ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Тепловой расчет двигателя (стр. 1 из 2). Тепловой расчет двс


Тепловой расчет двигателя

Содержание

ВВЕДЕНИЕ

1. ВЫБОР И ОБОСНОВАНИЕ ИСХОДНЫХ ДАННЫХ

2. ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ СОСТОЯНИЯ РАБОЧЕГО ТЕЛА В ХАРАКТЕРНЫХ ТОЧКАХ ИНДИКАТОРНОЙ ДИАГРАММЫ

2.1 ПРОЦЕСС ВПУСКА

2.2 ПРОЦЕСС СЖАТИЯ

2.3 ПРОЦЕСС СГОРАНИЯ

2.4 ПРОЦЕС РАСШИРЕНИЯ

3. ИНДИКАТОРНЫЕ И ЭФФЕКТИВНЫЕ ПОКАЗАТЕЛИ ДВИГАТЕЛЯ

4. ОПРЕДЕЛЕНИЕ ДИАМЕТРА ЦИЛИНДРА И ХОДА ПОРШНЯ

5. ПОСТРОЕНИЕ ИНДИКАТОРНОЙ ДИАГРАММЫ

СПИСОК ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

На наземном транспорте наибольшее распространение получили двигатели внутреннего сгорания. Эти двигатели отличаются компактностью, высокой экономичностью, долговечностью и применяются во всех отраслях народного хозяйства.

В настоящее время особое внимание уделяется уменьшению токсичности выбрасываемых в атмосферу вредных веществ и снижению уровня шума работы двигателей.

Специфика технологии производства двигателей и повышение требований к качеству двигателей при возрастающем объеме их производства, обусловили необходимость создания специализированных моторных заводов. Успешное применение двигателей внутреннего сгорания, разработка опытных конструкций и повышение мощностных и экономических показателей стали возможны в значительной мере благодаря исследованиям и разработке теории рабочих процессов в двигателях внутреннего сгорания.

Выполнение задач по производству и эксплуатации транспортных двигателей требует от специалистов глубоких знаний рабочего процесса двигателей, знания их конструкций и расчета двигателей внутреннего сгорания.

Рассмотрение отдельных процессов в двигателях и их расчет позволяют определить предполагаемые показатели цикла, мощность и экономичность, а также давление газов, действующих в надпоршневом пространстве цилиндра, в зависимости от угла поворота коленчатого вала. По данным расчета можно установить основные размеры двигателя (диаметр цилиндра и ход поршня ) и проверить на прочность его основные детали.

1. ВЫБОР И ОБОСНОВАНИЕ ИСХОДНЫХ ДАННЫХ

ТАБЛИЦА 1. Параметры двигателя

По заданным параметрам двигателя произвести тепловой расчет, определить параметры состояния рабочего тела, соответствующие характерным точкам цикла, индикаторные и эффективные показатели двигателя, диаметр цилиндра и ход поршня, построить индикаторную диаграмму. Тепловой расчет для карбюраторного двигателя произвести для режима максимальной мощность.

При проведении теплового расчётадля карбюраторного двигателя выбираем следующие параметры:

Давление окружающей среды р о = 0,1 МПа

Температура окружающей среды То = 293 К

Давление остаточных газов р r = 0,114 МПа

Температура остаточных газов Тr = 1050 К

Подогрев свежего заряда ∆Т = 20۫С

Коэффициент наполнения ηv = 0,8

Коэффициент избытка воздуха α = 0,96

В соответствии с заданной степенью сжатия ε = 8,5 можно использовать бензин АИ 93

Молекулярная масса топлива: С = 0,855; Н = 0,145; mt = 115 кг/моль

Низшая теплота сгорания: Нu= 33,891*C+125,6*H-2,51*9*H= 44 МДж/кг

Средний показатель политропны сжатия n1 = 1,37

Средний показатель политропны расширения n2 = 1,24

Коэффициент использования тепла ξ = 0,9

тепловой карбюраторный двигатель индикаторный

2. ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ СОСТОЯНИЯ РАБОЧЕГО ТЕЛА В ХАРАКТЕРНЫХ ТОЧКАХ ИНДИКАТОРНОЙ ДИАГРАММЫ

2.1 ПРОЦЕСС ВПУСКА

Давление в конце впуска

, где - потери давления в следствие сопротивления впускной системы и затухания скорости движения заряда в цилиндре. где

β - коэффициент затухания скорости движения заряда;

- коэффициент сопротивления впускной системы; – средняя скорость движения заряда в наименьшем сечении впускной системы; - плотность заряда на впуске; ;

Коэффициент остаточных газов

Температура в конце впуска

2.2 ПРОЦЕСС СЖАТИЯ

Давление в конце сжатия:

Температура в конце сжатия:

2.3 ПРОЦЕСС СГОРАНИЯ

Определение теоретически необходимого количества воздуха при полном сгорании жидкого топлива . Наименьшее количество кислорода Оо , которое необходимо подвести извне к топливу для полного его окисления.

