ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

Бензиновый двигатель внутреннего сгорания со сверхвысокой степенью сжатия. Теория степень сжатия двс


Бензиновый двигатель внутреннего сгорания со сверхвысокой степенью сжатия.

(Доклад на Международной конференции Двигатель-2007, посвященной 100-летию школы двигателестроения МГТУ им. Н.Э.Баумана)

 

Москва 20 сентября 2007 г.

 

Уважаемые коллеги!

 

Хочу выразить глубокую признательность организаторам конференции за предоставленную мне возможность выступить перед такой авторитетной аудиторией и поздравить коллектив кафедры «Поршневых двигателей» МГТУ им Э.М. Баумана со 100-летним юбилеем, пожелать ему творческих успехов на благо нашей Родины.

Я впервые удостоен чести выступать перед аудиторией, которая составляет цвет и гордость российской и мировой науки в области двигателей внутреннего сгорания.

Учитывая, что у меня вообще нет опыта публичных выступлений, прошу вас быть снисходительными, если в моем выступлении прозвучат тезисы, которые могут показаться категоричными или радикальными.

Тема моего сообщения «Бензиновый двигатель внутреннего сгорания со сверхвысокой степенью сжатия» сама по себе может вызвать недоумение. Какая еще может быть сверхвысокая степень сжатия, если общеизвестно, что эффективный бензиновый двигатель внутреннего сгорания со степенью сжатия более 14 построить невозможно.

И тем не менее, как бы странно это не звучало, начну с главного вывода своих многолетних экспериментов и поисков:

Верхний предел степени сжатия ДВС ограничивается не детонацией или недопустимой жесткостью, а технологическими возможностями. В подтверждение этого могу сказать, что перед зданием, в котором проходит наша конференция, стоит автомашина ВАЗ-2110. На ней установлен бензиновый двигатель со степенью сжатия 22, давлением сжатия 38-40 кг/см2. Двигатель запускается и работает так, что со стороны невозможно отличить его от двигателя с известными вам степенями сжатия. И в то же время мой двигатель имеет значительно лучшие эффективные показатели, чем двигатель со степенью сжатия 10.

Теперь перейду к изложению того, как и в сопровождении каких обстоятельств я смог прийти к таким выводам.

Первые 80 лет (с 1824 года) своего возникновения и развития теория теплового, а затем двигателя внутреннего сгорания базировалась на положениях о том, что правильно устроенный и правильно работающий двигатель должен иметь КПД в районе 70-80%. Так считали Карно, Отто и Дизель.

В работе «Теория и конструкция рационального теплового двигателя» Р.Дизель дал описание устройства и принципа работы ДВС построенного по «циклу Карно». Первоначально Дизель исходил из того, что на такте адиабатного сжатия воздух сжимается до давления 90 кг/см2 и температуры 900о С, затем на такте изотермного расширения подводится теплота и при указанной температуре должно произойти изотермное, затем адиабатное расширение. При этих условиях термический КПД ДВС должен был составить 73%.

Однако построенный двигатель показал, что он допустил ошибки в расчетах. Затраты энергии на сжатие воздуха были столь велики, что превышали мощность двигателя. Поэтому пришлось снизить давление сжатия до 35 кг/см2. Первый двигатель Дизеля при попытке впрыснуть бензин взорвался. Тем не менее, эксперимент был признан удачным и ему предоставили условия для построения второго двигателя. Топливом для второго двигателя использовали светильный керосин. Двигатель был построен, продемонстрирован и показал результаты, которые на тот момент считались фантастическими.

С наших позиций Р.Дизель при разработке идеи и конструкции своего двигателя допустил ошибки частного характера, но сама идея была правильной. К тому же создать «идеальный» двигатель в то время было невозможно по объективным причинам, поскольку: а) отсутствовали достаточные знания о характере термодинамических процессов, происходящих в ДВС. б) не было соответствующей технической базы для построения такого двигателя.

В течение последующих 70 лет эти недостатки в теории и практике двигателестроения постепенно устранялись. Совершенствовалась техническая база двигателестроения, использовались все более совершенные материалы и технологии, улучшались детали, узлы, механизмы ДВС, были внедрены компьютерные программы управления работой ДВС. Все это в совокупности позволило довести механическую составляющую ДВС до практического совершенства.

Все известные автомобильные концерны и институты, специализирующиеся на проблемах ДВС, проводили работы с целью выявления зависимости между степенью сжатия ДВС и эффективностью его работы и исследования характера рабочих процессов, протекающих в ДВС. Предпринимались и многочисленные попытки повысить степень сжатия ДВС. Но эти работы имели отрицательный результат. Опираясь на этот отрицательный результат, теория ДВС приняла, как аксиомы, утверждения о том, что степень сжатия бензинового двигателя не может быть выше 14. Что наиболее эффективными могут быть дизельные ДВС со степенями сжатия менее 25, а при степени сжатия 40 эффективность дизельного двигателя становится равным нулю. Специалисты и теоретики настолько утвердились в правильности этих положений, что на данном этапе малейшие попытки усомниться в них, вызывает резко отрицательную реакцию.

Тем не менее, к 80-м годам 20-го столетия были созданы все технические и технологические предпосылки для создания новых видов ДВС с высокими и сверхвысокими степенями сжатия, которые работали бы на основе принципов, заложенных в теорию первоначально.

Парадокс ситуации заключается в том, что приведенные выше положения по поводу предельных степеней сжатия ДВС, не имеют под собой теоретической аргументации в виде формул и расчетов. Они возникли и существуют на основе отрицательной практики. Кто не согласен с этим, пусть представит формулу, из которой следовало бы, что степень сжатия бензинового или дизельного двигателей может быть ограничена конкретным числом.

Если какие-то положения теории являются правильными (т.е. соответствующими законам термодинамики), то построить работающий двигатель вопреки этим положениям не возможно. Но если такой двигатель построен и работает, значит, положения теории не соответствуют действительности и, следовательно, их надо менять.

Ознакомление с положениями современной теории ДВС приводит к следующим выводам:

1. Аргументировано излагаются законы термодинамики, теплотехники и позиции основоположников теории.

2. Абстрактно излагаются принципы работы современного ДВС. Вопросы зависимости характера рабочих процессов, протекающих в ДВС, от степени сжатия, взаимосвязи между КПД двигателя и степенью сжатия освещаются столь туманно, что никто, никогда не поймет, что надо сделать для того, чтобы существенно повысить КПД ДВС.

3. Абстрактность и отвлеченность освещения проблемы столь далеки от реальных процессов, которые в ДВС происходят, что современная теория ДВС оказалась не в состоянии правильно оценить сложившиеся в последние годы в практике двигателестроения тенденции и дать правильное решение вопроса. По этой причине индикаторный КПД ДВС со времен Р. Дизеля, практически, не изменился.

В 90-е годы мы несколько лет пытались усовершенствовать механическую составляющую двигателя. Было получено около 40 патентов на изобретения по системе питания, газораспределительному и кривошипно-шатунному механизмам. Но однажды пришлось задуматься. Если механический КПД лучших двигателей доходит до 85%, что там еще можно совершенствовать? Поэтому было решено отказаться от продолжения этой работы.

Теоретически существенное увеличение термического КПД ДВС возможно только путем увеличения степени сжатия. В то же время практика мирового двигателестроения свидетельствовала, что значительно увеличить степень сжатия бензинового и дизельного двигателей не удастся.

Вместе с тем оценка работы существующих ДВС показывала, что проблема имеет свое решение. С наших позиций наиболее убедительными свидетельствами возможности создания двигателя со сверхвысокой степенью сжатия являются комбинированный двигатель с высокой степенью наддува и двигатель с регулируемой степенью сжатия.

Поршневая часть двигателей, используемых в гонках Формулы 1, обычно имеет степень сжатия 11,5. Давление наддува в них принудительно, путем стравливания воздуха через установленный на впускном трубопроводе перепускной клапан, ограничивается величиной в 2,7 кг/см2. Суммарная степень сжатия двигателя составляет έ =31. При такой степени сжатия при работе на внешней скоростной характеристике давление конца сжатия должно составлять около 122 кг/см2.

Возникал вопрос: почему двигатель работает без детонации?

Анализ работы бензинового и дизельного комбинированных двигателей с наддувом привел нас к таким выводам:

1. Двигатель Формулы 1 на внешней скоростной характеристике работает точно также, как работал бы его атмосферный аналог на внешней скоростной характеристике с увеличиваемой по мере увеличения оборотов степенью сжатия от 6 до 31 (при 1000 об/мин. ε=6, при 18 000 об/мин. ε =31).

2. Существует нелинейная зависимость между частотой вращения коленчатого вала, степенью сжатия двигателя и степенью дросселирования. Согласно этой зависимости, чем меньше наполнение цилиндра, тем больше может быть степень сжатия двигателя. Чем больше обороты, тем больше может быть степень наполнения цилиндра.

3. В большинстве случаев суммарная степень сжатия комбинированных бензиновых и дизельных двигателей с многоступенчатым наддувом, как произведение степеней сжатия поршневой и лопаточной частей, превышает величину 30. Это позволяло сделать вывод о том, что можно построить атмосферный двигатель со сверхвысокой степенью сжатия.

4. В комбинированных бензиновых двигателях детонация не происходит, потому что детонация не успевает произойти. В них на всех частотах вращения время завершения конца сжатия и начала расширения меньше, чем время задержки самовоспламенения.

Теория дает такое определение детонации: пристеночное сгорание части смеси в результате самовоспламенения из-за местного повышения давления и температуры.

Указаны и три основных способа борьбы с детонацией: это либо увеличение частоты вращения, либо уменьшение наполнения цилиндра путем уменьшения угла открытия дроссельной заслонки, либо уменьшение угла зажигания.

Другие способы борьбы с детонацией: применение высокооктановых топлив, организация повышенной турбулизации заряда в цилиндре, оптимизация формы камеры сгорания, работа двигателей на обедненных и сверхобедненных смесях, переход на впрыск бензина в цилиндры двигателя, впрыскивание воды во впускную систему, организация гибридных рабочих процессов, регулирование степени сжатия нами не использовались и поэтому в настоящей статье не рассматриваются.

Комментарий:

Все три приведенных способа с позиций действительной степени сжатия имеют целью получить один и тот же результат. Увеличение частоты вращения при сохранении угла открытия дросселя приводит к уменьшению наполнения цилиндра. Уменьшение угла открытия дросселя при сохранении частоты вращения тоже приводит к уменьшению наполнения цилиндра. Уменьшение угла опережения зажигания способствует уменьшению количества смеси, сжигаемой на такте сжатия и соответственно уменьшению давления и температуры конца сжатия.

То есть, все предлагаемые теорией методы борьбы с детонацией имеют целью снизить давление Рс и температуру Тс конца сжатия для ухода от детонации.

Детонационные давления и температуры фактически возникают в любом современном атмосферном бензиновом двигателе. О двигателях с наддувом и говорить не приходится. Но детонационное сгорание произойдет только в том случае, если критические температура и давление сохранятсяв продолжение некоторого отрезка времени.

То есть, детонация есть явление, вызываемое взаимодействием трех факторов: давления, температуры и времени.

Это означает, что каждому значению величины давления конца сжатия Рс с его температурой конца сжатия Тс в каждом рабочем цикле двигателя соответствует своя продолжительность времени задержки самовоспламенения. Зависимость между величинами Рс - Тс и периодом задержки самовоспламенения обратная, непропорциональная и нелинейная. Но в целом эту зависимость можно охарактеризовать так: чем выше значения величин давления и температуры конца сжатия Рс и Тс, тем меньше время задержки самовоспламенения. И наоборот. Чем меньше значение величин Рс и Тс, тем больше время задержки самовоспламенения. Главным условием при переносе этой зависимости на работу двигателя должно быть, чтобы конец сжатия и начало расширения каждого рабочего цикла завершились бы раньше времени задержки самовоспламенения.

Из этого вывода следовал еще один вывод: если каждый рабочий цикл ДВС построить таким образом, что время задержки самовоспламения в нем будет больше времени завершения конца сжатия и начала расширения, детонации не будет совсем.

Для того, чтобы построить двигатель со сверхвысокой степенью сжатия, надо было выполнить следующие несколько условий.

1. На завершении такта сжатия при положении поршня в ВМТ в цилиндре двигателя должно достигаться максимальное (преддетонационное) для рабочего цикла давление Рс=Р1.

В действительном цикле двигателя, состоящем из множества рабочих циклов, значение величины Рс=Р1 для каждого отдельно взятого рабочего цикла будет своим, отличающимся от остальных рабочих циклов.

2. Не должно быть тепловыделения на сжатии. Потому что возникновение очага и распространение фронта пламени на такте сжатия дополнительно формирует благоприятные условия для возникновения детонации.

В двигателе со сверхвысокой степенью сжатия тепловыделение должно начинаться в ВМТ. Поэтому угол зажигания для данного рабочего цикла при заданной величине наполнения цилиндра превращается в константу. Подобранный для конкретных условий (октановое число, степень наполнения и пр.) угол зажигания ни увеличивать, ни уменьшать нельзя.

3. Конец сжатия, начало расширения должны завершиться раньше времени задержки самовоспламенения.

Величины давления Р1 и температуры горючей смеси Тс зависят от двух факторов: 1. количества горючей смеси, исчисляемой при давлении равном давлению окружающей среды; 2. кратности сжатия этого количества горючей смеси.

Эти параметры являются взаимозависимыми и регулируемыми. Регулировать величину Р1-Рс и температуру рабочего тела Тс можно, регулируя количество горючей смеси, участвующей в цикле, путем ограничения наполнения цилиндра.

4. На такте расширения в период распространения зоны реакции-фронта пламени величина Р1 не должна увеличиваться, иначе детонация возникнет на этом этапе. Эта величина не должна и уменьшаться, иначе двигатель потеряет эффективность. То есть, процессы увеличения объема рабочего тела вследствие нагревания и объема камеры сгорания в зоне малого изменения объема камеры сгорания должны быть синхронизированы так, чтобы давление в камере сгорания не изменялось до завершения процесса распространения фронта пламени. При этом: виртуальное представление о характере протекания процессов завершения сжатия и начала расширения показывало, что при ограничении наполнения проблем с синхронизацией не возникнет. Но было не ясно, как эти процессы будут происходить при полном наполнении цилиндра, то есть, на внешней характеристике.

5. Когда фронт пламени дойдет до стенок цилиндра и начнется наиболее активная фаза сгорания, давление Р1 должно увеличиться до величины Рz, которая также будет переменной величиной для разных рабочих циклов.

В связи с отрицательной реакцией теоретиков на наши идеи возникали вопросы: нужен ли двигатель со сверхвысокой степенью сжатия, даст ли он эффект? Если да, до каких величин можно увеличить степень сжатия, в частности, бензинового двигателя?

