ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

2. Условия сгорания топлива в двигателе. Температура горения топлива в двс


Процесс сгорания топлива

12.05.2010

Введение

Для обеспечения сгорания в двигателе внутреннего сгорания небольшое количество топлива смешивается с поступающим воздухом. К сожалению, двигатель внутреннего сгорания не может сжигать без остатка все топливо, которое он использует. Вследствие этого двигатель выпускает побочные продукты сгорания в виде отработавших газов. Некоторые из этих побочных продуктов вредны и загрязняют воздух. Борясь с этой проблемой, изготовители автомобилей разработали так называемые устройства понижения токсичности выхлопа, которые ограничивают выброс этих вредных веществ или полностью устраняют его.

СгораниеВ процессе сгорания происходят несколько химических реакций. Одни соединения разрушаются, а новые соединения образуются. Управление процессом сгорания - это ключ к управлению всей работой и токсичностью выхлопа двигателя внутреннего сгорания.

Для процесса сгорания требуются три элемента:

1.    Воздух2.    Топливо3.    Искра зажигания

Эти три элемента иногда упоминаются как "триада сгорания". Если один элемент триады отсутствует, сгорание невозможно. Двигатель внутреннего сгорания рассчитывается на объединение этих трех элементов, поддерживая полный контроль над процессом.

Воздух

Воздух состоит из атомов азота (N), кислорода (О ) и других газов. Большую часть воздуха составляет азот, являющийся инертным, негорючим газом. Воздух не горит, но в нем содержится достаточное количество кислорода, что позволяет поддерживать сгорание.

ТопливоБензин состоит из углеводородов, которые образуются в результате переработки сырой нефти. Углеводороды состоят из атомов водорода (Н) и углерода (С). В бензин добавляются различные химикаты, типа ингибиторов коррозии, красителей и очищающих средств. Эти химикаты называются присадками.Тепло и давление, присутствующие в двигателе внутреннего сгорания, могут заставить бензин, находящийся в камере сгорания, воспламениться раньше, чем генерируется искра зажигания. Это называется преждевременным воспламенением и более подробно описывается дальше. Октановое число бензина указывает на то, насколько хорошо он противостоит преждевременному воспламенению. Дополнительная очистка может способствовать увеличению октанового числа.В настоящее время в регионах с чрезвычайно высоким уровнем загрязнения воздуха используется тип топлива, называемый улучшенным бензином (подвергнутым реформингу) (RFG). Такой бензин имеет специальные присадки, называемые окислителями, которые улучшают сгорание, увеличивают октановое число и уменьшают токсичность выхлопа.

Искра зажигания

В двигателе внутреннего сгорания воздух и топливо поступают в камеру сгорания, и затем генерируется искра зажигания, вызывающая сгорание. Перед зажиганием воздушно-топливной смеси двигатель нагревается и сжимает смесь. Нагревание помогает процессу смесеобразования, а сжатие увеличивает энергию, генерируемую при сгорании.

Процесс сгорания

В двигателе внутреннего сгорания сгорание происходит в течение доли секунды (приблизительно в течение 2 миллисекунд). В этот момент разрушаются связи между атомами водорода и углерода. Разрушение связей приводит к высвобождению энергии в камере сгорания, толканию поршня вниз и инициированию вращения коленчатого вала.После разделения атомов водорода и углерода они соединяются с атомами кислорода, содержащимися в воздухе. Атомы водорода объединяются с кислородом, образуя воду. Атомы углерода объединяются с кислородом, образуя двуокись углерода (углекислый газ).

Говоря языком химии, полное сгорание в двигателе внутреннего сгорания выражается формулой:

НС + О2 = Н2 О + СО2

Другими словами:

топливо + кислород = вода и двуокись углерода

Абсолютно эффективный двигатель внутреннего сгорания на выпуске имел бы только воду (Н О) и двуокись углерода (СО ), что соответствует Данной выше химической формуле. Это означало бы, что все углеводороды в процессе сгорания разложились. К сожалению, дело обстоит не так.

Неэффективное сгорание -это главная причина наличия вредных веществ в выхлопе автомобиля. Эффективное сгорание ведет к наименьшей токсичности выхлопа. Эффективность сгорания увеличивается посредством корректировки соотношения "воздух/топливо".

Соотношение "воздух/топливо"

Инженеры-автомобилестроители определили, что токсичность выхлопа автомобиля можно уменьшить, если бензиновый двигатель работает с соотношением "воздух/топливо", равным 14.7:1. Технический термин известен как "стехиометрическое соотношение". Стехиометрическое соотношение означает химически правильную воздушно-топливную смесь, которая производит желаемую химическую реакцию, входе которой происходит полное сгорание топлива с желаемой токсичностью выхлопа.Соотношение "воздух/топливо" 14.7:1 обеспечивает наилучшее управление всеми тремя компонентами (углеводороды, одноокись углерода и оксиды азота) при выпуске почти во всех условиях. Соотношение "воздух/топливо" также увеличивает эффективность каталитического нейтрализатора, который является частью системы выпуска автомобиля.

Бедная воздушно-топливная смесь

Обеднение воздушно-топливной смеси обычно вызывается неисправностью в двигателе. Обеднение - это состояние, когда двигатель получает слишком много воздуха или кислорода. Причиной слишком высокого уровня кислорода могут стать утечки вакуума или неисправная система подачи топлива.

Богатая воздушно-топливная смесь

Богатая воздушно-топливная смесь - это также указание на неисправность двигателя. Обогащение - это состояние, когда двигатель не может сжечь все топливо, которое вошло в камеры сгорания. Состояние обогащения может возникать в результате высокого давления топлива, проблем с опережением зажигания или низкой компрессии.

Аномальное сгорание

Имеются два типа аномального сгорания, которое может происходить в двигателе: детонация и преждевременное воспламенение.Детонация - это неустойчивый процесс горения, который может вызывать неисправность прокладки головки цилиндров, а также и другие повреждения двигателя. Детонация возникает, когда в камере сгорания наблюдается перегрев и повышенное давление. Когда это происходит, создается взрывная сила, которая инициирует резкий рост давления в цилиндрах, сопровождаемый сильным металлическим стуком. Ударные волны, похожие на удары молотка, генерируемые при детонации, подвергают прокладку головки цилиндров, поршень, кольца, свечу зажигания и подшипники шатуна серьезным перегрузкам.Преждевременное воспламенение - это другое аномальное состояние горения, которое иногда путают с детонацией. Преждевременное воспламенение имеет место, когда какая-либо точка в камере сгорания становится настолько горячей, что становится источником зажигания и заставляет топливо воспламеняться до генерирования искры зажигания. Оно может сделать свой вклад в детонацию или даже стать ее причиной.Вместо воспламенения топлива в правильный момент времени, чтобы дать коленчатому валу плавный толчок в требуемом направлении, топливо загорается преждевременно. Это вызывает мгновенный обратный удар в тот момент, когда поршень пытается повернуть коленчатый вал в неправильном направлении. Этот удар вследствие напряжений, которые он создает, может быть очень разрушительным. Кроме того, преждевременное воспламенение может локализовать тепло до такой степени, что оно может частично проплавить или прожечь отверстие в головке поршня.

Токсичность выхлопа

Стехиометрическая воздушно-топливная смесь обеспечивает наилучший компромисс между динамическими характеристиками, экономичностью и токсичностью выхлопа.При богатой воздушно-топливной смеси все топливо не сгорает. Поэтому увеличивается уровень выделений углеводородов и одноокиси углерода. Бедная воздушно-топливная смесь может при сгорании генерировать повышенное количество тепла. Поэтому увеличивается содержание оксидов азота. Чрезмерно обедненная воздушно-топливная смесь в результате приводит к пропускам воспламенения. Это увеличивает выделения углеводородов.Каталитические нейтрализаторы, которые химически нейтрализуют токсичные отработавшие газы, наиболее эффективны в очень узком диапазоне, близком к стехиометрическому соотношению.

Побочные продукты сгорания

Поскольку двигатель внутреннего сгорания не имеет абсолютной эффективности, в процессе сгорания генерируются три нежелательных побочных продукта:1.    Углеводороды (НС)2.    Одноокись углерода (СО)3.    Оксиды азота     (N0  X )

Неполное сгорание вызывает выделение углеводорода и одноокиси углерода. Выделения углеводорода - это углеводороды, которые не разрушились в процессе сгорания. Одноокись углерода образуется, потому что не имеется достаточного количества атомов кислорода, чтобы связать углерод.

В идеальном случае азот должен проходить камеру сгорания неизменным. Но когда температура в камере сгорания достигает приблизительно 1 371 °С (2 500 °F), атомы азота и кислорода связываются, образуя  (N0  X )

Химическая формула процесса сгорания, при котором образуются оксиды азота выглядит следующим образом:

НС + О2 + N2 = Н2 О + СО + N0x

Формула "NO " используется для оксидов азота, потому что OHci отражает комбинацию атома азота и любого количества атомов кислорода. Например, оксид азота (N0) состоит из одного атома азота и одного атома кислорода, в то время как двуокись азота (N0 ) состоит из одного атома азота и двух атомов кислорода.

Высокое содержание НС

Высокое содержание НС может быть вызвано недостаточной эффективностью системы зажигания, неправильным опережением зажигания или неправильными фазами газораспределения, протечками вакуума, попаданием масла или низкой степенью сжатия. Доля углеводородов измеряется в количестве частиц на миллион.

Высокое содержание СО

Высокое содержание СО может быть вызвано такими факторами, как:•    Чрезмерно богатая воздушно-топливная смесь•    Загрязнение воздушного фильтра•    Выход из строя клапана PCV•    Загрязнение топлива маслом•    Заедание или протечки в топливной форсункеНа исправном автомобиле с каталитическим нейтрализатором выделение одноокиси углерода обычно приближается к нулю. Содержание одноокиси углерода измеряется в процентах от полного объема в воздухе.

