ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Физические процессы в асинхронной машине при неподвижном роторе. Физические процессы в асинхронном двигателе


Физические процессы в асинхронной машине при неподвижном роторе

Пусть ротор асинхронной машины разомкнут и неподвижен, а статорная обмотка включена в сеть с напряжением U1 и частотой f1. В этом случае асинхронная машина представляет собой трансформатор при холостом ходе. Первичной обмоткой является статорная обмотка, а вторичной – обмотка неподвижного ротора. Под действием напряжения U1 по обмотке статора протекает ток холостого хода I0. Образуемая этим током МДС F0 создает поток, одна часть которого Ф0 сцеплена с обмотками обеих частей машины (основной поток), а другая часть (поток рассеяния) Фs1 - только с обмоткой статора (рис. 2.1). При числе пар полюсов машины –

частота вращения n1 МДС F0 и соответственно потока Ф0 определяется по формуле (1.4): n1 = f1/р. Основной поток при неподвижном роторе создает в обмотках статора и ротора ЭДС, определяемые по формулам:

 

, (2.1)

 

. (2.2)

 

Поток рассеяния создает в обмотке статора ЭДС рассеяния:

 

, (2.3)

 

где х1- индуктивное сопротивление рассеяния обмотки статора.

На активном сопротивлении обмотки статора при протекании тока происходит падение напряжения . Таким образом, как и в случае трансформатора, уравнение напряжений статорной обмотки асинхронной машины представим в виде

 

. (2.4)

 

С учетом выражения (2.4) относительно напряжения

 

. (2.5)

 

Уравнение напряжений статорной обмотки асинхронной машины повторяет аналогичное уравнение первичной обмотки трансформатора. Отличие этих уравнений заключается в величине тока холостого хода. В асинхронной машине между статором и ротором имеется воздушный зазор и для проведения через него магнитного потока требуется большей величины МДС ( ). Поэтому ток холостого хода асинхронной машины обычно составляет от 20 до 50 % от IH, что значительно больше тока холостого хода трансформатора (от 1 до 8 % от IH). Выше падение напряжения в обмотке статора асинхронной машины в сравнении с обмоткой трансформатора.

Потери мощности при холостом ходе асинхронной машины с неподвижным ротором больше, чем в трансформаторе. Они складываются из потерь электрических в обмотке статора:

 

рЭЛ0 = (2.6)

 

и магнитных потерь в магнитопроводе статора и ротора: . На покрытие этих потерь машиной потребляется из сети мощность

 

. (2.7)

 

Потребляемой активной мощностью определяется активная составляющая тока холостого хода:

 

.

Дата добавления: 2015-07-15; просмотров: 123 | Нарушение авторских прав

Читайте в этой же книге: Классификация электрических машин. | Электромеханическое преобразование энергии. | Принцип действия трансформатора | Работа трансформатора под нагрузкой. Уравнения электрического состояния, векторная диаграмма, схема замещения, параметры схемы замещения трансформатора | Параллельная работа трансформаторов. Условия включения трансформаторов на параллельную работу. | Аварийное короткое замыкание и опыт короткого замыкания однофазного трансформатора. Основные уравнения и векторная диаграмма. | Принцип действия трехфазного асинхронного двигателя | Пуск в ход трехфазных АД с фазным ротором. | Тормозные режимы работы асинхронного двигателя | Уравнение механической характеристики трехфазного асинхронного двигателя в параметрической форме. |mybiblioteka.su - 2015-2018 год. (0.005 сек.)

mybiblioteka.su

Рабочий процесс асинхронного двигателя

Механика Рабочий процесс асинхронного двигателя

просмотров - 457

3-3-1. Режимы работы асинхронной машины

Пусть в начале ротор не вращается. Магнитное поле, пересекая проводники ротора индуктируют в них ЭДС. При замкнутой цепи ротора по обмотке его потечет ток.

Взаимодействие потока статора и тока ротора вызовет усилие, действующее на проводник, под действием которого ротор начнет вращаться. Вращение будет в ту же сторону, что и магнитный поток.

Скорость ротора будет меньше скорости вращения магнитного поля статора, рис. 105.

Рис. 105

Скольжение .

Разберемся, в каких пределах будет изменяться скольжение.

1. Момент зависит от потока Ф и тока I2 при U = const, поток также постоянен. В случае если увеличивается момент на валу, то увеличивается и момент двигателя за счет увеличения тока I2, а I2­ Е2­ S­, S увеличивается за счет увеличения интенсивного пересечения проводников ротора.

, при двигательном режиме скольжение S изменяется от 1 до 0.

При неподвижном роторе n = 0, S = 1

В случае если ротор будет вращаться с n = n1, S = 0

Это диапазон скольжений соответствует двигательному режиму. Мощность потребляемая из сети будет преобразована в механическую на валу, рис. 106.

2. Но если под действием спускаемого груза раскрутить ротор до скорости больше синхронной, то машина перейдет в генераторный режим

n > n1, S < 0 - скольжение отрицательное, рис. 106.

При этом режиме механическая мощность будет преобразована в электрическую, которая будет отдаваться в сеть Р1, а реактивная будет потребляться для создания магнитного потока Ф.

3. Режим противовключения, рис. 106.