С одной стороны при расчетах термического КПД выходило, что степень сжатия можно увеличивать до любых величин. С другой стороны индикаторный и эффективный КПД ДВС зависят от тепловых и механических потерь. Чем выше степень сжатия двигателя, тем выше эти потери. Не зря практикой эксплуатации дизельных и бензиновых двигателей признано нецелесообразным повышать степень сжатия вследствие неэффективности ее повышения выше определенной величины, называемой «наивыгоднейшей степенью сжатия». Вместе с тем проецирование этого вопроса на работу двигателя с переменной (или регулируемой) степенью сжатия и на работу двигателя с высокой степенью наддува позволял предположить следующее:

1. В ДВС с переменной степенью сжатия в зависимости от степени дросселирования специальными устройствами изменяется объем камеры сгорания. При уменьшении наполнения цилиндра, степень сжатия увеличивается, а при увеличении наполнения, степень сжатия уменьшается.

Если взять двигатель с регулируемой степенью сжатия, в котором степень сжатия изменяется пропорционально степени дросселирования, допустим от 10 до 20, то окажется, что интервале наполнения цилиндра от 39% до 100%, процесс сжатия в нем завершается при практически одинаковых значениях величин Рс и Тс.

2. В серийном двигателе Ауди 1,8 ТТ со степенью сжатия 9 при частоте вращения выше 1700 об/мин достигается давление наддува 1.6 кг/см2, суммарная степень сжатия равна έ =14. Расчетное давление конца сжатия при этом составляет 40 кг/см2. В атмосферном двигателе при Ра= 1 кг/см2 такое давление конца сжатия может быть получено при степени сжатия 14.

То есть, в первом случае мы имеем двигатель, который работает при высокой степени сжатия на частичной характеристике, а во втором случае- двигатель, с высокой степенью сжатия, который работает на внешней характеристике.

Помимо этого, анализировалась и работа дизельного двигателя. По принципиальной схеме (преобразование энергии топлива в работу в одинаковых механических устройствах) бензиновый двигатель ничем от дизельного не отличался. Это говорило о том, что увеличение степени сжатия бензинового двигателя до «дизельных» величин, повлечет такое же увеличение КПД.

Перечисленные доводы, несмотря на возражения теоретиков, позволяли предположить, что увеличение степени сжатия бензинового двигателя до определенных величин даст существенное увеличение КПД. Дальнейшее увеличение степени сжатия из-за роста доли отрицательной работы будет давать все меньшее увеличение КПД. В определенной точке произойдет пересечение линий роста КПД и потерь. При дальнейшем увеличении степени сжатия эффективный КПД начнет падать.

Ответа на вопрос, как будут протекать рабочие процессы при полном наполнении цилиндра, на тот период у нас не было. Тем не менее, полученные выводы нам показались достаточными для того, чтобы попытаться убедить производственников в том, чтобы оказали поддержку в построении двигателя с ограничением наполнения и уже в ходе самой работы и испытаний найти ответ.

Убедить кого-либо помочь построить опытный образец двигателя не удалось. Поэтому в сентябре-октябре 2002 года на базе шестицилиндрового двигателя БМВ самостоятельно, своими силами построили первый бензиновый двигатель со степенью сжатия 17. До апреля 2003 года автомобиль эксплуатировался с ограничителем хода педали газа, так как было не ясно, как быть с процессами сжатия и расширения на внешней характеристике.

Но вдруг выяснилось, что для решения вопроса о том, как синхронизировать процессы увеличения давления рабочего тела и объема камеры сгорания на начале расширения для обеспечения постоянства давления Р1 при полном наполнении цилиндра, вообще ничего не надо делать. Оказалось, что задача уже решена, а мы просто не догадывались об этом. Выходило следующее:

При условии работы двигателя без детонации, скорость распространения фронта пламени для данного количества горючей смеси величина постоянная. (Первая константа).

Скорость изменения объема камеры сгорания зависит от оборотов двигателя. Но для конкретной частоты вращения эта скорость величина постоянная. То есть, например, для частоты вращения 1500 об/мин скорость изменения объема камеры сгорания и на сжатии и на расширении величина известная, конкретная и постоянная. (Вторая константа).

Для данной частоты вращения степень допустимого наполнения цилиндра (или величина ограничения) будет иметь конкретное значение. Соответственно, масса рабочего тела, поступающего в цилиндр, тоже будет постоянной величиной. (Третья константа).

При этих условиях, получаемая в конце сжатия величина давления Р1 и температура смеси Тс также будут постоянными величинами. (Четвертая константа).

Для данных давления Р1 и температуры Тс время задержки самовоспламенения также будет постоянной величиной. (Пятая константа).

При таком соотношении постоянных величин (констант), формирующих процессы сжатия, сгорания и расширения синхронизация процессов увеличения объема камеры сгорания и давления смеси происходит сама по себе.

Поняв это, сняли ограничитель хода педали. Машина стала ездить на полном дросселе, никаких проблем с синхронизацией не возникло.

В дальнейшем стали строить двигатели на базе ВАЗ-2110. Чередуя работу на стенде с ездой на автомашине, решали многочисленные проблемы.

Результат всей этой работы получился такой:

В бензиновом ДВС с внешним смесеобразованием со сверхвысокой степенью сжатия рабочий цикл происходит следующим образом: степень сжатия двигателя, например, составляет 22, частота вращения коленчатого вала выше 1800 об/мин (например, 2000 об/мин), режим работы-внешняя скоростная характеристика.

При перечисленных условиях дроссельная заслонка открыта полностью, расход воздуха максимальный для данных оборотов. Угол опережения зажигания (УОЗ) 6 градусов до ВМТ. При положении поршня в 0 градусов, то есть, в ВМТ, начинается распространение пламени по фронту. До 6000 об/мин двигатель работает при полностью открытом дросселе, только изменяется УОЗ.

При уменьшении частоты вращения коленчатого вала ниже 1800 об/мин (например до 1200 об/мин) дроссельная заслонка изменяет положение и ограничивает наполнение цилиндра. При этом, если при полностью открытой дроссельной заслонке расход воздуха составил бы 360 мг, то при реальной работе на внешней скоростной характеристике при указанной частоте вращения коленчатого вала дроссельная заслонка должна занять такое положение, при котором максимальный расход воздуха должен быть не более 270 мг на цикл.

Для двигателя со сверхвысокой степенью сжатия понятие работы на внешней скоростной характеристике имеет другой смысл, чем для традиционного двигателя. На низких оборотах для него это - работа при максимально допустимом наполнении цилиндра.

Из теории следует, что любое возмущение в жидкостях и газах распространяется со скоростью звука. Так как размеры камер сгорания поршневых двигателей малы, а скорость звука 500-600 м/с, то давление через доли микросекунд выравнивается по всему объему, но не остается таким, как в зоне возмущения.

В замкнутом сосуде неизменного объема при нагревании газа происходит увеличение давления, при его охлаждении – уменьшение давления и температуры. Если стенки объема деформируются, то происходит увеличение и объема и давления. Увеличивается давление в этом случае меньше, чем при отсутствии деформации стенок. С началом процесса сгорания интенсивность тепловыделения так высока, что скорость увеличения давления в цилиндре опережает скорость увеличения объема камеры сгорания. В виду этого принято считать, что выровнять скорости увеличения объема газов и объема камеры сгорания невозможно. Поэтому в камере сгорания происходит поджатие зоны смеси, до которого фронт сгорания еще не дошел. Если интенсивность поджатия смеси окажется слишком высокой, произойдет детонация.

Но, как указано выше, путем дросселирования можно регулировать интенсивность увеличения объема рабочего тела. А раз ее можно регулировать, то для каждого конкретного рабочего цикла путем дросселирования (ограничения наполнения цилиндра) можно подобрать и установить такую интенсивность увеличения объема газов, которая соответствовала бы скорости увеличения объема камеры сгорания. То есть, как выяснилось, процесс можно синхронизировать.

Поэтому, если в период распространения фронта пламени, синхронизировать скорости увеличения объема рабочего тела из-за нагревания и объема камеры сгорания, давление останется неизменным.

Процесс синхронизации в двигателе со сверхвысокой степенью сжатия можно нарушить приведенными выше тремя способами: 1. при неизменности всех остальных параметров (УОЗ, расход воздуха, состав смеси и пр.) уменьшить обороты. 2. при неизменности всех остальных параметров (УОЗ, обороты, состав смеси и пр.) увеличить расход воздуха. 3. при неизменности всех остальных параметров изменить УОЗ.

Эксперименты с нарушением синхронизации проводились неоднократно. По приведенным пунктам можно привести такие данные: Обороты 1700, дроссель открыт полностью, расчетное давление конца сжатия Рс=60 кг/см2. Двигатель работает без детонации. Уменьшение оборотов до 1680, то есть, всего на 20 об/мин, вызывает детонацию. Другой пример: обороты 1680 в минуту, дроссель прикрыт, расход воздуха 355 мг на цикл. Расчетный Рс=58 кг/см2. Детонации нет. Дроссель открывается полностью. Расход воздуха становится 360 мг на цикл. Двигатель детонирует. Третий пример: перенос угла зажигания на 10 градусов выше или ниже оптимальной точки в двигателе ЗМЗ-406 со степенью сжатия 9,5 каких-либо заметных изменений в его работе не вызывает. В экспериментальном двигателе максимально возможное смещение угла зажигания от оптимальной точки составляет всего 1-1,5 градуса в сторону его увеличения и 2-3 градуса в сторону уменьшения. И то в первом случае возникает сильная детонация, а во втором случае резко падает эффективность.

Рс и Тс это давление и температура в той точке, которая называется концом сжатия-началом расширения. Сформировавшись в момент завершения сжатия, они в таковом качестве вступают в процесс расширения. Соответственно этому приведенные выше примеры экспериментов касаются давления Р1 и показывают, что даже незначительное, всего на 2 кг/см2, увеличение Р1 приводит к детонации.

Синхронизация процессов в зоне малого изменения объема камеры сгорания есть отличительный признак цикла и основа, на котором будут строиться двигатели со сверхвысокими степенями сжатия. Можно сказать так: есть синхронизация, есть работающий двигатель со сверхвысокой степенью сжатия, нет синхронизации, нет работающего двигателя.

Особенности работы двигателя следующие:

Похожие статьи:

poznayka.org

Компрессия и степень сжатия - Теория ДВС - Каталог статей

Компрессия и степень сжатия

По не вполне понятной причине очень многие автолюбители путают эти два понятия. Между тем, хотя они близки, но не являются одним и тем же. Примерно как угол опережения зажигания и угол замкнутого состояния контактов. Достаточно указать на тот факт, что степень сжатия является геометрической величиной, выражающейся в абсолютных единицах (то есть это просто число без единицы измерения) и являющейся практически постоянной величиной для двигателей одной модели в штатной комплектации, а компрессия меряется в единицах давления (атмосферах, МПа, барах) и сильно зависит от технического состояния двигателя и способа измерения. Скажем так, степень сжатия — расчётный параметр, примерно как колёсная база, а компрессия — эксплуатационный, примерно как расход топлива.

Итак, степень сжатия — геометрическая безразмерная величина, вычисляется как отношение полного объёма цилиндра к объёму камеры сгорания. Полный объём цилиндра — сумма рабочего объёма и объёма камеры сгорания, то есть объём в цилиндре, когда поршень находится в нижней мёртвой точке НМТ, объём КС — когда он в ВМТ; рабочий объём — объём между ВМТ и НМТ. Для волговского мотора, как правило, это 6.7. Это следует грубо понимать так, что рабочая смесь, засосанная в цилиндр, сжимается в 6.7 раз по объёму. Именно раз, а не атмосфер. Поскольку степень сжатия — это деление кубических сантиметров на кубические сантиметры, то специальной единицы измерения нет (в таких случаях говорят об абсолютных единицах, проще говоря — разах).

Степень сжатия не меняется при работе мотора, это такая же его константа, как рабочий объём или масса. (Строго говоря, при работе двигателя кольца трутся о гильзы, снимают с них ничтожные слои молекул, рабочий объём растёт, степень сжатия падает — но на настолько микроскопические величины, что этим можно совершенно смело пренебречь и принять, что степень сжатия в принципе не меняется). От неё зависит прежде всего применяемое топливо, точнее, его октановое число. Чем выше степень сжатия, тем более высокооктановое топливо требуется мотору.

Компрессия — физическая величина, давление в цилиндре в конце такта сжатия. Измеряется в атмосферах или кг/см2, можно в барах, килопаскалях или других единицах. Может сильно изменяться в процессе работы мотора по мере его износа. Зависит от степени сжатия (оптимальная компрессия мотора очень приблизительно высчитывается умножением степени сжатия на 1.4 атм — это связано с эффектом адиабатического сжатия). Таким образом, характерные значения компрессии для стандартного мотора — около 8…9 атмосфер. (Для форсированного под 92 бензин — 10…12).

Смысл компрессии — техническое состояние двигателя и всего автомобиля в целом, наряду с давлением масла. Чем она выше, тем меньше газов прорывается в картер двигателя и соответственно больше газов совершают полезную работу, благодаря чему у двигателя высокий КПД и низкий расход топлива, а также высокая мощность. От компрессии зависит расход масла, стабильность работы двигателя, приёмистость, расход топлива, быстрота запуска двигателя. Помимо двигателя, на величину компрессии может повлиять состояние электрооборудования (стартёра, аккумуляторной батареи, соединяющих их проводов) — но только при измерении.

При падении компрессии в любом цилиндре или во всех ниже 6 атмосфер или сильном разбросе по цилиндрам (более 1 атмосферы) двигатель подлежит ремонту. Как правило, основная причина падения компрессии — «севшие» поршневые кольца, например после перегрева. На втором месте стоят клапана. Потом пробой прокладки ГБЦ. Могут быть ещё экзотические случаи типа прогоревшего поршня или вылезшего поршневого пальца, «профрезеровавшего» гильзу. Чтобы определить, что именно, после измерения компрессии в цилиндры заливают масло и снова меряют. Если компрессия существенно возрастает, почти всегда виноваты кольца. Если нет — дело в головке, скорее всего в клапанах.

Проблемы, вызываемые низкой компрессией — падение мощности, ухудшение динамики разгона, снижение максимальной скорости, возрастание расхода масса и топлива, порой очень чувствительные.

Для измерения компрессии служит прибор, называемый компрессометром, который представляет собой обыкновенный манометр, аналогичный тем, с помощью которого меряется давление в шинах, со специальным переходником, который либо ввинчивается вместо свечи, либо просто плотно прижимается к свечному отверстию резиновым кольцом. На переходнике имеется золотник (ниппель), который позволяет сохранять показания прибора для удобного считывания. Компрессометры продаются на автомобильных рынках.

