Система питания карбюраторного двигателя должна обеспечивать приготовление горючей смеси в правильном соотношении бензина и воздуха и необходимого количества горючей смеси в зависимости от режима работы двигателя. В работающем двигателе различают следующие режимы: пуск холодного двигателя, работа на малой частоте вращения коленчатого вала (режим холостого хода), работа при средних нагрузках, работа при полных нагрузках, работа при резком увеличении нагрузки. Для всех режимов работы двигателя состав горючей смеси должен быть разным.
От технического состояния системы питания зависят мощность двигателя, легкость его запуска, приемистость, экономичность, долговечность.
К топливной системе карбюраторных двигателей относят: топливный бак, топливопроводы, топливные фильтры, топливный насос, карбюратор, воздушный фильтр, впускной коллектор, глушитель шума выпуска отработанных газов, датчики.
Принцип действия карбюраторной системы питания следующий. При вращении коленчатого вала начинает действовать топливный насос, который через сетчатый фильтр засасывает бензин из бака и нагнетает его в поплавковую камеру карбюратора. Перед насосом или уже после него бензин проходит через фильтр тонкой очистки топлива. При движении поршня в цилиндре вниз из распылителя поплавковой камеры вытекает топливо, а через воздушный фильтр засасывается очищенный воздух.
Струя воздуха смешивается с топливом в смесительной камере и образует горючую смесь. Впускной клапан открывается, и горючая смесь поступает в цилиндр, где на определенном такте сгорает. После сгорания открывается выпускной клапан и продукты сгорания по трубопроводу поступают в глушитель, а оттуда выводятся в атмосферу.
Топливопроводы представляют собой стальные трубки, которые соединяют все приборы системы топлива двигателя.
Для приготовления смеси мельчайших частиц или паров бензина с воздухом – горючей смеси – служит карбюратор, который может состоять из поплавковой камеры с поплавком и игольчатым клапаном; камеры распылителя; входной камеры с воздушной заслонкой; смесительной камеры с диффузором; дроссельной заслонки.
Для уплотнения разъемов между системами карбюратора применяют картонные прокладки или прокладки из маслобензостойкой резины.
Устройство, регулирующее подачу топлива, находится в топливной камере. Состоит оно из поплавка и игольчатого клапана. В смесительной камере, выполненной в виде трубы, имеется сужающаяся горловина – диффузор, в которую введена трубка из поплавкой камеры – распылитель.
Со стороны поплавковой камеры распылитель имеет строго определенной формы и сечения отверстие – жиклер. Ниже диффузора расположена дроссельная заслонка. Расположение дроссельной заслонки регулирует количество подаваемой горючей смеси в камеру сгорания. Кроме нее количество подаваемой горючей смеси регулируется путем увеличения оборотов коленчатого вала. Уровень топлива в поплавковой камере снижается, вместе с ним опускается поплавок, открывая доступ к топливу.
Чем больше открывается дроссель, тем больше увеличивается скорость потока воздуха и растет разряжение на конце распылителя. Количество топлива, поступающего через топливный жиклер, будет увеличиваться. Однако обогащению смеси препятствует поступление воздуха через воздушный жиклер, снижающее разряжение у топливного жиклера. В результате через распылитель в смесительную камеру поступает не бензин, а его эмульсия (смесь бензина с воздухом) и в диапазоне от режима холостого хода до полных нагрузок горючая смесь будет необходимого обедненного состава.
Все приборы системы топлива двигателя соединены стальными трубками – топливопроводами. На малых оборотах коленачатого вала для приготовления горючей смеси предназначена система холостого хода. Так как дроссельная заслонка почти закрыта, разряжение у распылителя настолько мало, что топливо из главной дозирующей системы поступать не будет.
В режиме холостого хода в цилиндрах остается много отработанных газов в отношении к поступающему количеству горючей смеси. Такая рабочая смесь горит медленно, поэтому для устойчивой работы двигателя ее нужно обогатить топливом. Для обогащения топливо подводят за дроссельную заслонку, в область наибольшего разряжения.
