ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Роторный двигатель внешнего сгорания (роторный двигатель стирлинга). Роторный двигатель стирлинга


СТИРЛИНГ ПО-РОССИЙСКИ | Наука и жизнь

Ограниченные запасы углеводородного топлива и высокие цены на него заставляют инженеров искать замену двигателям внутреннего сгорания. Российский изобретатель предлагает простую конструкцию двигателя с внешним подводом теплоты, который рассчитан на любой вид топлива, даже на нагрев солнечными лучами. Создатель проекта двигателя Виталий Максимович Нисковских - конструктор, широко известный специалистам-металлургам не только в нашей стране, но и за рубежом. Он автор более 200 изобретений в области оборудования по разливке стали, один из основателей отечественной школы проектирования машин непрерывного литья криволинейных заготовок (МНЛЗ). Сегодня 36 таких машин, изготовленных под руководством В. М. Нисковских на Уралмаше, работают на металлургических комбинатах России, а также в Болгарии, Македонии, Пакистане, Словакии, Финляндии, Японии. Роторный двигатель внешнего сгорания состоит из двух цилиндров, соединенных двумя ветками трубопроводов - высокого и низкого давления (для наглядности роторы разнесены, хотя в действительности они находятся на одном валу).

В 1816 году шотландец Роберт Стирлинг изобрел двигатель с внешним подводом теплоты. Широкого распространения изобретение в то время не получило - слишком сложной была конструкция по сравнению с паровой машиной и появившимися позже двигателями внутреннего сгорания (ДВС).

Однако в наши дни вновь возник острый интерес к двигателям Стирлинга. Постоянно появляется информация о новых разработках и попытках наладить их массовое производство. Например, на голландской фирме "Филипс" построили несколько модификаций двигателя Стирлинга для большегрузных автомобилей. Двигатели внешнего сгорания ставят на судах, на небольших электростанциях и ТЭЦ, а в перспективе собираются оснащать ими космические станции (там их предполагают использовать для привода электрогенераторов, поскольку двигатели способны работать даже на орбите Плутона).

Обеспечим библиотеки России научными изданиями!

Двигатели Стирлинга имеют высокий кпд, могут работать с любым источником теплоты, бесшумны, в них не расходуется рабочее тело, в качестве которого обычно применяют водород или гелий. Двигатель Стирлинга мог бы успешно использоваться на атомных подводных лодках.

В цилиндры работающего двигателя внутреннего сгорания вместе с воздухом обязательно заносятся частицы пыли, вызывающие износ трущихся поверхностей. В двигателях с внешним подводом теплоты такое исключено, поскольку они абсолютно герметичны. Кроме того, смазка не окисляется и требует замены значительно реже, чем в ДВС.

Двигатель Стирлинга, если его использовать как механизм с внешним приводом, превращается в холодильный агрегат. В 1944 году в Голландии образец такого двигателя раскрутили с помощью электромотора, и температура головки цилиндра вскоре понизилась до -190°С. Подобные устройства успешно используют для сжижения газов.

И все же сложность системы кривошипов и рычагов в поршневых двигателях Стирлинга ограничивает их применение.

Проблему можно решить, заменив поршни роторами. Основная идея изобретения состоит в том, что на общем валу установлены два рабочих цилиндра разной длины с эксцентриковыми роторами и подпружиненными разделительными пластинами. Полость нагнетания (условно - сжатия) малого цилиндра соединена с полостью расширения большого цилиндра через канавки в разделительных пластинах, трубопровод, теплообменник-регенератор и нагреватель, а полость расширения малого цилиндра - с полостью нагнетания большого цилиндра через регенератор и холодильник.

Двигатель работает следующим образом. В каждый момент времени из малого цилиндра в ветвь высокого давления поступает некоторый объем газа. Чтобы заполнить полость нагнетания большого цилиндра и при этом сохранить давление, газ нагревают в регенераторе и нагревателе; его объем увеличивается, и давление остается постоянным. То же, но "с обратным знаком" происходит в ветви низкого давления.

Из-за разницы в площадях поверхности роторов возникает результирующая сила F=∆p(Sб-S м), где ∆p - разность давлений в ветвях высокого и низкого давлений; Sб - рабочая площадь большого ротора; Sм - рабочая площадь малого ротора. Эта сила вращает вал с роторами, и рабочее тело непрерывно циркулирует, последовательно проходя через всю систему. Полезный рабочий объем двигателя равен разности объемов двух цилиндров.

См. в номере на ту же тему

А. ДУБРОВСКИЙ - Классический четырехтактный…

www.nkj.ru

Двигатель Стирлинга, принцип работы

В этом двигателе основным нововведением является наличие промежуточного контура, выполняющего роль буферной емкости для отработанного газа и временного замедлителя, дающего возможность нагреть газ за  время движении кулачка по промежуточному контуру. Размеры контуров можно менять, газовые магистрали также можно изменять, можно отказаться от клапанов, внутри ротора можно разместить электродвигатель, тем самым конструкция будет полностью герметичной, или заменить рекуператор регенератором, и т.п. Достоинство конструкции в относительной простоте, аналогичные схемы давно используются в гидронасосах высокого давления. Современные достижения трибологии позволяют обойтись без смазки и без "компрессионных" устройств. Роторный принцип имеет значительные положительные качества, которые недоступны поршневым двигателям, и первое из них - это миниатюрность, позволяющая сделать не только миниатюрным сам двигатель, но и разместить внутри него электрогенератор без существенного увеличения размеров. Другое важное преимущество - постоянство крутящего момента, т.к. плечо ротора постоянно. Еще одно преимущество - это строгая очередность протекания тактов - ротор переходит в следующий сегмент только после того, как полностью отработал в предыдущем, в поршневом же двигателе движение поршней подчинено синусоидальному закону, что снижает усилие газа на величину противодавления. К тому же, многие конструкции содержат газовый демпфер, т.е. картер под давлением, что также снижает мощность на величину противодавления в картере. Немаловажным качеством является и то, что отсутствуют возвратные движения, ротор движется только поступательно, нет необходимости демпфирования, что также увеличивает эффективный кпд. Еще одним положительным качеством является то, что в теплопереносе участвует весь объем рабочего тела, а не часть его, как в поршневых двигателях.

РОТОРНЫЙ ДВИГАТЕЛЬ СТИРЛИНГА (принцип работы)

                fig1.jpg

На фигуре 1 изображена   секция   роторного  двигателя внешнего сгорания с кулачковым ротором.

                    fig2.jpg

На фигуре 2 изображены такты  рабочего цикла  роторного  двигателя   внешнего сгорания.

                     fig3(1).jpg

На фигуре 3 изображена   секция   роторного двигателя внешнего сгорания с роликовым ротором.

Роторный двигатель внешнего сгорания состоит из преобразователей энергии механической и тепловой. Секция двигателя внешнего сгорания содержит один статор 16 (фиг.1), оборудованный тремя подвижными пластинами 6, 12, 17, прижимаемыми к  поверхности ротора 13 посредством пружин 28, 11, 19.  Статор 16 с торцов закрыт торцевыми крышками (не показаны). Внутри статора 16 на силовом вале 15 вращается  по стрелке "а" ротор 13, оборудованный кулачками 14 и, возможно, 9. Внутренний объем статора посредством подвижных пластин 6, 12, 17 разделен на силовой ("с"), промежуточный  ("п") и   вытеснительный ("в")  контуры, а сами пластины герметично прижимаются под действием пружин 28, 11, 19  к ротору 13 и    к  торцевым крышкам и тем самым противодействуют  проникновению рабочей среды  из одного контура в другой,  минуя    каналы, соединяющие эти контуры. При прохождении через подвижные пластины   кулачка  14 ротора 13 подвижные пластины отжимаются в тело  статора 16. Каналы  разделяются на выходной 24, оборудованный обратным или  выпускным клапаном   18, перепускной 29, оборудованный обратным клапаном 20, и, при наличии на роторе 13 кулачков 9, 14, входные – 3, 2, оборудованные   впускными клапанами 7, 8 и обратными клапанами 1, 30. Каналы проходит, как правило, через преобразователь тепловой энергии, состоящий из нагревателя ("н") 5, регенератора  ("р") 26 и холодильника ("х") 4 (или в обратной последовательности), но, для уменьшения  динамического сопротивления и удобства компоновки, возможна схема проводки каналов как на фигурах 1, 2, которые  проходят через регенератор  и/или через какой-либо из конечных преобразователей тепловой энергии. Внутренний объем статора и каналов заполнен рабочей средой, которой может быть, например, газ - пар, водород, гелий или другой подходящий для этого наполнитель.

