ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Блок цилиндров. Блок цилиндров двигателя


Блок цилиндров - это... Что такое Блок цилиндров?

«голый» блок цилиндров

Блок цилиндров — основная деталь 2-х и более цилиндрового поршневого двигателя внутреннего сгорания. Является цельнолитой деталью, объединяющей собой цилиндры двигателя. Отливается как правило — из чугуна, реже — алюминия. На блоке цилиндров имеются опорные поверхности для установки коленчатого вала, к верхней части блока, как правило, крепится головка блока цилиндров, нижняя часть является частью картера. Таким образом, блок цилиндров является основой двигателя, на которую навешиваются остальные детали.

Сами цилиндры в блоке цилиндров могут являться как частью отливки блока цилиндров, так и быть отдельными сменными втулками, которые могут быть «мокрыми» или «сухими». Помимо образующей части двигателя, блок цилиндров несет дополнительные функции, такие как основа системы смазки — по отверстиям в блоке цилиндров масло под давлением подается к местам смазки, а в двигателях жидкостного охлаждения основа системы охлаждения — по аналогичным отверстиям жидкость циркулирует по блоку цилиндров.

Стенки внутренней полости цилиндра служат также направляющими для поршня при его перемещениях между крайними поло­жениями.

Поэтому длина образующих цилиндра предопределяется величиной хода поршня.

Цилиндр работает в условиях переменных давлений в надпоршневой полости. Внутренние стенки его соприкасаются с пламенем и горячими газами, раскаленными до температуры 1500—2500°С. К тому же средняя скорость скольжения поршневого комплекта по стенкам цилиндра в автомобильных двигателях достигает 12— 15 м/сек при недостаточной смазке. Поэтому материал, употребляемый для изготовления цилиндров, должен обладать большой механической прочностью, а сама конструкция стенок повышенной жесткостью. Стенки цилиндров должны хорошо противостоять истиранию при ограниченной смазке и обладать общей высокой стойкостью против других возможных видов износа (абразивного, коррозионного и некоторых разновидностей эрозии), уменьшающих срок службы цилиндров (Износ цилиндров автомобильных двигателей является следствием комплексного воздействия на стенки многочисленных физических и химических быстротекущих процессов, которые по характеру проявления разделяются на три основных вида износа: эрозивный, возникающий вследствие механического истирания, схватывания и других разрушающих процессов при непосредственном контакте металлических трущихся поверхностей; коррозионный, возникающий при всякого рода окислительных процессах на поверхностях трения; абразивный, вызывающий разрушение поверхностей трения при наличии между ними твердых или, как говорят, абразивных частичек, в том числе и продуктов износа). Материалы, применяемые для изготовления цилиндров, должны обладать хорошими литейными свойствами и легко обрабатываться на станках.

В соответствии с этими требованиями в качестве основного материала для цилиндров применяют перлитный серый чугун с не­большими добавками легирующих элементов (никель, хром и др.). Применяют также высоколегированный чугун, сталь, магниевые и алюминие­вые сплавы. Блоки, изготовленные из этих материалов, отнюдь не равноценны по своим свойствам.

Так, чугунный блок наиболее жёсткий, а значит — при прочих равных выдерживает наиболее высокую степень форсировки и наименее чувствителен к перегреву. Теплоёмкость чугуна примерно вдвое ниже, чем алюминия, а значит двигатель с чугунным блоком быстрее прогревается до рабочей температуры. Однако, чугун весьма тяжёл (в 2,7 раза тяжелее алюминия), склонен к коррозии, а его теплопроводность примерно в 4 раза ниже, чем у алюминия, поэтому у двигателя с чугунным картером система охлаждения работает в более напряжённом режиме.

Алюминиевые блоки цилиндров лёгкие и лучше охлаждаются, однако в этом случае возникает проблема с материалом, из которого выполнены непосредственно стенки цилиндров. Если поршни двигателя с таким блоком сделать из чугуна или стали, то они очень быстро износят алюминиевые стенки цилиндров. Если же сделать поршни из мягкого алюминия, то они просто «схватятся» со стенками, и двигатель мгновенно заклинит.