NOx

NOx генерируются при высокой температуре горения (выше приблизительно 1 371 °С (2 500 °F)) и обычно образуются, если температура горения не контролируется. Содержание оксидов азота измеряется в количестве частиц на миллион.

Так же рекомендуем прочитать Вам интересную статью Кузовные детали

www.mskjapan.ru

Что происходит с двигателем во время горения газа?

За последние 10 лет технологии в газовом оборудовании сделали колоссальный прорыв, и все детские болезни ушли в прошлое. Газовое оборудование абсолютно нормально работает на всех двигателях и при нормальной эксплуатации ресурс двигателя зачастую выше. При нынешнем развитии технологий ГБО, можно смело заявлять о возможности установки газового оборудования на любой двигатель внутреннего сгорания (вопрос только в том, является это обоснованным с экономической точки зрения)...    Многократные исследования, которые начинаются с 60-х годов прошлого века подтверждают факт, что скорость горения газа (пропан-бутана) практически сопоставима с бензиновой, однако присутствует одна важная физическая характеристика газа: газ, до 5-го поколения ГБО, попадает в камеру сгорания в испаренном виде (в 5-м поколении ГБО он испаряется во впускном коллекторе). "Ну и что...", многие скажут, но будут не правы. Жидкий бензин, попадая на впускные клапана, на стенки цилиндра и поршень, испаряется и так же поглощает температуру. При повышенных нагрузках на двигатель это свойство часто используется автомобильными конструкторами, чтобы снять термо нагрузку с двигателя (при этом растет расход бензина пропорционально скорости). По этому при повышенных нагрузках (не скоростях) газ не способен так же хорошо снимать температурную нагрузку в двигателе. В таком случае это может привести к более быстрому износу клапанов и седел в головке блока цилиндра.   КАК ЭТО ПРОИСХОДИТ НА ПРАКТИКЕ:  Вы часами едете на скоростях свыше 150 км в час, при этом кратковременные обгоны не в счет. Двигатель работает в режиме повышенной нагрузки в котором, на бензине, подается топливо в излишке(богатая смесь) чтобы "охладить" поршневую группу. Газ на это не способен и металл начинает нагреваться до более высоких температур. Это приводит к тому, что  металл становиться менее прочным и процесс износа ускоряется.    Машины, которые ездят регулярно на трассе быстро, без дополнительного наблюдения, которое производится при регламентном обслуживании ГБО, могут возыметь определенные сложности через 70-100 тыс. км пробега в виде тяжелого запуска двигателя/вибраций на холостом ходе и впоследствии прогара клапанов. А вот автомобили, чья среда обитания в городе таких проблем практически не имеют.     ПРИ РЕШЕНИИ УСТАНОВИТЬ ГБО ГЛАВНОЕ ЗАПОМНИТЬ ВАЖНЫЙ МОМЕНТ: Газовое оборудование вы ставите, чтобы экономить! Для спортивной езды(как стиля вождения) газ не подходит. Чтобы избежать прогара клапанов при езде на газе, вам просто необходимо избегать повышенных скоростей.      Повышенные скорости для бюджетных и среднего класса автомобилей - это 135+ км\час Повышенные скорости для автомобилей премиум класса 150-170 км\час   Для автомобилей немецкого автопрома 190-220 км\час     Почему у немецких автомобилей не прогорают клапана\нет сложностей с усадкой клапанов на газе?   Все очень просто. В Германии очень важной частью инфраструктуры являются автобаны на которых вы можете ехать с любой скоростью часами, пока у вас не закончится топливо... Даже, к примеру, когда вы заезжаете на заправку на автобане, для удобства, все топливные колонки настроены на заправку "до полного" и клиент сам контролирует то количество топлива, которое ему необходимо.    При этом "честность" клиента контролируется десятками видеокамер на каждой колонке...   Так вот немецкие автопроизводители заведомо зная о потенциальных возможностях скоростных режимах в своей стране, закладывают значительный запас прочности в двигатели.     Какие возможные технические решения для снижения рисков прогара клапанов при езде на газе?     Решение №1 Исключение механических и электронных погрешностей ГБО   В газовом оборудовании BRC, благодаря тому, что все компоненты были разработаны одним производителем, стало возможным использование очень сложных и тонких алгоритмов, которые позволяют избежать проблем с клапанами, а именно:   1. Высокоточная электроника точно и быстро производит расчет необходимой порции газа для каждого отдельного цилиндра   2. Газовый редуктор точно и стабильно обеспечивает подачу подогретого должным образом газа при постоянном давлении.   3. Газовые форсунки не подвержены загрязнению и тем самым сохраняют свои первоначальные параметры многие годы (но помните, что нужно периодично...раз в 10 тысяч км производить плановую замену фильтров). Так как в газовом блоке управления содержится информация о параметрах производительности форсунки, возможно применение очень интересного алгоритма сохранения клапанов (головки блока цилиндра)...     Решение №2 Внедрение специальных алгоритмов в газовой электронике   Это очень интересный момент, который раньше практиковался в ручном режиме с меньшей точностью из-за того, что использовались постоянно разные комплектующие, с разбросом характеристик... итак...   В электронике газового оборудования BRC было применено два очень точных и продуманных алгоритма.     Алгоритм №1 VSR - Valve Seat Recession ( дословно "усадка седел клапанов")        Суть данного алгоритма в том, что установщик выставляет(если знает что и как делать) порог оборотов и нагрузки двигателя, после которых газовый блок управления ГБО начинает замещать часть газа и подавать вместо него порцию бензина. Внимание: двигатель не переходит на бензин выше определенных оборотов...вместо этого происходит подача микро доз бензина и только при достижении определенной нагрузки. Этот алгоритм возможно реализовать только, если вы знаете точную дозировку газовой форсунки, характеристики редуктора. С ГБО BRC это возможно.    Так же благодаря этому режиму возможна установка ГБО на скоростные/спортивные автомобиля без ущерба ресурсу.      Алгоритм №2 Leaning in open loop strategy (дословно "обеднение смеси при разорванной петле" лямбда регулирования)          Помните, как я писал выше о методах снятия температурных нагрузок на бензине? Подавая в избыточном количестве бензин, он будет отбирать тепло с мест, где слишком жарко(во время испарения). На газе этого сделать эффективно не удастся (на 6-м поколении ГБО это возможно), так как в камеру сгорания он попадает уже испаренным. При этом в прямом смысле газ при повышенных нагрузках вылетает в выхлопную трубу и нагружает катализатор (который должен дожечь избыточное топливо).        Суть данного алгоритма в том, что установщик может убрать излишки газа в режимах повышенных нагрузок, а газовая электроника это сможет четко реализовать.        Для наглядности поясню, что на некоторых автомобилях речь идет о 20...а иногда и о 30% уменьшения расхода на газе на режимах разгона и повышенной нагрузке!!! Именно поэтому на ГБО BRC, возможно очень точно настроить параметры расхода газа. А по большому счету цель заказчика, который решил установить ГБО - экономить на топливе и не иметь головной боли с газовым оборудованием.     ...и самое последнее...   Газовое оборудование возможно настроить только с использованием OBD сканера и только в движении.   Регулировка ГБО в статике не дает гарантии аккуратной настройки всех параметров и расхода           Так же возможен вариант применения динамометрического стенда с замерами мощности и крутящего момента...но при наличии хорошей трассы, вы получаете дополнительно такие вводные параметры, как свежий воздух, лобовое сопротивление при повышенных скоростях и реальное сопротивление качению. При этом двигатель работает в штатных нагрузках.

rosavtogas.ru

Горение дизельного топлива: формула, фазы горения, максимальная температура

Дизельный двигатель отличается от бензинового тем, что топливо поджигается не от искры — оно самовоспламеняется при повышении давления и происходящем от этого разогреве.

Горение дизельного топлива

Известно, что температура воспламенения дизельного топлива составляет от 70 до 120 ºС. Температура самовоспламенения колеблется в диапазоне от 300 до 330 ºС. В цилиндрах дизеля за счёт сжатия воздуха до давлений порядка 30 бар он разогревается именно до этих температур. Впрыскиваемое в этот момент топливо самовоспламеняется и горит, резко увеличивая давление в камере. Температура горения дизельного топлива составляет примерно 1100 ºС.

Возросшее в цилиндре дизельного двигателя давление толкает поршень вниз, за счёт его перемещения совершается полезная работа, вращающая колёса.

Фазы горения дизельного топлива

Горение дизельного топлива в цилиндре разделяют на 4 периода:

Процесс горения дизтоплива в ДВС

Первый период — это время между началом впрыска топлива и началом горения. Топливо распыляется каждой форсункой сразу в нескольких направлениях. Но оно сразу не загорается. Требуется время, чтобы мельчайшие капли испарились, перемешались с воздухом и нагрелись до температуры самовоспламенения. Чем короче первый период, тем лучше проходит горение топлива на последующих этапах.

В течение второго периода пламя распространяется от начальных точек горения на весь объём. Эта задержка объясняется тем, что гореть может только смесь топлива с воздухом, и на их перемешивание по всему объёму также требуется время. В конце этого периода температура горения дизельного топлива приближается к максимальной, давление в камере резко возрастает.

Прямое горение — это период от распространения пламени по всему объёму до окончания впрыска топлива. Поскольку давление в этом периоде достигает максимума, впрыскиваемое топливо сгорает немедленно. Регулировку топливной аппаратуры производят так, чтобы давление достигало максимума через 10 угловых градусов после ВМТ.

Последний период длится от окончания впрыска топлива до окончания горения.