Роторный двигатель внешнего сгорания работает следующим образом. Запуск   двигателя   производится после разогрева нагревателя ("н") 5 и охлаждения холодильника ("х") 4 и  принудительного проворота силового вала 15 по стрелке "а"   на один-два оборота. При этом  замкнутый цикл  Стирлинга осуществляется за три такта при постоянно протекающем выпуске (фиг.2): положение I –   сжатие-впуск;  положение  II – перепуск-охлаждение,нагрев; положение III – рабочий ход. Стрелками показано движение газа: волнистой – горячего, пунктирной – теплого, ровной – холодного.

Такт I  - сжатие-впуск – вытеснение в регенератор холодного газа и после его предварительного подогрева проталкивание его в нагреватель. Кулачек 14 ротора 13 движется по стрелке "а" в    вытеснительном контуре  "в"  и,  сжимая холодный газ (рабочую среду) в этой области   статора 16,  вытесняет его в канал 27, проходящий через регенератор 26 и, по каналу 3, в нагреватель 5. В увеличивающуюся нижнюю область контура "в" при продвижении в ней кулачка 14 втягивается из канала 29 холодный газ, выходящий из промежуточного контура "п" через холодильник 4.  При этом после выхода кулачка 14 из контура "в" в контур "п" обратные клапаны 25,30,1 не позволят газу после увеличения объема вследствие нагрева переместиться в контур "в".

Такт II -  перепуск-охлаждение,нагрев. При продвижении кулачка по контуру "п" происходит вытеснение  теплого газа  через холодильник 4 (где происходит его охлаждение)  в контур "в". При этом в контур "п" газ поступает под давлением  или засасывается из силового контура "с", пройдя предварительно через регенератор "р" и оставив там часть тепла. За время продвижения кулачка 14 по контуру "п" происходит достаточный нагрев газа в нагревателе 5, при этом газ концентрируется  в нагревателе, где его удерживают обратный клапан 30 и впускной клапан 8.

Такт III –   рабочий ход. При вхождении кулачка 14 в силовой контур "с" после прохождения им   подвижной пластины 12 принудительно открывается впускной клапан 8, при этом горячий  газ под большим давлением толкает кулачек 14 (т. к. пластину 12 сдвинуть невозможно) по стрелке "а", тем самым осуществляется вращение силового вала 15. . Одновременно кулачком 14 вытесняется  горячий газ из силового контура "с", оставшийся  там после предыдущего рабочего хода, в регенератор 26, ранее охлажденный проходом холодного газа, где отдает часть теплоты, и   затем поступает в    промежуточный контур "п". В момент перехода кулачка 14 через подвижные пластины (6, 12 или 17, фиг.1) – последние отжимаются кулачком за внутреннюю поверхность статора 16 и беспрепятственно пропускают кулачек 14 (подвижные пластины всегда  прижаты пружинами  11, 19, 28 к  поверхности кулачка 14 и ротора 13), при этом происходит отсекание газа и обеспечивается герметичность контуров. Далее процесс повторяется.

Выпуск горячего газа из контура "с" в канал 24 открыт постоянно.

Для осуществления двукратного действия (т.е. количества рабочих  ходов за один оборот силового вала)  требуется  дооборудование ротора 13 дополнительным  кулачком  9 (что улучшит балансировку ротора), и  нагревателя 5 дополнительным входным каналом 2 с обратным клапаном 1 и впускным клапаном 7. При этом теплый газ из регенератора 26 под действием кулачков 14, 9 будет поочередно вталкиваться в каналы 2 или 3, т. к. если в одном из них будет происходить нагрев, то высокое давление не позволит втолкнуть в него порцию газа, поэтому газ войдет в канал, в котором  уже упало давление.  Каналы 2 и 3 соединены с впускным каналом 10, впуск горячего газа в который регулируется впускными клапанами 7, 8.  Таким образом, увеличивая количество кулачков ротора и входных каналов кратность можно увеличить до разумной достаточности.

В описанном двигателе отсутствует осаждение продуктов сгорания или реакций на внутренней поверхности статора от рабочей среды, что позволит применить в нем роликовый ротор  13 (фиг.3), посаженный  на кривошип  31  силового вала 15   и катящийся по внутренней поверхности статора 16.

autodata.ru

Роторный двигатель стирлинга

Изобретение относится к области двигателестроения, а именно к роторным двигателям Стирлинга. Техническим результатом является повышение эффективности работы двигателя. Сущность изобретения заключается в том, что двигатель содержит два ротора на одном валу. Ротор состоит из цилиндра, выполненного заодно с шайбой, и вращается в цилиндрическом корпусе с выполненными в нем радиальными прорезями. В прорези установлены пластины с вырезами, надетыми на шайбу ротора, с возможностью перемещения взад-вперед вдоль оси двигателя при вращении ротора. При этом ротор, пластины и корпус образуют переменные объемы, в которых происходят рабочие циклы. Каждый из объемов, образованных вокруг одного ротора, соединяется каналами с переменными объемами, образованными вокруг другого ротора, при этом каналы соединяют объемы, расположенные со сдвигом 90 градусов один относительно другого, а один ротор повернут относительно другого ротора на 180 градусов. 2 ил.

 

Изобретение относится к машиностроению, а именно к двигателям с внешним подводом теплоты.

Известен роторный двигатель RadMax (http://peswiki.com/index.php/Directory:Regi Technologies:RadMax rotary_engine), (http://www.membrana.ru/particle/10949). Роторный двигатель RadMax отличает завидная простота. В нем всего два вида подвижных деталей: один ротор (это толстый диск, установленный на оси мотора, с 12 радиальными прорезями) и 12 одинаковых лопаток - тонких прямоугольных пластинок. Ротор с пластинками вращается в корпусе с вырезом сложной формы, при этом пластинки двигаются в прорезях вверх-вниз (вдоль оси мотора), а над ротором и под ним образуются переменные объемы, в которых и осуществляются впуск, сжатие, рабочий ход и выхлоп. При этом за один оборот вала в RadMax происходит 24 рабочих хода, против двух в четырехцилиндровом четырехтактном ДВС. Недостаток двигателя RadMax, он не может работать в режиме двигателя Стирлинга. Что является негативным ограничением, так как теоретический кпд у двигателей Стирлинга наивысший среди всех известных двигателей.

Известен роторный двигатель, патент РФ №2255235, с внешним подводом теплоты, с рабочим телом, находящимся в нем под избыточным давлением, содержащий, по крайней мере, два разных по объему цилиндра, например с обкатывающимися по внутренней рабочей поверхности цилиндров роторами, расположенными на одном эксцентриковом валу, и с разделительными пластинами, при этом полость нагнетания малого цилиндра соединена каналом с полостью расширения большого цилиндра через теплообменник и нагреватель, а полость расширения малого цилиндра соединена каналом с полостью нагнетания большого цилиндра через теплообменник и холодильник.

Недостатком такой схемы является большая сложность изготовления эффективного теплообменника, отдать максимально тепло одного потока рабочего тела другому, в то же время, находясь в разных каналах, задача трудная, а от этого зависит кпд двигателя. Другое дело - теплообмен осуществлять в одном канале: при прохождении рабочего тела сначала в одну сторону отдавать тепло, затем в другую сторону, забирая тепло в том же канале.

Техническим результатом настоящего изобретения является устранение указанных выше недостатков и повышение эффективности работы двигателя.

