ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Асинхронный электродвигатель в качестве генератора для ветряка. Ветряк из асинхронного двигателя


Ветрогенератор "Могучий"

На этот раз пройдя большой путь в построении дисковых генераторов Ян Корепанов решил сделать генератор на железе от асинхронного двигателя. Скорее всего на это его сподвигли видео от Игоря Лотц, где он показывал свои генераторы, которые получались очень мощные в сравнении с вложенными деньгами.

Также как я понимаю есть желание сделать более мощный генератор, и при этом избавится от болезней аксиальных генераторов, ну и конечно сэкономить на магнитах и на всём остальном. Болезни дисковых генераторов это перегрев статора в основном, ну и малая эффективность использования магнитов.

За основу конструкции взята основа от аксиального генератора с нового проэкта, там готовая ступица для ротора, и новый железный статор легко можно закрепить. Магниты на ротор 18 шт круглые размером 30*10 мм, они были сняты тоже с аксиального генератора, мощность которого была максимально на сильном ветру до 400 ватт если я не ошибаюсь.

самодельный генератор для ветрогенератора>

Железо для статора это часть от статора асинхронного двигателя. Размеры железа получились такие: внутренний диаметр 185мм, 54 зуба, толщина статора 37мм. Вообще так как это первый такой генератор изготавливается чтобы понять как лучше было сделано два таких статора, и второй был сделан со скосом зубов чтобы уменьшить залипание магнитов.

Залипание, то есть момент страгивания в железных генераторах это больная такая тема, и многие делают со скосом, обычно скос делают магнитами, и это здорово помогает на длинных статорах, и с прямоугольными магнитами. Но так как магниты круглые то скос сделан был на железе статора путем сдвига пластин. В итоге забегая вперёд скажу что с круглыми магнитами скос на статоре только ухудшил залипание. На статоре с прямыми зубами залипание оказалось немного ниже и составило 1.5Нм. Это довольно сильное залипание, но с большим винтом, который имеет высокий стартовый момент стартовать ветрогенератор должен нормально.

самодельный генератор для ветрогенератора>

Статор имеет 54 катушки, каждая катушка занимает три зуба, то есть с первого в четвёртый паз, вторая и третья фазы со смещением на один зуб, то есть со второго паза в пятый, и т.д. Катушки намотаны двойным проводом сечением 1.5мм, по 16 витков, это сделано можно сказать специально чтобы можно было перекоммутировать катушки так чтобы витки в катушках или все были последовательно, или сложить вдвое чтобы уменьшить напряжение и увеличить КПД и ток.Сопротивление генератора если верить мультиметру получилось таким, 0.4-0.5 Ом сопротивление фазы, и межфазное порядка 0.7 Ом.

Ниже на фото практически готовый генератор

самодельный генератор для ветрогенератора>

При вращении перфоратором (1100 об/м 700вт) в холостую генератор выдал 92 вольта, обороты около 1000 об/м так как всё же тяжело крутить такой массивный генератор. Тоесть получается 9 вольт при 100 об/м, и начало зарядки 12в АКБ уже при 150 об/м. Но генератор будет работать на 24в АКБ и зарядка начнётся при 300 об/м. Это в принципе нормально, если с хорошим скоростным винтом.

Также сейчас для нового ветрогенератора под названием "Могучий" - это генератор для него, строится новая высокая мачта. Мачта варится из Б/У металлолома. Вот так она выглядит, окрашена и готова к установке ветрогенератора.

мачта для ветрогенератора>

Высота мачты получилась почти 13 метров

мачта для ветрогенератора>

Винт на этот раз не профильный, а сделан из плоского стеклопластика, то есть будет без крутки. Для усиления применены дюралюминиевые усилители, к которым на клёпки посажены лопасти. Ниже на фото тот материал из которого будут вырезаны сами лопасти, это такие стеклопластиковые прямоугольные профиля.

лопасти винт для ветрогенератора>

В итоге получились вот такие лопасти, без крутки, широкие, длинна лопасти вместе с махом 126 см.

лопасти винт для ветрогенератора>

лопасти винт для ветрогенератора>

В итоге всех работ наконец состоялся запуск ветрогенератора, и первые показания на АКБ. Для теста прямо под мачтой к ветряку были подключены два АКБ. На 12в ветряк на малом ветру нормально работал, а вот на 24а АКБ не хватало оборотов. Первый ветряк с профильными лопастями имел гораздо более высокие обороты, а на этом ветряке винт оказался не таким оборотистым как ожидалось.

самодельный ветрогенератор>

самодельный ветрогенератор

>

Первые результаты в общем такие, зарядка АКБ 12в вроде нормально, с 3-4 м/с, а вот на 24в АКБ не хватает оборотов. Но при хорошем ветре мощность до 600 ватт и более. Чтобы поднять напряжение пришлось перепаять статор, который был двойным проводом намотан, теперь катушки как бы стали одинарным проводом намотаны, и витки соединены последовательно, стало вместо 16 витков по 32 витка в катушках. Зарядка теперь начиналась раньше, и стало лучше.

