При исследовании регулировочных свойств асинхронных двигателей принято рисовать механическую характеристику как зависимость скорости от момента. Скорость легко рассчитать по формуле:ω = (1–s)ω0
Способы регулирования скорости вытекают из формул:
ω0 = 60f/p
sкр = r2’/(x1+x2’)
Mкр ≡ 3Uф2
Способ регулирования скорости двигателя с фазным ротором вытекает из формулы критического скольжения.Вводя в цепь ротора внешние дополнительные сопротивления мы увеличиваем r2’, а следовательно увеличиваем sкр.
Этот способ регулирования скорости прост, позволяет использовать для регулирования скорости пусковые сопротивления.
К недостаткам следует отнести возникновение больших ударных нагрузок при прохождении характеристики через точку критического момента. Чтобы защитить механическую часть электропривода от разрушения, в цепь ротора последовательно с активными сопротивлениями устанавливают индуктивные сопротивления. Благодаря наличию индуктивности получают спрямленную характеристику:
Включение активно-индуктивных сопротивлений в цепь ротора производят только для двигателей небольшой мощности, но не более 20 кВт, так как на индуктивности возникают очень большие потери. Они возрастают с увеличением мощности и резко снижают КПД.
Рассмотрим способы регулирования скорости асинхронного двигателя с короткозамкнутым ротором.
Регулирование скорости изменением частоты питающего напряжения:
U1 = E1 + r1I1 + jx1I1E1 = 4,44Ф0w1fkот
Для того чтобы при изменении частоты магнитный поток асинхронного двигателя оставался постоянным и тем самым не возникло перегрева машины, нужно одновременно с изменением частоты менять напряжение на статоре двигателя таки образом, чтобы отношение напряжения к частоте оставалось величиной постоянной.U/f=const – закон частотного регулирования.
el-dvizhok.ru
В последние 10-25 лет установилась четкая тенденция на переход от привода постоянного тока к приводу переменного тока благодаря совершенствованию законов управления двигателями переменного тока и развитию силовой электроники.
Применение двигателей переменного тока обусловлено их простотой, дешевизной, повышенной надежностью, существенно меньшими габаритами и массой по сравнению с двигателями постоянного тока. К недостаткам регулирования скорости можно отнести высокую сложность теории машин переменного тока и алгоритмов управления, закладываемых в преобразовательные устройства.
Наибольшее распространение получили следующие способы регулирования угловой скорости асинхронного двигателя: 1) реостатное; 2) изменением напряжения на статоре; 3) переключением числа пар полюсов; 4) изменением частоты питающего напряжения и др.
5.4.1. Реостатное регулирование
Схема включения АД при этом способе регулирования представлена на рис. 5.9. Реостатные характеристики получаются путем введения в цепь ротора добавочного сопротивления. При этом с ростом сопротивления падает жесткость МХ.
Допустимый диапазон регулирования скорости при данном способе
.
Так как , то приближенно
,
где – относительная величина изменения скорости; – относительная величина изменения момента.
Из полученной формулы видно, что при равных относительных отклонениях угловой скорости и момента нагрузки диапазон регулирования . При более низком допустимом отклонении угловой скорости диапазон оказывается ещё меньше.
Рис. 5.9. Схема включения двигателя при реостатном способе регулирования |
Потери мощности при реостатном регулировании складываются из переменных потерь, включающих потери в меди статора и ротора и во внешних резисторах роторной цепи, и постоянных – не зависящих от нагрузки. Суммарные постоянные потери в двигателе остаются примерно одинаковыми независимо от нагрузки и скорости двигателя.
Электромагнитная и механическая мощности для АД
; ,
отсюда можно определить потери в роторе
Видно, что потери пропорциональны величине скольжения и распределяются пропорционально отношению сопротивлений ротора двигателя и добавочного сопротивления в цепи ротора, поэтому двигатель при реостатном регулировании может развивать момент, равный номинальному.
Недостатками реостатного регулирования скорости являются ступенчатое регулирование скорости и использование дополнительной аппаратуры, невысокое быстродействие и большие потери энергии при регулировании.