Поставленная задача достигается тем, что роторный двигатель Стирлинга с внешним подводом теплоты, с рабочим телом, находящимся в нем под избыточным давлением, содержит, по меньшей мере, два ротора на одном валу, которые размещены в соответствующих цилиндрических корпусах, при этом ротор состоит из цилиндра, выполненного заодно с шайбой, и вращается в цилиндрическом корпусе с выполненными в нем радиальными прорезями, в которые установлены пластины с вырезами, надетыми на шайбу ротора, с возможностью перемещения взад-вперед вдоль оси двигателя при вращении ротора, при этом ротор, пластины и корпус образуют переменные объемы, в которых происходят рабочие циклы двигателя Стирлинга, каждый из переменных объемов, образованных вокруг одного ротора, соединяется каналами с переменными объемами, образованными вокруг другого ротора, при этом каналы соединяют объемы, расположенные со сдвигом 90 градусов один относительно другого, а один ротор повернут относительно другого ротора на 180 градусов.

Изобретение поясняется при помощи чертежей.

На фиг. 1 показан общий вид роторов на валу;

На фиг. 2 – поперечный разрез двигателя по пластинам.

Описываемый двигатель содержит пластины 1 с вырезами, надетыми на шайбу 2 сложной формы. Шайба выполнена заодно с цилиндром 3 ротора. При этом пластины 1 перемещаются взад-вперед вдоль оси двигателя в радиальных прорезях корпуса 4.

Основная идея изобретения состоит в том, что у роторного двигателя Стирлинга (РДС) с внешним подводом теплоты, с рабочим телом, находящимся в нем под избыточным давлением - на общем валу установлены как минимум два ротора, состоящие из цилиндра, на каждом из которых находится как единое целое шайба сложной формы.

Каждый ротор вращается в цилиндрическом корпусе, например, с 12 внутренними радиальными прорезями, в которых расположены пластины 1 с вырезами под шайбу 2 сложной формы. Роторы вращаются в цилиндрических корпусах 4, соединенных между собой, при этом пластины 1, одетые вырезами на шайбу 2, двигаются в прорезях а над роторами, под цилиндрами и между пластинами 1 при вращении роторов образуются по 24 переменных объема на каждый ротор, в которых и происходят рабочие циклы РДС. Один ротор относительно другого повернут на 180 градусов, поэтому РДС идеально уравновешен, так как все возникающие силы возвратно-поступательного движения пластин 1 с вырезами в результате вращения роторов уравновешиваются. Каждый из 24 переменных объемов, образованных вокруг одного ротора, соединяется каналами с соответствующими переменными объемами вокруг другого ротора, при этом эти каналы соединяют переменные объемы, расположенные со сдвигом на 90 градусов относительно друг друга. В каналах могут быть установлены проволочные или иные рекуператоры, которые берут на себя основную тепловую нагрузку. Получается 24 переменных объема с участием одного ротора, которые соединены с 24 переменными объемами с участием другого ротора. Такое соединение, при нагреве всего объема вокруг первого ротора в первом цилиндре и охлаждении всего объема вокруг второго ротора в следующем цилиндре создает постоянный вращательный момент. Этот вращательный момент существует всегда, пока есть разница температур первого цилиндра с ротором по отношению ко второму цилиндру с ротором. РДС является обратимой машиной, если вращать роторы, один цилиндр будет разогреваться, а другой будет охлаждаться. Технология изготовления РДС благодаря конструкции по сравнению со всеми известными двигателями внутреннего и внешнего сгорания намного проще и дешевле. На выходе РДС получается вращательное движение, а проблема уплотнения вращающегося вала до 20 МПа сегодня успешно решена (мертвый объем РДС, т.е. объем, не участвующий в тепловом преобразовании, минимален). Также можно вращающий момент передавать из РДС магнитной муфтой, что вообще исключает потери рабочего тела.

Роторный двигатель Стирлинга с внешним подводом теплоты, с рабочим телом, находящимся в нем под избыточным давлением, содержащий, по меньшей мере, два ротора на одном валу, которые размещены в соответствующих цилиндрических корпусах, при этом ротор состоит из цилиндра, выполненного заодно с шайбой, и вращается в цилиндрическом корпусе с выполненными в нем радиальными прорезями, в которые установлены пластины с вырезами, надетыми на шайбу ротора, с возможностью перемещения взад-вперед вдоль оси двигателя при вращении ротора, при этом ротор, пластины и корпус образуют переменные объемы, в которых происходят рабочие циклы двигателя Стирлинга, каждый из переменных объемов, образованных вокруг одного ротора, соединяется каналами с переменными объемами, образованными вокруг другого ротора, при этом каналы соединяют объемы, расположенные со сдвигом 90 градусов один относительно другого, а один ротор повернут относительно другого ротора на 180 градусов.

www.findpatent.ru

Роторные двигатели Стирлинга

Роторные Стирлинги можно отнести к гамма-типу. Однако вместо классической схемы теплообменного цилиндра, где дисплейсер совершает возвратно-поступательные движения, функцию "теплового клапана" выполняет нессиметричный ротор. Вращаясь по оси он поочередно перекрывает горячую и холодную зоны, вызывая нагрев и охлаждение рабочего тела. Роторные Стирлинги отличаются более компактными размерами и могут быть выполнены полностью герметичными. Для этого в корпусе двигателя размещают генератор, или выводят механический привод через магнитную муфту.

Недостатком двигателя является сложность в обеспечении нагрева и охлаждения теплообменного цилиндра, поскольку в отличии от стандартного гамма-стирлинга нагревать и охлаждать приходится не торцы цилиндра а боковые стенки. Вследствие этого теплопотери могут увеличиваться.

Есть стирлинги, спроектированные по классической схеме роторного двигателя внутреннего сгорания, но в моделировании такая схема не используется из-за высокой конструкционной сложности исполнения.

 

Двигатель Стирлинга замедленного нагрева

Данная конструкция стирлингов пожалуй самая "загадочная" из имеющихся. Ее "с натягом" можно причислить к бета-типу стирлингов. В основе работы двигателя заложен термоакустический эффект. Суть эффекта, на первый взгляд, проста. При неравномерном нагреве полой, запаянной с одного конца трубки, изготовленной из материала с низкой теплопроводностью в полости трубки возникают автоколебания воздуха. При определенной доработке трубка начинает издавать звук. Конструкторы решили использовать этот эффект для создания двигателя, поэтому данные двигатели имею второе название - термоакустические. Поскольку термоакустические двигатели получают внешний подвод тепла к системе и замкнутый объем с рабочим телом, их причисляют к стирлингам. Работает двигатель за счет образования стоячей волны внутри рабочего цилиндра. Изменения давления смещены во времени относительно возвратно-поступательного движения поршня. Данное несовпадение по времени в колебаниях давления и поршня заменяют второй цилиндр. За счет этого поддерживается автоколебание в системе. Конструктивно двигатель очень прост, но его расчет весьма сложен. При изготовлении моделей длину рабочего цилиндра, размер регенератора и прочие тонкости находят, в основном, экспериментально. В заключении отметим, что это далеко не полный и весьма поверхностный обзор стирлинг-машин. Главная задача - дать представление о конструкции основных типов стирлингов. Максимально полная на сегодняшний день классификация, описание физических принципов действия и упрощенных методов расчета представлена в книге Г. Уокера "Машины, работающие по циклу Стирлинга" перевод с английского М.: Энергия 1978 г.

Цикл Стирлинга

В двигателях внутреннего сгорания (ДВС) распыленное топливо соединяется с окислителем, как правило воздухом, до фазы сжатия или после этой фазы, и образовавшаяся горючая смесь отдает свою энергию во время кратковременной фазы горения.

В двигателе Стирлинга энергия поступает в двигатель и отводится от него через стенки цилиндра или теплообменник. Еще одним существенным различием между двигателем внутреннего сгорания и двигателем Стирлинга является отсутствие в последнем клапанов, поскольку рабочее тело (газ) постоянно находится в полостях двигателя.

