Преобразование электрической энергии в механическую в асинхронном двигателе, как и в других электрических машинах, связано с потерями энергии, поэтому полезная мощность на выходе двигателя Р2всегда меньше мощности на входе (потребляемой мощности) Р1на величину потерьР :
Р2 = Р1 - Р (13.1)
Потери Р преобразуются в теплоту, что в конечном итоге ведет к нагреву машины. Потери в электрических машинах разделяются на основные и добавочные. Основные потери включают в себя магнитные, электрические и механические.
Магнитные потери Рмв асинхронном двигателе вызваны потерями на гистерезис и потерями на вихревые токи, происходящими в сердечнике при его перемагничивании. Величина магнитных потерь пропорциональна частоте перемагничивания Рм=f β,
где β = 1,3 ÷ 1,5. Частота перемагничивания сердечника статора равна частоте тока в сети (f=f1), а частота перемагничивания сердечника ротораf=f2=f1s.При частоте тока в сетиf1 = 50 Гц при номинальном скольжении sном= 1 ÷ 8 % частота перемагничивания ротораf=f2= 2 ÷ 4 Гц, поэтому магнитные потери в сердечнике ротора настолько малы, что их в практических расчетах не учитывают.
Электрические потери в асинхронном двигателе вызваны нагревом обмоток статора и ротора проходящими по ним токами. Величина этих потерь пропорциональна квадрату тока в обмотке (Вт):
электрические потери в обмотке статора
Рэ1 = m1 I21 r1 ; (13.2)
электрические потери в обмотке ротора
Рэ2 = m2 I22 r2 = m1 I′ 21 r′ 1(13.3)
Здесь r1и r2— активные сопротивления обмоток фаз статора и ротора пересчитанные на рабочую температуру Θраб(см. § 8.4):
r1 = r1.20 [1 + α (Θраб - 20)]; r2 = r2.20 [1 + α (Θра6 - 20)], (13.4)
где r1.20и r2.20 — активные сопротивления обмоток при температуре Θ1= 20 °С; α — температурный коэффициент, для меди и алюминия α = 0,004.
Электрические потери в роторе прямо пропорциональны скольжению:
Рэ2 = s Рэм(13.5)
где Рэм— электромагнитная мощность асинхронного двигателя, Вт:
Рэм = Р1 = (Рм + Рэ1)(13-6)
Из (13.5) следует, что работа асинхронного двигателя экономичнее при малых скольжениях, так как с ростом скольжения растут электрические потери в роторе.
В асинхронных двигателях с фазным ротором помимо перечисленных электрических потерь имеют место еще и электрическиe потери в щеточном контакте Рэ.щ= 3 I2ΔUщ /2, где Uщ=2,2 В - переходное падение напряжения на пару щеток.
Механические потери Рмех— это потери на трение в подшипниках и на вентиляцию. Величина этих потерь пропорциональна квадрату частоты вращения ротора (Рмех= n22). В асинхронных двигателях с фазным ротором механические потери происходят еще и за счет трения между щетками и контактными кольцами ротора.
Добавочные потери включают в себя все виды трудноучитываемых потерь, вызванных действием высших гармоник МДС, пульсацией магнитной индукции в зубцах и другими причинами. В соответствии с ГОСТом добавочные потери асинхронных двигателей принимают равными 0,5% от подводимой к двигателю мощности Р1:
Рдо6 = 0,005 Р1. (13.7)
При расчете добавочных потерь для неноминального режима следует пользоваться выражением
Р′доб = Рдоб β2(13-8)
где β = I1/ I1ном—коэффициент нагрузки.
Сумма всех потерь асинхронного двигателя (Вт)
P = Рэм + Рэ1 + Рэ2 + Рмех + Рдоб. (13.9)
На рис. 13.1 представлена энергетическая диаграмма асинхронного двигателя, из которой видно, что часть подводимой к двигателю мощности Р1 = m1U1I1cos φ1затрачивается в статоре на магнитные Рыи электрические Рэ1потери. Оставшаяся после этого электромагнитная мощность Рэм[см. (13.6)] передается на ротор, где частично расходуется на электрические потери Рэ2и преобразуется в полную механическую мощность Р′2. Часть мощности идет на покрытие механических Рмехи добавочных потерь Рдоб, а оставшаяся часть этой мощностиР2 составляет полезную мощность двигателя.
У асинхронного двигателя КПД
η = Р2/ Р1 =1 - P. (13.10)
Электрические потери в обмотках РЭ1и РЭ2являются переменными потерями, так как их величина зависит от нагрузки двигателя, т. е. от значений токов в обмотках статора и ротора [см. (13.2) и (13.3)]. Переменными являются также и добавочные потери (13.8). Что же касается магнитных Рми механических Рмех, то они практически не зависят от нагрузки (исключение составляют двигатели, у которых с изменением нагрузки в широком диапазоне меняется частота вращения).
Коэффициент полезного действия асинхронного двигателя с изменениями нагрузки также меняет свою величину: в режиме холостого хода КПД равен нулю, а затем с ростом нагрузки он увеличивается, достигая максимума при нагрузке (0,7 ÷ 0,8)Рном. При дальнейшем увеличении нагрузки КПД незначительно снижается, а при перегрузке (P2> Рном) он резко убывает, что объясняется интенсивным ростом переменных потерь (Рэ1+ Рэ2+ Рдоб), величина которых пропорциональна квадрату тока статора, и уменьшением коэффициента мощности. График зависимости КПД от нагрузки η = f (β) для асинхронных двигателей имеет вид, аналогичный представленному на рис. 1.41 (см. рис. 13.7).