самодельный ветрогенератор>

Но всё же этот экспериментальный винт всё портит так как слишком малооборотистый, и надо делать стеклопластиковый винт. Первые результаты самое главное есть, а доведение до хороших результатов дело времени.

e-veterok.ru

Как сделать ветрогенератор и генератор с чего начать

В статье о том как можно сделать ветрогенератор, в общем о изготовлении и частых ошибках и заблуждениях. Ниже на фото пара ветряков изготовленных мной, я тогда тоже думал что все просто. Ветрогенераторы
> Сделать ветрогенератор вроде и просто, но в тоже время для того чтобы построить такое устройство нужны хотя бы минимальные знания по генераторам, лопастям, и других немаловажных деталям ветроустановки. Если вы до этого никогда в жизни не сталкивались с подобными устройствами то эта статья для вас. Я сам когда начинал то всему учился методом проб и ошибок, а информацию черпал из интернета. Я конечно далеко не знаток в этом деле, но собрав три ветрогенератора я постиг азы так сказать, которыми хочу поделиться с вами. аксиальный генератор> Прежде чем делать самодельный ветрогенератор нужно конечно определиться с чего начать и какой мощности в итоге нужен генератор для вашего ветряка. Когда ищешь в интернете по запросу ветрогенератор своими руками, то обычно первыми всплывают так называемые аксиальные или дисковые генераторы, которые подкупают своей простотой и легко повторяемые в домашних условиях. Если нужен ветрогенератор мощностью до 500 ватт, то аксиальный генератор хороший выбор, ну а более мощные дисковые генераторы делать можно, но это дорого, так-как понадобятся килограммы магнитов. Да в таких генераторах магнитов приходится использовать по массе в 4 раза больше чем в классических со статором из электротехнической стали, но цены на магниты сейчас приемлемые, поэтому в принципе можно. Плюсом аксиальных генераторов является отсутствие магнитного залипания, поэтому такие генераторы хорошо стартуют на малом ветру.

Так-же часто генераторы делают из автомобильных генераторов и асинхронных двигателей. Ну автогенераторы я пропущу, так-как они переделываются по сути как асинхронные двигатели, но они маленькие, поэтому много энергии с них не получишь, максимум 300 ватт/ч. Асинхронные двигатели бывают любых размеров и чем больше двигатель, тем мощнее в итоге генератор.

ротор на магниты> На самом деле переделать асинхронный двигатель в генератор намного проще чем создавать с нуля аксиальный генератор, так-как здесь уже готовый корпус, и надо всего лишь проточить ротор под магниты и перемотать статор. А так-же в сравнении с аксиальным на лицо экономия магнитов. Так-же если отыскать многополосной асинхронный двигатель, например 12-ти полюсной низко оборотистый с оборотами менее 1000об/м, то его можно и не перематывать, просто переделать ротор под неодимовые магниты.Так-же подойдут и другие асинхронные двигатели с меньшим количеством полюсов, самое главное чтобы обороты были как можно меньше, хотя-бы менее 1500об/м, тогда их можно не перематывать. Конкретно как все это делается смотрите на страницах этого сайта, здесь есть все что нужно и информация постоянно пополняется. низковольтовый двигатель постоянного тока
> Кроме асинхронных двигателей, автогенераторов и дисковых генераторов так-же часто применяют в качестве генератора низковольтные двигатели постоянного тока. Это двигатели от беговых дорожек, низковольтные приводы и т.д., но их трудно найти на мой взгляд. Плюс в том что генератор уже готовый, правда как правило они все высоко-оборотистые и к ним приходится приделывать мультипликатор чтобы поднять обороты, а это усложняет конструкцию, снижает надежность и КПД ветроустановки.

Если вас волнует цена магнитов, то лучше переделывать асинхронный двигатель, ну а залипание не так страшно, обычно чтобы его снизить магниты клеют со скосом зуб+паз и это как правило помогает. Ну а если вы хотите не залипающий генератор, который будет стартовать от любого ветерка, то лучше делать дисковый генератор с беселезным статором.

Для дачи например в большинстве случаев хватает 300ватт/ч ветрогенератора. Это конечно пиковая мощность ветряка, которая достигается при 12 м/с, а реальная отдача например как у меня при среднегодовой скорости ветра 2,4м/с в среднем 10-50ватт/ч, это в сутки около 800 ватт/ч, ну а в месяц 20-30Кв/ч. Этого количества энергии конечно на многое не хватит, но по крайней мере как у меня на освещение и телевизор хватает с запасом, а так-же иногда пользуюсь насосом и электроинструментом.

Если же планируется питать к примеру еще холодильник, микроволновку или еще что по мощнее, то тут уже нужен ветрогенератор на несколько киловатт и солидная аккумуляторная батарея чтобы накапливать энергию и потом отдавать потребителям.

e-veterok.ru

Асинхронный электродвигатель в качестве генератора для ветряка

Бытовой ветрогенератор – простой и экологически безопасный способ получения энергии. Промышленные ветряки обладают большой мощностью и сложными системами управления для накапливания энергии или передачи ее в сеть. Однако конструктивно ветрогенератор от этого не изменяется: в каждом ветрогенераторе есть лопасти, электрический генератор и мачта. Поэтому собрать бытовой ветрогенератор для установки на приусадебном участке сможет практически любой человек, обладающий минимальным набором инструментов и познаний в области электричества.