Цикл Стирлинга основан на последовательном нагревании и охлаждении газа (его называют рабочим телом) в замкнутом объеме. Рабочее тело нагревается в горячей части двигателя, расширяется и производит полезную работу, после чего перегоняется в холодную часть двигателя где охлаждается, сжимается и снова подается в горячую часть двигателя. Цикл повторяется. Количество рабочего тела остается неизменным, меняется его температура, давление и объем. Весь цикл условно разделен на четыре такта. Условность заключается в том, что четкоге разделение на такты в цикле отсутствует, процессы переходят один в другой. Это обусловлено отсутствием в конструкции двигателей Стирлинга клапанного механизма (стирлинг-двигатели с клаппаным механизмом называются двигателями Эриксона). С одной стороны данный факт резко упрощает конструкцию, с другой стороны вносит сложность в теорию расчета. Но об этом позже.

Рассмотрим принцип работы на примере гама-стирлинга. Этот тип наиболее часто применяют в моделировании. Двигатель состоит из двух цилиндров. Большой цилиндр - теплообменный. Его задача поочередно разогревать и охлаждать рабочее тело. Для этого один торец цилиндра разогревают (на схеме он закрашен розовым цветом), другой торец - охлаждают (на схеме он закрашен синим цветом). Большой поршень выполненный из теплоизоляционного материала, свободно перемещается в теплообменном цилиндре (зазор между стенками цилиндра и поршня составляет 1-2 мм) и выполняет роль теплового клапана, пегегоняющего рабочее тело то к холодному, то к горячему торцу.

Малый цилиндр является рабочим. Поршень плотно подогнан к цилиндру.

Гамма стирлинг. Первый такт

Первый такт - такт сжатия при постоянной температуре рабочего тела:

Поршень теплообменного цилиндра находится вблизи нижней мертвой точки (НМТ) и остается условно неподвижным. Газ сжимается рабочим поршнем малого цилиндра. Давление газа возрастает, а температура остается постоянной, так как теплота сжатия отводится через холодный торец теплообменного цилиндра в окружающую среду.

Под условной неподвижностью подразумевают малую высоту перемещения поршня при прохождении коленвалом расстояния вблизи верхней или нижней мертвой точки.

 

Гамма стирлинг. Второй такт

Второй такт – такт нагревания при постоянном объеме:

рабочий поршень рабочего цилиндра находится вблизи НМТ и полностью перемещает холодный сжатый газ в теплообменный цилиндр, поршень которого движется к верхней мертвой точки (ВМТ) и вытесняет газ в горячую полость. Так как при этом суммарный внутренний объем цилиндров двигателя остается постоянным, рабочее тело разогревается давление повышается и достигает максимального значения.

Это в теории. На практике прирост давления идет паралельно с выталкиванием рабочего поршня. В результате давление не достигает теоретически расчитанного максимума. Данный факт также объясняет хороший к.п.д. на малых оборотах двигателя. Рабочее тело прогревается лучше и прирост давления приближается к максимуму.

Гамма стирлинг. Третий такт

Третий такт - такт расширения при постоянной температуре газа:

поршень теплообменного цилиндра находится вблизи верхней мертвой точки (ВМТ) и остается условно неподвижным. Поршень рабочего цилиндра под действием давления газа движется к верхней мертвой точке. Происходит расширение горячего газа в полости рабочего цилиндра. Полезная работа, совершаемая поршнем рабочего цилиндра , через кривошипно-шатунный механизм передается на вал двигателя. Давление в цилиндрах двигателя при этом падает, а температура газа в горячей полости остается постоянной, так как к нему подводится тепло от источника тепла через горячую стенку цилиндра.

В моделях двигателей Стирлинга, где теплообменный цилиндр не имеет качественного нагревателя рабочее тело разогревается не полностью, но поскольку давление в газах распространяется равномерно во все стороны его изменение оказывает действие и на рабочий поршень, заставляя его двигаться и совершать работу.

 



infopedia.su

Роторный двигатель внешнего сгорания (роторный двигатель стирлинга)

 

Изобретение относится к машиностроению, а именно к роторным двигателям внешнего сгорания. Техническим результатом является повышение эффективности работы двигателя. Сущность изобретения: двигатель содержит по меньшей мере один статор с торцевыми крышками, ротор, силовой вал, нагреватель, регенератор, холодильник, каналы, оборудованные клапанами, рабочую среду и устройство регулирования давления рабочей среды. Согласно изобретению статор оборудован тремя подвижными пластинами, образующими силовой, вытеснительный и промежуточный контуры. При этом цилиндрический ротор посажен на кривошип силового вала и катится по внутренней цилиндрической поверхности статора либо он посажен соосно с силовым валом и оборудован по крайней мере одним кулачком. 4 з.п.ф-лы, 3 ил.

Изобретение относится к двигателестроению и может быть использовано в авто- и судостроении, в том числе и в подводных лодках и аппаратах, в энергетике, в космосе.