При стандартном измерении компрессии воздушный фильтр должен снят, подача топлива отключена — поплавковая камера осушена, а бензонасос отключен от бака и также опустошен, все свечи вывинчены, клапана отрегулированы. Мерять необходимо на предварительно хорошо прогретом двигателе с хорошо заряженным и не старым аккумулятором, иначе компрессия окажется заниженной (скорость вращения коленвала играет важную роль). Рекомендуется провести 3-4 цикла измерений компресии и усреднить полученные результаты, чтобы добится большей достоверности данных, в идеале — повторить замеры с интервалом в несколько дней. К сожалению, при измерении компрессии можно часто получить неверные данные из-за погрешности прибора, неплотном прижатии переходника к свечному отверстию, наличию во впускном коллектора остатков бензина итп.

Обычно компрессию меряют в двух вариантах: самый простой — с открытыми заслонками в карбюраторе, более продвинутый — с закрытыми. Впрочем, профессионалы могут мерять компрессию в разных сочетаниях, в том числе с невывинченными свечами в остальных цилиндрах, на холодном двигателе, с закрытыми или открытыми заслонками в карбюраторе итп. При этом каждый из способов дает свои результаты и позволяет определять свои дефекты.

Если заслонка полностью закрыта, то в цилиндры поступает малое количество воздуха. Максимальное давление в цилиндре оказывается невелико (порядка 6-8 атм) из-за малого давления в коллекторе (0.5-0.6 атм вместо 1 при полностью открытом дросселе). Утечки при закрытой заслонке также оказываются малы из-за малого перепада давления, но даже при этом соизмеримы с поступлением воздуха. Вследствие этого величина компрессии в цилиндре оказывается очень чувствительной к утечкам — даже из-за незначительной причины давление падает сразу в несколько раз.

При полностью открытом дросселе этого не происходит. Значительное увеличение количества поступившего в цилиндры воздуха приводит и к росту компрессии, однако утечки, несмотря на их небольшой рост, становятся значительно меньше подачи воздуха. Вследствие этого компрессия даже при серьезных дефектах может ещё не упасть до недопустимого уровня (например, до 8-9 атм у двигателя под АИ-93 или 5-6 атм у двигателя под А-72).

Исходя из особенностей различных вариантов измерения компрессии, можно дать некоторые рекомендации по их использованию.

Измерения компрессии с полностью открытой заслонкой позволяют обнаружить

Измерением компрессии с закрытой заслонкой можно определить

Таким образом, для волговодов имеет смысл мерять с открытыми заслонками. Гидрокомпенсаторов у нас ведь нет.

Дефекты и неисправности бензинового двигателя, выявляемые измерением компрессии на примере двигателя под 92 бензин

НеисправностьПризнаки неисправностиВеличина компрессии, атм при дроссельной заслонке
открытойзакрытой
Неисправности нетнорма10-126-8
Трещина в перемычке поршняСиний дым выхлопа, большое давление в картере6-83-4
Прогар поршняТо же, цилиндр не работает на холостом ходу0-50-1
Прогар клапанаЦилиндр не работает на холостом ходу и малых нагрузках1-40
Деформация клапанаТо же3-70-2
Залегание колец в клапанах поршняТо же с синим дымом выхлопа, большим давлением в картере2-40-2
Задир на поверхности цилиндраТо же, возможна не вполне устойчивая работа цилиндра2-81-4
Переобогащение смесиЗатруднен запуск, черный дым выхлопа5-83-4
«Зависание» клапанаЦилиндр не работает на холостом ходу5-81-3
Дефект профиля кулачка распределительного валаТо же7-81-3
Естественный износ поршневых колец и цилиндровПовышенный расход масла6-94-6
Повышенное количество нагара в камере сгорания в сочетании с изношенными маслоотражательными колпачками и/или маслосъемными кольцамиПовышенный расход масла, синий дым выхлопа13-1610-14

Тщательно записывая результаты измерений и проводя их по нескольку раз в каждом варианте, можно сделать выводы о состоянии двигателя, не разбирая его.

ldsto.ru

Двигатель внутреннего сгорания со сверхвысокой степенью сжатия

Государственное образовательное учреждение

высшего профессионального образования

«Дагестанский государственный технический университет»

Ибадуллаев

Гаджикадир Алиярович

БЕНЗИНОВЫЙ

Двигатель внутреннего сгорания со сверхвысокой степенью сжатия

Махачкала 2007 г.

Печатается по решению Ученого совета ГОУ ВПО «Дагестанский государственный технический университет», протокол №10 от 28.06.2007 г.

Бензиновый двигатель внутреннего сгорания со сверхвысокой степенью сжатия / Ибадуллаев Г.А. – Махачкала: ДГТУ, 2007.

В настоящем издании изложены результаты теоретических исследований автора в области повышения эффективности работы двигателей внутреннего сгорания. Рассмотрены возможности повышения коэффициента полезного действия двигателей за счет увеличения степени сжатия рабочей смеси.

Брошюра может представлять интерес для производственников и научных работников, занимающихся вопросами двигателестроения.

Рецензент: доцент кафедры ТК и САПР ГОУ ВПО «Дагестанский государственный технический университет», к.т.н. Тынянский В.П.

Содержание

Введение .. 4

Особенности работы ДВС по циклу Карно (размышления и выводы) 6

Рабочие процессы в бензиновом ДВС со сверхвысокой степенью сжатия .. 22

ДВС и цикл Карно .. 31

Заключение по результатам стендовых испытаний двигателей .. 38

ПРОТОКОЛ РАСШИРЕННОГО ТЕХНИЧЕСКОГО СОВЕТА МАХАЧКАЛИНСКОГО ФИЛИАЛА МАДИ (ГТУ) ……………………………………40

ЗАКЛЮЧНИЕ ……………………………………………………………………..44

ЗАКЛЮЧЕНИЕ …………………………………………………………………...45

Введение

Первая официальная демонстрация работы бензинового двигателя Ибадуллаева Г.А. со степенью сжатия 21,5 профессорско-преподавательскому составу Махачкалинского филиала МАДИ (ГТУ) была проведена в июне 2006 года. Затем была совместная демонстрация профессорско-преподавательскому составу МФ МАДИ и механического факультета ДГТУ.

В феврале 2007 года Ибадуллаев Г.А. продемонстрировал профессорско-преподавательскому составу МФ МАДИ (ГТУ) обкатанный на автомобиле новый бензиновый двигатель со степенью сжатия 24,5 (фактически почти 25) с давлением сжатия 37 (фактически 37,5). После этого нами было составлено заключение, которое публикуется в настоящей брошюре.

Ибадуллаев Г.А. по образованию юрист. В 1980 году с отличием окончил юридический факультет ДГУ. С того времени по май 2006 года работал следователем в органах прокуратуры Республики Дагестан. Ушел в отставку по выслуге лет в чине старшего советника юстиции.

Более 200 лет расчеты Карно будоражили творческую мысль ученых, практиков и изобретателей. Особый расцвет поиски решения «идеального» двигателя по Карно получили после изобретений Р.Дизеля. Шли десятилетия. Труды огромной армии ученых и изобретателей результатов не давали. В дальнейшем мир науки в области двигателестроения постепенно, если так можно выразиться, пришел в уныние. Казалось, что такого решения в природе не существует.

Более 100 лет назад Пуанкаре поставил перед учеными задачу. До недавнего времени считалось, что она не имеет решения. Год назад задача была решена. Оказалось не все, что нам кажется неразрешимым, на самом деле является таковым.

Увидев в первый раз двигатель, я испытал ощущения, очень близкие к шоку. На тот момент двигатель имел степень сжатия 20, давление сжатия 27 кг/см2 . По внешнему виду почти ничем не отличался от обычного двигателя. Ибадуллаев Г.А. с удовольствием катал на машине всех желающих, демонстрировал динамику разгона. Имея представление о том, какие мощные автоконцерны, какое множество институтов и ученых в течение целого столетия с лишним пытались бороться с детонациями, не верилось, что фантастика, благодаря юристу, превратилась в реальность.

Суть теоретических утверждений Ибадуллаева Г.А. заключается в том, что в его цикле сжатие рабочего тела до сверхвысокого давления Р1 осуществляется без ввода тепла. Тепло вводится в начале расширения при постоянстве давления Р1 . Достигается это путем синхронизации скоростей увеличения объема рабочего тела и объема камеры сгорания.

Если следовать логике процесса горения, объяснение не только правильное, но и единственно возможное. Если давление Р1 будет падать, интенсивность горения замедлится и двигатель не будет эффективным. Если будет расти, интенсивность горения возрастет и возникнут детонации. Если давление будет постоянным, интенсивность горения будет стабильным. Работа двигателей показывает, что его утверждения не есть плод фантазии, а есть реальный переворот в теории ДВС.

Цикл Ибадуллаева Г.А. по теоретической значимости равнозначен циклу Карно. По практической применимости и пользе, которую принесет для человечества, его значимость вообще трудно оценить.

Декан автомобильного факультета

МФ МАДИ (ГТУ),

кандидат технических наук, доцент М.М. Фатахов

Особенности работы ДВС по циклу Карно

(размышления и выводы)

Первые 80 лет (с 1824 года) своего возникновения и развития теория теплового, а затем двигателя внутреннего сгорания базировалась на положениях о том, что правильно устроенный и правильно работающий двигатель должен иметь КПД в районе 70-80%. Так считали Карно, Отто и Дизель.

В работе «Теория и конструкция рационального теплового двигателя» Р.Дизель дал описание устройства и принципа работы ДВС построенного по «циклу Карно». Первоначально Дизель исходил из того, что на цикле адиабатного сжатия воздух сжимается до давления 90 кг/см2 и температуры 900* С, затем на цикле изотермного расширения плавно вводится тепло и при указанной температуре должно произойти изотермное, затем адиабатное расширение. При этих условиях КПД ДВС должен был составить 73%.

Однако построенный двигатель показал, что он допустил ошибки в расчетах. Затраты тепла на сжатие воздуха были столь велики, что превышали мощность двигателя. Но после снижения давления сжатия до 35 кг/см2 двигатель показал результаты, которые на тот момент считались фантастическими.

С моих позиций Р.Дизель при разработке идеи и конструкции своего двигателя допустил ошибки частного характера, но сама идея была правильной. К тому же создание «идеального» двигателя на тот момент было невозможно по объективным причинам, поскольку: а) Отсутствовали достаточные знания о характере термодинамических процессов, происходящих в ДВС. б) Не было соответствующей технической базы для построения такого двигателя.

В течение последующих 70 лет эти недостатки в теории и практике двигателестроения постепенно устранялись. Совершенствовалась техническая база двигателестроения, использовались все более совершенные материалы и технологии, улучшались детали, узлы, механизмы ДВС, были внедрены компьютерные программы управления работой ДВС. Все это в совокупности позволило довести механическую составляющую ДВС, практически, до совершенства. Механический КПД лучших ДВС составляет, примерно, 80% и дальнейшие работы по совершенствованию его конструкции сколько-нибудь заметных результатов не дадут.

Все известные автомобильные концерны и институты, специализирующиеся на проблемах ДВС, проводили работы с целью выявления зависимости между степенью сжатия ДВС и эффективностью его работы и исследования характера термодинамических процессов, происходящих в ДВС.

Проводились и многочисленные опыты по повышению степени сжатия ДВС. Но эти работы имели отрицательный результат. Опираясь на этот отрицательный результат, теория ДВС приняла, как аксиомы, утверждения о том, что степень сжатия бензинового двигателя не может быть выше 14. Что наиболее эффективная степень сжатия дизельного ДВС находится в районе 17-23, а при степени сжатия 40 он становится равным нулю. Специалисты и теоретики настолько утвердились в правильности этих положений, что на данном этапе малейшие попытки усомниться в них вызывает резко отрицательную реакцию.

Тем не менее, к 80-м годам 20-го столетия были созданы все технические и технологические предпосылки для создания нового типа ДВС со сверхвысокой степенью сжатия, который работал бы на основе принципов заложенных в теорию первоначально.

Парадокс ситуации заключается в том, что приведенные выше положения по поводу предельных степеней сжатия ДВС не имеют под собой теоретической аргументации в виде формул и расчетов, они возникли и существуют на основе отрицательной практики. Кто не согласен с этим, пусть представит формулу, из которой следовало бы, что степень сжатия бензинового или дизельного двигателей может быть ограничена конкретным числом.

Если какие-то положения теории являются правильными (т.е. соответствующими законам термодинамики), то построить работающий двигатель вопреки этим положениям не возможно. Но если такой двигатель построен и работает, значит, положения теории не соответствуют действительности и, следовательно, их надо менять.

Ознакомление с положениями современной теории ДВС приводит к следующим выводам:

1. Аргументировано излагаются законы термодинамики, теплотехники и позиции основоположников теории.

2. Абстрактно излагаются принципы работы современного ДВС. Вопросы зависимости характера термодинамических процессов, протекающих в ДВС, от степени сжатия, взаимосвязи между КПД двигателя и степенью сжатия освещаются столь туманно, что никто, никогда не поймет, что надо сделать для того, чтобы повысить КПД ДВС.

3. Абстрактность и отвлеченность освещения проблемы столь далеки от реальных процессов, которые в ДВС происходят, что современная теория ДВС оказалась не в состоянии правильно оценить сложившиеся в последние годы в практике двигателестроения тенденции и дать правильное решение вопроса. По этой причине индикаторный КПД ДВС со времен Р. Дизеля, практически, не изменился. Сомнения в этом возникают, в частности, из-за следующих вопросов:

mirznanii.com

Двигатель внутреннего сгорания с высокой степенью сжатия

На правах рукописи

Червяков Владимир Иванович

Двигатель внутреннего сгорания с высокой степенью сжатия

140500-ЭНЕРГОМАШИНОСТРОЕНИЕ

140500.68- Поршневые и комбинированные двигатели

Автореферат

Диссертации на соискание ученой степени магистра

Техники и технологий

Тольятти, 2013

Работа выполнена на кафедре «Энергетические машины и установки »

Тольяттинского государственного университета

Научный руководитель: к.т.н. Павлов Денис Александрович

Рецензенты:

Защита диссертации состоится «26» июня 2014 года на заседании итоговой аттестационной комиссии Тольяттинского Государственного Университета по адресу: 445667, Самарская область, г. Тольятти, ул. Белорусская,14, аудитория Б-206

С диссертацией можно ознакомиться в библиотеке Тольяттинского государственного университета по адресу: 445667, Самарская область, г. Тольятти, ул. Белорусская,14

Секретарь итоговой

аттестационной комиссии

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы.

Двигатель внутреннего сгорания это тепловая машина, которая служит для преобразования тепловой энергии в механическую работу.

Сейчас на долю автомобильного транспорта приходится более 80% объёма перевозок грузов в нашей стране. Суммарная мощность ДВС в России превышает суммарную мощность электростанций России в 8,5 раз.