Горизонтальный ветрогенератор: типы, основные особенности Роторный ветрогенератор своими руками: материалы, особенности сборки и установки

В качестве лопастей для ветрогенератора можно использовать деревянные или пластиковые лопасти, которые также можно изготовить самостоятельно. Мачту ветрогенератора проще всего сделать из металлического уголка или трубы, скрепив все элементы конструкции между собой сваркой. Генератором для ветряка может послужить простой асинхронный двигатель с короткозамкнутым ротором (в соответствующем влагозащищенном исполнении для установки на улице) – самый распространенный тип электродвигателей.

Мачта для ветрогенератора: конструкция, установка и эксплуатация Самодельный ветряк за 150$

По сравнению с остальными электродвигателями постоянного или переменного тока, асинхронные обладают важной характеристикой - отсутствием щеточного механизма. Поэтому конструкция асинхронного электродвигателя очень проста – обмотка статора неподвижна и закреплена на корпусе электродвигателя, ротор – короткозамкнутый. Выходные параметры (напряжение и частота) электродвигателя при подключении ветрогенератора к сети никаких отрицательных влияний на бытовую технику не окажут.

Однако для использования асинхронного электродвигателя с короткозамкнутым ротором в бытовом ветрогенераторе необходимо его немного модернизировать, заменив короткозамкнутый ротор на ротор с постоянными магнитами. Для этого ротор электродвигателя протачивается на токарном станке на толщину магнитов. В качестве магнитов применяем достаточно сильные магниты размером 7,6х6 мм в количестве 160 штук. Перед наклейкой магнитов размечаем ротор на четыре полюса (для четырехполюсного электродвигателя), и со скосом располагаем на нем магниты. Каждый магнитный полюс чередуется. После размещения на роторе магниты фиксируются скотчем и заливаются эпоксидной смолой.

В некоторых случаях, помимо изменения ротора электродвигателя, перематывают статор более толстым проводом, чтобы уменьшить напряжение и поднять силу тока.

Проверить работу генератора лучше всего еще до его установки на мачте. Для этого к валу электродвигателя присоединяем дрель, а к выходным клемма – нагрузку (мощную лампочку, кипятильник) и измерительные приборы (мультиметр или вольтметр с амперметром).

ukrelektrik.com

Ветрогенератор на базе асинхронного электродвигателя - 20 Января 2013 - Блог

Технические характеристики ветрогенераторной установкиМощность ветродвигателя при скорости ветра 5 м/с....................................4000 ВтСкорость вращения вала ветродвигателя при ветре 5 м/с.........................500 об/минМощность генератора............................................................................................2000 ВтНапряжение на выходе генератора..................................................................220 (380) ВЧастота выходного напряжения.........................................................................46...60 Гц

      Проблемы дешевой энергии будоражат умы многих. Меня они тоже не обошли стороной. Но, как выяснилось, лиха беда начало. Вопросы при проектировании и постройке станции возникли практически сразу.

      Вот только некоторые из них: "Какой генератор использовать?", "Как добиться стабильности выходного напряжения при сильных изменениях ветра, скорость которого колеблется от 2 до 25, а то и 30 м/с?", "Что делать, когда ветер пропадет полностью?", Каким образом разгрузить ветродвигатель при сильных бурях и ураганах?", "Как быть в случаях, когда ветер есть, а энергия не используется или, наоборот, когда энергия нужна, а ветра нет?", "Как сохранить и эффективнее использовать излишки энергии?" и, наконец, "Какая конструкция самого "ветряка" лучше?".В роли генератора использовались и автомобильные генераторы, и синхронные двигатели. Но в обоих вариантах один и тот же недостаток: нужны слишком большие обороты ротора ветродвигателя, а это, в свою очередь, приводит к увеличению передаточного числа редуктора, а значит, и увеличению габаритов ветряного крыла. Сюда также добавляются большая нестабильность частоты и сложность надежной стабилизации выходного напряжения, а в случае использования синхронного двигателя еще и большие габариты и масса.

      В ходе долгих поисков было отдано предпочтение генератору на базе асинхронного двигателя с короткозамкнутым ротором. Достоинства данного генератора поистине впечатляют: небольшие габариты и масса при достаточно большой мощности; нет необходимости в напряжении возбуждения; если использовать тихооборотный двигатель, то и мощность ротора можно уменьшить; выходная частота практически не зависит от скорости вращения ротора генератора. Однако есть и существенный недостаток: данный генератор нельзя перегружать.