Удельная теплота сгорания топлива

Нарушение условий правильного горения

Нормальное и полное сгорание топлива в дизельном двигателе происходит при правильном впрыске и высоком давлении в цилиндре.

Если компрессия по какой-то причине низкая, то:

Ещё большее снижение давления вызывает неполное сгорание топлива, в выхлопе появляется белый дым.

Устройство камеры сгорания дизельного двигателя

К такому же результату приводит ранний впрыск: увеличивается период задержки воспламенения и появляется дизельный стук. Он же образуется при низком давлении впрыска — капли получаются большими, поэтому не успевают испариться. Увеличивается период задержки воспламенения, результат — дизельный стук.

При позднем впрыске воспламенение топлива происходит уже после ВМТ, оно не успевает сгореть, остатки в виде белого дыма выбрасываются с выхлопом. При впрыске слишком большого количества топлива образуется нехватка кислорода для полного сгорания. Несгоревшее топливо превращается в углерод, вызывающий чёрный дым выхлопа.

dostavka-toplivo-spb.ru

Смесеобразование и горение | Двигатель автомобиля

Двигатель работает за счет энергии, выделяющейся при сжигании в его цилиндрах бензина. Для горения необходим воздух (точнее, кислород воздуха), а чтобы сгорание успело закончиться за то время, которое отводится на это в двигателе (до 0,002 сек.), бензин должен быть хорошо перемешан с воздухом.

Образование смеси бензина с воздухом происходит в карбюраторе, где бензин смешивается с засасываемым в двигатель воздухом в нужном количестве, распыляется и частично испаряется. Дальнейшее испарение и перемешивание происходят во впускном трубопроводе и в самих цилиндрах двигателей.

Подготовленная к сжиганию смесь бензина с воздухом называется рабочей смесью.

В зависимости от того, больше или меньше бензина содержится в смеси при одном и том же количестве воздуха, различают богатые, нормальные и бедные смеси.

Нормальной рабочей смесью называется такая смесь, после сгорания которой не остается ни свободного кислорода, ни несгоревшего бензина. В нормальной смеси воздуха в 15 раз больше (по весу), чем бензина. Иначе говоря, для полноты сгорания 1 кг бензина требуется около 18 м3 воздуха.

Богатая рабочая смесь содержит больше бензина, чем нормальная, вследствие чего бензин cгорает не полностью. Существует предел обогащения смеси, при котором в цилиндрах двигателя еще происходит горение. Если бензина в смеси приблизительно в три раза больше, чем в нормальной, такая смесь гореть уже не будет.

Сгорание топлива

Бедная рабочая смесь содержит меньше бензина, чем нормальная, и после ее сгорания остается неиспользованный кислород воздуха. Слишком бедные смеси также не горят в цилиндрах двигателя. Если уменьшить количество бензина в нормальной смеси на 20%, горение прекращается.

Состав смеси оказывает большое влияние на работу двигателя. Наибольшая мощность двигателя достигается при несколько обогащенной смеси, в которой воздуха не в 15, а только в 12—13 раз больше по весу, чем бензина. Такая смесь сгорает быстрее, чем смесь любого другого состава, отчего развивается наибольшее давление газов на поршни. Всякое обеднение или обогащение смеси против названного состава приводит к уменьшению мощности двигателя, причем особенно быстро мощность падает при обеднении смеси.

Наименьший расход бензина достигается при несколько обедненной рабочей смеси, в которой воздуха в 16—17 раз больше по весу, чем бензина. Такая смесь сгорает полностью и обеспечивает наилучшее использование тепла, выделяющегося при сгорании. При этом мощность двигателя оказывается на 10—15% меньше, чем в предыдущем случае.

Смесь, обеспечивающую наибольшую мощность, часто называют смесью мощностного состава. Соответственно состав смеси, при котором двигатель работает на наиболее экономичном режиме, называется экономическим.

При изменении нагрузки и оборотов двигателя экономический и мощностной составы смеси не остаются постоянными. С уменьшением нагрузки (закрытием дросселя) смесь необходимо обогащать, а при увеличении оборотов — обеднят. Наибольшее влияние на состав смеси оказывает изменение нагрузки, и при малых оборотах холостого хода экономическая смесь содержит только в 7-10 раз больше воздуха (по весу), чем бензина.

Нормальная эксплуатация карбюраторного двигателя возможна на смесях экономического состава, обеспечивающих наименьший расход бензина. Однако при, полном открытии дросселя, когда двигатель должен работать на наибольшей мощности для разгона, преодоления подъема или достижения максимальной скорости, целесообразно применять смеси мощностного состава, не считаясь с повышенным расходом бензина.

Современные карбюраторы устроены таким образом, что все изменения состава смеси при различных режимах работы двигателя осуществляются автоматически, без участия водителя. Только при запуске и прогреве двигателя изменять состав смеси приходится вручную.

Засосанная в цилиндры двигателя рабочая смесь подвергается сжатию и затем, подожженная электрической искрой, сгорает за короткий промежуток времени, пока поршень находится вблизи ВМТ. Если смесь сгорает на интервале 30-40° поворота коленчатого вала, такое горение называют нормальным. Наибольшая скорость нормального горения достигает 22 м/сек.

Большое влияние на скорость горения оказывают начальные условия, т.е. состав смеси, давление и температура в момент зажигания. Чем смесь беднее, тем медленнее она горит. Переобедненные смеси горят настолько медленно, что горение еще продолжается при следующем открытии впускного клапана; это вызывает вспышки вновь засасываемой смеси, известные как «выстрелы» в карбюратор.

Давление и температура смеси в момент зажигания определяются главным образом степенью сжатия двигателя, т. е. величиной, показывающей, во сколько раз уменьшается объем засосанной смеси при сжатии. Чем выше степень сжатия, тем больше давление и температура смеси перед воспламенением и тем быстрее горит смесь. Поэтому двигатели, имеющие повышенную степень сжатия, развивают большую мощность, а бензина расходуют меньше.

Повышение степени сжатия ограничивается возникновением горения взрывного типа, носящего название детонации.

В процессе горения впереди движущегося по горючей смеси пламени происходят дополнительное сжатие и нагрев несгоревшей части смеси. Если температура при этом достигнет большой величины, то эта несгоревшая часть смеси самовоспламеняется со скоростью до 2000 м/сек. Такая большая скорость горения вызывает практически мгновенное нарастание давления в цилиндре, действующее на стенки камеры сгорания подобно ударам молота. Эти удары воспринимаются на слух как резкий звенящий или щелкающий металлический звук. Сильная детонация может частично или даже полностью разрушить поршни.

Детонация нарушает нормальную работу двигателя и мешает дальнейшему повышению его мощности и экономичности. Поэтому борьба с детонацией является одной из самых важных задач современной техники.

Значительно повышает стойкость бензина против детонации примешивание к бензину незначительных количеств свинца в виде сложного химического соединения, называемого этиловой жидкостью. Такой бензин называется этилированным. Применение этилированных бензинов марок А-66 и А-70 позволяет работать без детонации при степенях сжатия 6,5—7,0.

Помимо качества бензина, на появление детонации при данной степени сжатия влияют:

Наиболее склонны к детонации бедные смеси. Смеси экономического состава детонируют сильнее, чем мощностные. Поэтому обогащением смеси часто можно устранить возникшую детонацию, хотя этот способ нежелателен, так как он вызывает перерасход бензина.

Чем сильнее подогревается рабочая смесь во впускном трубопроводе, тем выше ее температура и тем раньше начинается детонация. По этой причине в жаркую погоду или при перегреве двигателя детонация усиливается. Напротив, холодный, влажный или разреженный воздух способствует уменьшению и даже исчезновению детонации.

Изменением момента зажигания можно сравнительно легко воздействовать на детонацию. Слишком раннее зажигание всегда вызывает детонационные стуки в двигателе, которые исчезают при уменьшении опережения зажигания. Однако следует помнить, что если для устранения детонации приходится устанавливать слишком позднее зажигание, то при этом увеличивается расход бензина, двигатель теряет способность к быстрому разгону и начинает перегреваться. А это само по себе в состоянии вновь вызвать детонацию. Так получается в тех случаях, когда степень сжатия слишком высока для используемого топлива.

Решающее влияние на детонацию оказывает нагрузка двигателя. При любых прочих неблагоприятных условиях достаточно прикрыть дроссель, чтобы полностью ликвидировать детонацию. Правда, это уменьшит скорость движения, но зато сократит потери топлива.

Значительное влияние на возникновение детонации оказывает нагар в камерах горения. По мере увеличения слоя нагара ухудшаются условия охлаждения камер, и детонация возникает там, где раньше горение шло нормально. Очистка нагара со стенок камер и днищ поршней обычно не только устраняет детонацию, но и делает возможным увеличить опережение зажигания.

Легкая детонация при разгоне с полным открытием дросселя не должна внушать опасений, так как в данном случае она служит признаком правильно установленного зажигания. Однако она ни в коем случае не должна проявляться при любой установившейся скорости движения машины.

При эксплуатации автомобиля прежде всего должно быть обеспечено требуемое качество бензина. Только при соблюдении этого условия детонация будет иметь случайный характер и ее можно будет устранить одним или несколькими из указанных способов. Если не допускать перегрева двигателя, правильно установить зажигание и очищать камеры горения в соответствии с требованиями заводской инструкции, детонация не будет мешать нормальной эксплуатации автомобиля.

ustroistvo-avtomobilya.ru

Особенности сгорания бензинов в двигателе

Строительные машины и оборудование, справочник

Категория:

   Автомобильные эксплуатационные материалы

Особенности сгорания бензинов в двигателе

При сгорании топлива в двигателе происходит превращение его химической энергии в тепловую и далее в механическую. От характера протекания процесса сгорания зависят не только мощностные и экономические показатели двигателя, но и его надежность и долговечность.