5.4.2. Регулирование угловой скорости АД изменением напряжения на статоре
При изменении величины первой гармоники изменяется величина критического момента при постоянстве критического скольжения (рис. 2.28). Такое изменение достигается использованием тиристорного преобразователя напряжения (ТПН).
Максимальный момент при уменьшении напряжения снижается пропорционально квадрату напряжения:
,
где – критический момент при сниженном напряжении;
Из рис. 5.11 видно, что пределы регулирования скорости весьма ограничены, даже при вентиляторной нагрузке.
Для расширения диапазона используют замкнутые по скорости САР, структурная схема которой представлена на рис. 5.10. В состав такой САР сходит датчик скорости (BR) и регулятор скорости, на который поступает разность между заданным и текущим значением скоростей. На выходе регулятора скорости вырабатывается сигнал, подающийся на вход системы импульсно-фазного управления, которая вырабатывает управляющие импульсы для ТПН. Особенность такого регулирования заключается в том, что все характеристики сходятся в точке синхронной скорости , поэтому, чем меньше скорость, тем выше скольжение и больше потери в двигателе. Механические характеристики двигателя при фазовом управлении в замкнутой САР скорости представлены на рис. 5.11.
Рис. 5.10. Структурная схема замкнутой САР скорости АД при фазовом управлении | Рис. 5.11. Механические характеристики САР скорости АД при фазовом управлении |
Двигатель при таком способе регулирования может работать продолжительное время при условии
.
Допустимый момент можно найти, приравнивая допустимые потери к номинальным
,
откуда
.
Кривая допустимого момента по нагреву представлена на рис.5.11.
Данный способ регулирования нельзя применять для механизмов, работающих в продолжительном режиме работе с постоянной нагрузкой. Эффективным оказывается использование фазового регулирования для механизмов, у которых статический момент зависит от скорости двигателя
Достоинством фазового управления является более низкая стоимость преобразователя (ТПН) в сравнении с преобразователем частоты (ПЧ) равной мощности, что позволяет для указанных механизмов обеспечить приемлемое качество технологического процесса без дополнительных затрат.
5.4.3. Изменение числа пар полюсов
Из выражения для угловой скорости АД:
,
видно, что регулирование скорости можно осуществлять изменением числа пар полюсов p обмотки статора двигателя. Так как данная величина может быть только целым числом, регулирование скорости оказывается ступенчатым.
Для данного вида регулирования изготавливаются многоскоростные АД с КЗР. В пазах сердечника статора размещают либо две независимые обмотки, либо одну полюснопереключаемую.
Различают две основные схемы переключения. Схема «звезда/двойная звезда» (рис. 5.12, I-II) обеспечивает регулирование с постоянством момента. Такую схему целесообразно применять в электроприводе с постоянно действующим моментом нагрузки при изменении частоты вращения. Схема «звезда/звезда» (рис.5.12, I-III) также даёт двукратное изменение числа пар полюсов, однако регулирование происходит при постоянстве мощности, то есть при переключении на повышенную скорость момент уменьшается в два раза. Такие схемы разумно применять в приводах, где момент сопротивления обратно пропорционален частоте вращения. Механические характеристики АД при регулировании скорости изменением числа пар плюсов представлены на рис. 5.13.
Рис. 5.12. Схемы соединения катушечных групп обмоток статора | Рис. 5.13. Механические характеристики АД при переключении числа пар полюсов |
Многоскоростные АД широко применялись в электроприводах, допускающих ступенчатое регулирование частоты вращения (привода лифтов, вентиляторов, станков). Достоинством такого способа является сохранение высоких экономических показателей при переходе с одной частоты вращения на другую, так как на всех ступенях переключения обмотки статора КПД и коэффициент мощности двигателя остаются практически неизменными. К недостаткам относят большую в сравнении с обычными АД сложность, завышенные габариты, большую стоимость. Кроме того, необходимость переключения обмоток статора на разное число пар полюсов требует усложнения коммутационной аппаратуры, что так же приводит к возрастанию цены электропривода в целом. В настоящее время этот способ вытесняется частотным регулированием.
5.4.4. Частотное регулирование скорости асинхронного двигателя
Частотный способ регулирования скорости АД является превалирующим и основным. Чем это обуславливается? В первую очередь в настоящее время развита теория машин переменного тока, что позволило найти оптимальные с некоторых позиций законы управления АД. Развитие промышленной электроники позволило в полной мере реализовать данные законы в «железе».