В случае если к примеру в приводе имеется большой маховик, то если отключить двигатель, то маховик будет вращаться длительное время до остановки, но если же мы переключим две фазы асинхронного двигателя, то его момент будет направлен против вращения маховика и время останова его резко сократиться. При этом режиме мощность будет потребляться из сети и механическая мощность с вала и вся эта мощность будет теряться в роторе. Это тяжелый режим для асинхронной машины. По этой причине, если используется двигатель с фазным ротором, то на период работы в цепь ротора включают значительное сопротивление для ограничения тока. В случае если же используется короткозамкнутый двигатель, то пускают его при пониженном напряжении. Ниже на рисунке представлены всœе три режима работы асинхронной машины.

Рис. 106

Читайте также

  • - Рабочий процесс асинхронного двигателя

    3-3-1. Режимы работы асинхронной машины Пусть в начале ротор не вращается. Магнитное поле, пересекая проводники ротора индуктируют в них ЭДС. При замкнутой цепи ротора по обмотке его потечет ток. Взаимодействие потока статора и тока ротора вызовет усилие, действующее на... [читать подробенее]

  • oplib.ru

    Переходные процессы в электрических двигателях

    Изложенное выше относится также к синхронным двигателям и компенсаторам, так как последние вследствие инерции в первые периоды КЗ не снижают заметно скорость вращения ротора.

    Синхронные двигатель и компенсатор являются дополнительными источниками тока КЗ, так как их сверхпереходная (или переходная) ЭДС больше подведенного напряжения ( ), которое при возникновении КЗ в любой точке сети уменьшается. Схема замещения синхронного двигателя такая же, как и синхронного генератора. Параметры схемы замещения синхронного двигателя находятся, используя параметры предшествующего режима. При отсутствии справочных данных для синхронного двигателя можно приближенно принять

    и .

    Для определения ударного тока от синхронного двигателя, необходимо предварительно определить постоянную времени, для нахождения которой находится его активное сопротивление

    ,

    где - КПД двигателя.

    Недовозбужденный синхронный двигатель также работает в режиме генератора при значительных снижениях напряжения, возникающих при КЗ (при малой удалённости КЗ). При малых снижениях напряжения, когда сохраняется неравенство , он по-прежнему будет потреблять ток из сети.

    Асинхронные двигатели, составляющие основную часть промышленной нагрузки, работают с малым скольжением =2-5%. Для практических расчётов можно считать, что они работают с синхронным числом оборотов. Следовательно, в начальный момент КЗ асинхронный двигатель можно рассматривать как недовозбуждённый синхронный.

    Существенный ток КЗ генерируют только асинхронные двигатели, непосредственно связанные с точкой КЗ или находящиеся в зоне малой удалённости от неё, т.е. те, у которых сверхпереходные ЭДС превышают напряжения сети в точке присоединения двигателей. Этот ток обусловлен электромагнитной энергией, запасённой в обмотках АД до возникновения КЗ.

    Ротор асинхронного двигателя в начальный момент КЗ продолжает по инерции вращаться. В цепи ротора протекает остаточный ток, а соответствующий ему поток пронизывает обмотку статора, и, вследствие его изменения в ней наводится ЭДС. Так как цепь обмотки статора замкнута, протекает ток к точке КЗ. После затухания свободного тока ротора (вследствие активного сопротивления цепи ротора) генерирование тока асинхронным двигателем прекращается.

    Исходя из неизменности потокосцепления с обмоткой ротора в начальный момент КЗ, для асинхронного двигателя можно установить его сверхпереходные ЭДС и сопротивление. Схема замещения асинхронного двигателя для определения сверхпереходных параметров аналогична схеме замещения синхронного генератора. Сверхпереходное сопротивление асинхронного двигателя по существу является сопротивлением КЗ (т.е. когда АД заторможен), относительную величину которого можно определить из выражения

    , ( - кратность пускового тока). Сверхпереходная ЭДС определяется из условий предшествующего режима. При отсутствии справочных данных она приближенно может быть принята равной .

    Относительно большие активные сопротивления обмоток статора и ротора АД обуславливают весьма быстрое затухание периодической и апериодической составляющих генерируемого АД тока. На рис.6.11 показана характерная кривая тока, генерируемого АД в начальный момент времени после возникновения КЗ.

    Дополнительный ударный ток от АД

    ,

    где - ударный коэффициент асинхронного двигателя. Кривые изменения ударного коэффициента в зависимости от мощности АД показаны на рис. 6.12 в виде заштрихованной зоны. Кривые построены с учётом затухания периодической составляющей тока КЗ.

     

    Рис.6.11. Характерная кривая тока, генерируемого АД

    Совокупность мелких асинхронных двигателей может быть заменена одним эквивалентным двигателем и называется обобщённой нагрузкой. Аналогично асинхронному двигателю обобщённая нагрузка в начальное время КЗ генерирует ток КЗ. Схема замещения обобщённой нагрузки в начале переходного режима КЗ идентична схеме замещения синхронного генератора.

    Рис.6.12. Кривые изменения ударного коэффициента в зависимости от мощности АД

    Для обобщённой нагрузки рекомендуются следующие параметры, отнесенные к полной рабочей мощности и среднему номинальному напряжению: = 0,85; = 0,35; =2,5; = 1.

    Дополнительный ударный ток, генерируемый обобщённой нагрузкой

    .

     

    Похожие статьи:

    poznayka.org


    Смотрите также