Различают два вида сгорания в двигателе: нормальное и аномальное. При нормальном сгорании после воспламенения топливной смеси искрой свечи зажигания обеспечивается устойчивое распространение пламени в цилиндре двигателя со скоростью 20…60 м/с. При увеличении числа оборотов двигателя скорость сгорания топливной смеси также повышается вследствие усиления турбулизации заряда, благодаря чему топливо успевает сгореть. Максимальное значение скорости сгорания соответствует составу топливно-воздушной смеси с коэффициентом избытка воздуха а =0,9…0,95, при котором и обеспечивается наибольшая мощность двигателя. При дальнейшем обогащении смеси или ее обеднении скорость распространения пламени уменьшается; в дервом случае — из-за недостатка воздуха, во втором — вследствие расхода части тепла на его подогрев.

Следует отметить, что оптимальность процесса сгорания топлива при прочих равных условиях определяется его своевременным началом и продолжительностью (скоростью). В случае раннего воспламенения основное сгорание будет протекать еще во время сжатия, что приведет к значительным потерям мощности. Позднее зажигание сместит процесс горения на ход расширения и тоже вызовет потери мощности и экономичности. При увеличении скорости сгорания мощность двигателя повышается вследствие приближения рабочего цикла к теоретическому.

Однако при слишком быстром сгорании работа двигателя сопровождается повышенными ударными нагрузками на его детали.

Рис. 1. Индикаторная диаграмма основных видов сгорания в карбюраторном двигателе: а — нормальное сгорание; б. в—калильное зажигание; г детонационное сгорание

Для повышения топливной экономичности важное значение имеет вопрос расширения предела обеднения смеси при воспламенении и горении. Обеднение смеси способствует повышению индикаторного КПД двигателя, что позволяет получить существенную экономию топлива на частичных нагрузках. На предел возможного обеднения оказывает существенное влияние химический состав топлива. Так, если для жидких углеводородных топлив предельное значение коэффициента избытка воздуха а составляет 1,15…1,2; углеводородных газов 1,2…1,3, то для спиртовых топлив 1,25… 1,30. Качественное приготовление топливно-воздушной смеси и в особенности ее полное испарение и однородность состава также способствуют расширению предела обеднения.

В ряде случаев процесс распространения пламени нарушается и возникает так называемое аномальное сгорание. Одним из распространенных видов аномального сгорания является калильное зажигание. Это явление связано с тем, что в некоторых случаях при перегреве двигателя происходит самопроизвольное воспламенение рабочей смеси от «горячих точек». Такими точками (или зонами) могут являться клапаны, наиболее выступающие части свечей зажигания, нагары, образующиеся при сгорании топлива, и др.

Наиболее характерным проявлением калильного зажигания является продолжение работы двигателя в виде кратковременного неустойчивого «дерганья» после его выключения. При работе форсированных двигателей на режимах повышенных нагрузок калильное зажигание в некоторых случаях является причиной преждевременного (т. е. до появления искры на свече зажигания) воспламенения рабочей смеси. Это ведет к перегреву двигателя, падению его мощности из-за смещения сгорания на линию сжатия, а также способствует возникновению детонации.

Вследствие увеличения нагрузок на детали калильное зажигание ведет к повышенному износу двигателя. В то же время интенсивное калильное зажигание может вызвать прогорание и разрушение поршней, обгорание их кромок и клапанов, залегание колец и даже поломку шатунов и обрыв коленчатых валов.

Калильное зажигание может вызываться двумя источниками различной природы: горячими металлическими поверхностями и нагарами. В первом случае зажигание устраняется с помощью улучшения конструкции камер сгорания, обеспечения отвода тепла от перегреваемых поверхностей, использования «холодных» клапанов и свечей и др.

В отличие от металлических поверхностей нагар при взаимодействии с кислородом воздуха может саморазогреваться и становиться источником воспламенения топливной смеси даже при низких температурах подогрева. Калильная активность нагара зависит главным образом от содержания в бензинах ароматических углеводородов, их строения и молекулярного веса. В частности, с увеличением молекулярного веса образуется более активный нагар. Поэтому основным способом борьбы с калильным зажиганием от нагара является ограничение содержания в бензинах ароматических углеводородов, а также использование в бензинах различных присадок, изменяющих состав и свойства нагара.

При использовании бензинов, не соответствующих требованиям двигателя, на ряде режимов его работы может возникать особый вид аномального сгорания — детонационное сгорание. Это широко известное явление проявляется в звонком металлическом стуке, дымлении отработавших газов и резком перегреве двигателя.

Причиной детонационного сгорания является образование неустойчивых перекисных соединений при окислении углеводородов топлива. При повышенных температурах и давлениях в камере сгорания перекисные соединения разлагаются с выделением большого количества тепла. Процесс разложения носит взрывной характер, в результате чего в цилиндре возникают ударные волны и скорость распространения пламени возрастает до 2000… 2500 м/с (рис. 10, кривая г). Перекисные соединения образуются при сгорании топлива всегда, но детонация возникает лишь при их определенном (критическом) содержании для определенных условий (давления и температуры) в цилиндре. Чем выше давление и температура в цилиндрах, тем при меньшем содержании перекисных соединений начинается переход нормального сгорания в детонационное.

Главная опасность детонации связана с перегревом камеры сгорания и днища поршня из-за высоких температур в детонационной волне и усиления теплоотдачи. Кроме того, детонационные волны, многократно отражаясь от стенок, разрушают смазочный слой на поверхности гильзы и тем самым способствуют увеличению износов цилиндра и поршневых колец. Детонация также ведет к повышенным вибрационным нагрузкам на детали цилиндро-поршневой группы. При детонации мощность двигателя падает, а расход топлива увеличивается. Поэтому длительная работа двигателя с детонацией недопустима.

Возникновению детонации способствует увеличение продолжительности пребывания последних порций топлива в камере сгорания, ведущее к ускорению образования перекисных соединений. Поэтому увеличение частоты вращения коленчатого вала и уменьшение угла опережения зажигания ведет к подавлению детонации благодаря уменьшению времени нахождения порции топливной смеси в цилиндре. Таким образом, при возникновении детонации ее можно устранить с помощью таких мер, как прикрытие дросселя, уменьшение загрузки автомобиля, переход на более высокие частоты вращения коленчатого вала двигателя путем включения низшей передачи и уменьшения угла опережения зажигания. Однако эти способы можно использовать лишь в крайних случаях и кратковременно, так как все они ведут к увеличению расхода топлива, а в ряде случаев — к снижению мощности двигателя.

Количество образующихся перекисей в наибольшей степени зависит от состава бензина. Поэтому наиболее эффективным способом борьбы с детонацией является повышение детонационной стойкости бензинов. Под детонационной стойкостью (или антидетонационными свойствами) бензинов понимается их способность противостоять возникновению детонации в двигателе. Основным показателем детонационной стойкости бензинов является октановое число, определение которого осуществляется на специальных одноцилиндровых моторных установках с переменной степенью сжатия. Детонационная стойкость бензина на этих установках оценивается по сравнению с известной детонационной стойкостью эталонных топлив. В качестве таких топлив используются смеси изооктана, детонационная стойкость которого принята за 100 единиц, и гептана, октановое число которого равно 0. Определение детонационной стойкости бензина заключается в подборе такой эталонной смеси изооктана и гептана, интенсивность детонации которой, регистрируемая с помощью прибора, соответствует интенсивности детонации испытуемого бензина при одной и той же степени сжатия. Под октановым числом бензина понимается показатель, равный процентному содержанию изооктана в эталонной смеси с гептаном, эквивалентной по детонационной стойкости этому бензину.

Октановое число автомобильных бензинов определяют двумя методами — моторным и исследовательским. Режим испытаний по исследовательскому методу менее напряженный, чем по моторному, в связи с чем получаемое октановое число несколько выше, чем определенное по моторному методу. Разница между исследовательским и моторным октановым числами называется «чувствительностью» бензина и зависит от его состава.

В СССР для определения октановых чисел бензинов ранее выпускались установки ИТ9-2 и ИТ9-6. Установка ИТ9-2 предназначена для определения октанового числа по моторному методу, ИТ9-6—по исследовательскому. В настоящее время эти установки сняты с производства и вместо них выпускается одна универсальная установка УИТ-65, позволяющая определять октановые числа по обоим методам. Эта установка оборудована электронным прибором для измерения интенсивности детонации и автоматическими устройствами для поддержания требуемого режима испытаний.

Условия сгорания топливной смеси в двигателе существенно отличаются от режима оценки октановых чисел бензинов на установке УИТ-65. Поэтому для определения фактической детонационной стойкости бензинов, а также требований двигателя по этому показателю используется специальная методика детонационных испытаний двигателей и автомобилей. Метод детонационных испытаний позволяет получить детонационную характеристику двигателя во всем диапазоне его рабочих частот, оценить фактическую детонационную стойкость бензина и на этой основе установить его соответствие требованиям двигателя.

Рис. 2. Установка для определения октанового числа бензина

Детонационная стойкость бензинов обусловлена, прежде всего, требованиями двигателя и главным образом его степенью сжатия. При увеличении степени сжатия на единицу требуется повысить детонационную стойкость бензина на 4…8 октановых единиц. Исторически развитие двигателей с принудительным воспламенением шло по пути непрерывного увеличения степени сжатия и соответственно повышения октановых чисел используемых бензинов., Такая тенденция обусловлена ростом мощности

и снижением расхода топлива при увеличении степени сжатия двигателя. Однако повышение детонационной стойкости бензинов связано с ростом их стоимости и, главное, увеличением затрат нефтяного сырья. Поэтому в настоящее время оптимальный уровень детонационной стойкости бензинов устанавливается с химмотологических позиций — на основе разумного компромисса между автомобильной и нефтеперерабатывающей промышленностью, обеспечивающего наибольший народнохозяйственный эффект.