Поэтому на первом поколении двигателей с алюминиевым блоком применяли вставленные в блок «мокрые» гильзы из серого чугуна, «плавающие» в охлаждающей жидкости и служащие непосредственно в качестве стенок цилиндров. Эта конструкция, разработанная в 1930-х годах, получила широкое распространение в 1950-х, причём только в СССР, не испытывавшем недостатка в лёгких металлах, она стала применяться практически на всех автомобилях, включая грузовики, что, помимо вышеуказанных преимуществ, давало возможность капитально ремонтировать блок цилиндров просто заменяя гильзы, давая большой экономический эффект. Тем не менее, у неё были и свои недостатки: алюминиевый блок с мокрыми гильзами получается намного менее жёстким, чем цельнолитой чугунный, и поэтому достаточно чувствителен к перегреву и хуже переносит форсировку. Кроме того, алюминий дорог и на большей части территории Земли дефицитен. Поэтому на большинстве двигателей до 80-х — 90-х годов блоки были всё же отлиты из чугуна, несмотря на явно избыточную массу. На высокофорсированных двигателях также часто использовались более прочные чугунные блоки.

В 1980-х годах стала получать всё большее распространение технология, при которой в алюминиевый блок запрессовывались тонкостенные «сухие» чугунные или композитные гильзы, со всех сторон окружённые алюминием. Такие двигатели сегодня достаточно распространены. Тем не менее, и они не лишены недостатков, так как коэффициенты температурного расширения чугуна и алюминия не совпадают, что требует особых мер для предотвращения отрыва гильзы от блока при прогреве мотора.

Альтернативный подход предполагает цельноалюминиевый блок, стенки цилиндров которого специально упрочняют. Например, на пионере этого направления — двигателе Chevrolet Vega 1971 года — блок отливался из сплава с содержанием до 17 % кремния (фирменное название Silumal), а специальная обработки стенок цилиндров обогащала их кристаллами кремния (химическим травлением — специально подобранного состава кислота вымывает алюминий с поверхности стенки, не трогая кремний), доводя до требуемой твёрдости (кремний намного твёрже чугуна). Тем не менее, опыт оказался неудачным: мотор оказался очень чувствителен к качеству смазочных материалов и перегреву, имел неудовлетворительный ресурс и часто полностью выходил из строя из-за износа стенок цилиндра, восстановление которых вне заводских условий оказалось, в отличие от привычных в то время чугунных блоков, невозможно. Это повлекло за собой громкий скандал и миллионные убытки для компании GM. Впоследствии данная технология была доведена до совершенства европейскими производителями — Mercedes-Benz, BMW, Porsche, Audi, и в 80-х — 90-х годах была применена на их серийных моделях. Такой блок можно даже в ограниченных пределах растачивать, так как толщина упрочненного слоя алюминия составляет порядка нескольких микрон. Тем не менее, чувствительность цельноалюминиевых блоков к перегреву и качеству смазочных материалов никуда не делась — такие двигатели требуют высокой культуры обслуживания, а за их температурным режимом зорко следит управляющая электроника.

Сравнительно недавно немецкая фирма Kolbenschmidt разработала и технологию, при которой в обычный алюминиевый блок запрессовываются готовые алюминий-кремниевые гильзы с повышенным (до 27 %) содержанием кремния упрочненными стенками (технология Locasil), — это позволяет снизить стоимость.

Альтернативной является технология Nicasil — никелевое покрытие на алюминиевых стенках цилиндров с напылением кристаллов карбида кремния, её цель всё та же — повышение твёрдости. Её ограниченно применяли ещё в 60-е — 70-е годы для двигателей очень дорогих спортивных автомобилей, в частности — используемых в Formula 1. Из современных двигателей, такие блоки имели М60 и М52 фирмы BMW, причём их продажи в некоторых странах сопровождались скандалом — «никасил» разрушался от реакции с некоторыми видами топлива с высоким содержанием серы (что характерно, в частности, для некоторых регионов США и России). Главный же недостаток «никасила» — тонкое никелевое покрытие легко повреждается например при обрыве шатуна или прогаре поршня, и уже не подлежит восстановлению. Капремонт также невозможен — только замена блока (поршней ремонтного размера для таких моторов не делают).

Блоки из магниевого сплава сочетают твёрдость чугунных и лёгкость алюминиевых. К сожалению, магний редок и дорог, поэтому используется крайне редко, обычно на спортивных моторах. Некоторое исключение — двигатель «Запорожца» с картером из авиационного магниевого сплава МЛ-5 (и отдельными чугунными цилиндрами).

Ссылки

dik.academic.ru

Блок цилиндров - Википедия

«Голый» блок цилиндров. Материал — алюминиевый сплав с добавлением кремния и локально упроченными стенками цилиндров. У современного автомобиля блок цилиндров представляет собой единую деталь с картером двигателя.
Старинный двигатель с отдельным от картера блоком цилиндров. Цельнолитой чугунный блок американского двигателя конфигурации V8. Разобранный блок двигателя производства Porsche с мокрыми гильзами.
Алюминиевый блок двигателя Rover V8 с установленными в него чугунными мокрыми гильзами с верхней фиксацией.

