ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Камера сгорания двигателя внутреннего сгорания. Камера сгорания двс это


Камера сгорания двигателя внутреннего сгорания

 

Сущность изобретения: камера сгорания двигателя ограничена днищем поршня 1, цилиндром 2 и его головкой 3 и снабжена теплоизолирующим керамическим покрытием 4, на которое нанесен наружный контактирующий с рабочими газами теплопередающий слой 5 металла. В качестве слоя 5 металла использован высокотемпературопроводный металл (медь, серебро). 1 з.п. ф-лы, 1 ил.

Изобретение относится к области двигателестроения, в частности к камерам сгорания с теплоизоляцией.

Известна камера сгорания, обеспечивающая уменьшение потерь теплоты через стенки. Для этого днище и боковые поверхности поршня над верхним поршневым кольцом имеют керамическое покрытие. В верхнюю часть гильзы цилиндра также установлена керамическая втулка, размер и положение которой совпадают с изолированной боковой поверхностью поршня при его положении в верхней мертвой точке (ВМТ). Керамическое покрытие нанесено и на огневое днище головки цилиндра. Но как показывает практика, применение в качестве теплоизолятора самых различных керамических материалов даже с очень малой теплопроводностью не позволяет достигнуть существенного снижения потерь тепловой энергии в стенки камеры сгорания. Более того, из-за увеличения температуры стенок ухудшаются условия смесеобразования и горения. В итоге, вместо снижения удельного расхода топлива зачастую наблюдается обратный эффект - ухудшение топливной экономичности. Наиболее близким техническим решением является камера сгорания, у которой часть поверхности в днище поршня снабжается теплоизолирующим керамическим покрытием, на которое наносится слой металла, обладающего высокой теплоемкостью. Известное решение принято за прототип. Однако такое техническое решение не позволяет снизить количество тепловой энергии, теряемой в стенки камеры сгорания, хотя несколько снижает температуру стенок камер сгорания в процессе впрыска топлива и горения топливной смеси. Такая ситуация, заключающаяся в том, что применение теплоизолирующих материалов не приводит к существенному снижению количества тепловой энергии, передаваемого через стенки камеры сгорания, обусловлена особенностями протекания теплообменных процессов в камерах сгорания двигателей. Особенность протекания теплообменных процессов в известной камере сгорания, принятой за прототип, и подобных камерах с теплоизолированными стенками заключается в следующем: пусть поршень находится вблизи верхней мертвой точки (ВМТ) и закончился процесс тепловыделения, при этом температура рабочих газов максимальна. В этот момент интенсивность теплоотдачи на границе стенка-рабочие газы и температурный напор между стенкой и рабочими газами максимальны, и в этой связи в данный момент тепловой поток за время всего цикла максимальный. Теплопередача теплопроводностью в стенках деталей камеры сгорания даже при использовании материалов, обладающих высокой теплопроводностью, таких как алюминий и его сплавы, не говоря уже о теплоизоляторах, ограничена, и меньше поступающего от газов максимального теплового потока, что приводит к разогреву поверхностных слоев стенок, контактирующих с рабочими газами. При этом чем больше температуропроводность материала стенок (под которой понимается комплекс теплофизических свойств, равный
/
c, где - теплопроводность, - плотность, с - теплоемкость), тем более интенсивно происходит рост температуры прилегающих к газам слоев стенок. Поэтому из-за резкого уменьшения температурного напора между рабочими газами и стенками меньшее количество тепловой энергии будет отводиться от стенки. По мере движения поршня вниз на такте расширения температурный напор и интенсивность теплоотдачи между рабочими газами и стенками, образующими камеру сгорания, одновременно падают, что обусловливают резкое снижение плотности теплового потока, поступающего в стенки деталей камеры сгорания. Примерно такие же плотности теплового потока будут наблюдаться и на такте выпуска. На этих тактах будет наблюдаться картина, приближающаяся к равновесию между тепловой энергией, поступающей от рабочих газов и теплоотводом от стенок камеры сгорания за счет теплопроводности. При выполнении стенок из теплопроводных материалов теплосток со стенок камеры сгорания в систему охлаждения будет превышать теплоподвод от рабочих газов и температура стенок будет уменьшаться. На такте впуска теплоотдача от газов к стенкам мала, а температурный напор между газами и стенками камеры сгорания, особенно при применении теплоизоляционных слоев, будет иметь отрицательные