Состоит система холостого хода из топливного жиклера холостого хода, воздушного жиклера и регулировочного винта. Под дроссельной заслонкой создается большее разряжение. Под действием этого разряжения топливо переходит через жиклер холостого хода и смешивается с воздухом из воздушного жиклера, а затем в виде эмульсии вытекает из отверстия под дросселем.
Система холостого хода имеет два отверстия: одно отверстие находится над дросселем, другое ниже его. При малых оборотах коленчатого вала через нижнее отверстие вытекает топливная эмульсия, а через верхнее отверстие подсасывается воздух.
Если дроссельная заслонка открыта, эмульсия поступает в камеру сгорания через оба отверстия, что дает возможность плавно переходить от оборотов холостого хода к малым нагрузкам. Проходное сечение нижнего отверстия изменяется вращением регулировочного винта. За счет изменения сечения эмульсионного канала можно менять качество подаваемой горючей смеси. При завертывании регулировочного винта смесь обедняется, при вывертывании – обогащается.
Упорный винт дроссельной головки регулирует количество поступающей смеси. Если винт ввертывать, дроссель будет открываться, увеличивая количество поступающей смеси, что приведет к увеличению частоты вращения коленчатого вала двигателя. Если винт дросселя вывертывать, дроссель закроется, количество поступающей смеси уменьшится, уменьшится и число оборотов коленчатого вала.
Для обогащения горючей смеси при полных нагрузках и разгоне автомобиля, когда дроссель открыт не полностью, служит экономайзер. Он состоит из клапана, который прижимается к седлу пружиной, жиклера и деталей привода. Рычаг привода клапана экономайзера неподвижно закреплен на оси дроссельной заслонки. Клапан срабатывает, когда дроссель открывается почти полностью и обеспечивает дополнительную подачу топлива к распылителю.
Так как главное дозирующее устройство обеспечивает плавное обеднение горючей смеси во время перехода от малых нагрузок двигателя к средним, т. е. отрегулировано для обеспечения приготовления горючей смеси обедненного состава, то для получения максимальной мощности двигателя смесь необходимо обогатить.
Обогащение смеси достигается с помощью экономайзера, когда топливо поступает к распылителю не только через главный жиклер, но и через клапан экономайзера. В этом случае главная дозирующая система и экономайзер, действуя совместно, обеспечивают обогащенную смесь, которая необходима для получения большой мощности двигателя.
Для обогащения горючей смеси при резком открытии дроссельной заслонки, для обеспечения приемистости двигателя, т. е. для возможности резкого перехода от малых нагрузок к большим, служит ускорительный насос, который состоит из колодца, штока, тяги, рычага, нагнетательного клапана и обратного клапана. Когда дроссель быстро открывается, пружина сжимается и поршень, перемещаясь вниз, давит на топливо.
Гидравлический удар топлива закрывает обратный клапан и открывает нагнетательный. Топливо через распылитель попадает в смесительную камеру. Пружина разжимается и продолжает перемещать поршень вниз еще 1–2 с, что дает возможность впрыснуть дополнительную порцию топлива.
При резком открытии дроссельной заслонки воздух в смесительную камеру поступает гораздо быстрее, чем происходит подача топлива через жиклеры и распылители, что приводит к резкому обеднению горючей смеси и может вызвать остановку двигателя. Чтобы этого не произошло, необходимо обеспечить принудительное впрыскивание бензина в смесительную камеру для кратковременного обогащения горючей смеси. Эту задачу и выполняет ускорительный насос.
Для обогащения смеси при пуске и прогреве пускового двигателя служит пусковое устройство. Оно представляет собой заслонку с приводом из кабины водителя. Для того чтобы не произошло чрезмерного обогащения смеси на воздушной заслонке, может быть предусмотрен клапан, который открывается под давлением атмосферы при возникновении значительного разрежения в смесительной камере карбюратора после пуска двигателя.
Положение заслонки регулируется с помощью троса, выведенного в кабину. Одновременно с закрытием воздушной заслонки приоткрывшийся дроссель не дает двигателю остановиться. Ось воздушной заслонки во впускном клапане установлена несимметрично, чтобы под действием разницы давлений потока воздуха на обе части заслонки она стремилась открыться.