Существуют системы скалярного, векторного управления и системы прямого управления моментом. Выбор способа и принципа управления определяется совокупностью статических, динамических и энергетических требований к асинхронному электроприводу.
Принцип скалярного управления частотно-регулируемого асинхронного электропривода основан на изменении частоты и текущих значений модулей переменных АД (напряжений, магнитного потока, потокосцеплений и токов цепей двигателя). Этот принцип является наиболее распространённым в связи с тем, что ему свойственна техническая простота измерения и регулирования переменных АД, а так же возможность построения разомкнутых систем управления скоростью. Основной недостаток заключается в трудности реализации желаемых законов регулирования скорости и момента АД в динамических режимах.
Принцип векторного управления связан как с изменением частоты и текущих значений переменных АД, так и с взаимной ориентацией их векторов в полярной или декартовой системе координат. Благодаря контролю положения углов переменных такой способ обеспечивает полное управление АД как в статических, так и в динамических режимах, что даёт заметное улучшение качества переходных процессов по сравнению со скалярным управлением.
Системы прямого управления моментом являются продолжением и развитием систем векторного управления. Задачей прямого управления моментом является обеспечение быстрой реакции электромагнитного момента двигателя на управляющее воздействие. В отличие от векторного управления, где изменение момента производится путем воздействия на ток статора, в системе с прямым управлением моментом управляемой величиной является потокосцепление статора.
Преобразователи частоты, предназначенные для частотно-регулируемых АД, подразделяются по типу связи с питающей сетью на непосредственные ПЧ (НПЧ) и двухзвенные ПЧ (ДПЧ) с промежуточным звеном постоянного или переменного тока.
Момент АД пропорционален магнитному потоку и активной составляющей вторичного тока :
,
где – конструктивная постоянная АД; – угол сдвига между ЭДС и током ротора;
.
Из формулы для момента видно, что уменьшение магнитного потока, являющееся следствием увеличения частоты , приведет к возрастанию , а следовательно и потерь в роторе и одновременному уменьшению допустимого момента двигателя по условиям охлаждения двигателя. Уменьшение частоты при постоянстве амплитуды напряжения , как было показано в п. 4.3.3, также не допустимо по условиям насыщения магнитной системы машины. поэтому регулирование скорости двигателя изменением частоты питающего напряжения при условии постоянства момента двигателя приемлемо только при одновременном изменении амплитуды питающего напряжения, то есть выполнении закона , что обеспечивает практически постоянный магнитный поток в двигателе.
Для реализации указанного закона управления между сетью и двигателем включается преобразователь частоты (ПЧ), обеспечивающий одновременное изменение частоты и амплитуды напряжения на двигателе. При пониженных скоростях у самовентилируемых двигателей уменьшается отвод тепла в окружающую среду, поэтому в таких случаях необходимо снижать допустимый момент на двигателе.
При частотном регулировании по причинам, обусловленными механической прочностью подшипников и элементами ротора, поднимать частоту выше . Поэтому основной способ регулирования скорости заключается в уменьшении частоты напряжения.
Для построения примерного вида механических характеристик примем, что , тогда уравнение для критического момента можно переписать следующим образом:
.
Из формулы видно, что критический момент при выполнении закона остаётся постоянным. Условие пренебрежения активного сопротивления статора корректно при высоких скоростях двигателя, когда . При низких скоростях падение напряжения на активном сопротивлении статора становится сопоставимо с величиной напряжения на зажимах статора, что приводит к падению перегрузочной способности двигателя . Для того, чтобы реализовать одинаковую перегрузочную способность при частотном регулировании в области низких частот вращения используют так называемую «IR-компенсацию», которая заключается в том, что на малых скоростях делается добавка напряжения на статоре, компенсирующая .
Диапазон регулирования скорости в разомкнутых системах составляет . В замкнутых системах диапазон может быть существенно расширен.