значения, т. е. принципиально возможна ситуация, когда тепловой поток на стенках принимает отрицательное направление, т. е. стенки передают тепловую энергию обратно газам. Возврат тепловой энергии газам может иметь место и на начальном этапе такта сжатия. Интенсивность возврата тепловой энергии в цикл определяется уровнем температур стенок, температуропроводностью материалов стенок, интенсивностью теплообмена на границе газ-стенка. В техническом решении, принятом за прототип, рабочие газы контактируют со слоем металла, обладающего высокой теплоемкостью. Однако материалы, обладающие высокими значениями теплоемкости, имеют низкие значения температуропроводности, поэтому нанесение на теплоизоляционный слой слоя металла, обладающего высокой теплоемкостью, не позволит как уменьшить до минимальных значений тепловой поток, передаваемый в стенки при максимальных температурах рабочего газа, так и возвратить в цикл сколь-нибудь значительное количество тепла на тактах впуска и начального сжатия, т.е. в конечном итоге улучшить топливную экономичность. Цель изобретения - повышение топливной экономичности путем уменьшения количества тепла, теряемого рабочими газами в стенки камеры сгорания за цикл. Поставленная цель достигается тем, что камера сгорания двигателя внутреннего сгорания, ограниченная днищем поршня, втулкой и головкой цилиндра, поверхность которой снабжена теплоизолирующим слоем, на который нанесен дополнительный, контактирующий с рабочими газами теплопередающий слой, который выполнен из материала с высокой температуропроводностью. Сопоставительный анализ заявляемого решения с известным решением показывает, что в предлагаемой камере сгорания двигателя внутреннего сгорания дополнительный теплопередающий слой материала, нанесенный на теплоизолирующий, например, керамический слой, выполнен из высокотемпературного материала, металла с высокими значениями тепло- и электропроводности и низкой теплоемкостью (медь, серебро). Выполнение дополнительного слоя из материала с высокой температуропроводностью позволяет улучшить топливную экономичность за счет сохранения в цикле части тепловой энергии, теряемой ранее в стенки камеры сгорания. Этот эффект обусловлен тем, что, во-первых, при максимальных параметрах рабочих газов при горении топливной смеси и начального расширения из-за существенного уменьшения температурного напора между стенками и рабочими газами (вследствие интенсивного прогрева дополнительного слоя) количество тепловой энергии, воспринятого стенками, заметно уменьшится, во-вторых, из-за возврата этим слоем части тепловой энергии рабочим газам на последней стадии расширения, тактах выпуска и впуска и начальной стадии сжатия. На чертеже представлена камера сгорания, продольный разрез. Камера сгорания двигателя образована днищем поршня 1, цилиндром 2 и его головкой 3 и содержит на этих деталях теплоизолирующий керамический слой 4, на который нанесен наружный слой 5 высокотемпературопроводного металла (медь, серебро), который контактирует с рабочими газами. При работе двигателя с предлагаемой камерой сгорания при нахождении поршня 1 вблизи ВМТ на конечной стадии сжатия, тепловыделения и начальной стадии расширения слой 5 на поршне 1, цилиндр 2 и головка 3 из-за высокой температуропроводности металла, из которого он выполнен, и малого теплостока с него из-за наличия теплоизолирующего слоя 4 будет интенсивно разогреваться, следуя за температурой рабочих газов. Вследствие малого температурного напора между наружным слоем 5 и рабочими газами, тепловой поток в стенки предлагаемой камеры сгорания на этих стадиях будет существенно уменьшен по сравнению с известными решениями. На конечной стадии расширения, на тактах выпуска, впуска и начальной стадии сжатия накопленная слоем 5 с высокой температуропроводностью высокопотенциальная, т.е. с высоким уровнем температур, тепловая энергия будет возвращаться рабочим газам, что обусловлено достаточно высоким уровнем температуp слоя 5 и его высокой температуропроводностью. Предлагаемая камера сгорания применима в любом типе двигателя, но наиболее эффективна в высокофорсированных турбокомпаудных двигателях с системами утилизации тепловой энергии отработавших газов. Использование предлагаемой камеры сгорания ДВС обеспечивает по сравнению с существующими следующие преимущества: уменьшение теплового потока от рабочих газов в стенки на стадиях тепловыделения и начального расширения, возврат стенками значительной части тепловой энергии рабочим газам в заключительной стадии расширения, на тактах выпуска и впуска и на начальной стадии сжатия. Отмеченные преимущества в итоге позволяют улучшить топливную экономичность ДВС.