Такая конструкция заслонки предохраняет смесь от переобогащения при пуске двигателя, и в то же время это не дает двигателю остановиться, так как смесь автоматически обогащается при снижении числа оборотов коленчатого вала.
Для улучшения наполнения и равномерного распределения горючей смеси по камерам сгорания цилиндров применяют двухкамерные карбюраторы. В этом случае главное дозирующее устройство обеспечивает пневматическое торможение топлива, что компенсирует состав горючей смеси. В корпусе карбюратора располагаются две смесительные камеры. Каждая камера питает свою группу цилиндров. Поплавковая камера, всасывающий патрубок с воздушной заслонкой, экономайзер и ускорительный насос являются общими для обеих камер и карбюратора.
Для ограничения максимальной частоты вращения коленчатого вала двигателя служит ограничитель, состоящий из центробежного датчика и пневматического диафрагменного механизма. Датчик крепится к крышке распределительных шестерен, его ротор приводится во вращение от распределительного вала двигателя. Исполнительный механизм, закрепленный на карбюраторе, воздействует на дроссельные заслонки.
Датчик соединен воздухопроводами с исполнительным механизмом и всасывающим патрубком карбюратора. Если частота вращения коленчатого вала не больше максимального значения, клапан датчика открыт, а верхняя и нижняя полости исполнительного механизма сообщаются с всасывающим патрубком и смесительной камерой карбюратора. На дроссельные заслонки в это время механизм не воздействует.
В случае превышения значения частоты вращения коленчатого вала, на которое отрегулирован датчик, клапан ротора под действием центробежных сил перекрывает канал доступа воздуха в полость под диафрагмой. При этом разрежение, передаваемое из смесительной камеры, создает силу для перемещения диафрагмы вверх. Через рычаг и шток прикрываются дроссельные заслонки, и частота вращения коленчатого вала не превысит заданного значения.
Под действием натянутой пружины устройство возвращается в исходное положение, и дроссельные заслонки открываются. На современных автомобилях карбюраторные системы питания часто заменяют инжекторными системами впрыска топлива, системой распределенного впрыска, системой центрального одноточечного впрыска топлива. Преимущество инжекторной системы по сравнению с карбюраторной состоит в отсутствии добавочного сопротивления потоку воздуха в виде диффузора карбюратора. Это способствует улучшению наполнения камер сгорания цилиндров и получению более высокой мощности двигателя; улучшению продувки цилиндров за счет использования возможности более длительного периода перекрытия клапанов; улучшению качества приготовления рабочей смеси за счет продувки камер сгорания чистым воздухом без примеси паров питания; обеспечивает большую степень оптимизации состава рабочей смеси на всех режимах работы двигателя с учетом его технического состояния; способствует более точному по составу смеси распределению топлива по цилиндрам, что дает возможность использовать бензин с более низким октановым числом.
Система распределенного впрыска топлива относится к наиболее совершенным. Основным функциональным элементом системы является электронный блок управления, который представляет собой бортовой компьютер автомобиля. Система распределенного впрыска топлива включает в себя подсистему подачи воздуха с дроссельной заслонкой; подсистему подачи топлива с форсунками по одной на каждый цилиндр; систему улавливания и сжижения паров бензина; систему дожигания отработанных газов. Электронный блок управления выполняет также самодиагностические и диагностические функции.
В системе центрального одноточечного впрыска топлива подача топлива осуществляется с помощью центрального модуля впрыска с одной электромагнитной форсункой, однако ее главное отличие состоит в отсутствии отдельного для каждого цилиндра впрыска топлива. Распределение горючей смеси по цилиндрам происходит так же, как и в карбюраторной системе.
В статье использованы материалы из открытых источников: (Виктор Барановский. Автомобиль. 1001 совет)
По материалам: avto-opel.com
Загрузка ...Поделиться "Система питания карбюраторного двигателя"
Система питания карбюраторного двигателя
5 (100%) проголосовало 3avto-opel.com
Даже с учетом того, что автомобили, оснащенные карбюратором, представляют собой устаревшее решение, на территории СНГ такие машины продолжают пользоваться популярностью и прочно обосновались в нижнем ценовом сегменте. При этом относительно простая система питания карбюраторного двигателя требует отдельного внимания и нуждается в регулярном обслуживании.