Основным способом повышения детонационной стойкости бензинов является исключение из их состава или сведение к минимуму содержания углеводородов, образующих при сгорании большое количество перекисных соединений, и использование более стойких углеводородов.

Вторым способом является введение в состав бензина специальных а н-тидетонационных присадок (антидетонаторов), разрушающих в процессе горения образующиеся перекиси или препятствующие их возникновению.

Рис. 3. Схема установки УИТ-65: 1 — измеритель детонации; 2—подогреватель воздуха; 3— бачок для топлива; 4 — подогреватель топливной смеси; 5 — датчик детонации; 6 — одноцилиндровый двигатель; 7 — датчики температуры; 8 — устройство смесеобразования; 9 — прибор для автоматической регулировки температуры

Рис. 4. Влияние степени сжатия двигателя на его удельную мощность и расход топлива

Детонационная стойкость бензинов определяется их компонентным составом и строением содержащихся углеводородов. Как было показано выше, товарные бензины получаются смешением продуктов прямой перегонки нефти и вторичных процессов ее переработки. При этом одним из важнейших требований, определяющих состав бензинов, является обеспечение необходимой детонационной стойкости (октанового числа).

Большинство бензинов прямой перегонки имеет невысокие октановые числа в пределах 40…50 ед., что связано с содержанием в них большого количества парафиновых углеводородов с низкой детонационной стойкостью. Октановые числа бензинов термического крекинга выше и находятся в пределах 64…70 ед. Наибольшей детонационной стойкостью характеризуются бензины каталитического риформинга — платформинга, содержащие значительное количество ароматических углеводородов. В платформинге обычного режима получают бензины с октановым числом по исследовательскому методу 82…85 ед. При жестком режиме платформинга содержание ароматических углеводородов в бензине может быть повышено до 70%, что обеспечивает его октановое число в пределах 95…97 ед.

Перечисленные компоненты являются базовыми для приготовления товарных сортов бензинов, при этом также могут дополнительно вводиться и другие компоненты. Такие бензины обычно содержат значительное количество дорогостоящих высокооктановых компонентов, кроме того, их производство связано с дополнительным расходом нефти. Поэтому в основной массе выпускаемых бензинов требуемая детонационная стойкость достигается за счет добавки антидетонаторов.

Читать далее: Коррозионность бензинов

Категория: - Автомобильные эксплуатационные материалы

Главная → Справочник → Статьи → Форум

stroy-technics.ru

2. Условия сгорания топлива в двигателе.

Приготовление горючей смеси и поступле­ние ее в камеру сгорания двигателя происходит по сле­дующей схеме (рис. 3). Топливо из бака 1 проходит че­рез фильтр-отстойник 2 для удаления из него случайно ; попавших механических примесей и бензонасосом 3 по дается в поплавковую камеру 4 карбюратора. В смесеобразующей камере 6 топливо смешивается с воздухом, по­ступающим из воздухоочистителя 7. Через впускные трубопроводы 8 топливовоздушная смесь поступает в камеру сгорания 11, Для удаления отработавших газов служат выпускные клапаны 13 газораспределительного механизма и глушитель 14 с трубой.

Рабочий процесс в четырехтактном карбюраторном двигателе осуществля­ется так. В первом такте — такте всасывания, при котором пор­шень движется от верхней мертвой точки (ВМТ) к нижней (НМТ) и впускной кла­пан открыт, а выпускной закрыт,— в смесеобразующей камере 6 карбюра­тора создается разрежение. Вследст­вие этого воздух поступает из воздухоочисти­теля 7 в смесеобразующую камеру 6 карбюратора и захватывает топ­ливо из главного жиклера 5. Оно перемешивается во впускном трубопро­воде с движущимся воздухом и испа­ряется, образуя топливовоздуш­ную смесь. Эта смесь по­ступает в камеру сгорания 11 двигателя, где дополни­тельно смешивается с остатками продуктов сгорания топлива от предыдущего цикла. Получается рабочая смесь. При втором такте, такте сжатия, когда пор­шень движется от НМТ к ВМТ, рабочая смесь допол­ни­тельно перемешивается, сжимается и топливо доиспаряется.

В зависимости от степени сжатия е давление в камере сгорания повышается до 1...1,2 МПа, температура смеси возрастает до 260...370°С. При третьем такте, такте ра­бочего хода, приготовленная смесь воспламеняется от искры свечи зажигания. Выделившаяся при сгорании теп­лота преобразуется в механическую работу с помощью кривошипно-шатунного механизма. При последнем, чет­вертом такте, такте выпуска, продукты сгорания топли­ва в виде выпускных газов удаляются из цилиндра и ка­меры сгорания в атмосферу. Затем процесс повторяется.

Рисунок 3. Получение рабочей смеси в карбюраторном двигателе:

1 — топливный бак; 2 – фильтр-отстойник; 3 — бензонасос; 4 — поплавковая камера; 5 — главный жиклер; 6 — смесеобразующая камера; 7 — воздухоочи­ститель; 8 — впускной трубопровод; 9 — выпускной трубопровод; 10 — искро­вая свеча зажигания; 11 — камера сгорания; 12 — впускной клапан; 13 — вы­пускной клапан; 14 — глушитель.

3. Смесеобразующие свойства.

Полнота сгорания топлива определяется ка­чеством топливовоздушной смеси. Оно зависит, с одной стороны, от конструкции карбюратора и топливопо­дающей системы, с другой — от физико-химических свойств применяе­мого топлива. Основное из них — испаряемость, которая характеризу­ется фракционным составом топлива и давлением его насыщенных паров. Под испаряемостью понимают свойство топлива переходить из жидкого в газообраз­ное состояние. Это свойство в значительной степени обусловлено химическим составом топлива.

В двигателях внутреннего сгорания сгорает топливо, находящееся только в газообразном состоянии. Этому процессу должно предшествовать полное испарение жид­кого топлива и высококачественное перемешивание образовавшихся паров с воздухом. Если топливо плохо испаряется, то его неиспарившаяся часть (в виде жидкой фазы) не сгорает. Полнота испарения топлива возрастаете при повышении скорости движения воздуха и температуры испарения. Эта температура зависит от начальной температуры поступающего воздуха и от скрытой теплоты испарения топлива. С увеличением молекулярной массы углеводородов в топливе в связи с возрастанием их плотности и температуры кипения испаряемость ухудшается.

Испарение различают статическое, примером которого является испарение топлива из резервуаров при его хранении, и динамическое, которое происходит в условиях относительного перемещения жидкости и воздуха. Последнее имеет место в карбюраторе при образовании топливовоздушной смеси. Испаряемость топлива оценивают его фракционным составом, который характеризуется температурными пределами выкипания отдельных частей топлива (фракций). Фракция – это часть бензина, выкипающая в определенных температурных пределах.

Рисунок 4. Прибор для определения фракционного состава топлива:

1 — колба; 2- термометр: 3 — холодильник; 4 — мерный цилиндр.

Фракционный состав определяют по ГОСТ 2177—82 при помощи специального прибора (рис. 4). Для этого в колбу 1 заливают 100 мл исследуемого топлива и нагре­вают до кипения. Пары топлива поступают в холодиль­ник 3, где конденсируются и далее в виде жидкой фазы поступают в мерный цилиндр 4. При падении первой капли конденсата температуру фиксируют с помощью термометра 2.Этот момент считается началом кипения топлива. Затем фиксируют температуру, при которой в мерном цилиндре накапливается 10, 20, 30 % перегоняемого топлива и т. д. Темпе­ратуру выкипания 98 % (97,5; 97 %) считают тем­пературой конца кипения топлива. Она характеризуется наивысшим значе­нием.

Процесс перегонки заканчивается, когда после достижения своего наивыс­шего значения тем­пература начинает падать. Остающееся в колбе небольшое количество неперегнанного топлива называется остатком. Объем его изме­ряют отдельно. Разность между взятым объемом топлива (100 мл) и суммой объе­мов отгона в мерном цилиндре и остатком в колбе представляют потери, характеризующие летучесть топ­лива. По результатам перегонки строят кри­вую фракци­онной разгонки испытуемого топлива (рис. 5).

Рисунок 5. Кривая фракционной раз­гонки автомобильного бензина А-72:

1—пусковые фракции; 2 — рабочие; 3— концевые или хвостовые фракции.

Существующие стандарты на бензины предусматри­вают определение темпера­туры начала кипения, выкипания 10, 50, 90 % топлива и конца кипения (98; 97,5; 97%).

Первая пусковая фракция выкипания 10 % топлива характеризует его пусковые качества. Чем ниже температура выкипания этой фракции, тем лучше пуск двига­теля. Для бензина зимних сортов необходимо, чтобы 10 % топлива выкипало при температуре не выше 55° С; летних — не выше 70 °С. Зная температуру выкипания 10% бензина t10%, можно определить минимальную тем­пературу воздуха tв (°С), при которой возможен легкий пуск двигателя

(30)

Для облегчения пуска холодных двигателей при температуре окружающего воздуха ниже — 20°С следует применять специальные приспособления либо предварительно подогревать двигатель или же использовать бензин с более низким значением t10%.. Легкие пусковые фракции топлива нужны главным образом в период пус­ка и прогрева двигателя, поэтому вид бензина для дви­гателя выбирают в зависимости от температуры окружа­ющего воздуха.