Формула изобретения

1. КАМЕРА СГОРАНИЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ, ограниченная цилиндром, его головкой и днищем поршня и снабженная теплоизолирующим керамическим покрытием, на которое нанесен наружный теплопередающий слой металла, отличающаяся тем, что, с целью повышения топливной экономичности, в качестве металла теплопередающего слоя использован высокотемпературопроводный металл. 2. Камера по п.1, отличающаяся тем, что в качестве высокотемпературопроводного металла использованы медь или серебро.

РИСУНКИ

Рисунок 1

www.findpatent.ru

Форма камеры сгорания и размещения свечи

Степень сжатия. С увеличением степени сжатия повышается термический КПД цикла. Возрастают давление и температура в конце сжатия, что способствует ускорению подготовки топлива к сгоранию, увеличению скорости распространения

фронта пламени и сокращению общей продолжительности процесса сгорания. Это способствует улучшению показателей работы двигателя. Однако для увеличения степени сжатия необходимо уменьшать объем камеры сгорания, поэтому отношение площади F ^ поверхности камеры сгорания к ее объему V ^ становится больше, относительное количество рабочей смеси, прилегает к стенкам камеры сгорания, растет. Пристеночное слои рабочей смеси охлаждаются и скорость сгорания их замедляется, что приводит к увеличению продолжительности третьей фазы сгорания. Таким образом, увеличение степени сжатия положительно влияет в основном на термический КПД. Повышение степени сжатия в двигателях с искровым зажиганием ограничивается возникновением детонационного сгорания. Кроме того, при повышении степени сжатия возрастает токсичность отработав газов. Поэтому в современных двигателях степень сжатия не делают более 9,5. Нужно учитывать, что с повышением степени сжатия возрастает нагрузка на кривошипно-шатунный механизм, поэтому необходимо увеличивать размеры и массы его деталей. Основное требование к камере сгорания двигателя с искровым зажиганием-обеспечение процесса сгорания без детонации при как можно большей степени сжатия. Для этого отношение площади поверхности камеры сгорания к ее объему должно быть минимальным; должно обеспечиваться достаточное завихрения свежего заряда; свеча зажигания должна размещаться близко к наиболее нагретых участков камеры и близко к ее центру, чтобы путь фронта пламени был как можно короче. Форма камеры сгорания существенно зависит от расположения клапанов: нижнего или верхнего. На первых двигателях широко применялось нижнее расположение клапанов (рис. 4.22, а). В камере сгорания с таким расположением клапанов обеспечивается интенсивный вихревое движение рабочей смеси в сторону свечи зажигания результате выдавливания ее из зазора между поршнем и головкой цилиндра в конце сжатия. Однако в таких камерах сгорания большая поверхность теплоотвода и в настоящее время они полностью вытеснены камерами сгорания с верхним расположением клапанов.

 

Наилучшей формой камеры сгорания является полусферическая (рис. 4.22, б). Она имеет наименьшее отношение FK.3 / ¥ к.з и кратчайший путь фронта пламени в бу-дьяки удаленной части камеры. С помощью вытеснителей на поршне, за-ширмлення впускного клапана и тангенциально расположения впускных каналов в полусферических камерах можно обеспечить хорошую турбулентность рабочей смеси. Однако для таких камер сгорания нужен затруднен привод клапанов, которые располагаются в два ряда, увеличивается ширина верхней части двигателя. Близка к ней по свойствам шатровая камера (рис. 4.22, в), в которой клапаны расположены в один ряд, что упрощает конструкцию привода клапанов. В более совершенных модификациях напивклиновои камеры объем камеры сгорания частично расположен в днище поршня (рис. 4.22, ж). Дальнейшим развитием таких камер является линзовидную камеры сгорания, состоящие из двух сферических сегментов, один из которых выполнен в головке цилиндра, а второй-в днище поршня.

 

Сейчас распространяется применение автомобильных двигателей с тремя, четырьмя и пятью клапанами в каждом цилиндре. Увеличение количества клапанов способствует улучшению процесса сгорания, повышению антидетонационных свойств камеры сгорания, улучшению наполнения цилиндров свежим зарядом, снижению токсичности отработавших газов.

 

На двигателях с большим диаметром цилиндров иногда устанавливают по две свечи зажигания на цилиндр, зажигают смесь с двух сторон, благодаря чему путь фронта пламени сокращается вдвое. Две свечи целесообразно применять в газовых двигателях, потому что газовоздушные смеси горят медленнее, чем бе-нзиноповитряни.