Такой подход позволяет добиться стабильной работы ДВС на разных режимах, а также снизить расход топлива и уровень токсичности выхлопа. Далее мы рассмотрим основные неисправности системы питания моторов с карбюратором, которые обычно возникают в процессе эксплуатации ТС.
Читайте в этой статье
Как известно, автомобильный двигатель внутреннего сгорания, причем независимо от типа мотора и вида топлива (карбюратор, инжектор, бензин или дизель), работает на смеси топлива и воздуха.
Воздух «засасывается» двигателем из атмосферы, а горючее подается из топливного бака по топливным магистралям благодаря работе топливного насоса (механического или электрического). Так называемая топливно-воздушная рабочая смесь представляет собой горючее и воздух, которые смешиваются в строго определенных пропорциях. Затем происходит сгорание рабочей смеси в цилиндрах.
На тех или иных двигателях подача горючего и смесеобразование может быть также реализовано разными способами. В инжекторных моторах (кроме двигателей с прямым впрыском) горючее сначала подается во впускной коллектор через форсунки, после чего смешивается с находящимся там воздухом. Затем смесь поступает в камеру сгорания.
В дизеле впрыск топлива происходит прямо в камеру сгорания, где уже находится предварительно поданный, сжатый и нагретый воздух. Кстати, дизельный мотор имеет самую сложную топливную систему.
По этой причине диагностика системы питания дизельного двигателя является важной и ответственной процедурой, так как от исправной работы системы питания дизеля сильно зависит общий ресурс таких моторов.
Как правило, карбюраторы представляют собой механические устройства, то есть конструктивно не предполагается активное использование электронных компонентов. Исключением можно считать только отдельные поздние разработки, которые фактически являются переходными устройствами от карбюратора к моноинжектору. В таких карбюраторах присутствуют отдельные электронные исполнительные устройства.
Вернемся к «классическому» варианту. Казалось бы, простота механической системы смесеобразования исключает определенные недостатки, которые присущи электронным решениям. Другими словами, надежность повышена. Однако на практике с этим можно согласиться только частично, так как карбюраторы достаточно часто выходят из строя, особенно если владелец не уделяет данному элементу необходимого внимания.
Для лучшего понимания давайте рассмотрим основные элементы в устройстве карбюратора:
Читайте также
Отметим, что такая система нуждается в регулярной подстройке и обслуживании. Дело в том, что если карбюратор будет работать неправильно (например, появились хлопки, «стреляет» в карбюратор) или произойдет нарушение смесеобразования, это отразится на работе ДВС.
В результате мотор может начать дергаться, пропадает мощность и тяга, силовой агрегат не набирает обороты, возможна нестабильная работа на ХХ и/или трудности с запуском на «холодную» или на «горячую», увеличивается расход горючего, двигатель дымит и т.д.
В норме уровень топлива должен быть на 18-19 мм ниже плоскости разъема корпуса и крышки поплавковой камеры. Проверка уровня производится через отверстие в корпусе поплавковой камеры, которое закрыто пробкой. Чтобы отрегулировать уровень, в ряде случаев необходимо изменить толщину прокладок, которые находятся под игольчатым клапаном в поплавковой камере.
Что касается регулировки холостого хода на карбюраторе, такие настройки выполняются при помощи упорного винта, который ограничивают закрытие дроссельных заслонок (винт количества смеси) и двумя винтами, которые позволяют изменить состав рабочей смеси топлива и воздуха (винты качества).
Как видно, карбюратор даже с учетом своей простоты все равно нуждается в периодическом обслуживании. При этом важно понимать, что качество топлива также играет большую роль.
Использование низкосортного бензина с большим количеством сторонних примесей приводит к тому, что жиклеры загрязняются, в результате чего возникают проблемы с подачей топлива в карбюратор. Еще важно поддерживать общую чистоту системы питания, не допускать сильного загрязнения топливного бака, следить за состоянием топливного фильтра и т.д.