КПД трехфазных асинхронных двигателей общего назначения при номинальной нагрузке составляет: для двигателей мощностью от 1 до 10 кВт ηном= 75 ÷ 88%, для двигателей мощностью более 10 кВт ηном=90 ÷ 94%.
Рис. 13.1. Энергетическая диаграмма асинхронного двигателя
21. Электромагнитный момент и механические характеристики асинхронного двигателя. Рабочие характеристики асинхронного двигателя.
Преобразование электрической энергии в механическую в асинхронной машине сопряжено с потерями энергии, поэтому полезная мощность на валу двигателя всегда меньше потребляемой из сети мощностина величину потерь:
.
Потери преобразуются в теплоту, что приводит к нагреву машины. Потери в электрических машинах разделяют наосновные и добавочные. Основные потери включают в себя магнитные, электрические и механические.
Магнитные потери в асинхронном двигателе вызваны потерями на гистерезис и на вихревые токи, возникающие в магнитопроводе при его перемагничивании. Величина магнитных потерь пропорциональна частоте перемагничивании, гдележит в пределах 1,3–1,5. Частота перемагничивания магнитопровода статора равна частоте сети. Частота перемагничивания магнитопровода роторане превышает в номинальном режиме нескольких герц, поэтому магнитные потери ротора малы, и в практических расчетах они не учитываются.
Электрические потери в асинхронном двигателе вызваны нагревом обмоток статора и ротора проходящими по ним токами:
и. Электрические потери пропорциональны квадрату тока в обмотке.
Электромагнитная мощность передается электромагнитным путем через воздушный зазор от статора к ротору:
. Электрические потери пропорциональны скольжению, поэтому предпочтительными являются режимы с малыми скольжениями.
В асинхронных машинах с фазным ротором имеются также потери в щеточном контакте:
.
Механические потери – это потери на трение в подшипниках и на вентиляцию. Величина этих потерь пропорциональна квадрату частоты вращения ротора (). В асинхронных двигателях с фазным ротором механические потери происходят еще и за счет трения между щетками и контактными кольцами ротора.
Добавочные потери включают в себя все виды трудноучитываемых потерь, вызванных действием высших гармоник МДС, пульсацией магнитной индукции в зубцах и другими причинами. В соответствии со стандартом добавочные потери асинхронных двигателей принимают равными 0,5 % от подводимой к двигателю мощности
При расчете добавочных потерь для режима, отличного от номинального следует пользоваться выражением
, где– коэффициент нагрузки.
Коэффициент полезного действия асинхронной машины:
.
КПД трехфазных асинхронных двигателей общего назначения при номинальной нагрузке: для двигателей мощностью от 1 до 10 кВт составляет 75–85 %, для двигателей мощностью более 10 кВт – 90–94 %.
Электромагнитный момент асинхронного двигателя создается взаимодействием тока в обмотке ротора с вращающимся магнитным полем. Электромагнитный момент
, где– синхронная скорость вращения.
Подставив значение тока в последнее выражение, получим формулу электромагнитного момента асинхронной машины (Н∙м):
.
Параметры (сопротивления) схемы замещения асинхронной машины являются постоянными. Также постоянными можно считать напряжение на обмотке фазы статора и синхронную частоту. Единственной переменной величиной является скольжение, которое в различных режимах работы может принимать значение от –∞ до +∞.
Механическая характеристика машины – это зависимость прии. Длятипичных соотношений параметров механическая характеристика показана на рисунке:
Рис. Механическая характеристика асинхронной машины в различных режимах работы.
Электромеханическое преобразование энергии может происходить в асинхронной машине в следующих режимах:
– двигательном ,;
– генераторном ,;
– тормозном ,.
Характерными точками механической характеристики являются:
– точка идеального холостого хода. Скольжение , угловая скорость ротора совпадает с угловой скоростью поля , момент равен нулю;
– критическая точка со скольжением , соответствующая максимальному моменту, которые выражаются через параметры машины следующим образом:
,. Типичные значения критического скольжениядля асинхронных машин общепромышленного применения прикВт лежат в пределах 0,15–0,30.
Перегрузочная способность или кратность пускового момента:
для асинхронных двигателей общего назначения составляет 1,7–2,5;
– точка пуска (короткого замыкания) соответствует частоте вращения (скольжению). Пусковой момент:
. При пуске и в области малых скольжений параметры схемы замещения значительно изменяются по причине магнитного насыщения зубцовых слоев статора и ротора и поверхностного эффекта (вытеснения тока к краю проводника, т.е. увеличение активного сопротивления с ростом частоты) в проводниках ротора. Поэтому параметры схемы замещения при расчете механической характеристики в области, близкой к номинальной, не могут быть использованы для расчета пускового момента.
При пуске двигателя под действием электромагнитного момента вал двигателя приводится во вращение. Частота вращенияувеличивается, скольжениеуменьшается в соответствии с механической характеристикой двигателя и нагрузки. При критическом скольжении момент достигает максимального значения. После этого электромагнитный момент начинает убывать до достижения установившегося значения, при котором момент двигателя равен сумме противодействующих моментов (нагрузки и холостого хода).