Известен двигатель с внешним подводом теплоты "Роторный Стирлинг" (патент RU 2132476, F 02 G 1/04, публикация 1999.06.27, автор Камаев Е.С.), содержащий преобразователь тепла, статор, неподвижную ось с эксцентриком, на которой эксцентрично вращается кольцевой ротор с лопатками, установленными в прорезях. Работа в указанном двигателе, как считает автор, осуществляется в результате давления газа на изменяющиеся площади рабочих лопаток, неодинаково выдвигающихся из вращающегося ротора в разных областях статора. Однако в известном двигателе происходит смещение масс, которое необходимо уравновешивать, наличие эксцентрика потребует очень точного изготовления деталей и их сборки, к тому же большое количество узлов, требующих герметичности, приведет к большим механическим потерям от сил трения. В представленном виде двигатель не способен достичь заявленного результата, т.к. отсутствует цикличность, необходимая для работы двигателя - т.е. чередование тактов. Такты - рабочий ход/выпуск и впуск/сжатие - продолжаются бесконечно и проходят параллельно в обоих контурах. Это приведет к тому, что высокое давление горячего газа в нагревателе не позволит втолкнуть в него порцию холодного газа. Давление горячего газа из нагревателя будет распространяться в обе стороны и, тем самым, выровняет давление в вытеснительном и силовом контурах статора, что приведет систему в равновесие, при котором вращение ротора прекратится. Задачей изобретения является оптимизация конструкции роторного двигателя под протекающие процессы. Технический результат достигается тем, что роторный двигатель внешнего сгорания, одна секция которого содержит по меньшей мере один статор с торцевыми крышками, ротор, силовой вал, нагреватель, регенератор, холодильник, каналы, рабочую среду, устройство регулирования давления рабочей среды, причем цилиндрический статор оборудован тремя подвижными пластинами, образующими силовой, вытеснительный и промежуточный контуры, цилиндрический ротор посажен либо на кривошип силового вала и катится по внутренней цилиндрической поверхности статора, либо соосно силовому валу и оборудован по крайней мере одним кулачком, каналы (при необходимости) оборудованы клапанами (обратными, впускными, выпускными). Устройство регулирования давления рабочей среды содержит газовый баллон (возможно с поглотителем газа) и компрессор двустороннего действия, либо цилиндр с поршнем, перемещаемый посредством мотора и винтовой пары. На фиг. 1 изображена однокорпусная секция роторного двигателя внешнего сгорания. На фиг. 2 изображены такты рабочего цикла роторного двигателя внешнего сгорания. На фиг. 3 изображена секция роторного двигателя внешнего сгорания двукратного действия. Роторный двигатель внешнего сгорания состоит из преобразователей энергии механической и тепловой. Cекция двигателя внешнего сгорания содержит один статор 16 (фиг. 1), оборудованный тремя подвижными пластинами 6, 12, 17, прижимаемыми к поверхности ротора 13 посредством пружин 28, 11, 19. Статор 16 с торцов закрыт торцевыми крышками (не показаны). Внутри статора 16 на силовом вале 15 вращается по стрелке "а" ротор 13, оборудованный кулачками 14 и, возможно, 9. Внутренний объем статора посредством подвижных пластин 6,12,17 разделен на силовой ("с"), промежуточный ("п") и вытеснительный ("в") контуры, а сами пластины герметично прижимаются под действием пружин 28, 11, 19 к ротору 13 и к торцевым крышкам и тем самым противодействуют проникновению рабочей среды из одного контура в другой, минуя каналы, соединяющие эти контуры. При прохождении через подвижные пластины кулачка 14 ротора 13 подвижные пластины отжимаются в тело статора 16. Каналы разделяются на выходной 24, оборудованный обратным или выпускным клапаном 18, перепускной 29, оборудованный обратным клапаном 20, и, при наличии на роторе 13 кулачков 9, 14, входные 3, 2, оборудованные впускными клапанами 7, 8 и обратными клапанами 1,30. Каналы проходят, как правило, через преобразователь тепловой энергии, состоящий из нагревателя ("н") 5, регенератора ("р") 26 и холодильника ("х") 4 (или в обратной последовательности), но для уменьшения динамического сопротивления и удобства компоновки возможна схема проводки каналов как на фиг. 1, 2, которые проходят через регенератор и/или через какой-либо из конечных преобразователей тепловой энергии. Внутренний объем статоров и каналов заполнен рабочей средой, которой может быть, например, газ - пар, водород, гелий или другой подходящий для этого наполнитель. Роторный двигатель внешнего сгорания работает следующим образом. Запуск двигателя производится после разогрева нагревателя ("н") 5 и охлаждения холодильника ("х") 4 и принудительного проворота силового вала 15 по стрелке "а" на один-два оборота. При этом замкнутый цикл Стирлинга осуществляется за три такта при постоянно протекающем выпуске (фиг.2): положение I - сжатие-впуск; положение II - перепуск-охлаждение, нагрев; положение III - рабочий ход. Стрелками показано движение газа: волнистой - горячего, пунктирной - теплого, ровной - холодного. Такт I - сжатие-впуск - вытеснение в регенератор холодного газа и после его предварительного подогрева проталкивание его в нагреватель. Кулачок 14 ротора 13 движется по стрелке "а" в вытеснительном контуре "в" и, сжимая холодный газ (рабочую среду) в этой области статора 16, вытесняет его в канал 27, проходящий через регенератор 26, и по каналу 3 в нагреватель 5. В увеличивающуюся нижнюю область контура "в" при продвижении в ней кулачка 14 втягивается из канала 29 холодный газ, выходящий из промежуточного контура "п" через холодильник 4. При этом после выхода кулачка 14 из контура "в" в контур "п" обратные клапаны 25, 30, 1 не позволят газу после увеличения объема вследствие нагрева переместиться в контур "в". Такт II - перепуск-охлаждение, нагрев. При продвижении кулачка по контуру "п" происходит вытеснение теплого газа через холодильник 4 (где происходит его охлаждение) в контур "в". При этом в контур "п" газ поступает под давлением или засасывается из силового контура "с", пройдя предварительно через регенератор "р" и оставив там часть тепла. За время продвижения кулачка 14 по контуру "п" происходит достаточный нагрев газа в нагревателе 5, при этом газ концентрируется в нагревателе, где его удерживают обратный клапан 30 и впускной клапан 8. Такт III - рабочий ход. При вхождении кулачка 14 в силовой контур "с" после прохождения им подвижной пластины 12 принудительно открывается впускной клапан 8, при этом горячий газ под большим давлением толкает кулачок 14 (т. к. пластину 12 сдвинуть невозможно) по стрелке "а", тем самым осуществляется вращение силового вала 15. Одновременно кулачком 14 вытесняется горячий газ из силового контура "с", оставшийся там после предыдущего рабочего хода, в регенератор 26, ранее охлажденный проходом холодного газа, где отдает часть теплоты, и затем поступает в промежуточный контур "п". В момент перехода кулачка 14 через подвижные пластины (6, 12 или 17, фиг.1) - последние отжимаются кулачком за внутреннюю поверхность статора 16 и беспрепятственно пропускают кулачок 14 (подвижные пластины всегда прижаты пружинами 11, 19, 28 к поверхности кулачка 14 и ротора 13), при этом происходит отсекание газа и обеспечивается герметичность контуров. Далее процесс повторяется. Выпуск горячего газа из контура "с" в канал 24 открыт постоянно. Для осуществления двукратного действия (т.е. количества рабочих ходов за один оборот силового вала) требуется дооборудование ротора 13 дополнительным кулачком 9 (что улучшит балансировку ротора) и нагревателя 5 дополнительным каналом 2 с обратным клапаном 1 и впускным клапаном 7. При этом теплый газ из регенератора 26 под действием кулачков 14, 9 будет поочередно вталкиваться в каналы 2 или 3, т.к. если в одном из них будет происходить нагрев, то высокое давление не позволит втолкнуть в него порцию газа, поэтому газ войдет в канал, в котором уже упало давление. Каналы 2 и 3 соединены с впускным каналом 10, впуск горячего газа в который регулируется впускными клапанами 7, 8. Таким образом, увеличивая количество кулачков ротора и входных каналов кратность можно увеличить до разумной достаточности. Мощность и обороты двигателя регулируются устройством изменения давления рабочей среды, содержащим газовый баллон 21 (возможно с наполнителем в виде какого-нибудь поглотителя газа, например, гидрида для водорода, фиг.1) и специальный компрессор 23 для перекачки рабочей среды в обоих направлениях, соединенных каналом 22 с каналом 27. Возможно также оборудование двигателя устройством, содержащим цилиндр с поршнем, движение которого осуществляется посредством винтового штока от мотора (не показано). В описанном двигателе отсутствует осаждение продуктов сгорания или реакций на внутренней поверхности статора от рабочей среды, что позволит применить в нем роликовый ротор 13 (фиг.3), посаженный на кривошип 31 силового вала 15, катящийся по внутренней поверхности статора 16. Привод впускных (и других) клапанов может осуществляться от распределительных кулачков на валах 15 и/или 36 через толкатели либо от различных управляемых устройств (не показаны). Изложенная выше конструкция роторного двигателя внешнего сгорания не исчерпывает всех вариантов, а является лишь его иллюстрацией. На практике могут быть использованы и другие варианты без нарушения основной идеи технического решения.

Формула изобретения

1. Роторный двигатель внешнего сгорания, одна секция которого содержит по меньшей мере один статор с торцевыми крышками, ротор, силовой вал, нагреватель, регенератор, холодильник, каналы, оборудованные клапанами, рабочую среду и устройство регулирования давления рабочей среды, отличающийся тем, что статор оборудован тремя подвижными пластинами, образующими силовой, вытеснительный и промежуточный контуры. 2. Двигатель по п.1, отличающийся тем, что устройство регулирования давления рабочей среды содержит газовый баллон и компрессор двустороннего действия. 3. Двигатель по п.1, отличающийся тем, что устройство регулирования давления рабочей среды содержит цилиндр с поршнем, перемещаемым посредством мотора и винтовой пары. 4. Двигатель по любому из пп.1-3, отличающийся тем, что цилиндрический ротор посажен на кривошип силового вала и катится по внутренней цилиндрической поверхности статора. 5. Двигатель по любому из пп.1-3, отличающийся тем, что цилиндрический ротор посажен соосно с силовым валом и оборудован по крайней мере одним кулачком.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3

www.findpatent.ru

Двигатели Стирлинга, работающие по другим циклам

ТОП 10:

Цикл Стирлинга считается непременной принадлежностью именно двигателя Стирлинга. В то же время, детальное изучение принципов работы множества созданных на сегодняшний день конструкций, показывает, что значительная часть из них имеет рабочий цикл, отличный от цикла Стирлинга. Например, альфа-стирлинг с поршнями разного диаметра имеет цикл, более похожий на цикл Эрикссона. Бета- и гамма-конфигурации, имеющие достаточно большой диаметр штока у поршня-вытеснителя, также занимают некое промежуточное положение между циклами Стирлинга и Эрикссона.