Блок цили́ндров — основная деталь двух- и более цилиндрового поршневого двигателя внутреннего сгорания. Является цельнолитой деталью, объединяющей собой цилиндры двигателя. Отливается как правило из чугуна, реже — литейных алюминиевых сплавов. На блоке цилиндров имеются опорные поверхности для установки коленчатого вала, к верхней части блока, как правило, крепится головка блока цилиндров, нижняя часть является частью картера. Таким образом, блок цилиндров является основой (корпусной) деталью двигателя, к которой так или иначе крепятся остальные его агрегаты и узлы.

Цилиндр поршневого двигателя внутреннего сгорания[ | ]

Собственно цилиндры в блоке цилиндров могут являться как частью отливки блока цилиндров, так и быть отдельными сменными втулками («гильзами»), которые могут быть «мокрыми» или «сухими» — в зависимости от того, контактируют ли они непосредственно с охлаждающей жидкостью в рубашке охлаждения двигателя. Помимо функции корпусной детали, блок цилиндров несет дополнительные функции: является основной частью системы смазки — по каналам в блоке цилиндров масло под давлением подается к местам смазки, а в двигателях жидкостного охлаждения — и системы охлаждения: охлаждающая жидкость циркулирует внутри блока цилиндров по полостям, образующим рубашку охлаждения.

Стенки внутренней полости цилиндра служат также направляющими для поршня при его перемещениях между крайними поло­жениями. Поэтому длина образующих цилиндра предопределяется величиной хода поршня.

Материал для изготовления блоков цилиндров[ | ]

Износ цилиндров автомобильных двигателей является следствием комплексного воздействия на стенки цилиндра многочисленных быстротекущих физических и химических процессов, которые по характеру проявления разделяются на три основных вида износа: эрозивный, возникающий вследствие механического истирания, схватывания и других разрушающих процессов при непосредственном контакте металлических трущихся поверхностей; коррозионный, возникающий при всякого рода окислительных процессах на поверхностях трения; абразивный, вызывающий разрушение поверхностей трения при наличии между ними твердых или, как говорят, абразивных частичек, в том числе — и продуктов износа.

Цилиндр работает в условиях переменных давлений в надпоршневой полости. Внутренние стенки его соприкасаются с пламенем и горячими газами, раскаленными до температуры 1500—2500 °С. Средняя скорость скольжения поршневых колец по стенкам цилиндра в автомобильных двигателях достигает 12—15 м/сек. Поэтому материал, употребляемый для изготовления внутренних стенок цилиндров, должен обладать большой механической прочностью, а сама конструкция стенок — повышенной жесткостью. Стенки цилиндров должны хорошо противостоять истиранию при ограниченной смазке и обладать общей высокой стойкостью против других возможных видов износа (абразивного, коррозионного и некоторых разновидностей эрозии), уменьшающих срок службы цилиндров. Ко всему этому, материалы, применяемые для изготовления цилиндров, должны обладать хорошими литейными свойствами и легко обрабатываться на станках.

В соответствии с этими требованиями, в качестве основного материала для изготовления блоков цилиндров применяют перлитный серый чугун с не­большими добавками легирующих элементов (никель, хром и др.). Применяют также высоколегированный чугун, сталь, магниевые и алюминие­вые сплавы. Блоки, изготовленные из этих материалов, отнюдь не равноценны по своим свойствам.

Так, чугунный блок наиболее жёсткий, а значит — при прочих равных выдерживает более высокую степень форсирования и наименее чувствителен к перегреву. Теплоёмкость чугуна примерно вдвое ниже, чем алюминия, а значит двигатель с чугунным блоком быстрее прогревается до рабочей температуры. Однако, чугун весьма тяжёл — в 2,7 раза тяжелее алюминия, склонен к коррозии, а его теплопроводность примерно в 4 раза ниже, чем у алюминия, поэтому у двигателя с чугунным картером система охлаждения работает в более напряжённом режиме.

Алюминиевые блоки цилиндров лёгкие и лучше охлаждаются, однако в этом случае возникает проблема с материалом, из которого выполнены непосредственно стенки цилиндров. Если поршни двигателя с таким блоком сделать из чугуна или стали, то они очень быстро износят алюминиевые стенки цилиндров. Если же сделать поршни из мягкого алюминия, то они просто «схватятся» с алюминиевыми стенками, и двигатель заклинит.