кмоль воз/кг топл кг возд/кг топл , где

С, Н, О – массовые доли углерода, водорода и кислорода в элементарном составе топлива;

0,21 – объёмное содержание кислорода в 1 кг воздуха;

0,23 – массовое содержание кислорода в 1 кг воздуха;

Действительное количество молей свежего заряда:

где - действительное количество воздуха, необходимое для сгорания 1кг воздуха. - молекулярная масса паров автомобильных бензинов.

Количество молей продуктов сгорания,

,

Действительный коэффициент молекулярного изменения рабочей смеси:

, где - коэффициент молекулярного изменения горючей смеси.

Температура в конце видимого сгорания:

Температура конца видимого сгорания Тz для карбюраторного двигателя α<1 определяется из уравнения сгорания:

, где

ξ – коэффициент использования тепла;

– теплопроводность топлива;
- неполнота сгорания топлива; и - средние мольные теплоёмкости при постоянном объёме рабочей смеси и продуктов сгорания, значения средних мольных теплоемкостей приближенно определяем по формулам;

Определяем температуру в конце сгорания по уравнению сгорания:

,

тогда получим :

Давление в конце видимого сгорания карбюраторного двигателя

Степень повышения давления

2.4 ПРОЦЕС РАСШИРЕНИЯ

В процессе расширения происходит преобразование тепловой энергии в механическую, определяем по формулам:

3. ИНДИКАТОРНЫЕ И ЭФФЕКТИВНЫЕ ПОКАЗАТЕЛИ ДВИГАТЕЛЯ

Теоретическое средние индикаторное давление определяем по формуле:

Действительное средние индикаторное давление:

, где

φ – коэффициент скругления индикаторной диаграммы для карбюраторных двигателей принимаем равным 0,96

Индикаторный КПД цикла:

Индикаторный удельный расход топлива:

Средние давление механических потерь:

mirznanii.com

Тепловой расчет двигателя внутреннего сгорания

Содержание

Введение

1. Выбор исходных данных

2. Тепловой расчет

2.1 Топливо

2.2 Параметры рабочего тела

2.3 Параметры окружающей среды и остаточные газы

2.4 Процесс впуска

2.5 Процесс сжатия

2.6 Процесс сгорания

2.7 Процессы расширения и выпуска

2.8 Индикаторные параметры рабочего цикла

2.9 Эффективные показатели двигателя

2.10 Основные параметры цилиндра и двигателя

2.11 Построение индикаторной диаграммы

2.12 Тепловой баланс

3. Расчет внешней скоростной характеристики

4. Кинематика и динамика двигателя

4.1 Кинематический расчёт КШМ

4.1.1 Выбор отношения радиуса кривошипа к длине шатуна и длины шатуна

4.1.2 Перемещение поршня

4.1.3 Скорость поршня

4.1.4 Ускорение поршня

4.2 Динамический расчет двигателя

4.2.1 Силы давления газов

4.2.2 Приведение масс частей КШМ

4.2.3 Удельные и полные силы инерции

4.2.4 Суммарные силы давления газов

4.2.5 Крутящие моменты

4.2.6 Силы, действующие на шатунную шейку коленчатого вала

4.2.7 Силы, действующие на колено вала

4.3 Уравновешивание двигателя

4.3.1 Уравновешивание четырехцилиндрового рядного двигателя.

4.3.2 Равномерность крутящего момента и равномерность хода двигателя

5. Расчёт основных деталей двигателя

5.1 Расчёт цилиндропоршневой группы

5.1.1 Расчёт поршня

5.1.2 Расчет поршневого кольца

5.1.3 Расчет поршневого пальца

5.1.4 Расчет гильзы цилиндра

6. Расчет систем двигателя

6.1 Расчет элементов системы смазки

6.2 Расчет элементов системы охлаждения

Список литературы

Приложения

Введение

Карбюраторные двигатели прошли длительный путь развития и достигли высокого совершенства. Однако перед конструкторами и эксплуатационниками стоит задача — обеспечить дальнейший существенный рост экономичности этих двигателей.