Рис. 5.14. Схема включения АД при частотном регулировании | Рис. 5.15. Механические характеристики системы ПЧ-АД |
Основные сложности, возникающие при реализации частотного управления заключаются в следующем:
1) для получения в системах ПЧ-АД свойств аналогичных (или даже превосходящих) свойства систем ТП- ДПТ необходимо получение информации о различных параметрах АД;
2) системы являются сильно нелинейными и для получения высококачественных систем необходимо вводить звенья, компенсирующие нелинейность объекта регулирования;
3) закон не является оптимальным, и требуется корректировка закона, учитывающая на валу двигателя;
4) в АД входят параметры , величина которых зависит от степени насыщения машины нелинейно. Кроме этого изменяются значения активных сопротивлений статора и ротора при изменении температуры обмоток двигателя, что также необходимо учитывать.
Несмотря на указанные сложности, современные частотные приводы успешно функционируют, обеспечивая высокое качество процесса регулирования скорости.
poznayka.org
Специальные регулируемые асинхронные двигатели создаются в результате адаптации общепромышленных асинхронных двигателей к их условиям эксплуатации в управляемых электроприводах, имеющие в итоге более высокие энергетические и массогабаритностоимостные показатели по сравнению с неадаптированными.
Работа асинхронного двигателя в регулируемом электроприводе (ЭП) характеризуется существенными особенностями, которые и определяют предъявляемые к ним специфические технические требования. Эти особенности связаны с изменяющимися в заданных пределах, а часто и по заданным законам, значениями частот вращения двигателя, величин и частот питающего двигатель напряжения или тока, наличием и необходимостью учёта временных высших гармонических составляющих. В силу этого специфическими являются математические модели (ММ) электромагнитных, электромеханических, энергетических, тепловентиляционных процессов в установившихся и переходных режимах работы двигателей, расчетов добавочных магнитных потерь, механических и виброакустических показателей, которые построены на усовершенствованных расчетных методиках.
Использование серийных асинхронных двигателей (АД) в электроприводах с полупроводниковыми преобразователями не оптимально по массогабаритным, энергетическим и другим показателям. По некоторым оценкам использование обычных серийных АД в частотном приводе снижает КПД и требует завышения их установленной мощности на 15-20 % при работе в установившихся режимах и до 40-45 % при работе в динамических режимах. Из-за высших гармоник напряжения и тока на выходе преобразователя частоты на 5-6 % возрастают потери в двигателе.
Необходимо проектирование специальных регулируемых асинхронных двигателей (РАД) с улучшенными регулировочными, динамическими и виброакустическими свойствами. Применение РАД, спроектированных с учётом специфики их работы в условиях регулируемого ЭП, вместо общепромышленных АД дает возможность значительно снизить массу, габариты и стоимость электроприводов, улучшить их функциональные показатели. Если оптимально спроектировать двигатель для частотного регулирования, можно получить на 25 % большую мощность, чем у общепромышленных АД того же габарита, либо уменьшить объем при той же мощности.
Техническими предпосылками, обеспечивающими преимущества адаптированных регулируемых двигателей над серийными машинами, являются:
Основные принципы и методология проектирования РАД должны базироваться на системном подходе и определяться с учётом существенной специфики их работы в составе ЭП как в установившихся, так и в динамических режимах. Системный подход предусматривает рассмотрение РАД во взаимодействии с другими элементами ЭП: силовой преобразовательной частью, системой управления и регулирования, исполнительным органом рабочей машины. Эффективность системного подхода при проектировании РАД основывается на учёте особенностей отдельных составляющих ЭП, характера отношений и связей между этими составляющими. Благодаря этому значительно повышаются адекватность ММ и соответственно качество проектного синтеза РАД. Использование системного подхода позволяет реализовывать комплексный анализ проектируемого РАД, на основе которого рассматриваются все наиболее важные для проектного синтеза аспекты устройства и функционирования РАД.
Системный подход дает возможность осуществить:
Исходя из системного подхода, определяются специфические проектные критерии и ограничения, используемые при проектировании РАД.