При движении вытеснителя в бета-конфигурации изменение состояния рабочего тела происходит не по изохоре, а по наклонной линии, промежуточной между изохорой и изобарой. При некотором отношении диаметра штока к общему диаметру вытеснителя можно получить изобару (это отношение зависит от рабочих температур). В этом случае поршень, который ранее был рабочим, играет лишь вспомогательную роль, а настоящим рабочим становится шток вытеснителя. Удельная мощность такого двигателя оказывается примерно в 2 раза большей, чем в привычных стирлингах, ниже потери на трение, т. к. давление на поршень более равномерно. Схожая картина в альфа-стирлингах с разным диаметром поршней. Двигатель с промежуточной диаграммой может иметь нагрузку, равномерно распределённую между поршнями, т. е. между рабочим поршнем и штоком вытеснителя.

Важным преимуществом работы двигателя по циклу Эрикссона или близкому к нему является то, что изохора заменена на изобару или близкий к ней процесс. При расширении рабочего тела по изобаре не происходит никаких изменений давления, никакого теплообмена, кроме передачи тепла от рекуператора рабочему телу. И этот нагрев тут же совершает полезную работу При изобарном сжатии происходит отдача тепла рекуператору.В цикле Стирлинга при нагреве или охлаждении рабочего тела по изохоре происходят потери тепла, связанные с изотермическими процессами в нагревателе и охладителе.

Конфигурация

Инженеры подразделяют двигатели Стирлинга на три различных типа:

  • Альфа-Стирлинг — содержит два раздельных силовых поршня в раздельных цилиндрах. Один поршень — горячий, другой — холодный. Цилиндр с горячим поршнем находится в теплообменнике с более высокой температурой, в то время как цилиндр с холодным поршнем находится в более холодном теплообменнике. У данного типа двигателя отношение мощности к объёму достаточно велико, но, к сожалению, высокая температура «горячего» поршня создаёт определённые технические проблемы.

Регенератор находится между горячей частью соединительной трубки и холодной.

  • Бета-Стирлинг — цилиндр всего один, горячий с одного конца и холодный с другого. Внутри цилиндра движутся поршень (с которого снимается мощность) и «вытеснитель», изменяющий объем горячей полости. Газ перекачивается из холодной части цилиндра в горячую через регенератор. Регенератор может быть внешним, как часть теплообменника, или может быть совмещён с поршнем-вытеснителем.
  • Гамма-Стирлинг — тоже есть поршень и «вытеснитель», но при этом два цилиндра — один холодный (там движется поршень, с которого снимается мощность), а второй горячий с одного конца и холодный с другого (там движется «вытеснитель»). Регенератор может быть внешним, в этом случае он соединяет горячую часть второго цилиндра с холодной и одновременно с первым (холодным) цилиндром. Внутренний регенератор является частью вытеснителя.

Также существуют разновидности двигателя Стирлинга не попадающие под вышеуказанные три классических типа:

  • Роторный двигатель Стирлинга — решены проблемы герметичности (патент Мухина на герметичный ввод вращения (ГВВ), серебряная медаль на международной выставке в Брюсселе «Эврика-96») и громоздкости (нет кривошипно-шатунного механизма, т.к. двигатель роторный)[1][2].

Недостатки

  • Материалоёмкость — основной недостаток двигателя. У двигателей внешнего сгорания вообще, и двигателя Стирлинга в частности, рабочее тело необходимо охлаждать, и это приводит к существенному увеличению массо-габаритных показателей силовой установки за счёт увеличенных радиаторов.
  • Для получения характеристик, сравнимых с характеристиками ДВС, приходится применять высокие давления (свыше 100 атм) и специальные виды рабочего тела — водород, гелий.
  • Тепло не подводится к рабочему телу непосредственно, а только через стенки теплообменников. Стенки имеют ограниченную теплопроводность, из-за чего КПД оказывается ниже, чем можно было ожидать. Горячий теплобменник работает в очень напряжённых условиях теплопередачи, и при очень высоких давлениях, что требует применения высококачественных и дорогих материалов. Создание теплообменника, который удовлетворял бы противоречивым требованиям, весьма трудно. Чем выше площадь теплообмена, тем меньше потери тепла. При этом растёт размер теплообменника и объём рабочего тела, не участвующий в работе. Поскольку источник тепла расположен снаружи, двигатель медленно реагирует на изменение теплового потока, подводимого к цилиндру, и не сразу может выдать нужную мощность при запуске.
  • Для быстрого изменения мощности двигателя используются методы, отличные от тех, которые применялись в двигателях внутреннего сгорания: буферная ёмкость изменяемого объёма, изменение среднего давления рабочего тела в камерах, изменение фазного угла между рабочим поршнем и вытеснителем. В последнем случае реакция двигателя на управляющее действие водителя является практически мгновенной.

Преимущества

Тем не менее, двигатель Стирлинга имеет преимущества, которые вынуждают заниматься его разработкой.

  • «Всеядность» двигателя — как все двигатели внешнего сгорания (вернее — внешнего подвода тепла), двигатель Стирлинга может работать от почти любого перепада температур: например, между разными слоями воды в океане, от солнца, от ядерного или изотопного нагревателя, угольной или дровяной печи и т. д.
  • Простота конструкции — конструкция двигателя очень проста, он не требует дополнительных систем, таких как газораспределительный механизм. Он запускается самостоятельно и не нуждается в стартере. Его характеристики позволяют избавиться от коробки передач. Однако, как уже отмечалось выше, он обладает большей материалоёмкостью.
  • Увеличенный ресурс — простота конструкции, отсутствие многих «нежных» агрегатов позволяет стирлингу обеспечить небывалый для других двигателей ресурс в десятки и сотни тысяч часов непрерывной работы.
  • Экономичность — в случае преобразования в электричество солнечной энергии стирлинги иногда дают больший КПД (до 31,25 %), чем тепловые машины на пару.[3]
  • Бесшумность двигателя — стирлинг не имеет выхлопа, а значит — не шумит. Бета-стирлинг с ромбическим механизмом является идеально сбалансированным устройством и, при достаточно высоком качестве изготовления, даже не имеет вибраций (амплитуда вибрации меньше 0,0038 мм).
  • Экологичность — сам по себе стирлинг не имеет каких-то частей или процессов, которые могут способствовать загрязнению окружающей среды. Он не расходует рабочее тело. Экологичность двигателя обусловлена прежде всего экологичностью источника тепла. Стоит также отметить, что обеспечить полноту сгорания топлива в двигателе внешнего сгорания проще, чем в двигателе внутреннего сгорания.

Применение

Двигатель Стирлинга с линейным генератором переменного тока

Двигатель Стирлинга применим в случаях, когда необходим компактный преобразователь тепловой энергии, простой по устройству, либо когда эффективность других тепловых двигателей оказывается ниже: например, если разницы температур недостаточно для работы паровой или газовой турбины.

Термоакустика – раздел физики о взаимном преобразовании тепловой и акустической энергии. Он образовался на стыке термодинамики и акустики. Отсюда такое название. Наука эта очень молодая. Как самостоятельная дисциплина она возникла в конце 70-х годов прошлого века, когда швейцарец Никалаус Ротт закончил работу над математическими основами линейной термоакустики. И всё же она возникла не на пустом месте. Её возникновению предществовали открытия интересных эффектов, которые мы просто обязаны рассмотреть.

С ЧЕГО ЭТО НАЧИНАЛОСЬТермоакустика имеет длинную историю, которая берёт своё начало более двух веков назад.

Первые официальные записи о колебаниях, порождаемых теплом, сделаны Хиггинсом в 1777 г. Он экспериментировал с открытой стеклянной трубкой, в которой акустические колебания возбуждались с помощью водородной горелки, расположенной определённым образом. Этот опыт вошёл в историю, как «поющее пламя Хиггинса».