Поэтому на первом поколении двигателей с алюминиевым блоком применяли вставленные в блок «мокрые» гильзы из серого чугуна, «плавающие» в охлаждающей жидкости и служащие непосредственно в качестве стенок цилиндров. Эта конструкция, разработанная в 1930-х годах, получила широкое распространение в 1950-х, причём только в Европе, где её использовали производители спортивных и дорогих представительских машин (BMW, Jaguar, Rover, некоторые итальянские фирмы), и в СССР, где алюминиевые блоки цилиндров имели применяться практически все автомобили собственной разработки, включая грузовики — что, помимо вышеуказанных преимуществ, давало возможность капитально ремонтировать блок цилиндров просто заменяя гильзы, обеспечивая большой экономический эффект.

Тем не менее, у неё были и свои недостатки. Алюминиевый блок с мокрыми гильзами — особенно более технологичный в изготовлении с нижней фиксацией гильз — получается ощутимо менее жёстким, чем цельнолитой чугунный, вследствие чего чувствителен к перегреву и хуже переносит форсировку. Алюминий намного дороже чугуна, а технология изготовления гильзованного алюминиевого блока цилиндров намного более трудоёмка и существенно усложняет производство. Кроме того, некоторые алюминиевые сплавы отличаются высокой склонностью к коррозии при использовании определённых марок антифризов, что порой создавало существенное неудобство в эксплуатации (в условиях плановой экономики СССР эта проблема была решена просто — принятием единого госстандарта на нейтральную к алюминиевым сплавам охлаждающую жидкость ТОСОЛ). Поэтому до 80-х — 90-х годов основным материалом для изготовления блоков цилиндров, особенно на американских автомобилях, всё же оставался чугун.

Иногда в двигателях с чугунным блоком цилиндров также использовались съёмные гильзы цилиндров. Это давало всё то же преимущество с точки зрения простоты капитального ремонта, а также — возможность выполнить гильзы из более качественного и износоустойчивого, но и более дорого, материала, чем сам чугунный блок. Например, в СССР гильзы цилиндров обычно делали из специального кислотоупорного чугуна (или снабжали вставками из этого материала), существенно снижающего коррозию стенок цилиндров при взаимодействии с конденсирующимися после прекращения работы мотора продуктами сгорания топлива.

В 1980-х годах стала получать всё большее распространение технология, при которой в алюминиевый блок запрессовывались тонкостенные «сухие» чугунные или композитные гильзы, со всех сторон окружённые алюминием. Такие двигатели сегодня достаточно распространены. Тем не менее, такие блоки также не были лишены недостатков, так как коэффициенты температурного расширения чугуна и алюминия не совпадают, что требует особых мер для предотвращения отрыва гильзы от блока при прогреве мотора и потенциально снижает его долговечность.

Альтернативный подход предполагает цельноалюминиевый блок, стенки цилиндров которого специально упрочняют. Например, на примере этого направления — двигателе Chevrolet Vega 1971 года — блок отливался из сплава с содержанием до 17 % кремния (фирменное название Silumal), а специальная обработки стенок цилиндров химическим травлением обогащала их поверхностные слои кристаллами кремния (специально подобранного состава кислота вымывала алюминий с поверхности стенки, не трогая кремний), доводя до требуемой твёрдости (кремний сам по себе намного твёрже чугуна). Тем не менее, опыт оказался неудачным: мотор оказался очень чувствителен к качеству смазочных материалов и перегреву, имел неудовлетворительный ресурс и часто полностью выходил из строя намного раньше исчерпания нормативного ресурса из-за износа стенок цилиндра, восстановление которых вне заводских условий оказалось, в отличие от привычных в то время чугунных блоков, невозможно. Это повлекло за собой громкий скандал и миллионные убытки для компании GM.

Впоследствии данная технология была доведена до совершенства европейскими производителями — Mercedes-Benz, BMW, Porsche, Audi, и в 80-х — 90-х годах была применена на их серийных моделях. Такой блок можно даже в ограниченных пределах растачивать, так как толщина упрочненного слоя алюминия с повышенной концентрацией кристаллов кремния составляет порядка нескольких микрон. Тем не менее, чувствительность цельноалюминиевых блоков к перегреву и качеству смазочных материалов никуда не делась — такие двигатели требуют высокой культуры эксплуатации и обслуживания, а за их температурным режимом зорко следит управляющая электроника.