      Схема включения асинхронного двигателя с короткозамкнутым ротором показана на рис.1. При вращении ротора двигателя остаточное магнитное поле действует на одну из обмоток статора. При этом возникает небольшой электрический ток, который заряжает один из конденсаторов С1-СЗ. Благодаря тому, что фаза напряжения на конденсаторе отстает на 90°, на роторе возникает магнитное поле уже большей величины, которое действует на следующую обмотку. Соответственно, следующий конденсатор зарядится на большее напряжение. Этот процесс продолжается до тех пор, пока ротор генератора не войдет в насыщение (1...1,5 с). После этого можно включать автомат В2 и использовать вырабатываемую генератором энергию. Причем для нормальной работы двигателя в режиме генератора мощность нагрузки должна составлять не более 80% примененного в качестве генератора двигателя. Остальные 20% используются для поддержания напряжения на конденсаторах, т.е. поддержания генератора в рабочем состоянии. При превышении данного условия напряжение на конденсаторах исчезнет, а значит, исчезнет и магнитное поле на якоре, что приведет к исчезновению напряжения на клеммах автомата В2. Причем это происходит практически мгновенно.В этом есть свой недостаток и свое достоинство. Недостатком является то, что повторная подача напряжения возможна только тогда, когда будет устранена причина перегрузки и отключен автомат В2. Генератор снова войдет в рабочий режим (через 1... 1,5 с). После этого можно включать В2 и использовать энергию. К достоинству относится тот фактор, что генератор практически невозможно сжечь, так как напряжение на его клеммах исчезает мгновенно, в течение 0,1...0,5 с. Выходное напряжение имеет синусоидальную форму и полностью пригодно для дальнейшего использования. Выходная частота генератора 46...60 Гц, что в большинстве случаев достаточно для домашнего использования. Из-за нестабильности напряжения на выходе генератора пришлось изготовить стабилизатор, который уже был описан на страницах журнала (Электрик 2/2004).

 

      Несколько слов о добавочных конденсаторах. В таблице указана емкость конденсаторов на один киловатт установленной мощности мотора, а для работы с нагрузкой - добавочная емкость на каждый киловатт нагрузки. К примеру, есть двигатель мощностью 3 кВт. К нему предполагается подключать реактивную нагрузку (электродвигатель, сварочный аппарат...) суммарной мощностью примерно 2 кВт. При этом мы хотим, чтобы между фазами было 380 В. Значит, емкость конденсатора С1 составит (3-5)+(2-6) микрофарад. Так как С1=С2=СЗ, то нам понадобятся три конденсатора емкостью 30 мкФ. Если конденсатора необходимой емкости нет, то можно соединить параллельно конденсаторы меньшей емкости. Конденсаторы должны быть бумажные или металлобумажные на напряжение не ниже 450 В, а лучше - на 630 В. По своему опыту могу сказать, что лучше всего включать генератор на напряжение между фазами 220 В, а между нулем и фазой 127 В. Это вызвано тем, что для нормальной работы генератора перекос фаз не должен превышать 45°. Электропроводку в таком случае можно сделать по схеме, показанной на рис.2. При такой схеме удается максимально разгрузить генератор. Кроме того, питание осветительных ламп накаливания и некоторые нагревательные приборы лучше питать постоянным током. Для генератора необходимо использовать тихооборотный двигатель с короткозамкну-тым ротором. Лучше всего применить двигатель на 360...720 об/мин, но подойдет и двигатель на 910 об/мин. Это вызвано необходимостью вращать ротор с большей примерно в два раза скоростью, чем указана в паспорте на двигатель, и уменьшением числа передачи редуктора.

      Сама ветрогенераторная установка может быть выполнена по любой удобной для вас схеме. Я же предлагаю следующую конструкцию. Ветродвигатель представляет собой комбинацию роторов Даре и Саво-ниуса, которая немного упрощена и доработана. Принцип работы показан на рис.3 и в объяснении не нуждается.

Ветродвигатель (рис.4) состоит из ветряного крыла 1, опоры 2 и собственно генератора 3. Опора жестко забетонирована и укреплена тремя натяжными тросами 4. Опору можно изготовить из дерева, бетона, металла. Можно применить опору, которую используют для передачи электричества, или сваю. В качестве растяжек лучше использовать стальной трос диаметром 6...9 мм или стальную проволоку диаметром 10...12 мм. Костыли, за которые крепятся растяжки, также нужно хорошо забетонировать. Каркас крыльев ветродвигателя можно изготовить из труб диаметром 1 дюйм, его чертеж показан на рис.5. Элероны можно изготовить из стального прутка диаметром 6 мм. В качестве ведущего вала использована толстостенная труба диаметром 2...2,5 дюйма, в нижний конец которой впрессован вал длиной 300...400 мм. В нижнем конце вала сделана канавка под шкив. Подшипники взяты сферические с конусными зажимами марки 2000810 с соответствующими корпусами.