Проектные ММ на основе принципа декомпозиции могут быть составлены с использованием моделей отдельных компонентов ЭП, в том числе и модели объекта проектирования — РАД. Модель РАД должна учитывать полигармонический состав питающего напряжения переменных величины и частоты, изменение параметров двигателя в процессе регулирования и ряд других проектных особенностей. Полупроводниковые преобразователи, отличающиеся типами, силовыми схемами, видами регулирования, законами управления и т. д., представляются разными ММ. Нагрузки ЭП имеют различные законы изменений моментов сопротивлений от частоты вращения и различные уровни. Они могут быть непрерывного или циклического действия. Все это должно найти отражение в ММ нагрузок. Работа АД в системах с ПП обладает существенной спецификой, которая является причиной появления новых требований к параметрам и технико-экономическим показателям РАД, в результате чего задача разработки машин для указанных систем переросла в самостоятельную проблему, включающую и круг вопросов, связанных с определением оптимальных параметров двигателей. Для решения задач проектного синтеза и оптимизации таких двигателей не могут быть применены стандартные методы и программное обеспечение, разработанные для АД общепромышленного назначения.
При проектировании РАД учитываются следующие особенности и требования:
При проектировании РАД для приводов с ПП, как и при выборе серийных АД для этих приводов, могут использоваться также такие критерии как масса, габариты, стоимость двигателя или диапазонные критерии — энергетические показатели двигателя и приведенные затраты. Особые диапазонные критерии оптимальности обуславливают специфику их определения. В частности, энергетические показатели — КПД и коэффициент мощности, приведенные затраты должны рассматриваться в виде эквивалентных усредненных значений для всего диапазона регулирования. При необходимости в состав критериев включаются аналогичные критерии приводов в целом. В ряде случаев может применяться обобщенный критерий, представляющий собой скалярную свертку вышеуказанных критериев с различными коэффициентами их значимости. В установившихся режимах специфика работы РАД заключается, прежде всего, в том, что в каждой рабочей точке двигатель питается определенным по качественно-количественному составу полигармоническим напряжением, зависящим от типа, вида регулирования, закона управления преобразователя, и работает в общем случае с определенным нагрузочным моментом. В разных рабочих точках диапазона регулирования значения параметров схем замещения двигателя различны. Они определяются с учётом вытеснения токов в обмотках и насыщения магнитной цепи машины. Эти особенности положены в основу оптимизационно-поисковых расчетов.
Задача адаптации электромашинной части регулируемых ЭП к специфическим условиям работы решается как задача структурно-параметрической оптимизации РАД. Трудоемкость задачи проектирования обусловлена не только необходимостью формирования множества рациональных структур РАД, но и необходимостью решения задачи параметрической оптимизации для каждой сформированной структуры. По своей направленности задачи структурного синтеза можно разделить на внутренние (относящиеся к АД) и внешние (относящиеся к системе привода). Задачей параметрической оптимизации является определение такого набора значений управляемых переменных некоторой сформированной структуры электропривода и входящего в него РАД, при котором целевая функция имеет наилучшее значение. При этом выполняются все требования и ограничения, оговоренные в задании на проектирование. Множество структур РАД с оптимизированными параметрами является информационным базисом для выбора оптимального варианта РАД.
Системный подход предусматривает рассмотрение всех аспектов функционирования РАД. Поэтому при проектном синтезе РАД используется ряд подсистем, с помощью которых осуществляются поверочные расчеты. К их числу относятся расчеты механических и виброакустических показателей, неустановившихся режимов работы. Проектные ММ подсистем так же, как и модели оптимизационно-поисковых расчетов, являются комплексными, составленными из ММ входящих в привод элементов, и в них выполнен учёт рассмотренной выше специфики. При наличии в техническом задании на проектирование РАД активных ограничений, прямо не связанных с электромагнитными, электромеханическими, тепловыми процессами, задача условной оптимизации решается на основе сочетания методов уступок по критериям и релаксации ограничений.