Как источник механической энергии поршневой двигатель внутреннего сгорания получил господствующее применение энергетике и на транспорте. Это объясняется тем обстоятельством, что по состоянию на сегодня на нашей планете нет более экономичной тепловой машины. И названное преимущество поршневого ДВС сохранится за ним, по оценкам учёных, на ближайшую перспективу, которая оценивается примерно в 30…40 лет.

В классе поршневых ДВС наиболее экономичными являются дизели. Это свойство сообщается им благодаря высоким степеням сжатия рабочего тела, при которых реализуется рабочий цикл таких машин. Чем выше ε, тем выше КПД двигателя. Однако реализация требования повышения ε сопряжена с определёнными трудностями, особенно для двигателей с внешним смесеобразованием. И это объясняется, прежде всего, видом используемых топлив: для обеспечения функционирования дизелей применяют тяжёлые сорта топлив (так называемые дизельные топлива), а в двигателях с внешним смесеобразованием (в перспективе – и в двигателях с впрыском лёгкого топлива в цилиндр) используют лёгкие топлива (бензины). Эти виды топлив существенно различаются по своим физико-химическим свойствам. Дизельные топлива легко воспламеняются, и поэтому дизельный двигатель не требует специальной системы воспламенения горючих смесей (так называемой системы зажигания): топливо, поданное в цилиндр, под действием высоких температур сжатого воздуха воспламеняется само. Наоборот, бензины (вернее горючая смесь на основе бензинов) обладает высокой температурой самовоспламенения, и поэтому для её воспламенения требуется специальная система зажигания.

На долю всех автомобилей приходится около половины всех вредных выбросов в окружающую среду. Выявлено, что именно несгоревшие углеводороды (СН), являющиеся канцерогенами, способствуют возникновению у человека респираторных и онкологических заболеваний. В связи с этим, каждый год, законодательно ужесточаются требования к концентрации СН в отработавших газах (ОГ) автомобилей.

Очевидно, что разработка эффективного и экологичного цикла – первостепенная задача теории поршневых двигателей и одновременно основной путь к создания экономичного и безвредного для здоровья и окружающей среды двигателя, а следовательно, автомобилей, судов, самолётов и пр.

Наряду с такими усовершенствованиями как изменяемая геометрия впускного тракта, интеллектуальный турбонаддув, непосредственный впрыск топлива, проводятся исследования по регулированию степени сжатия.

Использование другого важного средства повышения экономичности ДВС с внешним смесеобразованием, а именно, повышения степени сжатия, затруднено в связи с так называемым явлением (проблемой) детонации, то есть, неправильного, взрывного характера сгорания топлива. Возможность повышения ε сегодня ограничивается величиной 10,5…11,0. При более высоких значениях ε сгорание, начинающееся нормально, затем переходит в детонационное, сопровождающееся появлением стуков, разрушением масляной плёнки на стенках трущихся пар, повышением температуры деталей, падением мощности и экономичности двигателя. Названные обстоятельства делают работу двигателя на режимах, сопровождающихся явлением детонации, нецелесообразной и аварийно опасной. Проблема предотвращения детонации связана с мерами по повышению антидетонационных качеств топлив. Наиболее эффективным и распространённым средством в этом отношении является применение специальных присадок к топливам.

Одним из перспективных направлений, повышения эффективности работы двигателя внутреннего сгорания, является повышение степени сжатия. Однако в этом случае возникает необходимость подавления детонации. Избавиться от этого явления первостепенная задача при повышении степени сжатия.

Целью диссертационной работы является определение зависимости эффективной работы ДВС при работе с высокими степенями сжатия.

Для достижения цели решались следующие задачи:

- изучение состояния вопроса по теме применения в двигателестроении высоких и сверхвысоких степеней сжатия.

- постановка эксперимента;

- получение и обработка результатов исследования влияние высоких степеней сжатия на эффективность работы двигателя внутреннего сгорания.

- установление зависимости влияния повышение степени сжатия на экономические и экологические показатели ДВС.

Объект исследования: Двигатель внутреннего сгорания, с разными степенями сжатия, работающий на бензине.

Предмет исследования: топливная экономичность.

Научная новизна работы:

- установить зависимость снижения расхода топлива при повышеной степени сжатия. Бездетонационное горение топлива при высоких степенях сжатия.

Практическая значимость работы:

- повышение экономичности ДВС при повышении степени сжатия.

- Работа ДВС при высоких степенях сжатия на бездетонационном режиме.

Апробация работы:

Основные положения работы были представлены в виде доклада на студенческих научно-технических конференциях.

Публикации: По теме диссертации опубликовано 3 печатные работы.

Структура и объём работы: Диссертация состоит из введения, трёх глав, выводов и приложений. Объём диссертации составляет () страниц, включая () рисунка, () таблиц и () приложений.

В работе проведены результаты тематического обзора открытой, литературы, работ, проводимых по теме, оценена практическая возможность повышения степени сжатия до 15 единиц. И бездетонационная работа при такой степени сжатия.

Результаты работы позволяют сделать выводы о дальнейшем развитии предлагаемых способов улучшения экономических и экологических параметров ДВС, а также выделить наиболее перспективные направления их исследования.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснован выбор направления исследований, его цели, определён круг основных задач, исследований, показаны актуальность, научная новизна и практическая значимость решаемых проблем.

В первой главе раскрыто состояние вопроса о применении высокой степени сжатия в двигателях внутреннего сгорания.

Все ведущие производители проводят исследования и разработки с целью создания высокоэффективных силовых агрегатов, обеспечивающих снижение расходов топлива. Ряд компаний разработали конструкции ДВС, позволяющих регулировать степень сжатия под текущий режим работы.

В 2000 году компания SAAB представила результат своего 15-летнего труда — опытный образец нового двигателя с изменяемой степенью сжатия — SAAB Variable Compression (SVC), ставший сенсацией в мире моторов, смотрите рисунок 1.2.1. По утверждению создателей, нормы токсичности соответствуют всем существующим и планируемым на ближайшее будущее законодательным нормам. В дополнение к этому переменная степень сжатия дает двигателю SVC возможность работать на различных марках бензина — от А-76 до Аи-98 — практически без ухудшения характеристик.

Технология SVC и ряд других передовых и нетрадиционных с точки зрения существующих понятий о ДВС технических решений позволили снабдить новинку улучшенными характеристиками. Так, пятицилиндровый двигатель объемом всего 1,6 л, созданный для обычных серийных машин, развивает мощность 225 л.с. и крутящий момент 305 Н·м. Улучшенными оказались и другие, особенно важные сегодня, характеристики — расход топлива при средних нагрузках снижен на целых 30%, на столько же уменьшен показатель выбросов СО2.

http://motor.ucoz.net/saab/saabeng.jpg

Рисунок 1.2.1

В 2007 г. компания Daimler представила двигатель DiesOtto с изменяемой степенью сжатия и двухступенчатом турбонаддувом. Этот двигатель способен работать в режиме управляемого самовоспламенения. Такие необычные высокотехнологичные решения позволили достичь на 1,8 литра объёма 238 л.с. и 400 ньютон-метров крутящего момента. При этом мотор весьма экономичен, большой S-класс, оснащенный DiesOtto, потребляет 6 литров бензина на 100 км.

На выставке в Женеве в 2009 г. была представлена последняя разработка двигателя MCE-5 с турбонаддувом, установлена на автомобиле Pegeot 407. Ниже приведена таблица 1.2.1 с наиболее интересными разработками.

Таблица 1.2.1

Наименование SAAB SVC Mercedes DiesOtto МСЕ-5
Год разработки 2000 2007 2009
Рабочий объём,л 1,6 1,8 1,5
Мощность, л.с. 225 238 220
Крутящий момент, Нм 305 400 360
Переменная степень сжатия От 8 до 14 От 8 до 14 От 7до18
Расход топлива (л/100км) 8,3 5,3 6,7
Литровая мощность ДВС 140,6 132,2 146,6
Как видим, литровая мощность у всех производителей практически одинакова. Получается, что повышение степени сжатия является перспективным направлением для повышения эффективности работы двигателя внутреннего сгорания.

Ни одна из перечисленных конструкций автомобильного двигателя с механизмом изменения степени сжатия не производится серийно, ввиду значительного усложнения конструкции двигателя. Это же относится и к аналогичным разработкам компаний Nissan, Tojota, Honda и др.

В России работы по созданию двигателя с регулируемой степенью сжатия проводятся в НАМИ. В таком механизме применяются дополнительные детали движения, что ведёт к увеличению количества узлов трения и массы двигателя в целом. Потери на трение в экспериментальном двигателе НАМИ VE111.1 превышают на 32% потери в базовом двигателе М111.

Инженером кафедры ОПУБАТ (СПбГАСУ), Седуновым И.П.,научный руководитель, заслуженный деятель науки РФ, д.т.н., проф. В.Н. Ложкин (СПб университет ГПС МЧС России), были проведены исследования рабочего процесса дизельного двигателя со сверхвысокой степенью сжатия [Получен патент №2491429 Автор Седунов И.П. Начало действия патента 11 октября 2010].

Рабочие процессы, происходящие в тепловых двигателях циклического действия, используют для бензиновых двигателей изохорный подвод теплоты к рабочему телу, для дизельных двигателей применяют смешанный изобарно-изохорный рабочий процесс Тринклера-Сабатэ. Двигатели, работающие по изобарному циклу (циклу Дизеля), используемые в начале развития дизелей, в настоящее время практически не применяются. Это обстоятельство, однако, не мешает ведущим мировым автомобильным концернам в последние годы вновь активизировать работы по изобарному рабочему процессу, готовясь в ближайшее время к новому технологическому прорыву в этой области. В качестве доказательства можно привести внедрение двигателей с переменной степенью сжатия, а также широкомасштабное использование аккумуляторных систем впрыска топлива по технологии «Common Rail», как первого этапа освоения изобарного рабочего процесса. Очевидно, что основным методом повышения индикаторного КПД в рамках существующей термодинамики, было и остается повышение степени сжатия. Поэтому работы в этом направлении ведутся постоянно. Основные проблемы, стоящие на этом пути вызваны высокими давлениями газов при их сгорании, которые не позволяет до бесконечности увеличивать степень сжатия существующих ДВС.Там, где удалось добиться высоких степеней сжатия, был выявлен ряд особенностей рабочего процесса. Оказалось, что при ε > 50 единиц, рабочий процесс протекает столь эффективно, что в процессе горения не образуется даже твердого остатка – сажи, которая так же, как и жидкое топливо выгорает в камере сгорания полностью, обеспечивая экологически чистый выхлоп. Данные исследования были проведены в стенах института корабельного моторостроения в г. Киль (Германия), где в 2007 году заработала дизельная установка с начальной степенью сжатия 49 единиц.

Первые опыты были проведены с безнаддувным вихрекамерным дизельным двигателем ВАЗ-341 со стандартной топливоподающей аппаратурой фирмы «Bosch» _ насосом распределительного типа VE. Двигатель был переоборудован со степени сжатия ε =23 под степень сжатия ε =38 единиц для реализации политропно-изобарного рабочего процесса. При испытаниях этот двигатель превзошел по мощности на 70% дизель со смешанным подводом теплоты, выросла его приемистость. С целью определения быстротечности химических процессов, происходящих в двигателе, и определения степени предела его форсирования, частота вращения на испытуемом двигателе была доведена до 7500 1/мин. Уровень шумности даже в этом случае оказался ниже, чем у аналогичных по мощности дизелей, с традиционным способом подвода теплоты. Кроме этого, опытный дизель в широком диапазоне атмосферных температур приобрел возможность легкого запуска без участия в предварительном разогреве воздуха свечей накаливания.В ходе работы было выявлено, что при степени сжатия ε = 38 единиц расчетное и фактическое значение предельного давления цикла на режиме максимальной мощности одинаковые, и составляют 128 бар. При смешанном рабочем процессе Тринклера-Сабатэ этот показатель составил бы 184 бар. На данный рабочий процесс и конструктивные решения готовится ряд патентов, научные статьи в отраслевые реферативные издательства. Двигатель по многим признакам имеет мировую новизну. Степень достоверности работы политропно-изобарного цикла подтверждается индикаторными диаграммами, снятыми с него на моторном стенде с помощью программно-аппаратного диагностического комплекса по индицированию рабочего процесса «Дизель-Адмирал12М».Во второй главе проведена оценка перспективы повышения степени сжатия для двигателей с принудительным воспламенением.

Развитие двигателей идёт по пути уменьшения удельного расхода топлива и увеличения удельной мощности. Основным средством для повышения экономичности и удельной мощности в двигателях с внешним смесеобразованием является увеличение степени сжатия. Однако при использовании этого метода появляется препятствие. Связано оно с необходимостью преодоления опасного для двигателя явления – детонация.

Детонацией называется ненормальное взрывное сгорание в двигателях лёгкого топлива с воспламенением от электрической искры. Последствия от этого явления бывают очень неприятные. Как правило, в этом случае наблюдается падение мощности, повышается удельный расход топлива, падает частота вращения вала двигателя, перегреваются поршни, головка цилиндров, снижается надёжность двигателя.

Перечисленные последствия детонации позволяют отметить, что детонация недопустима в двигателях. Необходимо найти способ, чтобы избежать детонацию в двигателе. Это позволит повысить степень сжатия до 17-18 единиц и далее.

В третьей главе представлена методика проведения испытаний. Для исследования двигателя с высокой степени сжатия за основу был взят двигатель ВАЗ-21083. Двигатель был установлен на моторный стенд. Для подключения двигателя к стенду использовалась КПП от ВАЗ – 2101. Присоединение к блоку двигателя происходило по трём точкам (четвёртая не совпадает). Система охлаждения подключена к стационарной установке. В приёмную трубу системы выхлопа был вмонтирован широкополосный датчик. Замер расхода топлива происходил весовым методом. Схема моторного бокса показана на рисунке 3.1.1.

Экспериментальные работы проводились в несколько этапов.

На первом этапе испытаний проводился монтаж систем в моторном боксе, отладочные работы отдельных элементов систем, работы по калибровке измерительной и регулирующей аппаратуры, а так же снятие базовых регулировочных характеристик двигателя по составу смеси.

После сборки и поэлементной отладки стендовых систем производились предварительные испытания, в результате которых определялись и уточнялись необходимые параметры и настройки ДВС.

8

10

9

11

1

2

3

4

5

6

7

Рисунок 3.1 Схема моторного бокса.

1 – двигатель внутреннего сгорания.

2 – коробка перемены передач

3 – электрический тормоз

4 – пульт управления

5 – ёмкость для бензина

6 – весы для взвешивания топлива

7 – компьютер

8 – широкополосный датчик

9 – глушитель

10 – газоанализатор

11 – альфометр

Для проведения испытаний был взят двигатель – ВАЗ-21083. Для уменьшения камеры сгорания, и соответственно повышения степени сжатия, стандартные поршня ВАЗ-21083 были заменены на поршня ВАЗ-21124 (с вытеснителем). По этой причине объём камеры сгорания резко снизился. Методом проливки был установлен объём в надпоршневом пространстве и объём в головке цилиндров.