      После сборки крыло необходимо сбалансировать. К опоре собранное крыло крепится любым удобным способом, но, главное, чтобы крепление было достаточно жестким и надежным. Экспериментально было установлено, что лучшим материалом для обтягивания крыла служит полиэтиленовая пленка толщиной 80... 120 мкм. Она достаточно прочная, легкая и дешевая, позволяет отказаться от тормозного механизма, который, кстати, в данном устройстве неприемлем, так как при сильном ветре крыло будет уничтожено. Обтягивать полиэтиленовой пленкой нужно в несколько слоев, спаивая по швам паяльником через кусок полипропиленовой пленки. Рекомендую сначала потренироваться в пайке. Спаянный шов должен быть ровным и прочным. Крыло, конечно, можно обтянуть и другими материалами, например парусиновой тканью, фанерой или даже металлом, но при этом нужно подумать об устройстве, которое позволит разгрузить его при сильном ветре. Обтяжка металлом или фанерой не рекомендуется из-за увеличения массы крыла. Сам каркас можно сделать из дюралюминия, что уменьшит его массу, но данный материал более дорогой. Также было испытано крыло из сосновых реек сечением 50x50 мм, однако результат был не очень, так как при первом сильном ветре его разнесло в клочья.Для привода вала генератора применен редуктор. Можно использовать редуктор любой системы, кроме червячной. Как уже было сказано, вал генератора нужно вращать примерно с удвоенной скоростью, а вал ветродвигателя вращается со скоростью 500 об/мин при скорости ветра 5 м/с. Отсюда и ограничение на используемые двигатели в качестве генератора. Наилучшим вариантом может быть двигатель на 360 об/мин, но можно применить и двигатель на 720 об/мин. При использовании двигателя на 910 об/мин нужно увеличить высоту крыла на 500 мм. Увеличивать крыло по ширине не рекомендуется, так как при этом уменьшится частота вращения, уменьшать тоже не следует, так как при увеличении скорости вращения сильно уменьшится мощность, причем закон уменьшения нелинейный.

     

      При подборе редуктора нужно руководствоваться следующим правилом: за номинальные обороты крыла ветродвигателя нужно брать величину 500 об/мин, что соответствует скорости ветра 5 м/с, частота вращения вала двигателя увеличивается на 2,3, далее путем несложных вычислений получаем коэффициент передачи. Вариант крепления генератора к опоре с применением ременного редуктора показан на рис.6. Сам кронштейн легко прикрепить к опоре с помощью шести шпилек. С зубчатым редуктором крепление намного проще. Не рекомендую делать вал ветродвигателя слишком длинным, так как его может попросту перекрутить. Монтаж ветродвигателя нужно проводить в безветренную погоду с использованием страховочных поясов и монтажных когтей. Всю конструкцию необходимо заземлить. Сопротивление заземления должно быть не более 2 Ом. У подножия нужно установить шкаф, в котором необходимо разместить конденсаторы С1-СЗ, автоматы В1-В2, диоды V1-V6, стабилизатор напряжения, автомат управления, четыре аккумулятора и мощный преобразователь напряжения для обеспечения электроэнергией во времена штилей. Автомат управления обеспечивает переключение цепей питания в зависимости от нагрузки и скорости ветра. Мощный преобразователь напряжения обеспечивает заряд аккумуляторов во время работы генератора в холостую, а также питание сети от аккумуляторов при отсутствии ветра или сильно заниженном напряжении на генераторе. Когда нет ветра и аккумуляторы разряжены, автомат управления обеспечивает подачу энергии из штатной сети. К сожалению, автомат управления и мощный преобразователь напряжения не входят в рамки данной статьи.Кабель, которым производится соединение генератора и силового шкафа, должен быть трехфазным с сечением жилы не более 4 мм . Кабеля, которыми производится соединение шкафа с потребителями, могут быть такими же. Шина заземления должна быть сечением не менее 12 мм .

      Внимание! Все работы по монтажу электроустановок нужно производить при отключенном автомате В1 и разряженных конденсаторах С1-СЗ.Многие проблемы все-таки решить не удалось. К примеру, каким образом сохранять неиспользуемую энергию, чтобы можно было воспользоваться ею во времена штилей? Обыкновенные свинцовые и щелочные аккумуляторы показали не лучшие результаты. Надеюсь, что читателей тоже заинтересует эта проблема, и выход все-таки будет найден.Данный генератор можно подключить к двигателю внутреннего сгорания и использовать его в качестве балластного. Однако топливо для таких двигателей все-таки нужно покупать, а это не очень-то выгодно.

      Емкости конденсаторов, включаемых в фазы, в микрофарадах на 1 кВт мощности приведены в таблице.

Напряжение между фазами      127 В     220 В    380 В Основная емкость:при холостом ходе                       40...50    12... 15    4...5при активной нагрузке                10...20      3...6       1...2при реактивной нагрузке           50...60    15...18     5...6 

 

В.В. Чирка. Черкасская обл

Источник: Электрик http://www.ra-publish.com.ua

masterovoi43.ucoz.ru

Как сделать ветряную электростанцию из асинхронного двигателя

Как самому сделать ветряную электростанцию

Начни — сделаешь

Для мало-мальски умеющего и любящего что-то мастерить, вопрос «как самому сделать ветряную электростанцию» из имеющихся под рукой агрегатов и материалов, не будет являться неразрешимой проблемой. Стоит только взяться с упоением, не торопясь, шаг за шагом двигаться к завершению работы – цель будет непременно достигнута. Вы обязательно получите дармовую электроэнергию, которая зажжёт свет в вашем доме, заставит работать телевизор, зарядит аккумулятор телефона, оживит пылесос. Мало того, вами будут восхищаться близкие люди, женщины посмотрят совсем другими глазами, непременно начнут хвалиться соседям: «Мой-то сам сумел сделать электростанцию»! Мелочь, но приятно.

