перепускного канала. При этом пружинный толкатель 4 начинает сжиматься, накапливая потенциальную энергию для обеспечения обратного хода поршня 2.
4. На четвертом такте работы поршень 2 возвращается в исходное положение под действием пружинного толкателя 4 и осуществляется впрыск горючего и инициирование детонационного горения. Происходит резкое повышение температуры, давления и выделение большого количества тепла, что приводит к детонационному (сверхзвуковому) горению продуктов горючего в среде воздуха. Продукты сгорания истекают через сопло и их давление создает импульс тяги двигателя.
После этого цикл работы камеры повторяются.
Проведенные расчеты показали, что предложенное конструктивное решение позволяет обеспечить окислителем (воздухом) процесс детонационного горения при режимах полета ЛА с числом 0<М<2, а отверстие воздухозаборника в омываемой снаружи потоком воздуха стенке камеры обеспечивает дополнительный приток воздуха в камеру ПДДГ. На малых скоростях (переходных режимах), когда нельзя обеспечить необходимое давление воздуха от набегающего потока на входе в ПДДГ, оно создается за счет сжатия воздуха в компрессорной секции.
Использование предложенного устройства приводит к следующему:
1. Дополнительно подается в составе заборного воздуха кислород окружающей среды, который является окислителем для продуктов сгорания, что приводит к интенсивному протеканию химических реакций с большим выделением тепла.
2. Обеспечиваются более благоприятные условия для возникновения детонационного горения и сверхзвукового истечения продуктов сгорания.
3. Снижается расход топлива, обусловленный реализацией высокоэффективного термодинамического цикла, близкого к циклу при постоянном объеме детонационной секции камеры.
4. Создается тяга за счет взаимодействия детонационных волн с внутренней поверхностью детонационной секции камеры, а дополнительная ее составляющая за счет ускорения движения продуктов детонационного горения в сопле.
5. Снижается вибрационная нагрузка на конструкцию ЛА.
Примеры конструктивного выполнения камер ПДДГ в соответствии с данным изобретением могут быть разнообразными, при этом рациональные (оптимальные) решения выбираются при конструкторском проектировании. Так, несколько камер ПДДГ могут быть расположены параллельно друг другу в виде кольца или пакета заданной формы. Компоновка может представлять собой блоки камер, размещенных внутри крыльев ЛА. Сопловые устройства камер могут ориентироваться различным образом, а ПДДГ управляться (включаться, выключаться, изменять частоту пульсаций) независимо друг от друга с целью изменения величины и направления вектора тяги силовой установки. Отверстия для забора окружающего воздуха могут выполняться различной формы и располагаться по окружности корпуса камеры, при этом перепускной канал может быть реализован в виде коаксиального цилиндра с секторами для забора воздуха и доставки воздуха в детонационную секцию камеры ПДДГ.
Вне зависимости от конструктивных параметров камеры тяга ПДДГ в основном создается повышенным давлением на тяговой стенке вследствие детонационного горения, а также за счет реактивной силы, образованной истекающей через сопло газовой сверхзвуковой струей. Введение в камеру компрессорной секции позволяет плавно изменять тягу двигателя в широких пределах (за счет изменения суммарного расхода воздуха и продуктов сгорания, или за счет их соотношения). В разработанной конструкции камеры с поршневой тяговой стенкой уровень тяги дополнительно может регулироваться созданием переменного рабочего объема детонационной секции, при котором происходит впрыск горючего и инициирования детонационного горения (за счет изменения объема секции при перемещении поршня).
Для заявленного устройства в том виде как оно охарактеризовано подтверждена возможность его осуществления с помощью описанных в заявке средств.
Предложенная камера позволяет более эффективно использовать окружающий воздух или имеющийся на борту ЛА запас окислителя, что позволяет включать ПДДГ в состав комбинированных двигательных установок, работающих во всех диапазонах скоростей полета. Преимущества предложенной камеры ПДДГ заключается в ее малой массе от общей массы комбинированной двигательной установки ЛА. Высокие параметры рабочего процесса камеры (степень повышения давления, температура детонационного сжигания топлива) способствуют улучшению характеристик ЛА.
Источники информации
1. Ляхов В.Н. и др. Воздействие ударных волн и струй на элементы конструкций: Математическое моделирование в нестационарной газодинамике. М.: Машиностроение, 1989, 392 с.
2. Применение пульсирующих двигателей с детонационным горением в летательных аппаратах, БИНТИ-1, "Авиация и космос", 25.02.92 г., №8.
3. Мелькумов Т.М. и др. Ракетные двигатели. М.: Машиностроение, 1976.
Камера пульсирующего двигателя детонационного горения, включающая корпус, воздухозаборник окружающего воздуха, устройства для инжекции окислителя и горючего в камеру, устройство инициирования детонационного горения, отличающаяся тем, что тяговая стенка у камеры выполнена подвижной в виде поршня предварительного сжатия окружающего воздуха, имеется перепускной канал для подачи сжатого воздуха в детонационную секцию камеры и пружинный толкатель обратного хода поршня, а воздухозаборник имеет канал в компрессорной секции камеры, сообщающий ее с атмосферой.
www.findpatent.ru