 

Рисунок 1. Поющее пламя Хиггинса

 

Однако, современным физикам более известен другой эксперимент, получивший название «трубка Рийке». В процессе своих опытов Рийке создал новый музыкальный инструмент из органной трубки. Он заменил водородное пламя Хиггинса на подогреваемый проволочный экран и экспериментально показал, что самый сильный звук рождается в том случае, когда экран расположен на расстоянии четверти трубки от её нижнего конца. Колебания прекращались, если накрыть верхний конец трубки. Это доказывало, что для получения звука необходима продольная конвективная тяга. Работы Хиггинса и Рийке позже послужили основой для зарождения науки о горении, которая сегодня применяется везде, где используется это явление от

Рисунок 2. Трубка Рийке.

горения пороховых шашек до ракетных двигателей. Явлениям, протекающим в трубке Рийке посвящены тысячи диссертаций во всём мире, но интерес к этому устройству не ослабевает до сих пор.

 

В 1850 г. Сондхаусс обратился к странному явлению, которое наблюдают в своей работе стеклодувы. Когда шарообразное утолщение из горячего стекла гонит воздух в холодный конец трубки стеклодува, генерируется чистый звук. Анализируя явление, Сондхаусс обнаружил, что звук генерируется, если нагревать шарообразное утолщение на конце трубки. При этом звук изменяется с изменением длины трубки. В отличие от трубки Рийке трубка Сондхаусса не зависела от конвективной тяги.

 

 

Рисунок 3. Трубка Сондхаусса.

Похожий эксперимент позже осуществил Таконис. В отличие от Сондхаусса он не подогревал конец трубки, а охлаждал его криогенной жидкостью. Это доказывало, что для генерации звука важен не подогрев, а перепад температур.Первый качественный анализ колебаний, вызванных теплом, был дан в 1887 г. Лордом Рэлеем. Сформулированное Рэлеем объяснение перечисленных выше явлений сегодня известно термоакустикам как принцип Рэлея. Он звучит примерно так: «Если газу передать тепло в момент наибольшего сжатия или отобрать тепло в момент наибольшего разряжения, то это стимулирует колебания.» Несмотря на свою простоту, эта формулировка полностью описывает прямой термоакустический эффект, то есть преобразование тепловой энергии в энергию звука.

Вихревой эффект

Вихревой эффект (эффект Ранка-Хилша, англ. Ranque-Hilsch Effect) — эффект разделения газа или жидкости при закручивании в цилиндрической или конической камере на две фракции. На периферии образуется закрученный поток с большей температурой, а в центре — закрученный охлажденный поток, причем вращение в центре происходит в другую сторону, чем на периферии. Впервые эффект открыт французским инженером Жозефом Ранком в конце 20-х годов при измерении температуры в промышленном циклоне. В конце 1931 г Ж.Ранк подает заявку на изобретенное устройство, названное им «Вихревой трубой» (в литературе встречается как труба Ранке). Получить патент удается только в 1934 году в Америке (Патент США № 1952281). В настоящее время реализован ряд аппаратов, в которых используется вихревой эффект, вихревых аппаратов. Это «вихревые камеры» для химического разделения веществ под действием центробежных сил и «вихревые трубы», используемые как источник холода.

С 1960-х годов вихревое движение является темой множества научных исследований. Регулярно проводятся специализированные конференции по вихревому эффекту, например, в Самарском аэрокосмическом университете.

Существуют и применяются вихревые теплогенераторы[1] и микрокондиционеры.[2]

В этом мире есть вещи гениальные, непостижимые и совершенно нереальные. Настолько нереальные, что кажутся артефактами из некой параллельной Вселенной. К числу таких артефактов наряду с двигателем Стирлинга, вакуумной радиолампой и чёрным квадратом Малевича в полной мере относится т.н. "турбина Тесла". Вообще говоря отличительная черта всех подобных вещей - абсолютная простота. Не упрощённость, а именно простота. То есть как в творениях Микеланджело - отсутствует всё лишнее, какие-то технические или смысловые "подпорки", чистое сознание, воплощённое "в железе" или выплеснутое на холст. И при всём при этом абсолютная нетиражность. Чёрный Квадрат - это своего рода "орт" искусства. Второго такого написанного другим художником быть не может.

Всё это в полной мере относится и к турбине Тесла. Конструктивно она представляет собой несколько (10-15) тонких дисков, укреплённых на оси турбины на небольшом расстоянии друг от друга и помещённые в кожух, напоминающий милицейский свисток.

Не стоит и объяснять, что дисковый ротор намного более технологичен и надёжен, чем даже "колесо Лаваля", я уж молчу о роторах обычных турбин. Это первое достоинство системы. Второе состоит в том, что в отличие от других типов турбин, где для ламинаризации течения рабочего тела необходимо принимать специальные меры. В турбине Тесла рабочее тело (которым может быть воздух, пар или даже жидкость) течёт строго ламинарно. Поэтому потери на газодинамическое трение в ней сведены к нулю: КПД турбины составляет 95%.

Правда следует иметь в виду, что КПД турбины и КПД термодинамического цикла - несколько разные вещи. КПД турбины можно охарактеризовать, как отношение энергии, преобразуемой в механическую энергию на валу ротора турбины к энергии рабочего цикла (то есть разнице начальной и конечной энергий рабочего тела). Так КПД современных паровых турбин так же весьма высок - 95-98%, однако КПД термодинамического цикла в силу ряда ограничений не превышает 40-50%.

Принцип действия турбины основан на том, что рабочее тело (допустим - газ), закручиваясь в кожухе, за счёт трения "увлекает" за собой ротор. При этом отдавая часть энергии ротору, газ замедляется, и благодаря возникающей при взаимодействии с ротором кориолисовой силе, подобно чаинкам в чае "скатывается" к оси ротора, где имеются специальные отверстия, через которые осуществляется отвод "отработанного" рабочего тела.Турбина Тесла, как и турбина Лаваля преобразует кинетическую энергию рабочего тела. То есть превращение потенциальной энергии (например сжатого воздуха или перегретого пара) в кинетическую необходимо произвести до подачи на ротор турбины с помощью сопла. Однако турбина Лаваля, имея в целом достаточно высокий КПД, оказывалась крайне неэффективной на низких оборотах, что заставляло конструировать редукторы, размеры и масса которых многократно превышали размеры и массы самой турбины. Фундаментальным отличием турбины Тесла является тот факт, что она вполне эффективно работает в широком диапазоне частот вращения, что позволяет соединять её вал с генератором непосредственно. Кроме того, турбина Тесла легко поддаётся реверсированию.

Интересно, что сам Никола Тесла позиционировал своё изобретение, как способ высокоэффективного использования геотермальной энергии, которую он считал энергией будущего. Кроме того турбина без каких-либо переделок может превратиться в высокоэффективный вакуумный насос - достаточно раскрутить её вал от другой турбины или электродвигателя.

Технологичность турбины Тесла позволяет изготавливать её варианты буквально из чего угодно: дисковый ротор можно сделать из старых компакт-дисков или "блинов" от вышедшего из строя компьютерного "винчестера". При этом мощность такого двигателя не смотря на "игрушечные" материалы и габариты получается весьма внушительной. Кстати о габаритах: двигатель мощностью 110 л.с. был не больше системного блока нынешнего персонального компьютера.

Устройства на эффекте Ранка

Эффект Ранка с самого начала привлекал изобретателей кажущейся простотой технической реализации — в самом деле, простейшая реализация вихревой трубы представляет собой кусок трубы самый обычной, куда с одной стороны внутрь тангенциально подаётся исходный поток, а на противополжном торце установлена кольцевая диафрагма, и из её внутреннего отверстия выходит охлаждённая часть потока, а из щели между внешним краем диафрагмы и внутренней поверхностью трубы — его горячая часть. Однако на самом деле не всё так просто — добиться эффективного разделения удаётся далеко не всегда, да и КПД таких установок обычно заметно уступает широко распространённым компрессорным тепловым насосам. Кроме того, обычно параметры установки на эффекте Ранка рассчитаны для конкретной мощности, определяемой скоростью и расходом вещества исходного потока, и когда параметры входного потока отклоняются от оптимальных значений, КПД вихревой трубы существенно ухудшается. Тем не менее следует заметить, что возможности некоторых установок на эффекте Ранка внушают уважение — например, рекордное охлаждение, которого удалось достигнуть на одной ступени, составляет более 200°С!