Степень сжатия для первого случая испытаний.

1 = 14,72

Для второго случая испытаний было поставлено дополнительно ещё две прокладки. Одна металлическая и другая уплотнительная (стандартная). Толщина всех прокладок одинакова и равна 1,1 мм

Степень сжатия для второго случая:

2 = 10,6

Работы по снятию характеристик ДВС на исследуемых режимах производились в следующей последовательности. Производился пуск двигателя при температуре, влажности и давлении окружающей среды, характерной для моторного бокса. Затем осуществлялся прогрев двигателя до рабочей температуры 90*С, далее устанавливается исследуемый режим работы двигателя и снимались исходные характеристики при работе двигателя на ПГ.

Первое испытание проводилось при степени сжатия равной 10, 6 единиц. Угол опережения зажигания устанавливался по рекомендации завода производителя.

Второе испытание проводилось при степени сжатия 14,7 единиц. Угол опережения зажигания был смещен на 5˚в сторону вращения коленвала по сравнению с первым испытанием.

В четвёртой главе приведены результаты испытаний.

Экспериментальные работы выполнялись путём снятия нагрузочных характеристик при различных режимах работы двигателя внутреннего сгорания и оптимальных углах опережения зажигания (УОЗ). Результаты испытаний представлены в таблицах.

 =10,6

N Gт, кг/ч n,

min¯¹

Мкр,

кгм

Мкр, н м α Ne,

кВт

ge

кг/кВт

CO % CH NOx, PPm
1 2,362 2020 2,3 22,5 1,08 4,76 0,495 0,15 150 320
2 2,759 2020 3,2 31,3 1,08 6,63 0,415 0,15 120 460
3 3,192 2020 4,5 44,1 1,09 9,33 0,342 0,15 100 740
4 3,602 2020 5,2 51,0 1,11 10,78 0,334 0,15 100 830
5 4,690 2010 5,8 56,9 1,03 12,00 0,390 0,15 100 450
6 3,762 2040 4,9 48,1 1,11 10,26 0,366 0,22 0 520
7 2,866 2020 3,6 35,3 1,09 7,45 0,384 0,22 0 500
8 2,219 2020 2,2 21,6 1,10 4,55 0,487 0,23 0 420
9 2,296 2025 2,3 22,6 1,11 4,76 0,481 0,25 126 280
10 2,835 2010 3,6 35,3 1,09 7,45 0,380 0,22 900 450
11 3,974 2005 5,4 52,9 1,10 11,17 0,355 0,24 810 620
12 3,408 2020 5,0 49,1 1,09 10,34 0,329 0,24 650 780
13 2,271 2020 2,5 24,5 1,09 5,17 0,439 0,24 630 400
14 2,174 2015 1,9 18,6 1,12 3,93 0,552 0,29 0 240
15 2,609 2015 2,8 27,5 1,10 5,79 0,450 0,27 0 310
16 3,640 2015 5,2 51,0 1,10 10,76 0,338 0,23 0 760
17 3,287 2015 4,4 43,2 1,08 9,10 0,360 0,25 0 700
18 2,080 2025 2,1 20,6 1,08 4,34 0,478 0,25 0 330
 =14,7
N Gт, кг/ч n, min¯¹ Мкр,

кг м

Мкр, н м α Ne,кВт ge

кг/кВт

CO % CH NOx, PPm
1 2,410 2050 2,8 27,5 1,25 5,87 0,410 0,08 150 430
2 2,573 2040 3,4 33,4 1,17 7,14 0,360 0,09 90 600
3 3,019 2040 4,6 45,1 1,15 9,66 0,312 0,08 70 980
4 3,598 2040 5,7 55,9 1,15 11,97 0,300 0,07 70 1450
5 3,639 2060 5,9 57,9 1,19 12,50 0,291 0,03 150 1090
6 2,996 2040 5,5 53,9 1,18 11,48 0,260 0 120 750
7 2,514 2030 3,2 31,4 1,19 6,65 0,377 0,06 90 540
8 2,103 2030 2,2 21,6 1,22 4,57 0,460 0,10 60 360
9 2,460 2030 3,0 29,4 1,19 6,24 0,394 0,09 690 480
10 2,574 2040 3,5 34,3 1,19 7,35 0,350 0,11 410 600
11 2,989 2040 4,5 44,2 1,17 9,45 0,316 0,12 370 920
12 3,293 2030 5,2 51,0 1,16 10,82 0,304 0,10 340 1110
13 3,532 2030 6,2 60,8 1,17 12,89 0,273 0,10 310 1460
14 3,962 2045 6,0 58,9 1,19 12,59 0,314 0,10 650 1030
15 3,398 2030 5,4 52,9 1,18 11,23 0,302 0,11 430 990
16 3,029 2035 4,5 44,2 1,19 9,45 0,320 0,11 340 820
17 2,542 2040 3,5 34,3 1,17 7,35 0,346 0,13 300 700
18 2,088 2025 2,6 25,5 1,17 5,41 0,386 0,14 280 490
19 2,293 2030 2,9 28,5 6,03 0,380 0,14 400 850
20 3,711 2038 6,1 59,8 12,81 0,289 0,12 370 1640
21 3,766 2020 6,7 65,7 13,94 0,270 0,12 340 2110
22 3,438 2025 5,5 53,9 11,44 0,301 0,12 340 1780
23 2,382 2025 3,3 32,4 6,86 0,347 0,12 310 1070
Влияние степени сжатия на изменение расхода топлива.

■ ст.сж 10,6

Влияние степени сжатия на изменение выбросов СО в ОГ.

■ ст.сж 10,6

ВЫВОДЫ

В ходе работы были выполнены следующие задачи:

- изучено состояние вопроса на сегодняшний день по теме высокой степени сжатия в двигателе внутреннего сгорания. Было проведено сравнение на соответствие теоретической составляющей, которая гласит о снижении эффективности работы ДВС с повышением степени сжатия. Так же проведены сравнительные исследования мировых автопроизводителей на предмет схожести достигнутых результатов. Все они достигают приблизительно одинаковой удельной мощности и значительного повышения эффективности работы ДВС.

Получены и обработаны результаты исследования, как влияет повышение степени сжатия на эффективность работы ДВС;

В ходе выполнения работы получены следующие результаты:

- установлена зависимость, повышения эффективности работы двигателя внутреннего сгорания от повышения степени сжатия. С ростом нагрузки расход топлива снизился на 25-30%, что позволяет предположить о большой эффективности повышения степени сжатия.

- так же доказано, что при повышении степени сжатия до 14,7 единиц регулируя УОЗ можно избежать детонации.

- Было доказано, что повышение степени сжатия значительно снижает выбросы СО, как показали испытания снижение составляет в два раза. Влияет повышение степени сжатия и на другие параметры выхлопных газов, для определения этого влияния необходимо провести дополнительные испытания.

Необходимо в дальнейшем провести исследования при более высоких степенях сжатия (до 20 единиц и более) для определения повышения эффективности работы двигателя, и влияние высоких и сверхвысоких степеней сжатия (более 20 единиц) на отработавшие газы.

Двигатели с переменной степенью сжатия показали свою неперспективность (отсутствие серийного выпуска) из-за сложности в массовом производстве и их обслуживании в эксплуатационный период, но само развитие этого направление заслуживает пристального внимания. Необходимо исследовать влияние добавок водорода, понижение температуры впускного заряда, рециркуляцию отработанных газов и т.д., на улучшение эффективности работы двигателя с высокими степенями сжатия.

Такой вывод может быть существенен для определения направления дальнейших исследований в области повышения степени сжатия для повышения топливной экономичности двигателя. Поскольку, согласно данному исследованию, повышение степени сжатия является перспективным направлением для исследования эффективности работы двигателя.

l.120-bal.ru

Степень сжатия двигателя - обзорная статья

В достижении наилучших эксплуатационных характеристик двигателя внутреннего сгорания (ДВС) нужно быть хорошо подкованным в вопросах принципов его работы и возможностей повышения мощности. Но далеко не каждый автовладелец и даже тот, кто увлекается техническим тюнингом, способен похвастаться такими знаниями. Охватить нужную информацию в рамках одной статьи, конечно же, невозможно, поэтому предлагаю начать с азов и для начала разобраться: что такое степень сжатия и как она влияет на эффективность работы ДВС?

Начнем с определения.

Степенью сжатия двигателя в теории автомобилей называют отношение полного объема цилиндра к объему камеры сгорания этого цилиндра, или, иными словами, отношение максимального его объема к минимальному.

А поскольку данное понятие характеризует отношение объема смеси при подаче в цилиндр к объему, при котором эта смесь воспламеняется, то очевидна зависимость: чем большей является степень сжатия, тем более высокое давление имеет воспламеняющаяся смесь.

В то же время вполне логично, что бесконечно увеличивать такое давление невозможно – велик риск возникновения проблем с мотором при заправке некачественным топливом. Да и чем активнее работает устройство, тем короче будет его «жизнь». Поэтому всего должно быть в меру.

На сегодняшний день эта мера (в отношении степени сжатия) уже давно определена и составляет у бензиновых двигателей от 8 до 12 единиц, а у дизельных – от 14 до 18, точное число зависит от задач, поставленных перед тем или иным движком, а точнее транспортным средством, на которое тот установлен.

Видео.

Рекомендую прочитать:

autoepoch.ru

Бензиновый двигатель внутреннего сгорания со сверхвысокой степенью сжатия.

(Доклад на Международной конференции Двигатель-2007, посвященной 100-летию школы двигателестроения МГТУ им. Н.Э.Баумана)

 

Москва 20 сентября 2007 г.

 

Уважаемые коллеги!

 

Хочу выразить глубокую признательность организаторам конференции за предоставленную мне возможность выступить перед такой авторитетной аудиторией и поздравить коллектив кафедры «Поршневых двигателей» МГТУ им Э.М. Баумана со 100-летним юбилеем, пожелать ему творческих успехов на благо нашей Родины.

Я впервые удостоен чести выступать перед аудиторией, которая составляет цвет и гордость российской и мировой науки в области двигателей внутреннего сгорания.

Учитывая, что у меня вообще нет опыта публичных выступлений, прошу вас быть снисходительными, если в моем выступлении прозвучат тезисы, которые могут показаться категоричными или радикальными.

Тема моего сообщения «Бензиновый двигатель внутреннего сгорания со сверхвысокой степенью сжатия» сама по себе может вызвать недоумение. Какая еще может быть сверхвысокая степень сжатия, если общеизвестно, что эффективный бензиновый двигатель внутреннего сгорания со степенью сжатия более 14 построить невозможно.

И тем не менее, как бы странно это не звучало, начну с главного вывода своих многолетних экспериментов и поисков:

Верхний предел степени сжатия ДВС ограничивается не детонацией или недопустимой жесткостью, а технологическими возможностями. В подтверждение этого могу сказать, что перед зданием, в котором проходит наша конференция, стоит автомашина ВАЗ-2110. На ней установлен бензиновый двигатель со степенью сжатия 22, давлением сжатия 38-40 кг/см2. Двигатель запускается и работает так, что со стороны невозможно отличить его от двигателя с известными вам степенями сжатия. И в то же время мой двигатель имеет значительно лучшие эффективные показатели, чем двигатель со степенью сжатия 10.

Теперь перейду к изложению того, как и в сопровождении каких обстоятельств я смог прийти к таким выводам.

Первые 80 лет (с 1824 года) своего возникновения и развития теория теплового, а затем двигателя внутреннего сгорания базировалась на положениях о том, что правильно устроенный и правильно работающий двигатель должен иметь КПД в районе 70-80%. Так считали Карно, Отто и Дизель.

В работе «Теория и конструкция рационального теплового двигателя» Р.Дизель дал описание устройства и принципа работы ДВС построенного по «циклу Карно». Первоначально Дизель исходил из того, что на такте адиабатного сжатия воздух сжимается до давления 90 кг/см2 и температуры 900о С, затем на такте изотермного расширения подводится теплота и при указанной температуре должно произойти изотермное, затем адиабатное расширение. При этих условиях термический КПД ДВС должен был составить 73%.

Однако построенный двигатель показал, что он допустил ошибки в расчетах. Затраты энергии на сжатие воздуха были столь велики, что превышали мощность двигателя. Поэтому пришлось снизить давление сжатия до 35 кг/см2. Первый двигатель Дизеля при попытке впрыснуть бензин взорвался. Тем не менее, эксперимент был признан удачным и ему предоставили условия для построения второго двигателя. Топливом для второго двигателя использовали светильный керосин. Двигатель был построен, продемонстрирован и показал результаты, которые на тот момент считались фантастическими.

С наших позиций Р.Дизель при разработке идеи и конструкции своего двигателя допустил ошибки частного характера, но сама идея была правильной. К тому же создать «идеальный» двигатель в то время было невозможно по объективным причинам, поскольку: а) отсутствовали достаточные знания о характере термодинамических процессов, происходящих в ДВС. б) не было соответствующей технической базы для построения такого двигателя.

В течение последующих 70 лет эти недостатки в теории и практике двигателестроения постепенно устранялись. Совершенствовалась техническая база двигателестроения, использовались все более совершенные материалы и технологии, улучшались детали, узлы, механизмы ДВС, были внедрены компьютерные программы управления работой ДВС. Все это в совокупности позволило довести механическую составляющую ДВС до практического совершенства.

Все известные автомобильные концерны и институты, специализирующиеся на проблемах ДВС, проводили работы с целью выявления зависимости между степенью сжатия ДВС и эффективностью его работы и исследования характера рабочих процессов, протекающих в ДВС. Предпринимались и многочисленные попытки повысить степень сжатия ДВС. Но эти работы имели отрицательный результат. Опираясь на этот отрицательный результат, теория ДВС приняла, как аксиомы, утверждения о том, что степень сжатия бензинового двигателя не может быть выше 14. Что наиболее эффективными могут быть дизельные ДВС со степенями сжатия менее 25, а при степени сжатия 40 эффективность дизельного двигателя становится равным нулю. Специалисты и теоретики настолько утвердились в правильности этих положений, что на данном этапе малейшие попытки усомниться в них, вызывает резко отрицательную реакцию.

Тем не менее, к 80-м годам 20-го столетия были созданы все технические и технологические предпосылки для создания новых видов ДВС с высокими и сверхвысокими степенями сжатия, которые работали бы на основе принципов, заложенных в теорию первоначально.

Парадокс ситуации заключается в том, что приведенные выше положения по поводу предельных степеней сжатия ДВС, не имеют под собой теоретической аргументации в виде формул и расчетов. Они возникли и существуют на основе отрицательной практики. Кто не согласен с этим, пусть представит формулу, из которой следовало бы, что степень сжатия бензинового или дизельного двигателей может быть ограничена конкретным числом.