Номинальное скольжение лежит в пределах от 0 до и составляет обычно 2–8%. Только в этом диапазоне возможна нормальная устойчивая работа асинхронного двигателя. Длительная работа в точке пересечения механических характеристик двигателя и нагрузкивозможна только в том случае, если при случайном отклонении угловой скорости от установившейся (вследствие колебаний нагрузки, напряжения сети и др.) на ротор действует момент, направленный на восстановление прежней угловой скорости.Условие устойчивости режима работы:
.
studfiles.net
Преобразование электрической энергии в механическую в асинхронном двигателе, как и в других электрических машинах, связано с потерями энергии, поэтому полезная мощность на выходе двигателя всегда меньше мощности на входе (потребляемой мощности) на величину потерь :
. (13.1)
Потери преобразуются в теплоту, что в конечном итоге ведет к нагреву машины. Потери в электрических машинах разделяются на основные и добавочные. Основные потери включают в себя магнитные, электрические и механические.
Магнитные потери в асинхронном двигателе вызваны потерями на гистерезис и потерями на вихревые токи, происходящими в сердечнике при его перемагничивании. Величина магнитных потерь пропорциональна частоте перемагничивания , где . Частота перемагничивания сердечника статора равна частоте тока в сети , а частота перемагничивания сердечника ротора . При частоте тока в сети Гц и номинальном скольжении частота перемагничивания ротора Гц, поэтому магнитные потери в сердечнике ротора настолько малы, что их в практических расчетах не учитывают.
Электрические потери в асинхронном двигателе вызваны нагревом обмоток статора и ротора проходящими по ним токами. Величина этих потерь пропорциональна квадрату тока в обмотке (Вт):
электрические потери в обмотке статора
; (13.2)
электрические потери в обмотке ротора
. (13.3)
Здесь и – активные сопротивления обмоток фаз статора и ротора пересчитанные на рабочую температуру :
, (13.4)
где: и – активные сопротивления обмоток при температуре 9 ; – температурный коэффициент, для меди и алюминия .
Электрические потери в роторе прямо пропорциональны скольжению:
, (13.5)
где: – электромагнитная мощность асинхронного двигателя, Вт:
. (13.6)
Из (13.5) следует, что работа асинхронного двигателя экономичнее при малых скольжениях, так как с ростом скольжения растут электрические потери в роторе.
В асинхронных двигателях с фазным ротором помимо перечисленных электрических потерь имеют место еще и электрические потери в щеточном контакте , где – переходное падение напряжения на пару щеток.
Механические потери – это потери на трение в подшипниках и на вентиляцию. Величина этих потерь пропорциональна квадрату частоты вращения ротора . В асинхронных двигателях с фазным ротором механические потери происходят еще и за счет трения между щетками и контактными кольцами ротора.
Добавочные потери включают в себя все виды трудноучитываемых потерь, вызванных действием высших гармоник МДС, пульсацией магнитной индукции в зубцах и другими причинами. В соответствии с ГОСТом добавочные потери асинхронных двигателей принимают равными 0,5% от подводимой к двигателю мощности :
. (13.7)
При расчете добавочных потерь для неноминального режима следует пользоваться выражением
. (13.8)
где: – коэффициент нагрузки.
Сумма всех потерь асинхронного двигателя (Вт)
. (13.9)
На рис. 61 представлена энергетическая диаграмма асинхронного двигателя, из которой видно, что часть подводимой к двигателю мощности затрачивается в статоре на магнитные и электрические потери. Оставшаяся после этого электромагнитная мощность [см. (13.6)] передается на ротор где частично расходуется на электрические потери и преобразуется в полную механическую мощность . Часть мощности идет на покрытие механических и добавочных потерь , а оставшаяся часть этой мощности составляет полезную мощность двигателя.
Рис. 61. Энергетическая диаграмма асинхронного двигателя
У асинхронного двигателя КПД
. (13.10)
Электрические потери в обмотках и являются переменными потерями, так как их величина зависит от нагрузки двигателя, т. е. от значений токов в обмотках статора и ротора [см. (13.2) и (13.3)]. Переменными являются также и добавочные потери (13.8). Что же касается магнитных и механических , то они практически не зависят от нагрузки (исключение составляют двигатели, у которых с изменением нагрузки в широком диапазоне меняется частота вращения).
Коэффициент полезного действия асинхронного двигателя с изменениями нагрузки также меняет свою величину: в режиме холостого хода КПД равен нулю, а затем с ростом нагрузки он увеличивается, достигая максимума при нагрузке . При дальнейшем увеличении нагрузки КПД незначительно снижается, а при перегрузке он резко убывает, что объясняется интенсивным ростом переменных потерь , величина которых пропорциональна квадрату тока статора, и уменьшением коэффициента мощности. График зависимости КПД от нагрузки Для асинхронных двигателей имеет вид, рис. 62.
КПД трехфазных асинхронных двигателей общего назначения при номинальной нагрузке составляет: для двигателей мощностью от 1 до 10 кВт , для двигателей мощностью более 10 кВт .
Коэффициент полезного действия является одним из основных параметров асинхронного двигателя, определяющим его энергетические свойства – экономичность в процессе эксплуатации. Кроме того, КПД двигателя, а точнее величина потерь в нем, регламентирует температуру нагрева его основных частей и в первую очередь его обмотки статора. По этой причине двигатели с низким КПД (при одинаковых условиях охлаждения) работают при более высокой температуре нагрева обмотки статора, что ведет к снижению их надежности и долговечности.
poznayka.org
Индикаторные показатели рабочего цикла двигателя.