Для этого необходимо сокращение энергозатрат и уменьшение трудозатрат на их изготовление, техническое обслуживание и ремонт, снижение расхода металла, эксплуатационных материалов; облегчение условий труда персонала и управления двигателями; улучшение их экологических характеристик. Достижение более совершенных показателей возможно на основе применения прогрессивных конструктивных схем, рабочих процессов, конструкций систем узлов и деталей.

Максимальный относительный к.п.д., характеризующий степень совершенства действительного цикла, достигает у двигателей грузовых автомобилей на режимах, близких к полным нагрузкам, значений порядка 0,84—0,87. Это указывает на то, что дальнейшее улучшение рабочих процессов не может быть существенным, если не увеличивать степень сжатия двигателя.

Повышение степени сжатия является эффективным средством улучшения топливной экономичности карбюраторных двигателей на всех режимах работы. Однако этот путь требует или повышения октанового числа бензина, или снижения требований двигателя к антидетонационным качествам бензина. В связи с известными проблемами обеспечения поршневых д.в.с. жидкими топливами нефтяного происхождения дальнейшее повышение октанового числа бензина маловероятно.Поэтому активно разрабатываются различные способы снижения требований двигателя к антидетонационным качествам бензина. Одним из таких способов является использование винтовых впускных каналов в новых карбюраторных двигателях, ранее нашедших применение в дизелях. Интенсивное вращательное движение заряда в цилиндрах, создаваемое канала- ми в процессе впуска, приводит к заметному увеличению скорости сгорания и способствует благодаря этому уменьшению опасности возникновения детонации, так как сокращается время, в течение которого в последних порциях заряда развиваются очаги самовоспламенения. Переход к винтовым впускным каналам позволяет без изменения октанового числа бензина увеличить степень сжатия двигателя, в результате чего эксплуатационная экономичность двигателя улучшается на 3—4%.

Большие перспективы в направлении повышения топливной экономичности карбюраторных двигателей имеет применение электроники в системах питания и зажигания. Применение электроники позволяет повысить мощность искрового разряда, а при необходимости и изменять ее в зависимости от режима работы двигателя. Внедрение микропроцессорных систем зажигания улучшает топливную экономичность карбюраторных двигателей на 3—5%.

Еще больший эффект микропроцессорная техника дает в системах питания — карбюраторных или с впрыскиванием бензина, — поскольку она позволяет регулировать состав смеси не только в зависимости от скоростного и нагрузочного режимов, но также и в зависимости от теплового состояния двигателя. В отличие от традиционных карбюраторов системы питания с электронным управлением позволяют обеспечить оптимальный состав смеси во всем диапазоне режимов двигателя.

Применение микропроцессорной техники в системе питания обеспечивает экономию топлива в эксплуатационных условиях до 6—8%. Однако микропроцессорные системы работают по "жестким" программам и не могут автоматически изменять их, например, по мере изменения технического состояния двигателя (износ деталей, регулировка зазоров и т. д.), а также при изменении антидетонационных свойств бензина. В дальнейшем по мере развития электроники можно ожидать перехода к системам с автоматической адаптацией, которые сами изменяют программу дозирования смеси (или угол опережения зажигания) в зависимости от всего комплекса влияющих факторов.

В качестве оптимизируемого параметра для этих систем могут быть приняты различные показатели двигателя: топливная экономичность, токсичность отработавших газов, характер загрузки двигателя. Если, например, в качестве оптимизируемого параметра выбрана топливная экономичность, то адаптивная система на любом режиме и в любой момент времени должна обеспечить работу двигателя с максимально возможным значением эффективного к.п.д.

На основе исходых данных в настоящем курсовом проекте проводится тепловой расчет двигателя, в результате которого определяются основные энергетические, экономические и конструктивные параметры двигателя. По результатам теплового расчета производится построение индикаторной диаграммы, выполняется динамический, кинематический и прочностной расчеты.

Определение номинальной мощности и числа оборотов проектируемого двигателя. Определение мощности двигателя для проектируемого автомобиля производится из условия его движения на прямой передаче с максимальной скоростью Vmax на ровном горизонтальном участке асфальтобетонного шоссе.