Сравнительно недавно немецкая фирма Kolbenschmidt разработала и технологию, при которой в обычный алюминиевый блок запрессовываются готовые алюминий-кремниевые гильзы, имеющие упрочненные стенки с повышенным (до 27 %) содержанием кремния (технология Locasil), — это позволяет снизить себестоимость и частично решает проблему ремонтопригодности.

Альтернативой является технология Nicasil — никелевое покрытие на алюминиевых стенках цилиндров с напылением кристаллов карбида кремния. Принцип работы здесь тот же — повышение твёрдости алюминиевых стенок цилиндров. Эту технологию ограниченно применяли ещё в 60-е — 70-е годы для двигателей очень дорогих спортивных автомобилей, в частности — используемых в Formula 1. Из современных двигателей такие блоки имели моторы М60 и М52 фирмы BMW, причём их продажи в некоторых странах сопровождались скандалом — «никасил» разрушался от реакции с некоторыми сортами топлива, содержащими повышенную концентрацию серы (что характерно, в частности, для некоторых регионов США и России). Главный же недостаток «никасила» — тонкое никелевое покрытие легко повреждается например при обрыве шатуна или прогаре поршня, и уже не подлежит восстановлению. Капремонт также невозможен — только замена блока (поршней ремонтного размера для таких моторов не делают).

Блоки из магниевого сплава сочетают твёрдость чугунных и лёгкость алюминиевых. Но магниевые литейные сплавы относительно дорогие, поэтому используется крайне нечасто, и обычно на узкоспециализированных спортивных моторах. Некоторое исключение — двигатель «Запорожца» с картером из авиационного магниевого сплава МЛ-5 (и отдельными чугунными цилиндрами).

На заре автомобилизма могли также использоваться бронзовые блоки цилиндров, что обусловлено высокой технологичностью этого сплава при литье.

См. также[ | ]

Ссылки[ | ]

encyclopaedia.bid

Блок и головка цилиндров

Строительные машины и оборудование, справочник

Категория:

   Техническое обслуживание автомобилей

Блок и головка цилиндров

В состав кривошипно-шатунного механизма двигателя входят две группы деталей: неподвижные и подвижные.

К неподвижным деталям относятся блок цилиндров, служащий остовом двигателя, цилиндры, головка блока или головка цилиндров и поддон картера. Подвижными деталями являются поршни с кольцами и поршневыми пальцами, шатун, коленчатый вал, маховик.

Блок цилиндров. У V-образных двигателей блок цилиндров (рис. 2.1) представляет собой массивный литой корпус, снаружи и внутри которого монтируются все механизмы и системы.

Нижняя часть блока является картером, в литых поперечинах которого расположены опорные гнезда для подшипников коленчатого вала. Такую отливку часто называют блок-картером.

В средней части блока цилиндров имеются отверстия для установки подшипников скольжения под опорные шейки распределительного вала. Плоскость разъема блока может проходить по оси коленчатого вала или быть смещенной относительно ее вниз. К нижней части блок-картера крепится стальной штампованный поддон, служащий резервуаром для масла. По каналам в блоке масло из поддона подается к трущимся деталям двигателя.

На V-образных двигателях (ЗИЛ-130, 3M3-53-11, ЯМЭ-238 и др.) для повышения жесткости блока цилиндров его плоскость разъемна, расположена ниже оси коленчатого вала. В отливке блока цилиндров имеется рубашка для жидкостного охлаждения двигателя, представляющая собой полость (рис. 2.1,6) между стенками блока и наружной поверхностью вставных гильз 5. Охлаждающая жидкость подается в рубашку охлаждения через два канала 4 (рис. 2.1, а), расположенные по обеим сторонам блока цилиндров. К передней части блока цилиндров крепится крышка распределительных шестерен, а к задней — картер сцепления.

Блоки цилиндров отливаются из серого чугуна (у двигателей автомобилей семейств ЗИЛ, КамАЗ, МАЗ и ВАЗ) или из алюминиевого сплава (у двигателей автомобилей ГАЗ-24-10 «Волга», «Москвич-2140»).

Рис. 2.1. Блок цилиндров V-образного двигателя: а—общий вид; б—вид сзади

Рабочая поверхность цилиндров (рис. 2.2) является направляющей при движении поршня и вместе с ним и головкой блока цилиндров образует замкнутое пространство, в котором происходит рабочий цикл двигателя. Для плотного прилегания поршня и поршневых колец к цилиндру и уменьшения сил трения между ними внутреннюю полость цилиндров тщательно обрабатывают с высокой степенью точности и чистоты, поэтому она называется зеркалом цилиндра.