 

Энергия искрового разряда. Увеличение энергии искрового разряда повышает надежность зажигания и сокращает первую фазу сгорания. Однако этот положительный эффект можно наблюдать только до определенного момента, после которого последующее увеличение энергии разряда не дает значительного результата.

worldofscience.ru

Камера сгорания двигателя внутреннего сгорания

 

Использование: в производстве двигателей внутреннего сгорания. Сущность изобретения: камера сгорания образована дном поршня 1, головкой 2 цилиндра 3 и содержит на этих деталях теплоизолирующий керамический слой 4, на которой нанесен теплоаккумулирующий и теплопередающий слой 5 высокотемпературного с высокой теплоемкостью металла, имеющего рифленную рабочую поверхность, покрытую слоем 6 из высокотемпературопроводного металла, другая поверхность слоя 5 снабжена теплоотражателем 7. Изобретение обеспечивает: повышение топливной экономичности, переход на нетрадиционные виды топлива, например воду, снижение и исключение выбросов в атмосферу вредных газов. 1 ил.

Изобретение относится к области двигателестроения, в частности к камерам сгорания с теплоизоляцией.

Известна камера сгорания, у которой поверхность и дно поршня снабжены теплоизолирующим керамическим покрытием с нанесенным на ее поверхность слоем металла, обладающим высокой теплоемкостью [1]. Такое техническое решение несколько снижает количество тепловой энергии, получаемой деталями двигателя: цилиндром, головкой цилиндра, поршнем, а тепловая передача, запасенная слоем металла с высокой теплоемкостью, передается порцией свежего заряда, несколько повышая топливную экономичность, однако сколько-нибудь значительной топливной экономичности такое решение не позволяет обеспечить, т.к. интенсивность возврата тепловой энергии определяется уровнем температуры стенок, температуропроводностью материала стенок, интенсивностью теплообмена на границе рабочие газы - стенка, а материалы, обладающие высокими значениями теплоемкости, имеют низкие значения температуропроводности, следовательно, и низкой отдачи тепла свежему заряду. Наиболее близким техническим решением является камера сгорания [2], ограниченная дном поршня, цилиндром, его головкой и снабженная теплоизолирующим керамическим покрытием, на которое нанесен наружный контактирующий с рабочими газами теплопередающий слой из высокотемпературопроводного металла. Такое техническое решение не позволяет существенным образом повысить температуру камеры сгорания и максимальным значением отдать тепло свежему заряду, ведь интенсивность возврата тепловой энергии определяется уровнем температуры стенок, температуропроводностью материалов стенки, интенсивностью теплообмена на границе поверхность стенок - газ. В техническом решении, принятом за прототип, рабочие газы контактируют со слоем металла, обладающего высокой температуропроводностью, нагрев камеры сгорания осуществляется за счет теплового излучения горящих газов и поверхностью контактирования рабочих газов со стенками камеры сгорания. Покрытая высокотемпературопроводным материалом камеры быстро нагревается, но также быстро отдает тепло газам на такте выхлопа и не позволяет аккумулировать тепло для увеличения температуры, а поверхность такой камеры не способствует увеличению съема тепла и его отдачи свежему заряду. В целом такая камера хоть и повышает температуру, но недостаточна для существенного улучшения тепловой экономичности и не создает температурных условий для перехода на нетрадиционные виды топлива. Новым техническим результатом является максимальное увеличение температуры стенок камеры сгорания, эффективный съем тепла свежим зарядом и возможностью использования нетрадиционных видов топлива, например воды. Результат достигается тем, что камера сгорания двигателя внутреннего сгорания, ограниченная дном поршня, головкой цилиндра и снабженная теплоизолирующим керамическим слоем, на который нанесен теплоаккумулирующий и теплопередающий слой, выполненный из высокотемпературного с высокой теплоемкостью металла, одна поверхность которого, контактирующая с рабочими газами, выполнена с глубоким рифлением и покрыта слоем высокотемпературопроводным металлом, другая, контактирующая с теплоизолирующим керамическим слоем, снабжена теплоотражателем. Такое выполнение позволяет значительно улучшить топливную экономичность за счет аккумулирования тепловой энергии. Эффект объясняется тем, что, по-первых, при горении топливной смеси осуществляется максимальный отбор тепловой энергии за счет интенсивного нагрева поверхностного слоя с