Что же на старте надо иметь, на какую мощность своего детища можно рассчитывать? Энергоёмкость любой ветроэлектростанции всегда находится в зависимости от технических возможностей приборов вашей установки. Сейчас пройдём все этапы, создадим самодельный ветрогенератор мощностью до 1 квт. Этого вполне хватит, чтобы осветить несколько комнат, оживить холодильник, телевизор, подключить компьютер.

Как известно, ветроустановки бывают двух типов – с вертикальной осью и горизонтальной, или карусельные и лопастные. У карусельного вида ось вращения вертикальная, у лопастного — горизонтальная. Поскольку карусельная ветроустановка не требует высоты, а может работать непосредственно у поверхности на небольшой опоре, то сейчас расскажем о том, как её сделать собственными руками.

Прежде всего, запасёмся приборами, проводами, фанерой, деревянными материалами различной конфигурации, металлическими материалами (уголками, швеллером, листовым дюралюминием), болтами, гайками различной величины. К приборам относятся генератор от автомобиля, или электромотор от выброшенной стиральной машины, аккумулятор, резистор, регулятор напряжения, реле обратного тока, амперметр, предохранитель, выключатель.

Инструменты: дрель с набором свёрл, шлифовальная машина, или «болгарка» для резки металла с дисками, сварочный аппарат (может и не пригодится), набор гаечных ключей. Весь этот арсенал у мастерового человека всегда имеется.

Крыльчатка – ловец ветра

Именно с неё начнём делать нашу ветряную электростанцию. Потому что эта деталь среди всего комплекса работ самая трудоёмкая, хоть и сложного здесь ничего нет. Собственно говоря, это единственная составная часть, от начала до конца требующая её создания своими руками. Всё остальное – уже готово, только подсоединить провода, соорудить опору, укрепить установку и ждать первого дуновения ветерка. Считайте, что ветрогенератор готов к работе.

Приступаем. Вид крыльчатки, габариты всей установки видны на схеме (см. рисунок, его можно увеличить). Лопасти можно сделать из фанеры, из тонкой железной пластины, из дюралюминия, пластика. На ваш выбор. Что есть под рукой в нужном количестве, то и выбирайте. Единственное требование к результату этого этапа работы – изделие должно быть максимально лёгким, строго симметричным, чтобы при вращении не было толчков.

Если вы предпочли сделать четыре лопасти из тонкого железного листа, то по вертикальному краю каждой лопасти для жёсткости укрепите шестимиллиметровой проволокой, а если выбрали фанеру, то в конце изготовления тщательно пропитайте её горячей олифой.

Четыре крестовины, на которые крепятся лопасти, удобнее всего сделать из стальных полосок сечением 5 на 60 мм. Они будут служить более продолжительное время, чем деревянные. В качестве вертикальной оси электростанции надо использовать стальную трубу диаметром не менее 30 мм и длиной 2 метра. Здесь всё зависит от размера двух шарикоподшипников, под которые надо выбирать диаметр осевой трубы. В нижней части трубы прикрепите два шкива разного диаметра. Через ремень вращение будет передаваться на ветрогенератор, укреплённый рядом с установкой. Не забудьте надёжно укрыть приборы от атмосферных осадков в металлическую коробку. Можно деревянную.

Осталось сваркой приварить к оси стальные крестовины ротора, к которым прикреплены лопасти ветряка. Тщательно измерьте расстояние от оси до каждой лопасти. Оно должно быть равным. После сбора ротора покройте его масляной краской.

Изготовление станины изучите по схеме (см. рисунок). Здесь ничего сложного нет. Чтобы она была устойчива при любом напоре ветра, желательно все четыре точки соприкосновения с поверхностью залить бетоном.

При ветре до 10 м/сек и при использовании автомобильного генератора такая установка будет давать мощность 800 ватт. Не забывайте снабдить ветрогенератор мощным аккумулятором, что даст возможность более длительное время пользоваться энергией при полном безветрии.

Поскольку электростанция предназначена для работы у поверхности, значит важно выбрать место для её расположения. Оно должно быть открытым, возвышенным, ничто не должно препятствовать движению воздуха в радиусе 40-50 метров от установки.

Не гоняйтесь за призраками

Время подошло поговорить о самых выгодных генераторах, которые можно применять в ветровой энергетике. В этом разделе речь пойдёт о применении асинхронного двигателя в электростанции.