Напоследок отметим, что на территории СНГ многие автомобилисты активно используют карбюраторы Вебер (Wеber), Озон или Solex (Солекс, ДААЗ). Кстати, последнее устройство зарекомендовало себя в качестве надежного и проверенного временем решения, при этом поддающегося гибкой настройке.
Читайте также
Подбор карбюратора на ВАЗ 2101-2107
Особенности карбюраторов ДААЗ, Вебер, Озон и Солекс. Преимущества и недостатки указанных моделей, основные отличия, установка на классические модели ВАЗ.Тюнинг и настройка карбюратора
Доработка и модернизация карбюратора. Основные недостатки системы карбюраторного впрыска и способы их устранения, настройка. Тюнинг впускного коллектора.Дозирующие системы карбюратора
Главная дозирующая система, переходная система во вторичной камере, разновидности систем холостого хода. Ускорительный насос, экономайзер и холодный пуск.krutimotor.ru
Система питания газовых двигателей
Переведя автомобиль на газовое топливо можно сэкономить более дорогой и дефицитный бензин. Газовое топливо более экологически чистое, от его сгорания выделяется меньше токсических веществ в атмосферу. Существенным недостатком газового топлива является его низкая объемная теплота сгорания.
Для газовых двигателей применяют сжиженные (нефтяные ) газы, которые находятся в баллонах под давлением до 1.57 МПа, и сжатые (природные), которые находятся под давление до 19.6 МПа. Газовое топливо храниться в емкостях из стали или алюминиевых сплавов. Сжиженное топливо получило более широкое применение в автомобилях. В газовых двигателях, также как и в двигателях работающих на жидком топливе, может быть осуществлено внешнее или внутреннее смесеобразование. Для работы на сжатых и сжиженных газах применяют автомобили с карбюраторными двигателями, однако некоторые двигатели специально приспосабливают для работы только на газовом топливе. Рабочий цикл двигателя, работающего на газовом топливе, такой же как и у двигателя работающего на бензине, однако работа узлов и агрегатов системы при этом существенно отличается.
В двигателях с внешним смесеобразованием без наддува, газ поступает к смесительным устройствам под давлением, приблизительно близким к атмосферному, в этом случае предотвращается утечка газа во внешнюю среду и проникновение воздуха в газопровод. При избыточном давлении происходит утечка газа, а в случае наличия разрежения в газопроводе, образуется горючая смесь из газа и воздуха, может привести к взрыву. В двигателях с любым смесеобразованием с наддувом газ подводится к газовому клапану под давлением, несколько превышающим давление наддува, также происходит в двигателях с внутренним смесеобразованием без наддува. В стационарных газовых двигателях для поддержания постоянного давление, перед смесительными органами устанавливают регулятор давления газа, который автоматически поддерживает нужное давление, для работы двигателя.
Для снижения давления газа перед смесительными устройствами, устанавливают редуктор. Этот прибор тоже регулирует давление газа и отличается от регуляторов давления газа, только более высокой степенью снижения давления газа. Встречаются одно, двух и многоступенчатые редукторы, в зависимости от числа элементов, в которых происходит последовательное снижение давления газа. Редуктор также препятствует поступлению газа к смесителю при неработающем двигателе.
Рассмотрим устройство и принцип работы системы питания на сжиженном газе на примере автомобилей семейства ЗИЛ.
Рис. Схема газобаллонной установки на сжиженном газе.
1 – карбюратор, 2 – трубопровод. 3 – трубопровод подвода газа из редуктора в смеситель, 4 – трубопровод подвода газа нахолостом ходу, 5 – манометр низкого давления, 6 – кран для слива отстоя или воды в холодное время года, 7 и 8 – трубопроводы для подвода и отвода жидкости из системы охлаждения, 9 – магистральный вентиль (в кабине водителя), 10 – заправочный вентиль для жидкого газа, 11 – указатель уровня газа в баллоне, 12 и 13 – расходные вентили жидкой и парообразной фаз газа, 14 – предохранительный клапан.Сжиженный газ из баллона, через расходный вентиль 12, клапан – фильтр, испаритель и газовый фильтр поступает к редуктору. Редуктор регулирует давление и через трубопроводы подает его в смеситель. Воздух подается сверху, через патрубок газового смесителя, который вместе с поступившим в смеситель газом, образует газовоздушную смесь, поступающую потом через впускную трубу в цилиндры двигателя. Редуктор низкого давления .