В летнее время при относительно высокой темпера­туре воздуха под капотом прогретого двигателя наибо­лее легкие фракции бензина испаряются в топливопрово­дах, что может привести к образованию паровых пробок и нарушению работы двигателя. Во избежание этого рекомендуется применять бензин при температуре окру­жающего воздуха не выше tв, температура выкипания 10 % которого определяется по формуле

Бензин с максимально допустимым значением t10% должен обеспечивать легкий пуск холодного двигателя в зимнее время, а с минимально допустимым - надежную работу прогретого двигателя без образования паровых пробок.

Количество легкокипящих углеводородов в бензинах ограничивается также температурой начала кипения, ко­торая для автомобильных бензинов всех марок должна быть не ниже 35 °С. При таком условии уменьшаются по­терн легкокипящих углеводородов бензина от испарения при хранении в случае нагревания резервуаров солнцем.

Часть бензина от 10 до 90 % выкипания называют рабочей фракцией. Температура ее испарения не должна быть выше 160...180°С. Чем однороднее углеводородный состав бензина, тем более круто поднимается кривая разгонки в своей средней части. Бензин с таким характером кривой разгонки позволяет двигателю устойчиво и экономично работать на всех эксплуатационных режи­мах. В соответствии со стандартом рабочую фракцию нормируют по температуре выкипания 50 % бензина.

Температура выкипания 50% топлива t50% для авто­мобильных бензинов составляет 100…115°С. Топливо с такой t50% обеспечивает после пуска и прогрева плавный перевод двигателя с одного скоростного режима работы на другой. Увеличение этой температуры снижает прие­мистость двигателя.

Рисунок 6. Влияние температуры конца кипения бензина на его эксплуатационные показатели:

1- расход бензина; 2 - износ деталей двигателя.

Кроме фракционного состава, испаряемость топлива характеризуется также давлением насыщенных паров. Давление, которое развивают пары, находящиеся в ус­ловиях равновесного состояния с жидкостью при данной температуре, называется давлением насыщенных паров данной жидкости. С повышением температуры это дав­ление возрастает.

Рисунок 7. Зависимость температуры воздуха, при которой возможен пуск двигателя, от давления насыщенных паров бензина.

Тяжелые углеводороды бензина в интервале от 90 % выкипания до конца кипения представляют собою кон­цевые, или хвостовые, фракции, которые крайне нежела­тельны в топливе. Наличие этих фракций приводит к отрицательным явлениям при работе двигателя: неполному сгоранию топлива, повышению износов деталей за счет смывания смазки с гильз цилиндров и разжижения мо­торного масла в двигателе, увеличению нагарообразования и т. д. Чем меньше интервал температур от точки выкипания 90 % бензина до конца кипения, тем качест­во его выше. На рисунке 6 представлена зависимость между температурой конца кипения бензина, его расхо­дом (кривая 1) и износом деталей двигателя (кри­вая 2).

Чем выше давление насыщенных паров топлива, тем лучше его испаряемость и тем меньше теплоты потребу­ется для его испарения при образовании топливовоздушной смеси. Вместе с тем использование топлива с высо­ким давлением насыщенных паров также недопустимо, так как это приводит к образованию паровых пробок, снижению наполнения цилиндров и, следовательно, к па­дению мощности. Поэтому давление насыщенных паров для летних сортов бензинов допускается не выше 0,667кПа (500 мм рт. ст.), для зимних —0,667..,0,933кПа (500...700 мм рт. ст.). От значения давления насыщен­ных паров бензина зависит температура возможного пуска двигателя (рис. 7). Из рисунка видно, что при давлении насыщенных паров ниже 0,332 кПа (250 мм рт. ст.) пусковые свойства бензина резко ухуд­шаются.

studfiles.net

Двигатели внутреннего сгорания горение топлива

    Водород, наряду с азотом, кислородом и окисью углерода, является исходным сырьем для синтеза важнейших химических продуктов аммиака, азотной кислоты, углеводородов, спиртов и т. п. Водород широко применяется в топливной промышленности для получения бензина путем гидрогенизации твердых и жидких топлив. В настоящее время разрабатывается вопрос о применении водорода в качестве топлива для двигателей внутреннего сгорания. Горение водорода в кислороде используется в технике для получения высоких (до 2500°) температур, необходимых для плавления кварца и тугоплавких металлов. [c.21]     Одной из важных характеристик топлива, позволяющих судить о его пусковых свойствах и о стабильности процесса горения, является температура самовоспламенения паров топлива, т. е. такая температура, при которой происходит самовоспламенение горючей смеси без контакта с открытым пламенем. Процесс самовоспламенения горючей смеси встречается во всех двигателях внутреннего сгорания. Дизельные двигатели работают на основе этого процесса. В двигателях с воспламенением от искры самовоспламенение горючей смеси является крайне нежелательным и даже вредным явлением, так как нарушает нормальный процесс сгорания. В турбореактивных двигателях самовоспламенение горючей смеси — явление положительное, способствующее более устойчивому процессу сгорания. [c.76]

    Процессы, происходящие в бензиновом двигателе и дизеле, резко отличаются друг от друга, поэтому отличаются друг от друга и типы топлива, применяемого в этих двигателях. Для двигателей внутреннего сгорания (бензиновых) требуются низкокипящие, равномерно сгорающие углеводороды с относительно высокой температурой самовоспламенения [329, 330]. Топливо для дизельного двигателя, напротив, должно иметь низкую температуру воспламенения, и поэтому низкокипящие соединения для этой цели непригодны. К моменту воспламенения в дизельных двигателях находится не весь объем топлпва, как в бензиновых, а только часть топливо добавляется в течение всего времени поворота кривошипа, начиная с момента, когда кривошип не доходит на угол 15—20° до верхней мертвой точки, причем горение топлива происходит в полном объеме. [c.438]

    Давайте рассмотрим процесс сгорания бензина в двигателе. Это сложный физико-химический и технологический процесс, связанный с выполнением противоречивых требований. Прежде всего, карбюрация — смешение бензина с воздухом. Если топливная смесь бедна, то есть в ней много воздуха и мало топлива, то температура горения и, следовательно, температура рабочего тела (продуктов сгорания) в двигателе снижаются. А эффективность всякой тепловой машины, в том числе и двигателя внутреннего сгорания, зависит как раз от перепада температур рабочего тела в начале и конце рабочего процесса. Это непреложное требование термодинамики. Кроме того, при работе на бедной топливной смеси снижается мощность двигателя, повышается интенсивность закоксовывания цилиндров, поршней и клапанов, снижается КПД... [c.88]

    При взаимодействии металла с сухими газами (воздухом, газообразными продуктами горения топлива и др.) при высоких температурах происходит газовая химическая коррозия. Этот вид коррозии возможен и при низких температурах, если при этом на поверхности металла не конденсируется жидкость, проводящая электрический ток. Газовой коррозии подвергаются детали газовых турбин, двигателей внутреннего сгорания, арматура печей подогрева нефти и другие изделия, работающие при повышенных температурах в среде сухих газов. При проведении многочисленных технологических процессов обработки металлов в условиях высоких температур (нагрев перед ковкой, прокаткой, штамповкой, при термической обработке - закалка, отжиг, сварка) на металлургических и трубопрокатных заводах также возможна газовая коррозия. При взаимодействии металла с кислородом воздуха или содержащимся в других газах происходит его окисление с образованием окисных продуктов коррозии. В отдельных случаях, например при воздействии на металл паров серы или ее соединений, на поверхности металла могут образоваться сернистые соединения. [c.17]

    Химические реакции широко используются во многих производственных процессах. Они (например, процессы окисления, коррозии и др.) протекают при работе многих установок, машин и приборов. Получение электроэнергии, топлива, металлов, различных материалов, продуктов питания и т. п. непосредственно связано с химическими реакциями. Например, в настоящее время электрическую и механическую энергии получают в основном преобразованием химической энергии природного топлива. В процессе этого преобразования происходят сложные химические реакции горения, взаимодействия воды и ее примесей с металлами и т. п. Без понимания этих процессов невозможно обеспечить эффективную работу электростанций и двигателей внутреннего сгорания. Велика роль химических процессов и в атомной энергетике, значение которой непрерывно возрастает. [c.8]

    Окислительно-восстановительные реакции играют важную роль в природе и технике. В качестве примеров окислительно-восстано-вительных процессов, протекающих в природных биологических системах, можно привести реакцию фотосинтеза у растений и процессы дыхания у животных и человека. Процессы горения топлива, протекающие в топках парогенераторов тепловых электростанций и в двигателях внутреннего сгорания, являются примером окислительновосстановительных реакций. [c.182]

    Продукты горения топлива зависят от его состава и условий сжигания. Однако при горении топлива на электростанциях, в промышленных печах, двигателях внутреннего сгорания и других установках всегда образуются Н2О и СО2. Кроме того, продукты горения содержат, как правило, СО, оксиды серы и азота, сажу, золу, а также азот и непрореагировавший кислород. Соотношение между СО2 и СО в продуктах горения зависит от ряда факторов и прежде всего от соотношения топлива и воздуха. Если подача воздуха недостаточна, то [c.354]

    Продукты горения топлива. Основные антропогенные атмосферные выбросы вредных веществ вызваны сжиганием органического топлива на электростанциях, в котельных, промышленных печах и двигателях внутреннего сгорания, а также переработкой руд и получением различных химических продуктов. [c.387]

    Продукты горения топлива зависят от его состава и условий сжигания. Однако при горении топлива на электростанциях, в промышленных печах, двигателях внутреннего сгорания и других установках всегда образуются Н2О, СО2 и СО. Соотношение между СО2 и СО в продуктах горения зависит от ряда факторов и прежде всего от соотношения топлива и воздуха. Если подача воздуха недостаточна, то топливо сгорает не полностью, в продуктах горения увеличивается доля СО и сажи, при этом КПД использования топлива понижается. В то же время большой избыток воздуха ухудшает эффективность работы установок, так как при этом необходимы дополнительные затраты теплоты на подогрев воздуха. Температура топливно-воздушной смеси на некоторых участках может упасть ниже температуры воспламенения топлива, из-за чего часть его не успевает сгореть. Поэтому должно соблюдаться оптимальное соотношение между топливом и воздухом. Лучше всего контролировать это соотношение по содержанию СО2 и СО в продуктах горения. [c.388]