У дизелей КамАЗ на зеркале цилиндров наносят мелкую (ромбовидную) сетку для лучшего удержания смазочного материала.

Цилиндры могут быть отлиты как одно целое со стенками рубашки охлаждения (рис. 2.2, а) или изготовлены отдельно от блока в виде вставных гильз.

Последние подразделяются на «сухие» гильзы, запрессованные в расточенный блок (рис. 2.2,6), и сменные «мокрые» гильзы (рис. 2.2, в—д), омываемые с наружной стороны охлаждающей жидкостью.

При сгорании рабочей смеси верхняя часть цилиндров сильно нагревается и подвергается окислительному воздействию продуктов сгорания, поэтому в верхнюю часть блока цилиндров или гильз, как правило, запрессовывают короткие вставки — сухие гильзы длиной 40—50 мм (у двигателей автомобилей ЗИЛ-130, ГАЗ-24-10 «Волга», ЗИЛ-157КД, ГАЗ-53-12 и др.). Вставки (см. рис. 2.7) изготовляют из легированного чугуна, обладающего высокой износо- и коррозионной стойкостью.

При установке мокрой гильзы ее бурт 6 (см. рис. 2.2, в) выступает над плоскостью разъема на 0,02— 0,15 мм. Это позволяет уплотнять ее, зажимая бурт через прокладку (см. рис. 2.2, б) между блоком и головкой цилиндров. В нижней части гильза уплотняется двумя резиновыми кольцами 8 (см. рис. 2.2, г) (у двигателей ЗИЛ-130, ЯМЭ-236, КамАЗ-740 и др.) или медными прокладками 9 (см. рис. 2.2, д), установленными по торцу нижнего пояса гильзы (у двигателей автомобилей семейств ГАЗ, «Москвич» и др.). Преимущественное применение в двигателях мокрых гильз связано с тем, что они обеспечивают лучший отвод тепла. Это повышает работоспособность и срок службы деталей цилиндропоршневой группы, при этом снижаются затраты, связанные с ремонтом двигателей в процессе эксплуатации.

Головка цилиндров. В головке цилиндров размещены камеры сгорания (рис. 2.3), в которых установлены впускные и выпускные клапаны, свечи зажигания или форсунки. На головке цилиндров крепятся детали и узлы привода клапанного механизма.

Значительное влияние на процесс смесеобразования как в карбюраторных двигателях, так и в дизелях имеют формы камер сгорания. В карбюраторных двигателях (рис. 2.3, а) наибольшее распространение получили цилиндрические, полусферические II и клиновые III камеры с верхним расположением клапанов. У дизелей (рис. 2.3, б) широкое применение находят неразделенные IV и разделенные V и VI камеры сгорания, состоящие из вспомогательного небольшого пространства— предкамеры или вихревой камеры, и основной камеры сгорания 6, соединенных между собой каналами.

Рис. 2.2. Схемы цилиндров двигателей: а — с короткой сухой вставкой; б — с сухой гильзой; в — д — с мокрыми гильзами

Двигатели с рядным расположением цилиндров имеют одну общую головку цилиндров, двигатели с V-образным расположением цилиндров— две (двигатели ЗИЛ-130, ГАЗ-53-11) или четыре на каждые три цилиндра (двигатель ЯМЗ-240). У двигателей автомобилей КамАЗ каждый цилиндр снабжен отдельной головкой цилиндра.

На рис. 2.4 показана головка цилиндра двигателя ЗИЛ-130, с внутренней стороны которой находятся камеры сгорания с вставными седлами выпускных клапанов, седлами впускных клапанов и с отверстиями для свечей зажигания (рис. 2.4,6). На одной боковой поверхности сделаны каналы (рис. 2.4, а) для подвода горючей смеси и каналы для циркуляции охлаждающей жидкости, а на другой — каналы (см. рис. 2.4, б) для отвода отработавших газов. В каждой камере сгорания имеются отверстия для запрессовки направляющих втулок клапанов. Плоскость разъема между головками и блоком цилиндров уплотняют сталеасбестовыми прокладками.

Рис. 2.3. Формы камер сгорания поршневых двигателей: а — карбюраторных; б — дизелей: I — цилиндрическая; II—полусферическая; III— клиновая; IV—неразделенная; V—VI—разделенные

Рис. 2.4. Головка цилиндров V-образного двигателя: а — вид со стороны камер сгорания; б — вид со стороны коромысел

Головка цилиндров крепится к блоку при помощи шпилек с гайками или болтами. Гайки или болты головки цилиндров затягивают равномерно в определенной последовательности с установленным для каждого двигателя моментом затяжки.