Использование информационных технологий автоматизированного проектного синтеза, прикладного математического и программного обеспечения позволяет реализовать следующие варианты:
ru-wiki.org
Cтраница 3
После настройки узла управления разгоном двигателя до основной скорости снимается регулировочная характеристика двигателя ( зависимость его оборотов от тока возбуждения), на основании которой определяется соответствие установленного реостата возбуждения требующимся пределам регулирования скорости двигателя. Предварительно должна быть проверена исправность реостата возбуждения измерением сопротивлений на каждом его контакте. [32]
Усилитель У может быть линейного, релейного или импульсного типа, что определяет регулировочные характеристики двигателя. [34]
Пунктиром здесь нанесена характеристика асинхронного двигателя с дополнительным сопротивлением в роторной цепи, сплошными линиями - регулировочные характеристики двигателя для различных токов подмагничивания дросселя насыщения. При отсутствии дополнительного сопротивления в роторной цепи характеристики двигателя становятся более жесткими и менее благоприятными для регулирования скорости. Кроме того, потери в указанном случае выделяются только в двигателе, что приводит к необходимости снижения его нагрузки. [35]
Полный расчет и выбор резисторов, включающий определение величины суммарного сопротивления, разбивку его по ступеням согласно расчетам пусковых, тормозных и регулировочных характеристик двигателя и проверку выбранных резисторов по перегреву, для крановых приводов производят редко, например, при проектировании нового контроллера или уникального типа электропривода крана. На практике ( учитывая также, что обычно для асинхронных двигателей кранов применяется несимметричное включение резисторов по фазам) пользуются либо каталожными данными специальных готовых ящиков резисторов, подобранных к определенным двигателям и контроллерам, либо каталожными данными разбивки сопротивлений в долях от номинального сопротивления RH двигателя. Такие каталожные таблицы составлены применительно к типовым схемам контроллеров ( см. таблицу, в которой указана Л1р сще ] IT на я разбивок а сопротивлений ступеней дл. [36]
В таких условиях применение привода по системе ДГД или УРВД имеет ряд преимуществ, с одной стороны - по пусковым, нагрузочным и регулировочным характеристикам двигателей постоянного тока, а с другой - по более надежной работе бесконтактных схем. [37]
Возможность плавного регулирования частоты вращения в широком диапазоне является одним из важных преимуществ двигателей постоянного тока, поэтому для выбора режима их работы проводится построение регулировочных характеристик двигателей. [38]
В автоматических устройствах предпочтение отдается двигателям с линейной зависимостью скорости вращения ротора от напряжения управления. На рис. 31 - 14 представлены регулировочные характеристики двигателя с полым немагнитным ротором. Регулировочные характеристики могут быть построены по данным опыта или же по семейству механических характеристик. [39]
Проблема регулирования скорости электродвигателей вообще и, в частности, асинхронных двигателей, имеет важнейшее эксплуатационное значение. В целом ряде отраслей промышленности к регулировочным характеристикам двигателей предъявляются весьма высокие требования как в отношении пределов и плавности регулирования, так И его экономичности. В отношении регулировочных характеристик асинхронные двигатели уступают двигателям постоянного тока и притом в тем большей степени, чем шире пределы регулирования. В направлении улучшения регулировочных характеристик асинхронных двигателей была проделана весьма значительная работа, однако асинхронному двигателю не удалось вытеснить двигатель постоянного тока из области установок с повышенными требованиями к регулировочным свойствам электродвигателя. [40]
Как следует из ( 5 - 44), регулировочные характеристики идеализированного двигателя при фазовом управлении являются линейными. На рис. 5 - 14, б показаны регулировочные характеристики идеализированного двигателя при фазовом ( сплошные линии) и амплитудном ( штриховые линии) управлении. [41]
Валок соединяется с выходным валом редуктора при помощи карданного вала. При таком приводе возможный диапазон изменения фрикции ограничивается регулировочными характеристиками двигателей. [43]
Редуктор привода каждого валка располагается в отдельном корпусе. При таком приводе возможный диапазон изменения фрикции ограничивается только регулировочными характеристиками двигателей. [44]
Графики решений уравнений баланса моментов при линейных парады w, метрах внешнего колебательного контура. а - на валу привода ротора. б - на золотнике. г ( i - линия скоростной взаимосвязи уравнений. L o - значение опрокидывающего момента приводного асинхронного двигателя. L, L - регулировочные характеристики привода распределителя, за вычетом моментов сопротивлений собственному, вращению. Ml ( со - приведенный момент сопротивлений вращению распределителя, полученный проектированием через поверхность Si линии скоростной взаимосвязи на фронтальную плоскость. А и В - зоны возможных амплитудных срывов. At, Bi - зоны возможных частотных срывов. а, Ь, с, d, е - точки бифуркаций. [45] |
Страницы: 1 2 3 4
www.ngpedia.ru