Если какие-то положения теории являются правильными (т.е. соответствующими законам термодинамики), то построить работающий двигатель вопреки этим положениям не возможно. Но если такой двигатель построен и работает, значит, положения теории не соответствуют действительности и, следовательно, их надо менять.

Ознакомление с положениями современной теории ДВС приводит к следующим выводам:

1. Аргументировано излагаются законы термодинамики, теплотехники и позиции основоположников теории.

2. Абстрактно излагаются принципы работы современного ДВС. Вопросы зависимости характера рабочих процессов, протекающих в ДВС, от степени сжатия, взаимосвязи между КПД двигателя и степенью сжатия освещаются столь туманно, что никто, никогда не поймет, что надо сделать для того, чтобы существенно повысить КПД ДВС.

3. Абстрактность и отвлеченность освещения проблемы столь далеки от реальных процессов, которые в ДВС происходят, что современная теория ДВС оказалась не в состоянии правильно оценить сложившиеся в последние годы в практике двигателестроения тенденции и дать правильное решение вопроса. По этой причине индикаторный КПД ДВС со времен Р. Дизеля, практически, не изменился.

В 90-е годы мы несколько лет пытались усовершенствовать механическую составляющую двигателя. Было получено около 40 патентов на изобретения по системе питания, газораспределительному и кривошипно-шатунному механизмам. Но однажды пришлось задуматься. Если механический КПД лучших двигателей доходит до 85%, что там еще можно совершенствовать? Поэтому было решено отказаться от продолжения этой работы.

Теоретически существенное увеличение термического КПД ДВС возможно только путем увеличения степени сжатия. В то же время практика мирового двигателестроения свидетельствовала, что значительно увеличить степень сжатия бензинового и дизельного двигателей не удастся.

Вместе с тем оценка работы существующих ДВС показывала, что проблема имеет свое решение. С наших позиций наиболее убедительными свидетельствами возможности создания двигателя со сверхвысокой степенью сжатия являются комбинированный двигатель с высокой степенью наддува и двигатель с регулируемой степенью сжатия.

Поршневая часть двигателей, используемых в гонках Формулы 1, обычно имеет степень сжатия 11,5. Давление наддува в них принудительно, путем стравливания воздуха через установленный на впускном трубопроводе перепускной клапан, ограничивается величиной в 2,7 кг/см2. Суммарная степень сжатия двигателя составляет έ =31. При такой степени сжатия при работе на внешней скоростной характеристике давление конца сжатия должно составлять около 122 кг/см2.

Возникал вопрос: почему двигатель работает без детонации?

Анализ работы бензинового и дизельного комбинированных двигателей с наддувом привел нас к таким выводам:

1. Двигатель Формулы 1 на внешней скоростной характеристике работает точно также, как работал бы его атмосферный аналог на внешней скоростной характеристике с увеличиваемой по мере увеличения оборотов степенью сжатия от 6 до 31 (при 1000 об/мин. ε=6, при 18 000 об/мин. ε =31).

2. Существует нелинейная зависимость между частотой вращения коленчатого вала, степенью сжатия двигателя и степенью дросселирования. Согласно этой зависимости, чем меньше наполнение цилиндра, тем больше может быть степень сжатия двигателя. Чем больше обороты, тем больше может быть степень наполнения цилиндра.

3. В большинстве случаев суммарная степень сжатия комбинированных бензиновых и дизельных двигателей с многоступенчатым наддувом, как произведение степеней сжатия поршневой и лопаточной частей, превышает величину 30. Это позволяло сделать вывод о том, что можно построить атмосферный двигатель со сверхвысокой степенью сжатия.

4. В комбинированных бензиновых двигателях детонация не происходит, потому что детонация не успевает произойти. В них на всех частотах вращения время завершения конца сжатия и начала расширения меньше, чем время задержки самовоспламенения.

Теория дает такое определение детонации: пристеночное сгорание части смеси в результате самовоспламенения из-за местного повышения давления и температуры.

Указаны и три основных способа борьбы с детонацией: это либо увеличение частоты вращения, либо уменьшение наполнения цилиндра путем уменьшения угла открытия дроссельной заслонки, либо уменьшение угла зажигания.

Другие способы борьбы с детонацией: применение высокооктановых топлив, организация повышенной турбулизации заряда в цилиндре, оптимизация формы камеры сгорания, работа двигателей на обедненных и сверхобедненных смесях, переход на впрыск бензина в цилиндры двигателя, впрыскивание воды во впускную систему, организация гибридных рабочих процессов, регулирование степени сжатия нами не использовались и поэтому в настоящей статье не рассматриваются.

Комментарий:

Все три приведенных способа с позиций действительной степени сжатия имеют целью получить один и тот же результат. Увеличение частоты вращения при сохранении угла открытия дросселя приводит к уменьшению наполнения цилиндра. Уменьшение угла открытия дросселя при сохранении частоты вращения тоже приводит к уменьшению наполнения цилиндра. Уменьшение угла опережения зажигания способствует уменьшению количества смеси, сжигаемой на такте сжатия и соответственно уменьшению давления и температуры конца сжатия.

То есть, все предлагаемые теорией методы борьбы с детонацией имеют целью снизить давление Рс и температуру Тс конца сжатия для ухода от детонации.

Детонационные давления и температуры фактически возникают в любом современном атмосферном бензиновом двигателе. О двигателях с наддувом и говорить не приходится. Но детонационное сгорание произойдет только в том случае, если критические температура и давление сохранятсяв продолжение некоторого отрезка времени.

То есть, детонация есть явление, вызываемое взаимодействием трех факторов: давления, температуры и времени.

Это означает, что каждому значению величины давления конца сжатия Рс с его температурой конца сжатия Тс в каждом рабочем цикле двигателя соответствует своя продолжительность времени задержки самовоспламенения. Зависимость между величинами Рс - Тс и периодом задержки самовоспламенения обратная, непропорциональная и нелинейная. Но в целом эту зависимость можно охарактеризовать так: чем выше значения величин давления и температуры конца сжатия Рс и Тс, тем меньше время задержки самовоспламенения. И наоборот. Чем меньше значение величин Рс и Тс, тем больше время задержки самовоспламенения. Главным условием при переносе этой зависимости на работу двигателя должно быть, чтобы конец сжатия и начало расширения каждого рабочего цикла завершились бы раньше времени задержки самовоспламенения.

Из этого вывода следовал еще один вывод: если каждый рабочий цикл ДВС построить таким образом, что время задержки самовоспламения в нем будет больше времени завершения конца сжатия и начала расширения, детонации не будет совсем.

Для того, чтобы построить двигатель со сверхвысокой степенью сжатия, надо было выполнить следующие несколько условий.

1. На завершении такта сжатия при положении поршня в ВМТ в цилиндре двигателя должно достигаться максимальное (преддетонационное) для рабочего цикла давление Рс=Р1.

В действительном цикле двигателя, состоящем из множества рабочих циклов, значение величины Рс=Р1 для каждого отдельно взятого рабочего цикла будет своим, отличающимся от остальных рабочих циклов.

2. Не должно быть тепловыделения на сжатии. Потому что возникновение очага и распространение фронта пламени на такте сжатия дополнительно формирует благоприятные условия для возникновения детонации.

В двигателе со сверхвысокой степенью сжатия тепловыделение должно начинаться в ВМТ. Поэтому угол зажигания для данного рабочего цикла при заданной величине наполнения цилиндра превращается в константу. Подобранный для конкретных условий (октановое число, степень наполнения и пр.) угол зажигания ни увеличивать, ни уменьшать нельзя.

3. Конец сжатия, начало расширения должны завершиться раньше времени задержки самовоспламенения.

Величины давления Р1 и температуры горючей смеси Тс зависят от двух факторов: 1. количества горючей смеси, исчисляемой при давлении равном давлению окружающей среды; 2. кратности сжатия этого количества горючей смеси.

Эти параметры являются взаимозависимыми и регулируемыми. Регулировать величину Р1-Рс и температуру рабочего тела Тс можно, регулируя количество горючей смеси, участвующей в цикле, путем ограничения наполнения цилиндра.

4. На такте расширения в период распространения зоны реакции-фронта пламени величина Р1 не должна увеличиваться, иначе детонация возникнет на этом этапе. Эта величина не должна и уменьшаться, иначе двигатель потеряет эффективность. То есть, процессы увеличения объема рабочего тела вследствие нагревания и объема камеры сгорания в зоне малого изменения объема камеры сгорания должны быть синхронизированы так, чтобы давление в камере сгорания не изменялось до завершения процесса распространения фронта пламени. При этом: виртуальное представление о характере протекания процессов завершения сжатия и начала расширения показывало, что при ограничении наполнения проблем с синхронизацией не возникнет. Но было не ясно, как эти процессы будут происходить при полном наполнении цилиндра, то есть, на внешней характеристике.

5. Когда фронт пламени дойдет до стенок цилиндра и начнется наиболее активная фаза сгорания, давление Р1 должно увеличиться до величины Рz, которая также будет переменной величиной для разных рабочих циклов.

В связи с отрицательной реакцией теоретиков на наши идеи возникали вопросы: нужен ли двигатель со сверхвысокой степенью сжатия, даст ли он эффект? Если да, до каких величин можно увеличить степень сжатия, в частности, бензинового двигателя?

С одной стороны при расчетах термического КПД выходило, что степень сжатия можно увеличивать до любых величин. С другой стороны индикаторный и эффективный КПД ДВС зависят от тепловых и механических потерь. Чем выше степень сжатия двигателя, тем выше эти потери. Не зря практикой эксплуатации дизельных и бензиновых двигателей признано нецелесообразным повышать степень сжатия вследствие неэффективности ее повышения выше определенной величины, называемой «наивыгоднейшей степенью сжатия». Вместе с тем проецирование этого вопроса на работу двигателя с переменной (или регулируемой) степенью сжатия и на работу двигателя с высокой степенью наддува позволял предположить следующее:

1. В ДВС с переменной степенью сжатия в зависимости от степени дросселирования специальными устройствами изменяется объем камеры сгорания. При уменьшении наполнения цилиндра, степень сжатия увеличивается, а при увеличении наполнения, степень сжатия уменьшается.

Если взять двигатель с регулируемой степенью сжатия, в котором степень сжатия изменяется пропорционально степени дросселирования, допустим от 10 до 20, то окажется, что интервале наполнения цилиндра от 39% до 100%, процесс сжатия в нем завершается при практически одинаковых значениях величин Рс и Тс.

2. В серийном двигателе Ауди 1,8 ТТ со степенью сжатия 9 при частоте вращения выше 1700 об/мин достигается давление наддува 1.6 кг/см2, суммарная степень сжатия равна έ =14. Расчетное давление конца сжатия при этом составляет 40 кг/см2. В атмосферном двигателе при Ра= 1 кг/см2 такое давление конца сжатия может быть получено при степени сжатия 14.

То есть, в первом случае мы имеем двигатель, который работает при высокой степени сжатия на частичной характеристике, а во втором случае- двигатель, с высокой степенью сжатия, который работает на внешней характеристике.

Помимо этого, анализировалась и работа дизельного двигателя. По принципиальной схеме (преобразование энергии топлива в работу в одинаковых механических устройствах) бензиновый двигатель ничем от дизельного не отличался. Это говорило о том, что увеличение степени сжатия бензинового двигателя до «дизельных» величин, повлечет такое же увеличение КПД.

Перечисленные доводы, несмотря на возражения теоретиков, позволяли предположить, что увеличение степени сжатия бензинового двигателя до определенных величин даст существенное увеличение КПД. Дальнейшее увеличение степени сжатия из-за роста доли отрицательной работы будет давать все меньшее увеличение КПД. В определенной точке произойдет пересечение линий роста КПД и потерь. При дальнейшем увеличении степени сжатия эффективный КПД начнет падать.

Ответа на вопрос, как будут протекать рабочие процессы при полном наполнении цилиндра, на тот период у нас не было. Тем не менее, полученные выводы нам показались достаточными для того, чтобы попытаться убедить производственников в том, чтобы оказали поддержку в построении двигателя с ограничением наполнения и уже в ходе самой работы и испытаний найти ответ.

Убедить кого-либо помочь построить опытный образец двигателя не удалось. Поэтому в сентябре-октябре 2002 года на базе шестицилиндрового двигателя БМВ самостоятельно, своими силами построили первый бензиновый двигатель со степенью сжатия 17. До апреля 2003 года автомобиль эксплуатировался с ограничителем хода педали газа, так как было не ясно, как быть с процессами сжатия и расширения на внешней характеристике.

Но вдруг выяснилось, что для решения вопроса о том, как синхронизировать процессы увеличения давления рабочего тела и объема камеры сгорания на начале расширения для обеспечения постоянства давления Р1 при полном наполнении цилиндра, вообще ничего не надо делать. Оказалось, что задача уже решена, а мы просто не догадывались об этом. Выходило следующее:

При условии работы двигателя без детонации, скорость распространения фронта пламени для данного количества горючей смеси величина постоянная. (Первая константа).

Скорость изменения объема камеры сгорания зависит от оборотов двигателя. Но для конкретной частоты вращения эта скорость величина постоянная. То есть, например, для частоты вращения 1500 об/мин скорость изменения объема камеры сгорания и на сжатии и на расширении величина известная, конкретная и постоянная. (Вторая константа).

Для данной частоты вращения степень допустимого наполнения цилиндра (или величина ограничения) будет иметь конкретное значение. Соответственно, масса рабочего тела, поступающего в цилиндр, тоже будет постоянной величиной. (Третья константа).

При этих условиях, получаемая в конце сжатия величина давления Р1 и температура смеси Тс также будут постоянными величинами. (Четвертая константа).

Для данных давления Р1 и температуры Тс время задержки самовоспламенения также будет постоянной величиной. (Пятая константа).

При таком соотношении постоянных величин (констант), формирующих процессы сжатия, сгорания и расширения синхронизация процессов увеличения объема камеры сгорания и давления смеси происходит сама по себе.

Поняв это, сняли ограничитель хода педали. Машина стала ездить на полном дросселе, никаких проблем с синхронизацией не возникло.

В дальнейшем стали строить двигатели на базе ВАЗ-2110. Чередуя работу на стенде с ездой на автомашине, решали многочисленные проблемы.

Результат всей этой работы получился такой:

В бензиновом ДВС с внешним смесеобразованием со сверхвысокой степенью сжатия рабочий цикл происходит следующим образом: степень сжатия двигателя, например, составляет 22, частота вращения коленчатого вала выше 1800 об/мин (например, 2000 об/мин), режим работы-внешняя скоростная характеристика.