1. Мощность двигателя, соответствующая максимальной скорости автомобиля:

Nv = g · (Ga · fv · Vmax + кF · V3max ) / η , (1)

где η – КПД трансмиссии грузового а/м, η = 0,8 – 0,92;

Ga – полный вес автомобиля, кг,

Ga = Gо + Gг ; (2)

где Gо – собственный вес автомобиля, кг;

Gг – грузоподъемность автомобиля, кг;

Ga = 2500 + 1500 = 4000 кг

fv = 0,021 – коэффициент сопротивления качению;

кF = 0,2 – фактор обтекаемости автомобиля, кг·с2 /м2 ;

Vmax = 95 км/ч – максимальная скорость автомобиля.

Nv = 9,81 · (4000· 0,021· 26,4+ 0,2 · 26,43 ) / 0,8 = 72,3 кВт.

2. Максимальная мощность двигателя:

Ne max = Nv /[ (nv /nN ) + (nv /nN )2 – (nv /nN )3 ], (3)

где (nv /nN ) = 1,2 – отношение оборотов коленчатого вала двигателя при Vmax автомобиля к числу оборотов при Ne max .

Ne max = 72,3 / ( 1,2 + 1,22 – 1,23 ) = 79,3 кВт.

3. Число оборотов коленчатого вала двигателя, соответствующее Vmax :

nv = Vmax · iк · iо /(0,377 · rк ), (4)

где iк = 1 - передаточное отношение коробки передач на прямой передаче;

iо = 5,125 - передаточное отношение главной передачи;

rк – кинематический радиус колеса (радиус качения), rк = λ · rc : (5)

где λ – коэффициент радиальной деформации шины, λ = 0,93 – 0,95;

rс – статический радиус колеса, м.

rк = 0,95 · 0,342 = 0,325 м;

nv = 95 · 1 · 5,125 /(0,377 · 0,325) = 3975 об/мин.

Тепловой расчет позволяет с достаточной степенью точности аналитическим путем определить основные параметры вновь проектируемого двигателя, а также проверить степень совершенства действительного цикла реально работающего двигателя.

2.1 Топливо

В соответствии с заданной степенью сжатия e = 9,3 в качетве топлива можно использовать бензин марки АИ-93.

Средний элементарный состав и молекулярная масса топлива:

С = 0,855; Н = 0,145 и

где С, Н-массовые доли углерода, водорода в 1кг топлива, кг.

Низшая теплота сгорания топлива:

(6)

Hu = 33,91 ∙ C + 125,60 ∙ H - 10,89 × (O-S) - 2,51 × (9 ∙ H + W) =

= 33,91 × 0,855 + 125,6 × 0,145 - 2,51 × 9 × 0,145 = 43900 кДж/кг.

2.2 Параметры рабочего тела

Теоретически необходимое количество воздуха для сгорания 1 кг топлива:

(7) (8)

mirznanii.com

Порядок теплового расчета двигателя

Тепловой расчет двигателя производят по формулам и соотношениям, приведенным в главах XII, XV и XVI. Основой для теплового расчета является задание, в котором предписываются следующие характеристики двигателя: тип двигателя, род топлива, тактность, эффективная мощность и число цилиндров, число оборотов вала (или другой показатель быстроходности). В случае повероч­ного расчета могут быть вместо эффективной мощности заданы основ­ные размеры двигателя.

Ряд величин при расчете приходится в соответствии с заданием оценивать самостоятельно; сюда относятся: степень сжатия, коэффициент избытка, воздуха, подогрев от стенок, температура остаточных газов и пр. Кроме того, нужно задаться параметрами окружающего воз­духа. Порядок расчета можно уяснить из приводимого ниже примера.

Определив все данные по параметрам отдельных процессов цикла, можно определить рi, а следовательно, вi и ?i. Можно также построить расчетную диаграмму, по которой представляется воз­можным проверить pi подсчитанное ранее аналитически. Кроме того, диаграмма может быть использована для подсчета танген­циальных условий, расчета маховика и расчета на прочность.

Задавшись ?м, можно найти ве, ?е и среднее эффективное давление ре.

Зная среднее эффективное давление ре, по заданной эффектив­ной мощности можно определить рабочий объем цилиндра Vh. Далее, задавшись отношением S/D или средней скоростью поршня сm, определяют основные размеры двигателя (диаметр цилиндра D и ход поршня S). Диаметр цилиндра согласно ГОСТу 4393-48 должен быть округлен до одного из нижеследующих: 60, 65, 85, 100, 105, 110, 130, 140, 150, 160, 165, 170, 180, 190, 220, 230, 240, 250, 280, 300, 320, 340, 360, 400, 430, 470, 500, 530, 560, 600, 650 и 700 мм.

Значения S/D и сm, применяемые в существующих двигателях, приведены в табл. 12.

vdvizhke.ru


Смотрите также