    В последние годы все большее внимание уделяется водородной энергетике, т. е. использованию водорода в качестве топлива, в частности, для двигателей внутреннего сгорания. Это представляет особый интерес с экологической точки зрения, т. к. при горении водорода в выделяющихся газах не содержится вредных веществ (продукт горения — вода ). [c.337]

    Генераторный газ (воздушный газ) — смесь оксида углерода СО с азотом воздуха. Получают при продувании воздуха сквозь накаленный уголь. При горении угля образуется СОз, который накаленным углем восстанавливается в оксид углерода СО (СО2+ С = 2С0). Г, г. применяется как топливо в металлургической, стекольной, керамической промышленности, для двигателей внутреннего сгорания. Геохимия (от греч. ge — земля и химия) — наука о химическом составе и законах сочетания, распределения и миграции химических элементов в земной коре и глубинах Земли. [c.37]

    Г орение — это процесс химического взаимодействия горючего и окислителя с образованием пламени, излучающего тепловую и световую энергии. В двигателях внутреннего сгорания химическая энергия топлива через процесс горения превращается в механическую энергию. Горение поддерживается физическими процессами испарения капель распыленного топлива, смешения паров с воздухом и их воспламенением или самовоспламенением. [c.94]

    Методы химической технологии весьма распространены в нехимических отраслях промышленности - металлургии, транспорте, электронике, энергетике, строительстве и др. Процессы получения металлов (в доменных, мартеновских и других плавильных печах) - типичные химические процессы. Горение топлива в топках паровых котлов, в двигателях внутреннего сгорания или ракетных - типичный химический процесс. Получение материалов электроники и строительных материалов тоже во многом связано с химическими процессами. Защита окружающей среды также использует химические методы. [c.10]

    Под моторными свойствами нефтяных топлив понимают физические величины, характеризующие особенности их горения внутри соответствующего типа двигателя внутреннего сгорания. В связи с тем, что моторные свойства неразрывно связаны с типом двигателей внутреннего сгорания, необходимо предварительно ознакомиться с некоторыми принципиальными моментами их работы, определяющими характер горения топлива. [c.173]

    Горение углеводородов в двигателе внутреннего сгорания также может быть неполным. По данным, приведенным в работе [16, с. 409], в дизельных двигателях в качестве продуктов неполного сгорания обнаружены угольный осадок в отверстии форсунки, сажа на стенках, смолистые и угольные отложения, сажа в газовой смеси (черные выхлопные газы), не полностью сгоревшее топливо (сине-серые выхлопные газы) и альдегиды (едкие выхлопные газы).  [c.73]

    Второй аспект — борьба с детонацией в двигателях. Процесс детонации сродни процессу горения, но скорость его слишком велика... В двигателях внутреннего сгорания он возникает из-за распада молекул еще не сгоревших углеводородов под влиянием растущих давления и температуры. Распадаясь, эти молекулы присоединяют кислород и образуют перекиси, устойчивые лишь в очень узком интервале температур. Они-то и вызывают детонацию,- и топливо воспламеняется раньше, чем достигнуто необходимое сжатие смеси в цилиндре. В результате мотор начинает барахлить , перегреваться, появляется черный выхлоп (признак неполного сгорания), ускоряется выгорание поршней, сильнее изнашивается шатунно-кривошипный механизм, теряется мощность... [c.266]

    Детонационные свойства — весьма важная характеристика бензинов. В цилиндр двигателя внутреннего сгорания поступает смесь паров бензина с воздухом, которая сжимается поршнем и зажигается от запальной свечи (искры). Образующиеся при горении газы двигают поршень. Чем больше степень сжатия смеси в цилиндре, тем выше коэффициент полезного действия двигателя. Величина степени сжатия ограничивается характером горения смеси в цилиндре. При запале смеси от искры образующееся пламя может распространяться в цилиндре двигателя с различной скоростью. При нормальном горении скорость распространения пламени равна 10—15 м/сек, однако при некоторых степенях сжатия наступает детонация, при которой пламя распространяется со скоростью 1500—2500 м/сек. Появление детонации сопровождается стуком в цилиндре, перегревом, черным дымом на выхлопе и приводит к повышению расхода топлива, снижению мощности двигателя и преждевременному его износу. [c.458]

    В связи с конструктивными особенностями газотурбинных двигателей условия работы смазочных масел в них существенно отличаются от условий работы масел в поршневых двигателях внутреннего сгорания. В отличие от поршневых двигателей, например, смазочное масло в ГТД изолировано от камеры сгорания (зоны горения топлива) кроме того, в наиболее ответственных узлах трения реализуется в основном трение качения, а не трение скольжения, как в поршневых двигателях (коэф-фициент трения качения на порядок ниже коэффициента трения скольжения). Вал турбокомпрессора в ГТД хорошо уравновешен в отличие от поршневых двигателей и, несмотря на большие обороты и высокие осевые и радиальные нагрузки, работает без резких переменных нагрузок. [c.240]

    Итак, на скорость и полноту сгорания влияют многие факторы, из которых весьма важными являются химическая природа топлива, равномерность состава и распределения в камере сгорания рабочей смеси (топливо—воздух). Для двигателей внутреннего сгорания с воспламенением от сжатия не менее важное значение имеет акт самовоспламенения жидких распыленных топлив в цилиндре. Между началом впрыска дизельного топлива и началом его горения имеется всегда известный разрыв во времени, что рассматривается как запаздывание самовоспламенения, характеризующее качество топлива с точки зрения воспламеняемости, а следовательно, запуска и процесса горения. [c.301]

    Бензин (газолин). Горение бензина в цилиндре двигателя внутреннего сгорания — сложный химический процесс. В идеальных условиях топливо полностью окисляется до двуокиси углерода и воды. Прп благоприятных рабочих условиях полное сгорание почти достигается, хотя немного окиси углерода и других продуктов неполного окисления находится в большинстве выхлопных газов. [c.602]

    В процессе работы двигателя внутреннего сгорания происходит окисление (горение) топлива и частично масла. Кроме того, в маслах образуются продукты неполного окисления. Часто считают, что масло в процессе работы двигателя окисляется преимущественно с образованием э х продуктов и частично расщепляется под влиянием термических воздействий. В литературе не имеется сведений о распределении кислорода, поступающего с топливо-воздушной смесью в двигатель и идущего на образование продуктов горения топлива и продуктов окисления масла Опыты показали, что только 30% поступающего кислорода расходуется на окисление топлива. Для окисления и выгорания масла и его компонентов необходимы следующие количества кислорода (в %)  [c.196]

    На использование энергии, освобождающейся при горении углеводородов, входящих в состав моторного топлива (например, бензина), основывается работа двигателей внутреннего сгорания. [c.29]

    Детонация моторного топлива. В цилиндре двигателя внутреннего сгорания при сильном сжатии и высокой температуре наряду со спокойным горением углеводородов может происходить внезапное, очень быстро охватывающее всю смесь, разложение молекул. Это явление называют детонацией моторного топлива. Внешним проявлением детонации является стук мотора. [c.29]

    Достигнутые к настоящему времени успехи в регулировании горения существенны, но далеко не являются пределом. В идеальном случае в условиях полностью контролируемого горения решающим критерием качества топлива будут не его октановые и цетановые характеристики, а теплосодержание, поскольку поршневые двигатели внутреннего сгорания — двигатели тепловые. [c.112]

    Представляется перспективным создание крупных установок по производству СПГ типа Стирлинг-Стирлинг . В этих установках предполагается использовать для привода криогенных машин Стирлинга двигатели Стирлинга. Двигатели Стирлинга относятся к классу двигателей с внешним подводом теплоты, что обусловливает принципиальную особенность их работы по сравнению с двигателями внутреннего сгорания. Процесс горения осуществляется вне рабочих цилиндров и протекает более равновесно, рабочий цикл реализуется в замкнутом внутреннем контуре при относительно малых скоростях повышения давления в цилиндрах двигателя, плавном характере теплогидравлических процессов рабочего тела внутреннего контура, при отсутствии газораспределительного механизма клапанов. Данное обстоятельство позволяет использовать различные источники теплоты (и прежде всего ПГ), добиваться более низкой токсичности при работе на органическом топливе, снижения уровня шумов и вибраций, экономить до 20 % топлива по сравнению с традиционными двигателями внутреннего сгорания. [c.806]

    С появлением поршневых двигателей внутреннего сгорания (ДВС) возникло много специфических вопросов их конструирования и эксплуатации, связанных не только с трением и износом металлов, но и с особенностями горения топлива и поведения масла в двигателе в частности, появились проблемы бездетона-ционного горения бензинов в двигателях, лако- и нагарообразо- [c.7]

    Стандартные виды топлива для двигателей внутреннего сгорания — автомобильный бензин (газолин, моторный бензин, петроль) и автодизельное топливо (газойль). Основное преимущество СНГ перед ними — чистота, поскольку в СНГ нет свинца, очень низкое содержание серы, окислов других металлов, ароматических углеводородов и других загрязняющих примесей. Особенно это касается свинца, который для улучшения антидетонационных свойств в обязательном порядке добавляют в бензин в виде тетраэтилсвинца и который засоряет запальные свечи, является потенциальным отравителем атмосферы, а также серы, которая в виде SO2 или SO3 выбрасывается в атмосферу вместе с продуктами сгорания. Использование СНГ облегчает запуск двигателя в холодное время года, обеспечивает более ровное и устойчивое горение внутри рабочего пространства цилиндров двигателя. Тот факт, что при сжигании СНГ обычно полностью отсутствуют загрязнения, объясняет и большую долговечность работающих на СНГ двигателей по сравнению с двигателями, работающими на [c.213]