Само понятие – асинхронный означает «не совпадающий», «неодновременный». Почему получили такое название некоторые электродвигатели? Потому, что у них вращение ротора не совпадает с вращением магнитного поля статора. С помощью ветра вращается ротор генератора, при несовпадении полей образуется электроэнергия. Вот и весь принцип работы асинхронного двигателя.

Специалисты связывают минимальные затраты и высокую производительность именно с применением в ветроэнергетике асинхронных двигателей в качестве ветрогенератора. Если их сравнивать с обычными генераторами, то асинхронные двигатели намного легче, мощнее и дешевле. Им не нужен дополнительный источник питания, у них отсутствуют электрические щётки, которые часто надо менять в генераторах, работающих на постоянных магнитах.

Каков принцип работы асинхронного двигателя? Когда ротор начинает двигаться под влиянием ветра, магнитное поле воздействует на какую-либо обмотку статора. К каждому из них подключен конденсатор. Появляется еле заметный ток, заряжающий один из конденсаторов. Поскольку фаза напряжения конденсатора отстаёт, на роторе образуется магнитное поле. В свою очередь оно действует на другую обмотку, через которую её конденсатор ещё сильнее заряжается. Ротор входит в полное насыщение – ток пошёл по назначению.

На что способен ветрогенератор с применением асинхронного двигателя? При ветре 5 м/сек его мощность составляет 4000 ватт. Мощность генератора 2000 ватт. Напряжение при выходе 220 в. Если будем использовать электродвигатель на 720 об/мин, то при указанной ветровой скорости, можно получать устойчивый переменный ток постоянной частоты до 60 гц.

Такой ветрогенератор по своим преимуществам далеко ушёл от своих собратьев, работающих на постоянных магнитах. Перечислим их:

И последняя информация на эту тему. Какому генератору отдать предпочтение при установке ветровой электростанции – синхронному, или асинхронному? Мы скажем о их различии, а вам выбирать.

Главнейшее преимущество синхронных генераторов – устойчивая стабильность напряжения, а недостаток – наличие щёток, которые время от времени требуют замены. Асинхронный довольно простой в эксплуатации, не подвержен коротким замыканиям.

Так стоит ли гоняться за призраками, выдумывать велосипеды в стиле луноходов, когда есть испытанный асинхронный двигатель, который легко сделать самому из любого автомобильного генератора и успешно применить его в изготовлении ветряной электростанции. Почему из автомобильного? Он бывает довольно мощным, выносливым, неприхотливым. Имеет удобный шкив для ремня с клинообразным профилем, что предотвращает от соскальзывания.

Автомобильный генератор – отличный агрегат для приспособления его к работе ветряка. Его нетрудно найти в любом гараже, автосервисе, да и в магазине он стоит дешевле.

Для умельцев с богатым опытом есть над чем подумать, чтобы превратить автомобильный синхронный генератор в асинхронный и применить его для ветряной электростанции.

Мощность генератора надо согласовывать с размерами ветроколеса:

http://altenergiya.ru

legkoe-delo.ru

Ветрогенератор своими руками ( генератор на постоянных магнитах из асинхронного электродвигателя )

Ветрогенератор своими руками ( генератор на постоянных магнитах из асинхронного электродвигателя )

Пропеллер

Пропеллер для этого ветряка будет трехлопастным. Хотя двухлопастный пропеллер проще построить, у такого пропеллера есть свои недостатки, например, он не сразу стартует. Еще одним недостатком является тот факт, что при смене направления ветра двухлопастной пропеллер сильно вибрирует при повороте, а это плохо и для самого пропеллера, и для опоры генератора. Я сделал свой пропеллер своими руками из еловых досок размером 1″х4″. Я постарался найти три доски без сучков, имеющие хорошие вертикальные волокна и имеющие примерно одинаковую плотность (это определялось по весу). Конечно, можно использовать и другие породы дерева, просто у меня нашлась под рукой только ель. Размер досок был подобран так, чтобы пропеллер был достаточно легким, чтобы быстро стартовать и не сильно нагружать опоры. На то, чтобы вырезать лопасти, ушло около 2 часов. Безусловно, если бы я потратил больше времени, пропеллер вышел бы лучше, размеры в основном определялись интуитивно (мой чертеж показан на Рисунке 1). Однако если вы хотите сделать все по правилам, в сети множество информации по аэродинамике, вырезанию по дереву и даже по изготовлению пропеллеров.

Рисунок 1. Поперечный срез лопасти. После проверки лопастей на одинаковый размер я соединял их болтами по двое и проверял, хорошо ли сбалансирована получающаяся конструкция. Когда все три лопасти стали одинаковыми, я покрасил их и присоединил к ступице, в качестве которой использовал старую 8-дюймовую шестерню. После этого я смог насадить всю эту конструкцию на ось и попробовать покрутить, определив степень сбалансированности и подпилив слишком тяжелые части (конечно, потом их пришлось снова покрасить). В сумме процесс построения и балансировки пропеллера занял около 4 часов. Следует заметить, что три лопасти после балансировки оказались разной толщины, в некоторых местах они отличались на 1/8 дюйма. Чтобы этого избежать, рекомендуется выбирать дерево лучших пород и уделять первоначальному выпиливанию больше внимания. Для выпиливания я пользовался в основном электрорубанком. Стоит также обратить внимание на то, что лопасти не закручены, то есть их угол наклона относительно оси всегда постоянный. Для пропеллера такого небольшого размера это вполне нормально.