Рис. Схема работы двухступенчатого редуктора.
А – при закрытом магистральном вентиле, б – во время пуска и работы двигателя, 1 и 10 – мембраны второй и первой ступеней, 2, 9 – пружины второй и первой ступеней, 3 – коническая пружина, 4 – обратный клапан, 5 – дроссельная заслонка, 6 и 8 – двухплечие рычаги второй и первой ступеней, 7 и 11 – клапаны второй и первой ступеней, 12 – мембрана разгрузочного устройства, 13 – дозатор-экономайзер, 14 и 19 – трубопроводы для газа, 15 – воздушный фильтр, 16 – смесительная камера, 17 – впускной трубопровод, 18 – вакуумный трубопровод, 20 – предохранительный клапан, I – первая ступень редуктора, II – вторая ступень редуктора, А – атмосферная полость, Б – вакуумная полость, В – полость экономайзерного устройства.Каждая ступень, двухступенчатого мембранно – рычажного редуктора имеет клапаны 7 и 11, пружину 3, двуплечие рычаги 6 и 8, которые соединяют шарнирно мембрану с клапаном.
Клапан первой ступени находится в открытом положении под действием пружины 9 и мембраны 10, двуплечего рычага 8, давление в полости первой ступени I, остается постоянным и равным атмосферному при неработающем двигателе и закрытом расходном вентиле.
Клапан II, второй ступени, при неработающем двигателе, находится в закрытом положении и плотно прижат к седлу пружинами конической и цилиндрической через двуплечий рычаг 6.
Если включен электромагнитный клапан и открыт расходный вентиль газ поступает в полость первой ступени редуктора. Мембрана 1, преодолевает усилие пружины 3, прогибается и через рычаг 6, закрывает клапан 7. Давление газа в полости первой ступени регулируется изменением усилия пружины 2 в пределах гайки 0,16….0,18 МПа. Манометр, по которому контролируется уровень давления, расположен в кабине водителя.
Когда дроссельные заслонки полуоткрыты (рис. б), при запуске двигателя и его работе на средних нагрузках, под дроссельными заслонками создается вакуум, который передается в полость В экономайзера. Под вакуумом мембраны вакуумного разгрузочного устройства прогибается вниз и сжимает коническую пружину3, разгружая клапан 7 второй ступени. Клапан из первой ступени открывается, преодолевает сопротивление цилиндрической пружины 2 мембраны 1. Газ заполняет полость второй ступени, поступает в смеситель по трубопроводу 19.
При полном открытии дроссельных заслонок, вакуум в смесительной камере 16 становится достаточным для открытия обратного клапана 4 и газ начинает поступать дополнительно через дозатор – экомайзер 13.При увеличении подачи газа через воздухопровод 14 и 19, газовоздушная смесь обогащается и мощность двигателя увеличивается.
Газовый смеситель служит для получения горючей смеси в газобаллонных автомобилях. Существенным отличием такого автомобиля от карбюраторного является то, что подача топлива осуществляется в одинаковом с воздухом агрегатном состоянии, отсюда конструкция газового смесителя намного проще карбюратора. Такие смесители могут быть как отдельной конструкцией, так и выполненными совместно с карбюратором.
Наличие карбюратора-смесителя не говорит о том, что такой автомобиль не может работать на бензине.
Испаритель сжиженного газа предназначен для преобразования жидкого топлива в газообразное состояние. Изготавливается испаритель из алюминия и состоит из двух частей. Внутренние полости испарителя обогреваются за счет жидкости из системы охлаждения двигателя, которая подогревает газ движущийся по каналам.
Электромагнитный клапан – фильтр служит для очистки газа от механических примесей. Очищенный газ затем поступает через испаритель в редуктор и далее в смеситель.