При перечисленных условиях дроссельная заслонка открыта полностью, расход воздуха максимальный для данных оборотов. Угол опережения зажигания (УОЗ) 6 градусов до ВМТ. При положении поршня в 0 градусов, то есть, в ВМТ, начинается распространение пламени по фронту. До 6000 об/мин двигатель работает при полностью открытом дросселе, только изменяется УОЗ.

При уменьшении частоты вращения коленчатого вала ниже 1800 об/мин (например до 1200 об/мин) дроссельная заслонка изменяет положение и ограничивает наполнение цилиндра. При этом, если при полностью открытой дроссельной заслонке расход воздуха составил бы 360 мг, то при реальной работе на внешней скоростной характеристике при указанной частоте вращения коленчатого вала дроссельная заслонка должна занять такое положение, при котором максимальный расход воздуха должен быть не более 270 мг на цикл.

Для двигателя со сверхвысокой степенью сжатия понятие работы на внешней скоростной характеристике имеет другой смысл, чем для традиционного двигателя. На низких оборотах для него это - работа при максимально допустимом наполнении цилиндра.

Из теории следует, что любое возмущение в жидкостях и газах распространяется со скоростью звука. Так как размеры камер сгорания поршневых двигателей малы, а скорость звука 500-600 м/с, то давление через доли микросекунд выравнивается по всему объему, но не остается таким, как в зоне возмущения.

В замкнутом сосуде неизменного объема при нагревании газа происходит увеличение давления, при его охлаждении – уменьшение давления и температуры. Если стенки объема деформируются, то происходит увеличение и объема и давления. Увеличивается давление в этом случае меньше, чем при отсутствии деформации стенок. С началом процесса сгорания интенсивность тепловыделения так высока, что скорость увеличения давления в цилиндре опережает скорость увеличения объема камеры сгорания. В виду этого принято считать, что выровнять скорости увеличения объема газов и объема камеры сгорания невозможно. Поэтому в камере сгорания происходит поджатие зоны смеси, до которого фронт сгорания еще не дошел. Если интенсивность поджатия смеси окажется слишком высокой, произойдет детонация.

Но, как указано выше, путем дросселирования можно регулировать интенсивность увеличения объема рабочего тела. А раз ее можно регулировать, то для каждого конкретного рабочего цикла путем дросселирования (ограничения наполнения цилиндра) можно подобрать и установить такую интенсивность увеличения объема газов, которая соответствовала бы скорости увеличения объема камеры сгорания. То есть, как выяснилось, процесс можно синхронизировать.

Поэтому, если в период распространения фронта пламени, синхронизировать скорости увеличения объема рабочего тела из-за нагревания и объема камеры сгорания, давление останется неизменным.

Процесс синхронизации в двигателе со сверхвысокой степенью сжатия можно нарушить приведенными выше тремя способами: 1. при неизменности всех остальных параметров (УОЗ, расход воздуха, состав смеси и пр.) уменьшить обороты. 2. при неизменности всех остальных параметров (УОЗ, обороты, состав смеси и пр.) увеличить расход воздуха. 3. при неизменности всех остальных параметров изменить УОЗ.

Эксперименты с нарушением синхронизации проводились неоднократно. По приведенным пунктам можно привести такие данные: Обороты 1700, дроссель открыт полностью, расчетное давление конца сжатия Рс=60 кг/см2. Двигатель работает без детонации. Уменьшение оборотов до 1680, то есть, всего на 20 об/мин, вызывает детонацию. Другой пример: обороты 1680 в минуту, дроссель прикрыт, расход воздуха 355 мг на цикл. Расчетный Рс=58 кг/см2. Детонации нет. Дроссель открывается полностью. Расход воздуха становится 360 мг на цикл. Двигатель детонирует. Третий пример: перенос угла зажигания на 10 градусов выше или ниже оптимальной точки в двигателе ЗМЗ-406 со степенью сжатия 9,5 каких-либо заметных изменений в его работе не вызывает. В экспериментальном двигателе максимально возможное смещение угла зажигания от оптимальной точки составляет всего 1-1,5 градуса в сторону его увеличения и 2-3 градуса в сторону уменьшения. И то в первом случае возникает сильная детонация, а во втором случае резко падает эффективность.

Рс и Тс это давление и температура в той точке, которая называется концом сжатия-началом расширения. Сформировавшись в момент завершения сжатия, они в таковом качестве вступают в процесс расширения. Соответственно этому приведенные выше примеры экспериментов касаются давления Р1 и показывают, что даже незначительное, всего на 2 кг/см2, увеличение Р1 приводит к детонации.

Синхронизация процессов в зоне малого изменения объема камеры сгорания есть отличительный признак цикла и основа, на котором будут строиться двигатели со сверхвысокими степенями сжатия. Можно сказать так: есть синхронизация, есть работающий двигатель со сверхвысокой степенью сжатия, нет синхронизации, нет работающего двигателя.

Особенности работы двигателя следующие:



infopedia.su

Бензиновый двигатель внутреннего сгорания со сверхвысокой степенью сжатия

(Доклад на Международной конференции Двигатель-2007, посвященной 100-летию школы двигателестроения МГТУ им. Н.Э.Баумана)

 

Москва 20 сентября 2007 г.

 

Уважаемые коллеги!

 

Хочу выразить глубокую признательность организаторам конференции за предоставленную мне возможность выступить перед такой авторитетной аудиторией и поздравить коллектив кафедры «Поршневых двигателей» МГТУ им Э.М. Баумана со 100-летним юбилеем, пожелать ему творческих успехов на благо нашей Родины.

Я впервые удостоен чести выступать перед аудиторией, которая составляет цвет и гордость российской и мировой науки в области двигателей внутреннего сгорания.

Учитывая, что у меня вообще нет опыта публичных выступлений, прошу вас быть снисходительными, если в моем выступлении прозвучат тезисы, которые могут показаться категоричными или радикальными.

Тема моего сообщения «Бензиновый двигатель внутреннего сгорания со сверхвысокой степенью сжатия» сама по себе может вызвать недоумение. Какая еще может быть сверхвысокая степень сжатия, если общеизвестно, что эффективный бензиновый двигатель внутреннего сгорания со степенью сжатия более 14 построить невозможно.

И тем не менее, как бы странно это не звучало, начну с главного вывода своих многолетних экспериментов и поисков:

Верхний предел степени сжатия ДВС ограничивается не детонацией или недопустимой жесткостью, а технологическими возможностями. В подтверждение этого могу сказать, что перед зданием, в котором проходит наша конференция, стоит автомашина ВАЗ-2110. На ней установлен бензиновый двигатель со степенью сжатия 22, давлением сжатия 38-40 кг/см2. Двигатель запускается и работает так, что со стороны невозможно отличить его от двигателя с известными вам степенями сжатия. И в то же время мой двигатель имеет значительно лучшие эффективные показатели, чем двигатель со степенью сжатия 10.

Теперь перейду к изложению того, как и в сопровождении каких обстоятельств я смог прийти к таким выводам.

Первые 80 лет (с 1824 года) своего возникновения и развития теория теплового, а затем двигателя внутреннего сгорания базировалась на положениях о том, что правильно устроенный и правильно работающий двигатель должен иметь КПД в районе 70-80%. Так считали Карно, Отто и Дизель.

В работе «Теория и конструкция рационального теплового двигателя» Р.Дизель дал описание устройства и принципа работы ДВС построенного по «циклу Карно». Первоначально Дизель исходил из того, что на такте адиабатного сжатия воздух сжимается до давления 90 кг/см2 и температуры 900о С, затем на такте изотермного расширения подводится теплота и при указанной температуре должно произойти изотермное, затем адиабатное расширение. При этих условиях термический КПД ДВС должен был составить 73%.

Однако построенный двигатель показал, что он допустил ошибки в расчетах. Затраты энергии на сжатие воздуха были столь велики, что превышали мощность двигателя. Поэтому пришлось снизить давление сжатия до 35 кг/см2. Первый двигатель Дизеля при попытке впрыснуть бензин взорвался. Тем не менее, эксперимент был признан удачным и ему предоставили условия для построения второго двигателя. Топливом для второго двигателя использовали светильный керосин. Двигатель был построен, продемонстрирован и показал результаты, которые на тот момент считались фантастическими.

С наших позиций Р.Дизель при разработке идеи и конструкции своего двигателя допустил ошибки частного характера, но сама идея была правильной. К тому же создать «идеальный» двигатель в то время было невозможно по объективным причинам, поскольку: а) отсутствовали достаточные знания о характере термодинамических процессов, происходящих в ДВС. б) не было соответствующей технической базы для построения такого двигателя.

В течение последующих 70 лет эти недостатки в теории и практике двигателестроения постепенно устранялись. Совершенствовалась техническая база двигателестроения, использовались все более совершенные материалы и технологии, улучшались детали, узлы, механизмы ДВС, были внедрены компьютерные программы управления работой ДВС. Все это в совокупности позволило довести механическую составляющую ДВС до практического совершенства.

Все известные автомобильные концерны и институты, специализирующиеся на проблемах ДВС, проводили работы с целью выявления зависимости между степенью сжатия ДВС и эффективностью его работы и исследования характера рабочих процессов, протекающих в ДВС. Предпринимались и многочисленные попытки повысить степень сжатия ДВС. Но эти работы имели отрицательный результат. Опираясь на этот отрицательный результат, теория ДВС приняла, как аксиомы, утверждения о том, что степень сжатия бензинового двигателя не может быть выше 14. Что наиболее эффективными могут быть дизельные ДВС со степенями сжатия менее 25, а при степени сжатия 40 эффективность дизельного двигателя становится равным нулю. Специалисты и теоретики настолько утвердились в правильности этих положений, что на данном этапе малейшие попытки усомниться в них, вызывает резко отрицательную реакцию.

Тем не менее, к 80-м годам 20-го столетия были созданы все технические и технологические предпосылки для создания новых видов ДВС с высокими и сверхвысокими степенями сжатия, которые работали бы на основе принципов, заложенных в теорию первоначально.

Парадокс ситуации заключается в том, что приведенные выше положения по поводу предельных степеней сжатия ДВС, не имеют под собой теоретической аргументации в виде формул и расчетов. Они возникли и существуют на основе отрицательной практики. Кто не согласен с этим, пусть представит формулу, из которой следовало бы, что степень сжатия бензинового или дизельного двигателей может быть ограничена конкретным числом.

Если какие-то положения теории являются правильными (т.е. соответствующими законам термодинамики), то построить работающий двигатель вопреки этим положениям не возможно. Но если такой двигатель построен и работает, значит, положения теории не соответствуют действительности и, следовательно, их надо менять.

Ознакомление с положениями современной теории ДВС приводит к следующим выводам:

1. Аргументировано излагаются законы термодинамики, теплотехники и позиции основоположников теории.

2. Абстрактно излагаются принципы работы современного ДВС. Вопросы зависимости характера рабочих процессов, протекающих в ДВС, от степени сжатия, взаимосвязи между КПД двигателя и степенью сжатия освещаются столь туманно, что никто, никогда не поймет, что надо сделать для того, чтобы существенно повысить КПД ДВС.

3. Абстрактность и отвлеченность освещения проблемы столь далеки от реальных процессов, которые в ДВС происходят, что современная теория ДВС оказалась не в состоянии правильно оценить сложившиеся в последние годы в практике двигателестроения тенденции и дать правильное решение вопроса. По этой причине индикаторный КПД ДВС со времен Р. Дизеля, практически, не изменился.

В 90-е годы мы несколько лет пытались усовершенствовать механическую составляющую двигателя. Было получено около 40 патентов на изобретения по системе питания, газораспределительному и кривошипно-шатунному механизмам. Но однажды пришлось задуматься. Если механический КПД лучших двигателей доходит до 85%, что там еще можно совершенствовать? Поэтому было решено отказаться от продолжения этой работы.

Теоретически существенное увеличение термического КПД ДВС возможно только путем увеличения степени сжатия. В то же время практика мирового двигателестроения свидетельствовала, что значительно увеличить степень сжатия бензинового и дизельного двигателей не удастся.

Вместе с тем оценка работы существующих ДВС показывала, что проблема имеет свое решение. С наших позиций наиболее убедительными свидетельствами возможности создания двигателя со сверхвысокой степенью сжатия являются комбинированный двигатель с высокой степенью наддува и двигатель с регулируемой степенью сжатия.

Поршневая часть двигателей, используемых в гонках Формулы 1, обычно имеет степень сжатия 11,5. Давление наддува в них принудительно, путем стравливания воздуха через установленный на впускном трубопроводе перепускной клапан, ограничивается величиной в 2,7 кг/см2. Суммарная степень сжатия двигателя составляет έ =31. При такой степени сжатия при работе на внешней скоростной характеристике давление конца сжатия должно составлять около 122 кг/см2.

Возникал вопрос: почему двигатель работает без детонации?

Анализ работы бензинового и дизельного комбинированных двигателей с наддувом привел нас к таким выводам:

1. Двигатель Формулы 1 на внешней скоростной характеристике работает точно также, как работал бы его атмосферный аналог на внешней скоростной характеристике с увеличиваемой по мере увеличения оборотов степенью сжатия от 6 до 31 (при 1000 об/мин. ε=6, при 18 000 об/мин. ε =31).

2. Существует нелинейная зависимость между частотой вращения коленчатого вала, степенью сжатия двигателя и степенью дросселирования. Согласно этой зависимости, чем меньше наполнение цилиндра, тем больше может быть степень сжатия двигателя. Чем больше обороты, тем больше может быть степень наполнения цилиндра.

3. В большинстве случаев суммарная степень сжатия комбинированных бензиновых и дизельных двигателей с многоступенчатым наддувом, как произведение степеней сжатия поршневой и лопаточной частей, превышает величину 30. Это позволяло сделать вывод о том, что можно построить атмосферный двигатель со сверхвысокой степенью сжатия.

4. В комбинированных бензиновых двигателях детонация не происходит, потому что детонация не успевает произойти. В них на всех частотах вращения время завершения конца сжатия и начала расширения меньше, чем время задержки самовоспламенения.

Теория дает такое определение детонации: пристеночное сгорание части смеси в результате самовоспламенения из-за местного повышения давления и температуры.

Указаны и три основных способа борьбы с детонацией: это либо увеличение частоты вращения, либо уменьшение наполнения цилиндра путем уменьшения угла открытия дроссельной заслонки, либо уменьшение угла зажигания.

Другие способы борьбы с детонацией: применение высокооктановых топлив, организация повышенной турбулизации заряда в цилиндре, оптимизация формы камеры сгорания, работа двигателей на обедненных и сверхобедненных смесях, переход на впрыск бензина в цилиндры двигателя, впрыскивание воды во впускную систему, организация гибридных рабочих процессов, регулирование степени сжатия нами не использовались и поэтому в настоящей статье не рассматриваются.