Совершенство тепловых процессов, происходящих в цилиндре реального автомобильного двигателя, оценивают по индикаторным показателям его действительного цикла.
Работа, совершаемая газами в цилиндрах двигателя, называется индикаторной работой. Индикаторная работа газов в одном цилиндре за один цикл называется работой цикла. Она может быть определена с помощью индикаторной диаграммы, построенной по результатам теплового расчета двигателя.
Среднее индикаторное давление (pi) – это условно постоянное давление на поршень в течение одного хода поршня, совершающее работу, равную индикаторной работе газов за весь цикл.
Величина pi при номинальном режиме работа двигателя достигает в карбюраторных двигателях 1,2 МПа, в дизелях – 1,0 МПа.
Тогда индикаторная работа газов в одном цилиндре за один цикл:
Li = pi Vh
Полезную работу, совершаемую газами в цилиндрах двигателя в единицу времени, называют индикаторной мощностью и обозначают Рi;.
Время цикла:
де n – частота вращения коленчатого вала, мин-1; τ – тактность двигателя (число ходов поршня за цикл).
Тогда индикаторная мощность многоцилиндрового двигателя:
Рi = (pi Vh n iЦ )/(30 τ)
где iЦ – число цилиндров в двигателе; pi , МПа; Vh , л; Рi , кВт.
Индикаторный удельный расход топлива представляет собой отношение часового расхода топлива GT к индикаторной мощности Рi :
что характеризует экономичность действительного цикла. Величина gi при номинальном режиме работы двигателя колеблется для карбюраторных двигателей в пределах 250...340 г/кВт ч, для дизелей – 175...230 г/кВт ч.
Индикаторный КПД оценивает степень использования теплоты в действительном рабочем цикле и представляет собой отношение теплоты, превращаемой в индикаторную работу Li, к теплоте, введенной в цилиндр в результате сгорания топлива:
У существующих автотракторных двигателей индикаторный КПД находится в пределах для карбюраторных двигателей 0,25...0,40, для дизелей – 0,38...0,50.
Относительный КПД представляет собой отношение индикаторного КПД к термическому КПД и определяет степень совершенства действительного цикла по отношению к теоретическому:
Существующие двигатели имеют относительный КПД 0,6...0,9.
«Автомобильные двигатели»
Эффективные показатели двигателя. Механические потери в двигателе.
Эффективным показатели позволяют оценить совершенство двигателя в целом, с учетом потерь мощности на трение и привод вспомогательных механизмов.
Развиваемая в цилиндрах индикаторная мощность Рi, не может быть использована полностью для движения автомобиля. Часть этой мощности, называемая мощностью механических потерь РМ, затрачивается в самом двигателе на преодоление трения и привод вспомогательных механизмов (механизм газораспределения, топливный, масляный и водяной насосы, вентилятор, генератор и т.д.). Мощность, равная разности мощностей Рi; и РМ, называется эффективной мощностью двигателя Ре :
Ре = Рi – РМ
Для удобства оценки механических потерь двигателя введено понятие о механическом КПД ηМ, представляющем собой отношение эффективной и индикаторной мощности:
ηМ = Ре / Рi = 1 – РМ / Рi
Механческий КПД при номинальном режиме работы карбюраторного двигателя равен 0,70...0,87, дизеля – 0,75...0,90.
Мощность РМ определяют экспериментально.
Эффективные и индикаторные показатели взаимосвязаны следующими простыми соотношениями посредством механического КПД:
эффективная мощность
Ре = Рi ηМ
среднее эффективное давление
pе = pi ηМ
эффективный КПД (позволяет оценить экономичность работы двигателя в целом)
ηе = ηi ηМ
эффективный удельный расход топлива
ge = gi / ηМ
Эффективный крутящий момент на валу при известной мощности Ре и соответствующей ей частоте вращения n вала двигателя:
где Ре , кВт; n , мин-1.
Эффективный КПД автотракторных двигателей, работающих на режиме полной мощности, находится в пределах для карбюраторных двигателей 0,2...0,3, для дизелей – 0,3...0,4. Значения эффективного удельного расхода топлива для карбюраторных двигателей составляют 290...330, для дизелей – 210...260, г/кВт ч.
Литровой мощностью называется эффективная мощность, отнесенная к 1 л рабочего объема двигателя:
Величиной литровой мощности пользуются для сравнительной оценки различных двигателей с точки зрения совершенства рабочего процесса и конструктивного выполнения: чем больше литровая мощность, тем меньше габариты и удельная масса двигателя. Литровая мощность составляет для карбюраторных двигателей 15...37, для дизелей – 6. ..22, кВт/л.
«Автомобильные двигатели»
5. Наддув автомобильных двигателей: назначение, классификация, регулирование.
Одним из наиболее эффективных мероприятий, повышающих литровую мощность двигателя, является наддув, позволяющий увеличить массу свежего заряда. В карбюраторных двигателях наддув почти не применяется из-за опасности возникновения детонации.
Влияние частоты вращения коленчатого вала n на литровую мощность двигателя необходимо оценивать по комплексному множителю n ηv ηм. При повышении частоты вращения для форсирования двигателя необходимо, чтобы этот множитель был максимальным.
Значительно более широкое распространение в мире получил наддув с турбонагнетателем, т.е. нагнетателем, приводимым турбиной, действующей на отработавших газах.