Читать далее: Поршневая группа и шатуны

Категория: - Техническое обслуживание автомобилей

Главная → Справочник → Статьи → Форум

stroy-technics.ru

Доработка блока цилиндров двигателя Ваз

Способы доработки блока цилиндров.

Выбор паука и модернизация выпускного коллектора, тюнинг системы питания двигателя Все о тюнинге коробки передач и двигателя, увеличиваем мощность двигателя и подбираем кпп.

Увеличение объема двигателя внутреннего сгорания является самым простым способом поднять моментные (в большей степени) и мощностные характеристики мотора.

Существует несколько возможных вариантов по увеличению объема двигателя ВАЗ-21083 (и его производных – ВАЗ 2111, 2112, так как все они используют практически одинаковые блоки цилиндров, за исключением применения масляных форсунок в 16-ти клапанных моторах ВАЗ-2112):

Первый (более «народный» – т.к. дешевый) – расточка блока цилиндров под больший диаметр поршня. Затратная часть – работы по расточке блока цилиндров, стоимость комплекта поршней и колец большего диаметра. Второй способ (более дорогой) – замена штатного коленвала на другой, имеющий больший радиус кривошипа – больше ход поршня – больше объём. Затратная часть – коленвал (диаметр кривошипа 74,8-75,6-78-79-80-84-86-88мм), комплект специальных поршней под данный коленвал (т.к. блок цилиндров имеет определенную, конечную высоту), поршневые кольца, ну и работы по расточке блока цилиндров под заданный комплект поршней.

На удивление, рост рабочего объема поршневого двигателя не всегда самый выгодный способ форсировки – иногда, в зависимости от того, что вы хотите получить от мотора, выгоднее доработать головку блока цилиндров ( ГБЦ ) с установкой спортивного или тюнингового распределительного вала и после этих операций «снять» большую мощность с вашего силового агрегата, не вмешиваясь в геометрию блока цилиндров.

Естественно, чтобы возможности распределительного вала раскрылись в полную силу, необходима доработка головки блока цилиндров (ГБЦ) – зачастую довольно серьезная – вплоть до перепрессовки седел и установки клапанов большего диаметра. Кроме того, нельзя забывать про впускные и выпускные каналы, по которым топливно-воздушная смесь поступает в цилиндры, а отработанные газы «вырываются» с большой скоростью – их необходимо дорабатывать, увеличивая до определенных пределов их сечение, производя внутреннюю полировку и изменяя их профиль.

Кроме головки блока цилиндров ( ГБЦ ), достаточно большое влияние на характер мотора оказывает содержимое и «геометрия» блока цилиндров. Мы не будем обсуждать разные типы поршней и их форму, весовые характеристики коленвалов, хотя бесспорно они вносят определенный вклад в характер будущего тюнингового или спортивного двигателя.

Существует такое понятие, как отношение длины шатуна к ходу коленвала, эта характеристика и сам диаметр кривошипа коленвала (ход поршня) существенно влияют на «дыхание» мотора: ведь по своей сути, ДВС – это насос, который прокачивает через себя определенный объем смеси воздуха с топливом за определенный промежуток времени.

В данной статье мы рассмотрим влияние соотношения длинны шатуна и диаметра кривошипа коленвала на «характер» мотора двигателей семейства переднеприводных ВАЗ. В англоязычной литературе это соотношение именуется R/S – rod to stroke ratio, и ему уделяется достаточно серьезное внимание при доработке спортивных двигателей.

Многие источники считают, что «золотой серединой» блока цилиндров является величина R/S, равная 1,75. В интернете вы сами можете при желании найти достаточно много выкладок и расчетов по геометрии блока цилиндров моторов Honda. Отчасти все они будут справедливы и для блоков цилиндров ВАЗ, так как в обоих случаях речь идет о двигателях относительно небольшого рабочего объема (моторы Honda серий В16А - В20В с объемом соответственно от 1,6 до 2,0 литров, что вполне соотносится с литражом моторов ВАЗ 21083 (2112), получаемым при форсировании путем увеличения рабочего объема).

Посмотрим какая обстановка с отечественными блоками цилиндров (берем только ВАЗ 8-го семейства)

И так далее. Все возможные варианты по конфигурации блока цилиндров, включая и на шатунах 135мм он обновляется систематически. Постоянно появляются новые тюнинг комплектующие.