Комментарий:

Все три приведенных способа с позиций действительной степени сжатия имеют целью получить один и тот же результат. Увеличение частоты вращения при сохранении угла открытия дросселя приводит к уменьшению наполнения цилиндра. Уменьшение угла открытия дросселя при сохранении частоты вращения тоже приводит к уменьшению наполнения цилиндра. Уменьшение угла опережения зажигания способствует уменьшению количества смеси, сжигаемой на такте сжатия и соответственно уменьшению давления и температуры конца сжатия.

То есть, все предлагаемые теорией методы борьбы с детонацией имеют целью снизить давление Рс и температуру Тс конца сжатия для ухода от детонации.

Детонационные давления и температуры фактически возникают в любом современном атмосферном бензиновом двигателе. О двигателях с наддувом и говорить не приходится. Но детонационное сгорание произойдет только в том случае, если критические температура и давление сохранятсяв продолжение некоторого отрезка времени.

То есть, детонация есть явление, вызываемое взаимодействием трех факторов: давления, температуры и времени.

Это означает, что каждому значению величины давления конца сжатия Рс с его температурой конца сжатия Тс в каждом рабочем цикле двигателя соответствует своя продолжительность времени задержки самовоспламенения. Зависимость между величинами Рс - Тс и периодом задержки самовоспламенения обратная, непропорциональная и нелинейная. Но в целом эту зависимость можно охарактеризовать так: чем выше значения величин давления и температуры конца сжатия Рс и Тс, тем меньше время задержки самовоспламенения. И наоборот. Чем меньше значение величин Рс и Тс, тем больше время задержки самовоспламенения. Главным условием при переносе этой зависимости на работу двигателя должно быть, чтобы конец сжатия и начало расширения каждого рабочего цикла завершились бы раньше времени задержки самовоспламенения.

Из этого вывода следовал еще один вывод: если каждый рабочий цикл ДВС построить таким образом, что время задержки самовоспламения в нем будет больше времени завершения конца сжатия и начала расширения, детонации не будет совсем.

Для того, чтобы построить двигатель со сверхвысокой степенью сжатия, надо было выполнить следующие несколько условий.

1. На завершении такта сжатия при положении поршня в ВМТ в цилиндре двигателя должно достигаться максимальное (преддетонационное) для рабочего цикла давление Рс=Р1.

В действительном цикле двигателя, состоящем из множества рабочих циклов, значение величины Рс=Р1 для каждого отдельно взятого рабочего цикла будет своим, отличающимся от остальных рабочих циклов.

2. Не должно быть тепловыделения на сжатии. Потому что возникновение очага и распространение фронта пламени на такте сжатия дополнительно формирует благоприятные условия для возникновения детонации.

В двигателе со сверхвысокой степенью сжатия тепловыделение должно начинаться в ВМТ. Поэтому угол зажигания для данного рабочего цикла при заданной величине наполнения цилиндра превращается в константу. Подобранный для конкретных условий (октановое число, степень наполнения и пр.) угол зажигания ни увеличивать, ни уменьшать нельзя.

3. Конец сжатия, начало расширения должны завершиться раньше времени задержки самовоспламенения.

Величины давления Р1 и температуры горючей смеси Тс зависят от двух факторов: 1. количества горючей смеси, исчисляемой при давлении равном давлению окружающей среды; 2. кратности сжатия этого количества горючей смеси.

Эти параметры являются взаимозависимыми и регулируемыми. Регулировать величину Р1-Рс и температуру рабочего тела Тс можно, регулируя количество горючей смеси, участвующей в цикле, путем ограничения наполнения цилиндра.

4. На такте расширения в период распространения зоны реакции-фронта пламени величина Р1 не должна увеличиваться, иначе детонация возникнет на этом этапе. Эта величина не должна и уменьшаться, иначе двигатель потеряет эффективность. То есть, процессы увеличения объема рабочего тела вследствие нагревания и объема камеры сгорания в зоне малого изменения объема камеры сгорания должны быть синхронизированы так, чтобы давление в камере сгорания не изменялось до завершения процесса распространения фронта пламени. При этом: виртуальное представление о характере протекания процессов завершения сжатия и начала расширения показывало, что при ограничении наполнения проблем с синхронизацией не возникнет. Но было не ясно, как эти процессы будут происходить при полном наполнении цилиндра, то есть, на внешней характеристике.

5. Когда фронт пламени дойдет до стенок цилиндра и начнется наиболее активная фаза сгорания, давление Р1 должно увеличиться до величины Рz, которая также будет переменной величиной для разных рабочих циклов.

В связи с отрицательной реакцией теоретиков на наши идеи возникали вопросы: нужен ли двигатель со сверхвысокой степенью сжатия, даст ли он эффект? Если да, до каких величин можно увеличить степень сжатия, в частности, бензинового двигателя?

С одной стороны при расчетах термического КПД выходило, что степень сжатия можно увеличивать до любых величин. С другой стороны индикаторный и эффективный КПД ДВС зависят от тепловых и механических потерь. Чем выше степень сжатия двигателя, тем выше эти потери. Не зря практикой эксплуатации дизельных и бензиновых двигателей признано нецелесообразным повышать степень сжатия вследствие неэффективности ее повышения выше определенной величины, называемой «наивыгоднейшей степенью сжатия». Вместе с тем проецирование этого вопроса на работу двигателя с переменной (или регулируемой) степенью сжатия и на работу двигателя с высокой степенью наддува позволял предположить следующее:

1. В ДВС с переменной степенью сжатия в зависимости от степени дросселирования специальными устройствами изменяется объем камеры сгорания. При уменьшении наполнения цилиндра, степень сжатия увеличивается, а при увеличении наполнения, степень сжатия уменьшается.

Если взять двигатель с регулируемой степенью сжатия, в котором степень сжатия изменяется пропорционально степени дросселирования, допустим от 10 до 20, то окажется, что интервале наполнения цилиндра от 39% до 100%, процесс сжатия в нем завершается при практически одинаковых значениях величин Рс и Тс.

2. В серийном двигателе Ауди 1,8 ТТ со степенью сжатия 9 при частоте вращения выше 1700 об/мин достигается давление наддува 1.6 кг/см2, суммарная степень сжатия равна έ =14. Расчетное давление конца сжатия при этом составляет 40 кг/см2. В атмосферном двигателе при Ра= 1 кг/см2 такое давление конца сжатия может быть получено при степени сжатия 14.

То есть, в первом случае мы имеем двигатель, который работает при высокой степени сжатия на частичной характеристике, а во втором случае- двигатель, с высокой степенью сжатия, который работает на внешней характеристике.

Помимо этого, анализировалась и работа дизельного двигателя. По принципиальной схеме (преобразование энергии топлива в работу в одинаковых механических устройствах) бензиновый двигатель ничем от дизельного не отличался. Это говорило о том, что увеличение степени сжатия бензинового двигателя до «дизельных» величин, повлечет такое же увеличение КПД.

Перечисленные доводы, несмотря на возражения теоретиков, позволяли предположить, что увеличение степени сжатия бензинового двигателя до определенных величин даст существенное увеличение КПД. Дальнейшее увеличение степени сжатия из-за роста доли отрицательной работы будет давать все меньшее увеличение КПД. В определенной точке произойдет пересечение линий роста КПД и потерь. При дальнейшем увеличении степени сжатия эффективный КПД начнет падать.

Ответа на вопрос, как будут протекать рабочие процессы при полном наполнении цилиндра, на тот период у нас не было. Тем не менее, полученные выводы нам показались достаточными для того, чтобы попытаться убедить производственников в том, чтобы оказали поддержку в построении двигателя с ограничением наполнения и уже в ходе самой работы и испытаний найти ответ.

Убедить кого-либо помочь построить опытный образец двигателя не удалось. Поэтому в сентябре-октябре 2002 года на базе шестицилиндрового двигателя БМВ самостоятельно, своими силами построили первый бензиновый двигатель со степенью сжатия 17. До апреля 2003 года автомобиль эксплуатировался с ограничителем хода педали газа, так как было не ясно, как быть с процессами сжатия и расширения на внешней характеристике.

Но вдруг выяснилось, что для решения вопроса о том, как синхронизировать процессы увеличения давления рабочего тела и объема камеры сгорания на начале расширения для обеспечения постоянства давления Р1 при полном наполнении цилиндра, вообще ничего не надо делать. Оказалось, что задача уже решена, а мы просто не догадывались об этом. Выходило следующее:

При условии работы двигателя без детонации, скорость распространения фронта пламени для данного количества горючей смеси величина постоянная. (Первая константа).

Скорость изменения объема камеры сгорания зависит от оборотов двигателя. Но для конкретной частоты вращения эта скорость величина постоянная. То есть, например, для частоты вращения 1500 об/мин скорость изменения объема камеры сгорания и на сжатии и на расширении величина известная, конкретная и постоянная. (Вторая константа).

Для данной частоты вращения степень допустимого наполнения цилиндра (или величина ограничения) будет иметь конкретное значение. Соответственно, масса рабочего тела, поступающего в цилиндр, тоже будет постоянной величиной. (Третья константа).

При этих условиях, получаемая в конце сжатия величина давления Р1 и температура смеси Тс также будут постоянными величинами. (Четвертая константа).

Для данных давления Р1 и температуры Тс время задержки самовоспламенения также будет постоянной величиной. (Пятая константа).

При таком соотношении постоянных величин (констант), формирующих процессы сжатия, сгорания и расширения синхронизация процессов увеличения объема камеры сгорания и давления смеси происходит сама по себе.

Поняв это, сняли ограничитель хода педали. Машина стала ездить на полном дросселе, никаких проблем с синхронизацией не возникло.

В дальнейшем стали строить двигатели на базе ВАЗ-2110. Чередуя работу на стенде с ездой на автомашине, решали многочисленные проблемы.

Результат всей этой работы получился такой:

В бензиновом ДВС с внешним смесеобразованием со сверхвысокой степенью сжатия рабочий цикл происходит следующим образом: степень сжатия двигателя, например, составляет 22, частота вращения коленчатого вала выше 1800 об/мин (например, 2000 об/мин), режим работы-внешняя скоростная характеристика.

При перечисленных условиях дроссельная заслонка открыта полностью, расход воздуха максимальный для данных оборотов. Угол опережения зажигания (УОЗ) 6 градусов до ВМТ. При положении поршня в 0 градусов, то есть, в ВМТ, начинается распространение пламени по фронту. До 6000 об/мин двигатель работает при полностью открытом дросселе, только изменяется УОЗ.

При уменьшении частоты вращения коленчатого вала ниже 1800 об/мин (например до 1200 об/мин) дроссельная заслонка изменяет положение и ограничивает наполнение цилиндра. При этом, если при полностью открытой дроссельной заслонке расход воздуха составил бы 360 мг, то при реальной работе на внешней скоростной характеристике при указанной частоте вращения коленчатого вала дроссельная заслонка должна занять такое положение, при котором максимальный расход воздуха должен быть не более 270 мг на цикл.

Для двигателя со сверхвысокой степенью сжатия понятие работы на внешней скоростной характеристике имеет другой смысл, чем для традиционного двигателя. На низких оборотах для него это - работа при максимально допустимом наполнении цилиндра.

Из теории следует, что любое возмущение в жидкостях и газах распространяется со скоростью звука. Так как размеры камер сгорания поршневых двигателей малы, а скорость звука 500-600 м/с, то давление через доли микросекунд выравнивается по всему объему, но не остается таким, как в зоне возмущения.

В замкнутом сосуде неизменного объема при нагревании газа происходит увеличение давления, при его охлаждении – уменьшение давления и температуры. Если стенки объема деформируются, то происходит увеличение и объема и давления. Увеличивается давление в этом случае меньше, чем при отсутствии деформации стенок. С началом процесса сгорания интенсивность тепловыделения так высока, что скорость увеличения давления в цилиндре опережает скорость увеличения объема камеры сгорания. В виду этого принято считать, что выровнять скорости увеличения объема газов и объема камеры сгорания невозможно. Поэтому в камере сгорания происходит поджатие зоны смеси, до которого фронт сгорания еще не дошел. Если интенсивность поджатия смеси окажется слишком высокой, произойдет детонация.

Но, как указано выше, путем дросселирования можно регулировать интенсивность увеличения объема рабочего тела. А раз ее можно регулировать, то для каждого конкретного рабочего цикла путем дросселирования (ограничения наполнения цилиндра) можно подобрать и установить такую интенсивность увеличения объема газов, которая соответствовала бы скорости увеличения объема камеры сгорания. То есть, как выяснилось, процесс можно синхронизировать.

Поэтому, если в период распространения фронта пламени, синхронизировать скорости увеличения объема рабочего тела из-за нагревания и объема камеры сгорания, давление останется неизменным.

Процесс синхронизации в двигателе со сверхвысокой степенью сжатия можно нарушить приведенными выше тремя способами: 1. при неизменности всех остальных параметров (УОЗ, расход воздуха, состав смеси и пр.) уменьшить обороты. 2. при неизменности всех остальных параметров (УОЗ, обороты, состав смеси и пр.) увеличить расход воздуха. 3. при неизменности всех остальных параметров изменить УОЗ.

Эксперименты с нарушением синхронизации проводились неоднократно. По приведенным пунктам можно привести такие данные: Обороты 1700, дроссель открыт полностью, расчетное давление конца сжатия Рс=60 кг/см2. Двигатель работает без детонации. Уменьшение оборотов до 1680, то есть, всего на 20 об/мин, вызывает детонацию. Другой пример: обороты 1680 в минуту, дроссель прикрыт, расход воздуха 355 мг на цикл. Расчетный Рс=58 кг/см2. Детонации нет. Дроссель открывается полностью. Расход воздуха становится 360 мг на цикл. Двигатель детонирует. Третий пример: перенос угла зажигания на 10 градусов выше или ниже оптимальной точки в двигателе ЗМЗ-406 со степенью сжатия 9,5 каких-либо заметных изменений в его работе не вызывает. В экспериментальном двигателе максимально возможное смещение угла зажигания от оптимальной точки составляет всего 1-1,5 градуса в сторону его увеличения и 2-3 градуса в сторону уменьшения. И то в первом случае возникает сильная детонация, а во втором случае резко падает эффективность.

Рс и Тс это давление и температура в той точке, которая называется концом сжатия-началом расширения. Сформировавшись в момент завершения сжатия, они в таковом качестве вступают в процесс расширения. Соответственно этому приведенные выше примеры экспериментов касаются давления Р1 и показывают, что даже незначительное, всего на 2 кг/см2, увеличение Р1 приводит к детонации.

Синхронизация процессов в зоне малого изменения объема камеры сгорания есть отличительный признак цикла и основа, на котором будут строиться двигатели со сверхвысокими степенями сжатия. Можно сказать так: есть синхронизация, есть работающий двигатель со сверхвысокой степенью сжатия, нет синхронизации, нет работающего двигателя.

Особенности работы двигателя следующие:

megaobuchalka.ru


Смотрите также