    Между строением углеводородов и их пригодностью в качестве моторного топлива существует определенная зависимость. Наиболее пригодны углеводороды, стойкие по отношению к окислению, т. е. такие, которые в смеси с воздухом (карбюрированная смесь) сгорают равномерно и сравнительно медленно. В двигателе внутреннего сгорания в момент максимального сжатия карбюрированная смесь зажигается от электрозапала, и газы сгорания совершают нужную работу. Часто в случае неподходящего топлива горение бензиновоздушной смеси переходит во взрыв. Это нежелательное явление называется стуком, звоном или детонацией, а топливо, вызывающее его,—детонирующим топливом. Детонация очень вредна для моторов, так как она уменьшает их мощность, дает нагары и неполное сгорание. [c.187]

    Он сгорает на воздухе, выделяя большое количество тепла (68,5 ккал1модь воды). Этим пользуются для плавления тугоплавких металлов, кварца и т. п. Водород применяют в качестве топлива для реактивных двигателей и двигателей внутреннего сгорания, так как при его горении не образуется нагара и в выделяющихся газах не содержится вредных примесей. Однако он очень огнеопасен, смеси его с воздухом и особенно с кислородом чрезвычайно взрывчаты ( гремучий газ ). Эти смеси при низкой температуре находятся в кажущемся (ложном) равновесии, и при местном нагреве или при введенни в них катализатора, например платинированного асбеста, происходит взрыв. [c.314]

    Топаз — минерал из класса силикатов. Цвет зависит от примесей встречается бесцветный (прозрачный), желтый, голубой, фиолетовый, зеленый и розовый. Применяют Т. в стекловарении, электросталелитейных печах, производстве электрофарфора и других огнеупорных и керамических материалов. Благодаря высокой твердости Т. используют в качестве абразива. Прозрачные, красиво окраиден-ные кристаллы или гальки Т. издавна употребляются как драгоценные камни. Топливные элементы — химические источники тока, в которых энергия горения топлива (водород, спирты, альдегиды и др.) непосредственно превращается в электрическую энергию. Т. э. применяются в космических аппаратах, двигателях внутреннего сгорания, в военном деле. [c.137]

    Химические источники электрической энергии (ХИЭЭ) или, как их чаще называют, химические источники тока (ХИТ) —устройства, позволяющие получать. электрическую энергию за счет какой-либо химической реакции. В ХИТ переход химической энергии в электрическую осуществляется непосредственно без промежуточного образования тепловой и механической энергии, как это имеет место при использовании химической энергии горения топлива под паровыми котлами тепловых электростанций или в двигателях внутреннего сгорания. [c.315]

    Бензпирен. Одним из канцерогенных веществ, который поступает в атмосферу при горении углеводородных топлив, является, 3,4-бензпирен — полициклический ароматический углеводород (кристаллическое вещество желтого цвета, т. пл. 179°С, т. кип. 500—510°С, хорошо растворим в органических растворителях и нерастворим в воде). В зависимости от температуры дымовых газов он может менять свое агрегатное состояние, оседая в виде капель жидкости или в виде твердого вещества на поверхности почвы и накапливаясь со временем. В силу этого 3, 4-бенэпирен загрязняет не только атмосферу, но и почву и водоемы. Органами здравоохранения в нашей стране установлены очень жесткие нормы ПДК этого вещества 0,1 мкг/100 м воздуха и 15—16 мкг/100 м продуктов сгорания топлива. Содержание канцерогенных веществ в атмосферном воздухе промышленных предприятий и в крупных городах возрастает в зимнее время года, когда сжигается больше топлива. Для автомобильных бензинов на образование канцерогенов может влиять и содержание в них тетраэтилсвинца. К сожалению, влияние фракционного и химического состава топлива на образование канцерогенов при сжигании топлива в различных двигателях внутреннего сгорания не исследовалось. Недостаточно изучен и меха-нием образования 3,4-бензпирена при сгорании топлива. Однако известно, чto своим возникновением он обязан пиролизу углеводородных топлив. Вероятно, при горении низкомолекулярных газов 3,4-бензпирен образуется в результате реакций синтеза, а при горении тяжелых углеводородных топлив — в результате деструкции высокомолекулярных соединений и синтеза. [c.47]

    Аналогично ингибиторам и антиоксигенным веществам действуют антидетонаторы. Антидетонаторами называют вещества, противодействующие детонации и замедляющие скорость горения газа. Они препятствуют взаимодействию топлива и кислорода и представляют собой вообще вещества, легко разлагаю1циеся с образованием твердых частиц. Известно, что сжигание топлива в двигателях внутреннего сгорания может сопровождаться детонацией или протекать без детонации. Явление детонации наблюдается при горении газсв в определенных условиях. Для детонации характерна определенная, большая скорость распространения химического процесса по всей газовой фазе. Эта скорость близка к скорости звука [131], достигая ее при критическом давлении, которое определяет характер горения. Указывают, что детонация индуцируется определенными органическими соединениями, которые действуют с различной силой. Установлено, что соединения, содержащие этильный радикал, соединенный с бромом, кислородом и серой, а также более простые соединения, содержащие этильную группу, вызывают относительно слабую детонацию, между тем как алкилнитраты и нитриты [132], если они вводятся в топливовоздушную смесь, вызывают сильную детонацию. Способность вызывать детонацию приписывалась в молекуле атому, который в наибольшей степени изменен связанными с ним радикалами или группами. Вещество, индуцирующее детонацию, должно быть или смешано со всасываемым воздухом, или растворено в топливе. Предполагали, что механизм детонирующей реакции представляет собой видоизмененный механизм цепной реакции [3] в том смысле, что он содержит не отдельный центр, но группу центров, дающих микроцепи . [c.348]

    Эгертон [74] гфедполагает, что антидетона цис иное действие тетраэтилсвинца при детонации топливо-воздушных смесей в двигателях внутреннего сгорания мсжно объяснить разрушением промежуточных перекисей, получаемых в процессе горения. [c.351]

    Среди сложных физико-химических превращений, которые претерпевает топливо в двигателях, процессу горения принадлежит определяющая роль. Дальнейшее совершенствование двигателей внутреннего сгорания в значительной мере зависит от возможности управления процессами воспламенения и горения топлив. От скорости и полноты сгорания топлива в основном зависят устойчивость и надежность работы двигателя, а также его мощиостные и экономические показатели. [c.124]

    Следует отметить важность этого обстоятельства, так как двигатель внутреннего сгорания, в обеих своих разновидностях потребляющий около 70% добываемой нефти в виде моторных топлив, в современном конструктивном решении чрезвычайно чувствителен к их углеводородному составу. Поэтому мероприятия по улучшению воспламенения и основного горения, направленные на уменьшение зависимости рабочего процесса в двигателе от углеводородного состава топлива, как бы увеличивают их ресурсы и снижают их TOiiMO Tb. Кроме тсршофорсироБанйя, мы испытали действие кинетического фактора—увеличение концентрации кислорода в воздушном заряде, а также суммарное влияние обоих факторов. [c.118]

    Во всех типах двигателей внутреннего сгорания началу горения топлива всегда предшествует его полное или частичное испарение. В поршневых бензиновых двигателях с искровым воспламенением началу горения предшествует практически полное испарениё топлива, В поршневых двигателях с воспламенением от сжатия, а тв1кже в газотурбинных двигателях горение может начаться и тогда, когда только часть топлива перешла в парообразное состояние, образуя разрозненные очаги гомогенной топливно-воздушной смеси, [c.82]

    Детонацией моторного топлива называют чрезвычайно быстрый, приближающийся к взрыву, процесс горения топлива в двигателе внутреннего сгорания, нарушающий нормальную работу мотора. Скорость горения при детонации намного больше обычной скорости горения данного сорта топлива в этом же двигателе. Детонация в отличие от нормального сгорания вызывается не электрической искрой от запальной свечи двигателя, а лишь высокой температурой, развивающейся от сильного сжатия газовой смеси. При детонации пары горючего сгорают неполностью, выделяются окись углерода и водород, образуются клубы дыма — выхлоп мотор издает характерный звук, падает мощность двигателя. Детонация вызывает преждевременный износ двигателя, а иногда и разрушение. Чем меньше детонационная способность моторного топлива, тем сильнее можно сжимать горючую смесь под поршнем, тем большую мощность может развивать двигатель и тем экономнее расходуется горючее. Чтобы избел[c.216]

    Горение смеси горючего с воздухом в цилиндрах двигателей внутреннего сгорания, нормально протекающее сравнительно спокойно со скоростью нескольких метров в секунду, приобретает в некоторых случаях характер взрыва, распространяющегося с громадной скоростью (2000—3000 м/сек). Это явление получило название дет,онации оно ощущается при работе мотора появлением особого рода стуков и влечет за собой не только резкое понижение мощности двигателя, но и усиленную его изнашиваемость. Отсюда понятно, что изучение явления детонации и борьбы с нею является одной из важнейших задач технологии топлива двигателей внутреннего сгорания. Актуальность этой задачи особенно определилась за последнее время, когда в конструк-тировании всех двигателей внутреннего сгорания легких типов, т. е. авиационных, автомобильных и тракторных, отчетливо выявилась тенденция перехода к моторам с повышенной степенью сжатия как более экономичным между тем с повышением степени сжатия при данном топливе возрастает склонность его к детонации. [c.112]

chem21.info


Смотрите также