Классификация видов наддува ДВС.
Агрегатный наддув осуществляется с помощью нагнетателя. Он подразделяется на:
механический наддув, где используется компрессор, приводимый в действие от коленчатого вала двигателя;
турбонаддув, где компрессор (обычно центробежный) приводится турбиной, вращаемой выхлопными газами двигателя;
наддув «Comprex», заключающийся в использовании давления отработавших газов, действующих непосредственно на поток воздуха, подаваемого в двигатель;
электрический наддув, где используется нагнетатель, вращаемый электродвигателем;
комбинированный наддув объединяет несколько схем, как правило, речь идет о совмещении механического и турбонаддува.
Безагрегатный наддув. К нему относят:
резонансный наддув (иногда называемый инерционным или акустическим), реализуемый за счёт колебательных явлений в трубопроводах;
динамический наддув (скоростной или пассивный наддув) увеличивает давление во впускном коллекторе за счет воздухозаборников особой формы при движении с высокой скоростью;
рефрижерационный наддув достигается испарением в поступающем воздухе топлива или какой-либо другой горючей жидкости с низкой температурой кипения и большой теплотой парообразования, на автомобильных двигателях не применяется.
Механический наддув
Механический наддув позволяет легко поднять мощность двигателя. Основным элементом в такой системе является нагнетатель, приводимый непосредственно от коленчатого вала двигателя. Механический нагнетатель способен закачивать воздух в цилиндры при минимальных оборотах и без задержки, увеличивая давления наддува строго пропорционально оборотам двигателя, что является важным преимуществом подобной схемы. Однако механический наддув имеет и существенный недостаток – он отбирает на свою работу часть мощности двигателя.
В последнее время совершенствование концепций наддува идет по пути создания регулирующих систем для повышения крутящего момента при низких оборотах двигателя, а также снижения инерционности.
Существует несколько способов решения данной проблемы:
применение турбины с изменяемой геометрией;
использование двух параллельных турбонагнетателей;
использование двух последовательных турбонагнетателей;
комбинированный наддув.
Турбина с изменяемой геометрией обеспечивает оптимизацию потока отработавших газов за счет изменения площади входного канала. Турбины с изменяемой геометрией нашли широкое применение в турбонаддуве дизельных двигателей, к примеру турбонаддув двигателя «TDI» от «Volkswagen».
Система с двумя параллельными турбонагнетателями (система «biturbo») применяется в основном на мощных V-образных двигателях (по одному на каждый ряд цилиндров). Принцип работы системы основан на том, что две маленькие турбины обладают меньшей инерцией, чем одна большая.
При установке на двигатель двух последовательных турбин (система «twin-turbo») максимальная производительность системы достигается за счет использования разных турбонагнетателей на разных оборотах двигателя.
Комбинированный наддув объединяет механический и турбонаддув. На низких оборотах коленчатого вала двигателя сжатие воздуха обеспечивает механический компрессор. С ростом оборотов подхватывает турбонагнетатель, а механический компрессор отключается. Примером такой системы является двойной наддув двигателя «TSI» от «Volkswagen».
После отказа от карбюраторов и переходе на электронный впрыск топлива особенно эффективным стал турбонаддув на бензиновых двигателях. Здесь уже достигнута впечатляющая топливная экономичность.
В целом же, следует признать, что турбонаддув, увеличивая тепловые и механические нагрузки, заставляет вводить в конструкцию ряд упрочненных узлов, усложняющих двигатель как в производстве, так и при техническом обслуживании.
«Автомобильные двигатели»
6. Экологические показатели автомобильных двигателей. Основные способы снижения токсичности и дымности отработавших газов.
В результате протекания химических реакций углеводородов топлива с воздухом, наряду с основными составляющими продуктов полного сгорания, образуется ряд токсических компонентов: оксиды азота NOx, оксид углерода CO, сажа, углеводороды CH, альдегиды, канцерогенные вещества, соединения серы, свинца. Состав и количество токсичных веществ зависят от характера осуществления процесса подготовки топливовоздушной смеси и ее сгорания в цилиндре.
Кроме токсических составляющих отработавших газов в атмосферу в двигателях с искровым зажиганием выбрасываются картерные газы, а также пары бензина из бака и карбюратора, что увеличивает количество удаляемых в атмосферу углеводородов.
Количество оксидов азота, образующихся при сгорании горючей смеси, определяется концентрацией атомарного кислорода и азота, а также температурой, поэтому росту концентрации NOx в ОГ способствует: применение неразделенных камер сгорания в дизелях, увеличение степени сжатия двигателя, увеличение угла опережения впрыскивания (зажигания) и др. факторы повышающие температуру сгорания и коэффициент избытка воздуха.
Оксид углерода образуется главным образом при сгорании топлива с недостатком кислорода. Так как дизельные двигатели на номинальных режимах работают при α > 1, выбросы CO у них незначительны. К росту CO в частности приводит: переобогащение смеси в бензиновых двигателях из-за нарушения регулировки карбюратора, увеличение нагрузки двигателя и низкая частота вращения коленчатого вала из-за ухудшения смесеобразования и сгорания.
Сажа представляет собой частицы твердых углеродистых продуктов с содержанием чистого углерода до 99%. Сажа образуется при температурах выше 1500 К в результате процесса термического разложения топлива (пиролиза) при сильном недостатке кислорода (α < 0,3–0,7). Такие условия возникают в дизелях вследствие неоднородности состава смеси, когда к зонам пламени с высокой температурой примыкают зоны с малой концентрацией кислорода . На такте расширения часть образовавшейся сажи выгорает в турбулентном пламени.