Впрочем, с учётом нашего климата, гораздо больший интерес представляет использование эффекта Ранка для обогрева, да при этом ещё хотелось бы и не выходить за рамки «подручных средств».

Суть эффекта Ранка

При движении потока газа или жидкости по плавно поворачивающей поверхности трубы у её внешней стенки образуется область повышенного давления и температуры, а у внутренней (либо в центре полости, если газ закручен по поверхности цилиндрического сосуда) — область пониженной температуры и давления. Это достаточно хорошо известное явление называется эффектом Ранка по имени открывшего его в 1931 г. французского инженера Жозефа Ранка (G.J.Ranque, иногда пишут «Ранке»), или эффектом Ранка-Хилша (немец Robert Hilsh продолжил исследование этого эффекта во второй половине 1940-х годов и улучшил эффективность вихревой трубы Ранка). Конструкции, использующие эффект Ранка, представляют собой разновидность теплового насоса, энергия для функционирования которого берётся от нагнетателя, создающего поток рабочего тела на входе трубы.

Парадоксальность эффекта Ранка заключается в том, что центробежные силы во вращающемся потоке направлены наружу. Как известно, более тёплые слои газа или жидкости имеют меньшую плотность и должны подниматься вверх, а в случае цетробежных сил — стремиться к центру, более холодные имеют большую плотность и, соответственно, должны стремиться к периферии. Между тем при большой скорости вращающегося потока всё происходит с точностью до наоборот!

Эффект Ранка проявляется как для потока газа, так и для потока жидкости, которая, как известно, является практически несжимаемой и потому фактор адиабатического сжатия / расширения к ней неприменим. Тем не менее, в случае жидкости эффект Ранка обычно выражен значительно слабее — возможно, именно по этой причине, да и очень малая длина свободного пробега частиц затрудняет его проявление. Но это верно, если оставаться в рамках традиционной молекулярно-кинетической теории, а у эффекта могут быть и совсем другие причины.

На мой взгляд, на данный момент наиболее полное и достоверное научное описание эффекта Ранка представлено в статье А.Ф.Гуцола (в формате pdf). Как ни удивительно, в своей основе его выводы о сути явления совпадают с полученными нами «на пальцах». К сожалению, он оставляет без внимания первый фактор (адиабатическое сжатие газа у внешнего радиуса и расширение у внутреннего), который, на мой взгляд, весьма существенен при использовании сжимаемых газов, правда, действует он только внутри устройства. А второй фактор А.Ф.Гуцол называет «разделением быстрых и медленных микрообъёмов».



infopedia.su

Электростанции на двигателе Стирлинга — простота, экономичность и

Экология потребления.Наука и техника:Мотор Стирлинга чаще всего применяется в ситуациях, когда требуется аппарат для преобразования тепловой энергий, отличающийся простотой и эффективностью.

Менее ста лет назад двигатели внутреннего сгорания пытались завоевать свое законное место в конкурентной борьбе среди прочих имеющихся машин и движущихся механизмов. При этом в те времена превосходство бензинового двигателя не являлось столь очевидным. Существующие машины на паровых двигателях отличались бесшумностью, великолепными для того времени характеристиками мощности, простотой обслуживания, возможностью использования различного вида топлива. В дальнейшей борьбе за рынок двигатели внутреннего сгорания благодаря своей экономичности, надежности и простоте взяли верх.

Дальнейшая гонка за совершенствования агрегатов и движущих механизмов, в которую в середине 20 века вступили газовые турбины и роторные разновидности двигателей, привела к тому, что несмотря на верховенство бензинового двигателя были предприняты попытки ввести на «игровое поле» совершенно новый вид двигателей — тепловой, впервые изобретенный в далеком 1861 году шотландским священником по имени Роберт Стирлинг. Двигатель получил название своего создателя.

ДВИГАТЕЛЬ СТИРЛИНГА: ФИЗИЧЕСКАЯ СТОРОНА ВОПРОСА

Для понимания, как работает настольная электростанция на Стирлинге, следует понимать общие сведения о принципах работы тепловых двигателей. Физически принцип действия заключается в использовании механической энергии, которая получается при расширении газа при нагревании и его последующем сжатии при охлаждении. Для демонстрации принципа работы можно привести пример на основе обычной пластиковой бутыли и двух кастрюль, в одной из которых находится холодная вода, в другой горячая.

Электростанции на двигателе Стирлинга — один из способов использования интересного агрегата

При опускании бутылки в холодную воду, температура которой близка к температуре образования льда при достаточном охлаждении воздуха внутри пластиковой емкости ее следует закрыть пробкой. Далее, при помещении бутыли в кипяток, спустя некоторое время пробка с силой «выстреливает», поскольку в данном случае нагретым воздухом была совершена работа во много раз большая, чем совершается при охлаждении. При многократном повторении опыта результат не меняется.

Первые машины, которые были построены с использованием двигателя Стирлинга, с точностью воспроизводили процесс, демонстрирующийся в опыте. Естественно механизм требовал усовершенствования, заключающееся в применении части тепла, которое терял газ в процессе охлаждения для дальнейшего подогрева, позволяя возвращать тепло газу для ускорения нагревания.

Но даже применение этого новшества не могло спасти положение дел, поскольку первые «Стирлинги» отличались большими размерами при малой вырабатываемой мощности. В дальнейшем не раз предпринимались попытки модернизировать конструкцию для достижения мощности в 250 л.с. приводили к тому, что при наличии цилиндра диаметром 4,2 метра, реальная выходная мощность, которую выдавала электростанция на Стирлинге (Stirling) в 183 кВт на деле составляла всего 73 кВт.

Все двигатели Стирлинга работают по принципу цикла Стирлинга, включающего в себя четыре основные фазы и две промежуточные. Основными являются нагрев, расширение, охлаждение и сжатие. В качестве стадии перехода рассматриваются переход к генератору холода и переход к нагревательному элементу. Полезная работа, совершаемая двигателем, строится исключительно на разнице температур нагревающей и охлаждающей частей.

 

СОВРЕМЕННЫЕ КОНФИГУРАЦИИ СТИРЛИНГА

Современная инженерия различает три основных вида подобных двигателей:

Производство электростанции на Стирлинге будет зависеть от выбора модели двигателя, что позволит учесть всю положительные и отрицательные стороны подобного проекта.

ПРЕИМУЩЕСТВА И НЕДОСТАТКИ

Благодаря своим конструктивным особенностям данные двигатели обладают рядом преимуществ, но при этом не лишены недостатков.

Электростанции на двигателе Стирлинга — один из способов использования интересного агрегата

Настольная электростанция Стирлинга, купить которую невозможно в магазине, а только у любителей, самостоятельно осуществляющих сбор подобных устройств, относятся:

Наряду с недостатками, у электростанций, функционирующих на агрегатах Стирлинга, имеются неоспоримые плюсы:

ОБЛАСТИ ПРИМЕНЕНИЯ ДВИГАТЕЛЕЙ СТИРЛИНГА

Мотор Стирлинга чаще всего применяется в ситуациях, когда требуется аппарат для преобразования тепловой энергий, отличающийся простотой, при этом эффективность прочих видов тепловых агрегатов существенно ниже при аналогичных условиях. Очень часто подобные агрегаты применяются в питании насосного оборудования, холодильных камер, подводных лодок, батарей, аккумулирующих энергию.

Электростанции на двигателе Стирлинга — один из способов использования интересного агрегата

Одним из перспективных направлений области использования двигателей Стирлинга являются солнечные электростанции, поскольку данный агрегат может удачно применяться для того, чтобы преобразовывать энергию солнечных лучей в электрическую. Для осуществления этого процесса двигатель помещается в фокус зеркала, аккумулирующего солнечные лучи, что обеспечивает перманентное освещение области, требующей нагрева. Это позволяет сфокусировать солнечную энергию на малой площади. Топливом для двигателя в данном случае служит гелии или водород. опубликовано econet.ru 

 

econet.ru


Смотрите также