Генератор

В качестве генератора для ветряка я использовал асинхронный электродвигатель в 2 л.с., который я вынул из старого тайваньского фрезерного станка. Я разобрал его на части и сделал насечки в якоре, чтобы можно было вставить 8 неодимовых магнитов, чтобы превратить асинхронный электродвигатель в низкоскоростной генератор с постоянными магнитами. Магниты имеют прямоугольную форму и изогнуты так, чтобы подходить к якорям большинства двигателей мощностью от 0.5 л.с. и выше. Насечки имеют такую глубину, чтобы край вставленного в них магнита находился на одном уровне с поверхностью якоря. Магниты приклеиваются эпоксидным клеем. Располагаются они парами по два магнита с одинаковой полярностью.

Подключенный генератор выдает 12 В примерно на 160 об/мин. При другом способе подключения генератор мог достичь максимальной нагрузки при 80 об/мин, однако это могло значительно ограничить силу тока. Конечно, результирующий ток переменный, а для зарядки аккумулятора нам необходим постоянный, поэтому я использовал 40-амперный ТС. Башня

Башня – это, возможно, самая важная часть ветряка, и чаще всего именно ею пренебрегают. Для ее размещения я срубил большую сосну, а в центре оставшегося пня сделал выемку. Мачта сделана из соснового древка. Я просверлил основание, чтобы она могла вращаться в пне. На вершину был насажен кусок стальной трубы, чтобы держать и вращать ветряк. Во время сборки мачту поддерживала небольшая сосновая тренога. Еще одна тренога большего размера была использована для подъема. Башня поддерживалась четырьмя проволочными растяжками диаметром 1/8″ из авиационного кабеля с талрепами для регулировки.

Ходовая часть и хвост ветряка Ветряк действительно было очень легко сделать. Я начал с кусков стали толщиной 3/8″, к которым можно было прикрутить генератор. Для этого я сварил трубу, которая подходила по размеру к трубе на конце мачты, — на ней ветряк будет вращаться. В этой машине нет токосъемников, я просто использовал достаточное количество кабеля, чтобы она могла сделать несколько оборотов прежде чем остановиться. Линия электропередачи генератора чуть длиннее, чем кабель, чтобы ветряк мог остановиться, не вырвав шнур питания. Хвост закреплен железным треугольником в 4 ярдах от центра вращения. Два 0.5″ стальных бруска служат для лучшего закрепления хвоста. Я слегка сдвинул хвост и генератор относительно оси, это было сделано исключительно интуитивно в надежде, что порывы ветра не закрутят его слишком быстро. Запуск Мой самодельный ветрогенератор хорошо запускается только на высоких скоростях ветра. Эту проблему можно устранить, сделав пропеллер большего размера, шире лопасти или даже больше лопастей. Зато после запуска генератора, лопасти достаточно хорошо закрутились даже на очень низкой скорости. Ветер в нашей местности порывистый, направление часто меняется, так что мне сложно связать полученное электричество со скоростью ветра. Лучший результат, который мне удалось замерить – 25 А при высокой скорости ветра, хотя обычно на моих 12-вольтовых батареях можно получить 5-15 А при низкой скорости. Возможно, имеет смысл построить регулятор с согласующим ТС или линейный усилитель потока, который лучше справится с потреблением на генератор и обеспечит значительно большую силу тока. Проверка в действии Через 8 недель безупречной работы мой самодельный ветряк сломался. По радио передали штормовое предупреждение. Я убедился, что кабель по-прежнему целый, и постарался сделать так, чтобы он оставался целым и дальше. Через некоторое время я услышал странный звук. Ветряк все еще крутился и даже выдавал 20 А, но было очевидно, что что-то случилось. Оказалось, что одна из лопастей отвалилась. Я нашел обломки лопасти, похоже, она изначально была надтреснутая. Учитывая, что остальные две лопасти остались целыми, конструкция сама по себе была хорошей. Этот факт подтвердился тем, что ветряк проработал с двумя лопастями довольно долгое время при очень сильном порывистом ветре. Вместо того чтобы чинить этот пропеллер, я сделал новый пропеллер своими руками. Он был больше, для него использовалось более прочное дерево, кроме того, я слегка закрутил лопасти. Высота мачты осталась прежней. Новый самодельный пропеллер стартовал гораздо легче и работал гораздо тише. Помимо прочего эта поломка доказала, что выбрал правильную конструкцию башни. Она легко опускается и поднимается при необходимости. Спуск старого пропеллера, изготовление нового и монтирование его на мачте заняло всего 4 часа. В результате при нормальной скорости ветра такой самодельный ветряк производит от 100 до 200 Вт.

strast-online.ru


Смотрите также