Поскольку в цилиндре карбюраторного двигателя сгорает гомогенная смесь при α > 0,7, сажа образуется в ничтожных количествах.
Дымность дизелей увеличивается при применении неразделенных камер сгорания, увеличении нагрузки, уменьшении угла опережения впрыска, а также резко возрастает при разгоне двигателя.
Углеводороды являются продуктами неполного сгорания или разложения молекул топлива, поэтому факторы, влияющие на содержания CO в основном влияют и на CH. В двигателях с воспламенением от искры концентрация CH растет так же при наличии пропусков воспламенения. В дизелях молекулы CH образуются при пиролизе.
Уменьшению токсичности и дымности ОГ поршневых двигателей внутреннего сгорания способствуют различные технические мероприятия, проводимые как на этапе конструирования так и эксплуатации двигателей:
– совершенствование процессов смесеобразования и сгорания на основе применения систем впрыска бензина и дизельного топлива с микропроцессорным управлением;
– установка в системе выпуска трехкомпонентных нейтрализаторов, которые нейтрализуют NOx, CO, CH в бензиновом двигателе;
– введение рециркуляции отработавших газов посредством перепуска ОГ из системы выпуска во впускную систему, что снижает выбросы NOx в бензиновых и дизельных двигателях; в современных дизелях с аккумуляторной системой впрыскивания этот прием совместно с охлаждением рециркулирующих газов снижает NOx и дымность ОГ при неизменном расходе топлива;
– введение системы улавливания паров бензина;
– управление углом опережения зажигания и углом опережения впрыскивания дизельного топлива;
– применение плазменных дожигателей в системе выпуска дизельных двигателей;
– улучшение состава топлива и добавление к нему специальных присадок;
– поддержание технического состояния двигателя и его регулировок по рекомендации завода-изготовителя.
Наряду с загрязнением атмосферы следствием автомобилизации стал транспортный шум, основным источником которого является двигатель.
Шум двигателя складывается из шума процессов впуска, сгорания и выпуска, шума от колебания наружных стенок двигателя и колебаний двигателя на подвеске, шума агрегатов (вентилятор, насосы и др.).
На шум двигателя существенно влияет организация рабочего процесса и такие показатели, как максимальное давление цикла и скорость нарастания давления. Шум впуска и выпуска снижают установкой глушителей. Применение конструкционных материалов с наличием внутреннего трения снижает шум при деформациях стенок. В современных силовых установках применяют также звукоизолирующие экраны и капсулы.
«Автомобильные двигатели»
7. Характеристики автомобильных двигателей. Внешние ичастичные скоростные характеристики карбюраторного и дизельного двигателей. Коэффициент запаса крутящего момента.
Для оценки мощностных и экономических показателей двигателя при его работе в различных условиях пользуются характеристиками двигателя.
Характеристикой двигателя называется зависимость основных показателей его работы (мощности, крутящего момента, расхода топлива) от одного из параметров режима работы (частоты вращения коленчатого вала, нагрузки и др.).
Основные характеристики автомобильных двигателей определяются ГОСТ 14846-81 «Двигатели автомобильные. Методы стендовых испытаний».
Скоростная характеристика двигателя представляет собой графическую зависимость основных эффективных показателей его работы Ре , Ме, GТ и ge от частоты вращения коленчатого вала при постоянном положении дроссельной заслонки (или рейки топливного насоса) и установившемся тепловом состоянии.
Скоростная характеристика, полученная при полной подаче топлива (полностью открытая дроссельная заслонка или соответствующее положение рейки топливного насоса дизеля) и углах опережения зажигания или начала впрыскивания топлива по техническим условиям на двигатель, называется внешней характеристикой двигателя.
Характеристики, соответствующие постоянным промежуточным положениям дроссельной заслонки или рейки топливного насоса, называются частичными скоростными характеристиками двигателя.
Внешние скоростные характеристики карбюраторного двигателя и дизеля приведены соответственно на Рис. 11.1.
Скоростную характеристику реального двигателя строят по результатам стендовых испытаний. Вал работающего двигателя нагружают с помощью тормоза, обеспечивая фиксирование частоты вращения от минимально устойчивой до максимально допустимой. При этом на каждой частоте замеряют тормозной момент МТ в Нм и часовой расход топлива в кг/ч. По результатам испытаний строят кривые зависимости эффективного крутящего момента (Ме = МТ) и часового расхода топлива GT от частоты вращения вала двигателя n. Для построения графиков эффективной мощности Peи удельного расхода топлива ge используют формулы:
Pe = n Me / 9550, кВт;
ge = GT / Pe, кг/кВт ч
где n, мин-1; Me, Нм.
Рис.11.1
Характер кривой Me обусловлен изменением среднего эффективного давления pe. При полной подаче топлива наибольшее давление pe, а значит, и наибольшее значение Me получают при средних частотах вращения коленчатого вала. С понижением и повышением частоты величина pe уменьшается вследствие ухудшения газообмена, а также больших потерь: тепловых при низких частотах вращения и механических при высоких.
Характер кривой Pe скоростной характеристики обусловливается тем, что эффективная мощность прямо пропорциональна не только давлению pe, но и частоте вращения n. Мощность Pe возрастает до тех пор, пока увеличение частоты вращения компенсирует падение pe.