высокой теплопроводностью и увеличенной рифленой поверхностью; во-вторых, теплоотражатель не только ограничивает теплоблок в стенки двигателя, но и аккумулирует тепловую энергию в высокотемпературном с высокой теплоемкостью слое металла, а за счет рифленой поверхности камера сгорания вследствие более интенсивного теплообмена на границе поверхность стенок - газ отдача тепловой энергии свежему заряду значительно возрастает; в-третьих, значительное повышение температуры стенок камеры сгорания позволяет перейти на нетрадиционные виды топлива; в-четвертых, слабый теплосток в стенке двигателя снижает его температуру. Сущность предлагаемого изобретения поясняется чертежом камеры сгорания в продольном разрезе. Камера сгорания ДВС образована дном поршня 1, головкой 2 цилиндра 3 и содержит на этих деталях теплоизолирующий керамический слой 4, на который нанесен теплоаккумулирующий и теплопередающий слой 5 высокотемпературного с высокой теплоемкостью металла, имеющего рифленую рабочую поверхность, покрытую слоем 6 из высокотемпературопроводного металла, другая поверхность слоя 5 снабжена теплоотражателем 7. При работе двигателя с предлагаемой камерой сгорания при нахождении поршня 1 вблизи мертвой точки на конечной стадии сжатия свежего заряда, его воспламенения и начального максимального тепловыделения высокотемпературопроводный слой 6, имея глубокорифленую поверхность, будет интенсивно нагреваться, следуя за температурой рабочего газа, и интенсивно передавать тепло в слой 5, высокотемпературный и с высокой теплоемкостью, а теплоотражатель 7 возвращает тепловую энергию в слой 5, существенным образом уменьшая тепловой сток в стенки двигателя. Тепловая энергия, таким образом, накапливается камерой сгорания за каждый цикл работы двигателя. Естественно, что с каждым циклом будет повышаться температура камеры сгорания. Свежий заряд, попадая в камеру сгорания, интенсивно нагревается как за счет увеличенной (минимум в 1,5-2 раза) рифленой поверхности слоя 6, так и за счет высокого уровня температуры этого же слоя с высокой температуропроводностью. При достижении камерой сгорания наивысшей температуры (порядка 950oC) может осуществляться впрыск воды. При высокой температуре вода разлагается на кислород и водород, и этим обеспечивается наивысшая топливная экономичность и экологичность двигателя. Наконец, в работе двигателя наступает тепловой баланс, при котором уравнивается теплоотдача горящих газов и отвод тепла стенками двигателя, ротор тепла свежим зарядом и отвод тепла газами на выхлопе. Форма рифленой поверхности может быть пирамидальной, как наиболее технологичной в изготовлении, а камера сгорания может иметь датчик температуры (термопару) для управления и регулирования режима работы двигателя. Использование предлагаемой камеры сгорания ДВС обеспечивает по сравнению с существующими следующие преимущества: максимальное увеличение температуры камеры сгорания за счет аккумулирования тепловой энергии и уменьшения теплостока в стенки двигателя, интенсивный объем тепловой энергии в момент тепловыделения и возврат стенками камеры сгорания предельно возможной тепловой энергии свежему заряду, переход на нетрадиционные виды топлива, например воду, снижение тепловых динамических нагрузок на двигатель. Отмеченные преимущества позволяют в значительной степени экономить топливо, снизить и исключить выброс в атмосферу вредных газов. К недостаткам можно отнести то, что некоторые существующие сегодня двигатели с расположенными клапанами в головке занимают в ней достаточную площадь, снижая эффективность применения предложенной камеры.

Формула изобретения

Камера сгорания двигателя внутреннего сгорания, ограниченная дном поршня, головкой цилиндра и снабженная теплоизолирующим керамическим слоем, отличающаяся тем, что на керамическое покрытие нанесен теплоаккумулирующий и теплопередающий слой, выполненный из высокотемпературного с высокой теплоемкостью металла, одна поверхность которого, контактирующая с рабочими газами, выполнена с глубоким рифлением и покрыта слоем высокотемпературопроводного металла, другая, контактирующая с теплоизолирующим керамическим слоем, снабжена теплоотражателем.

РИСУНКИ

Рисунок 1

www.findpatent.ru

камера сгорания двигателя - это... Что такое камера сгорания двигателя?

 камера сгорания двигателя n

1) artil. Triebwerkbrennkammer

2) aerodyn. Triebwerkbrennkammer

Универсальный русско-немецкий словарь. Академик.ру. 2011.

Смотреть что такое "камера сгорания двигателя" в других словарях:

universal_ru_de.academic.ru


Смотрите также