Высокий ( на 3,5мм выше стандарта) блок цилиндров ВАЗ

Эффект большого R/S:

Позволяет поршню дольше находиться в ВМТ, что обеспечивает лучшее горение топливной смеси, т.е. более полное сгорание топливной смеси, более высокое давление на поршень после прохождения ВМТ, более высокая температура в камере сгорания. В результате хороший момент на средних и высоких оборотах.

Длинный шатун уменьшает трение пары «поршень-цилиндр», а это особенно важно при рабочем ходе поршня.

Блок цилиндров, собранный с достаточно большим значением R/S не обеспечивает хорошее наполнение цилиндров на низких и средних частотах вращения коленвала, из-за снижения скорости воздушного потока (из-за уменьшения скорости движения поршня после ВМТ, в момент открытия впускного клапана).

Большая вероятность появления детонации из-за высокой температуры в камере сгорания и длительного времени нахождения поршня в ВМТ.

Эффект малого R/S:

Обеспечивает очень хорошую скорость наполнения цилиндров на низких и средних частотах вращения коленвала, так как скорость движения поршня от ВМТ больше, разряжение нарастает быстрее, что улучшает наполнение цилиндров, более высокая скорость движения топливовоздушной смеси делает смесь более гомогенной (однородной) что способствует лучшему сгоранию. Преимущества: более низкие требования к доработке и диаметрам каналов ГБЦ, чем на блоке цилиндров с высоким соотношением R/S.

Малая величина R\S означает, больший угол наклона шатуна. Это значит, что большая сила будет толкать поршень в горизонтальной плоскости. Для блока цилиндров это означает следующее:

1) Большая нагрузка на шатун (особенно на центр шатуна), что делает разрушение шатуна более вероятным. Разрушение шатуна само по себе мало вероятно, кроме случаев обрыва, при заклинивании и гидроударе, как правило, шатун рвется у верхней или нижней головки под углом приблизительно 45 градусов к оси шатуна с возможным выходом из блока цилиндров.

2) Увеличение нагрузки на стенки блока цилиндров, большая нагрузка на поршни и кольца, увеличение рабочей температуры вследствие повышенного трения, как результат, более быстрый износ стенок блока цилиндра, колец, и ухудшении условий смазки. Износ этого участка блока цилиндров зависит от величины смещения оси пальца относительно оси поршня и от значения максимального угла наклона шатуна, т.е. при применении "кованных" поршней со смещенным пальцем, износ блока цилиндров будет меньше чем при применении стандартных поршней.

3) Более короткий шатун также увеличивает скорость движения поршня, что влияет на износ блока цилиндров и увеличение трения. Максимальная скорость поршня приходится на угол около 80 градусов поворота коленвала от ВМТ, для мотора с коленвалом 74,8 мм при 5600 оборотов в минуту она равна 22,92 м/с при шатуне 121 мм., и 22,80м/с., при шатуне 129 мм.

Наиболее весомым является зависимость ускорения поршня от длины шатуна. Большие значения ускорения положительно влияют на наполнение цилиндров на малых оборотах, что ведет к «тяговитости» двигателя в следствии лучшего наполнения. Но на высоких оборотах из-за инерционности потока во впускной трубе происходит эффект запирания на впускном клапане (т.е объем цилиндра над поршнем растет быстрее, чем может заполняться через клапанную щель, что ведет к ухудшению наполнения и мощностных характеристик на высоких оборотах). В случае длинного шатуна на малых оборотах происходит обратный выброс смеси, но на высоких нет явления запирания.

По вполне понятным причинам, АВТОВАЗ комплектует свои блоки цилиндров шатуном 121мм (он обеспечивает 83-му мотору R/S = 1,7, что вполне удовлетворительно). Но для тюнинга, когда используются коленвалы с большим радиусом кривошипа, шатун 121 мм обеспечивает не очень хорошее отношение R/S , поэтому на рынке нестандартных, спортивных запчастей существуют и продаются шатуны с большей длинной: 126-146мм.

Еще не стоит забывать, что увеличенные хода коленвала компенсируются уменьшением компрессионной высоты поршня (смещением поршневого пальца вверх) или увеличением высоты блока цилиндров. Т.к. компрессионную высоту поршня можно уменьшать до определенного предела, то следующим шагом будет замена блока цилиндров на более высокий, что повлечет за собой немалые расходы финансовых средств. Все эти действия направлены для того, чтобы увеличить значение R/S блока цилиндров.

vazclub.com


Смотрите также