На скоростной характеристике различают следующие частоты вращения коленчатого вала:
nmin – минимальная частота вращения, при которой возможна устойчивая работа двигателя при полной подаче топлива;
nM – частота вращения, соответствующая максимальному крутящему моменту;
nP – частота вращения, соответствующая максимальной мощности двигателя;
nmax – максимально возможная частота вращения коленчатого вала, устанавливаемая ограничителем (карбюраторный двигатель) или регулятором частоты вращения (дизель).
На скоростной характеристике дизеля (см. Рис. 11.1) в интервале частот вращения nP – nmax показаны регуляторные ветви характеристики.
Приспособляемость двигателя к изменению нагрузки оценивается с помощью коэффициента приспособляемости:
k = Memax / MeP,
или коэффициента запаса крутящего момента:
μ = (Memax – MeP ) 100% / MeP
В карбюраторных двигателях k = 1,25...1,35, в дизелях – 1,05...1.2. Коэффициент приспособляемости характеризует способность двигателя преодолевать кратковременные перегрузки без переключения передач.
«Автомобильные двигатели»
megaobuchalka.ru
Индикаторная мощность, развиваемая тепловым двигателем, не может быть в полной мере реализована из-за потерь на преодоление трения и на привод вспомогательных механизмов, но, чтобы улучшить топливную экономичность двигателя, необходимо точно знать все эти потери. Для удобства их оценки введено понятие механического КПД ηm.
Механический КПД Отношение эффективной мощности двигателя к индикаторной.Наиболее значительная часть потерь вызвана трением в цилиндре, меньшая – трением в хорошо смазываемых подшипниках и приводом необходимого для работы двигателя оборудования. Потери, связанные с поступлением воздуха в двигатель (насосные потери), весьма важны, так как они возрастают пропорционально квадрату частоты вращения двигателя.
Потери мощности, необходимые для привода оборудования, обеспечивающего работу двигателя, включают мощность на привод механизма газораспределения, масляного, водяного и топливного насосов, вентилятора системы охлаждения. При воздушном охлаждении вентилятор подачи воздуха является неотъемлемым элементом двигателя при его испытаниях на стенде, в то время как у двигателей жидкостного охлаждения при проведении испытаний вентилятор и радиатор часто отсутствуют, а для охлаждения используют воду из внешнего контура охлаждения. Если потребляемую мощность вентилятора двигателя жидкостного охлаждения не учитывать, то это дает заметное завышение его экономических и мощностных показателей по сравнению с двигателем воздушного охлаждения.
Другие потери на привод оборудования связаны с генератором, пневмокомпрессором, гидронасосами, необходимыми для освещения, обеспечения работы приборов, тормозной системы, рулевого управления автомобиля. При испытании двигателя на тормозном стенде следует точно определить, что считать дополнительным оборудованием и как его нагружать, поскольку это необходимо для объективного сопоставления характеристик разных двигателей. В частности, это относится к системе охлаждения масла, которое при движении автомобиля охлаждается обдувом масляного поддона воздухом, отсутствующим при испытаниях на тормозном стенде. При испытании на стенде двигателя без вентилятора не воспроизводятся условия обдува трубопроводов воздухом, что вызывает повышение температур во впускной трубе и ведет к уменьшению величины коэффициента наполнения и мощности двигателя.
Размещение воздушного фильтра и величина сопротивления выпускного трубопровода должны соответствовать реальным условиям работы двигателя в автомобиле. Эти важные особенности необходимо учитывать при сопоставлении характеристик различных двигателей или одного двигателя, предназначенного для применения в различных условиях, например, в легковом или грузовом автомобиле, тракторе или для привода стационарного генератора, компрессора и т. д.
Бензиновый ДВС, четырёхтактный | 0,75 – 0,90 |
Дизельный ДВС, четырёхтактный | 0,70 – 0,85 |
Двигатель типа Рикардо с гильзовым газораспределением | до 0,92 |
Поршневой, бесшатунный ДВС | до 0,94 |
Двигатель Ванкеля | до 0,92  |
Роторно-лопастной двигатель (РЛД) | 0,65 – 0,95 |
Примечание. Подробнее о механических потерях в бензиновом и дизельном двигателяхв статье «Сравнение механических потерь в бензиновом и дизельном двигателях». |
При уменьшении нагрузки двигателя его механический КПД ухудшается, так как абсолютная величина большинства потерь не зависит от нагрузки. Наглядным примером служит работа двигателя без нагрузки, т. е. на холостом ходу, когда механический КПД равен нулю и вся индикаторная мощность двигателя расходуется на преодоление его потерь. При нагрузке двигателя на 50% или менее удельный расход топлива по сравнению с полной нагрузкой значительно возрастает, и поэтому использовать для привода двигатель, имеющий большую, чем это требуется, мощность, совершенно неэкономично.
Механический КПД двигателя зависит от типа используемого масла. Применение в зимнее время масел повышенной вязкости приводит к росту расхода топлива. Мощность двигателя при больших высотах над уровнем моря падает вследствие уменьшения давления атмосферы, однако его потери практически не меняются, вследствие чего удельный расход топлива возрастает аналогично тому, как это имеет место при частичной нагрузке двигателя.
Стоит заметить, что высокий механический КПД не является гарантией высокого эффективного КПД двигателя.
Последнее обновление 02.03.2012Опубликовано 17.02.2011icarbio.ru
В электронном движке при преобразовании 1-го вида энергии в другой часть энергии пропадает в виде теплоты, рассеиваемой в разных частях мотора. В электронных движках имеются энергопотери 3-х видов: утраты в обмотках, утраты в стали и механические утраты. Не считая того, имеются малозначительные дополнительные утраты.
Энергопотери в асинхронном движке разглядим с помощью его энергетической диаграммы (рис. 1). На диаграмме Р1 — мощность, подводимая к статору мотора из сети. Основная часть Рэм этой мощности, за вычетом утрат в статоре, передается электрическим методом на ротор через зазор. Рэм именуется электрической мощностью.
Рис. 1. Энергетическая диаграмма мотора
Утраты мощности в статоре складываются из утрат мощности в его обмотке Pоб1 = m1 х r1 х I12 и утрат в стали Pс1. Мощность Pс1 является потерями на вихревые токи и на перемагничивание сердечника статора.
Утраты в стали имеются и в сердечнике ротора асинхронного мотора, но они невелики и могут не приниматься во внимание. Это разъясняется тем, что скорость вращения магнитного потока относительно статора n0 во много раз больше скорости вращения магнитного потока относительно ротора n0 — n, если скорость вращения ротора асинхронного мотора n соответствует устойчивой части естественной механической свойства.
Механическая мощность асинхронного мотора Рмх, развиваемая на валу ротора, меньше электрической мощности Рэм на значение мощности Pоб2 утрат в обмотке ротора:
Рмх = Рэм — Pоб2
Мощность на валу мотора:
Р2 = Рмх — pмх,
где pмх — мощность механических утрат, равная сумме утрат на трение в подшипниках, на трение крутящихся частей о воздух (вентиляционные утраты) и на трение щеток о кольца (для движков с фазным ротором).
Электрическая и механическая мощности равны:
Рэм = ω0M, Рмх = ωM,
где ω0 и ω — синхронная скорость и скорость вращения ротора мотора; М — момент, развиваемый движком, т. е. момент, с которым крутящееся магнитное поле действует на ротор.
Из этих выражений следует, что мощность утрат в обмотке ротора:
либо Pоб2 = s х Pэм
В случаях, когда понятно активное сопротивление г2 фазы обмотки ротора, утраты в этой обмотке могут быть найдены также из выражения Pоб2 = m2х r2х I22.
В асинхронных электродвигателях имеются также дополнительные утраты, обусловленные зубчатостью ротора и статора, вихревыми токами в разных конструктивных узлах мотора и другими причинами. При полной нагрузке мотора утраты Pд принимаются равными 0,5% его номинальной мощности.
Коэффициент полезного деяния (КПД) асинхронного мотора:
η = P2 / P1 = (P1 — (Pоб — Pс — Pмх — Pд)) / P1,
где Роб =Pоб1 + Роб2 — суммарная мощность утрат в обмотках статора и ротора асинхронного мотора.
Так как общие утраты зависят от нагрузки, то и КПД асинхронного мотора является функцией нагрузки.
На рис. 2, а дана кривая η = f(Р/Рном), где Р/Рном — относительная мощность.
Рис. 2. Рабочие свойства асинхронного мотора
Асинхронный электродвигатель конструируется так, чтоб максимум ее коэффициента полезного деяния ηmax имел место при нагрузке, несколько наименьшей номинальной. КПД мотора довольно высок и в широком спектре нагрузок (рис. 2, а). Для большинства современных асинхронных движков КПД имеет значение 80 — 90%, а для массивных движков 90—96%.
Школа для электрика
elektrica.info
Преобразование энергии в синхронной машине связано с потерями энергии. Все виды потерь в см разделяются на основные и добавочные.
Основные потери в см слагаются из электрических потерь в обмотке статора, потерь на возбуждение, магнитных и механических потерь.
Электрические потери в обмотке статора: , где r1 – активное сопротивление одной фазы обмотки статора при расчетной рабочей температуре.
Потери на возбуждение:
1) При возбуждении от отдельного возбудительного устройства
где rв – активное сопротивление обмотки возбуждения, - падение напряжения в контакте щеток.
2) При возбуждении от генератора постоянного тока, сочлененного с валом см.
Магнитные потери синхронной машины происходят в сердечнике статора, который подвержен перемагничиванию вращающимся магнитным полем. Эти потери состоят из потерь от гистерезиса Рг и вихревых токов Рв.т.
Механические потери, равные сумме потерь на трение в подшипниках и потерь на вентиляцию. , где v2 – окружная скорость на поверхности полюсного наконечника ротора, l1 – конструктивная длинна сердечника статора.
Добавочные потери в синхронных машинах разделяются на два типа: пульсационные потери в полюсных наконечника ротора и потери при нагрузке.
Добавочные потери при нагрузке Рдоб в синхронных машинах определяют в % от подводимой мощности двигателей или от полезной мощности генераторов. Для синхронных машин мощностью до 1000 кВт добавочные потери 0,5%, а для см мощностью > 1000 кВт – от 0,25 до 0,4%.
Добавочные пульсационные потери Рп в полюсных наконечниках ротора обусловлены пульсацией магнитной индукции в зазоре из-за зубчатости внутренней поверхности статора.
Суммарные потери в синхронной машине
Коэффициент полезного действия:
для синхронного генератора ,
где - активная мощность, отбираемая от генератора при его номинальной нагрузке.
для синхронного двигателя
poznayka.org