Система питания на природном газе – это установка высокого давления. Баллоны соединены последовательно трубопроводами, заполняются такие баллоны на газозаправочных станциях, через наполнительный вентиль. Давление сжатого газа в баллонах и редукторе контролируют посредством манометров.
К недостаткам, автомобилей, работающих на газобаллоном топливе стоит отнести уменьшенную на величину массы баллонов грузоподъемность автомобилей, а также его повышенная пожароопасность. Поделитесь на страничкеСледующая глава >
tech.wikireading.ru
Двигатель является сердцем автомобиля. Именно ДВС вырабатывают крутящий момент, который есть не что иное, как первоисточник всех механических, а также электрических процессов, проходящих в автомобиле. Но двигатель не способен существовать без сопутствующих систем – это смазочная система, охлаждающая, выпуск отработанных газов, а также система питания. Именно последняя снабжает двигатель жидким топливом. Это может быть бензин, спирт, дизельное топливо, сжиженный газ, метан. Двигатели бывают разные, и питаются они тоже по-разному. Рассмотрим основные типы систем.
Любые автомобили имеют определенный запас хода. Это расстояние, которое машина способна проехать на полном баке без необходимости дозаправки. На это расстояние влияют сезонные факторы, погода, условия движения, тип дорожного покрытия, загруженность авто, манера вождения водителя. Главную роль в «аппетитах» машины играет система питания, а также правильность ее работы.
Можно выделить несколько основных функций этой системы. Вне зависимости от типа двигателя эта система выполняет функцию подачи, очистки и хранения горючего, очистки воздуха. Также она выполняет приготовление топливной смеси и подает ее в камеры сгорания.
Классическая система питания в автомобиле представляет собой несколько элементов. Это топливный бак – в нем хранится горючее. Насос необходим для создания давления в системе, а также для подачи бензина в принудительном порядке. Чтобы топливо могло добраться от бака к двигателю, в системе имеется топливопровод. Это металлические или пластиковые трубки, а также шланги из специальной резины. Еще система включает в себя фильтры – они очищают бензин.
Воздушный фильтр – это также часть любой топливной системы. Специальное устройство смешивает воздух и горючее в определенной пропорции.
Устройство системы питания двигателя в целом достаточно простое. Принцип действия также прост. Топливный насос подает бензин из бака. Предварительно жидкость проходит через несколько фильтров, а затем попадает на устройство, которое готовит смесь. Далее бензин попадает в цилиндры – в разных системах это осуществляется различными способами.
Среди основных видов топлива можно выделить бензин, дизель, а также сжиженный или природный газ. Соответственно, двигатель может быть бензиновым, дизельным или работающим на газу.
Среди специалистов признана типология автомобильных систем питания по способу подачи и по методу приготовления смеси. По данной классификации различают карбюраторные системы и впрысковые. Это моноинжектор и инжектор.
Система питания карбюраторного двигателя имеет достаточно простое устройство. В ней есть все вышеперечисленные элементы, и работает она примерно так, как уже описано выше. В качестве устройства, которое готовит смесь, в данном случае используется карбюратор.
Последний представляет собой достаточно сложный агрегат. Он служит для смешивания бензина с воздухом в определенных пропорциях. В истории автомобилестроения было много моделей и видов карбюраторов. Но наибольшей популярностью пользуются модели поплавкового типа со всасывающим принципом работы. Это многочисленные “Озоны”, “Солексы”, “Веберы” и другие.
Схема карбюратора следующая. Естественно, это принципиальное устройство. Все карбюраторы конструктивно отличаются друг от друга.
Агрегат состоит из поплавковой камеры и одного или двух поплавков. Внутрь данной камеры через игольчатый клапан подается топливо. Но это еще не все. Также в устройстве карбюратора имеются смесительные камеры. Их может быть одна или две. Существуют модели, где смесительных камер четыре и более. Здесь же имеется диффузор и распылитель. Поплавковые карбюраторы также оснащены воздушной и дроссельной заслонками. Карбюраторы изготавливают посредством литья. Внутри имеются каналы для прохода топлива и воздуха. В них установлены специальные дозирующие элементы – жиклеры.
Схема работы здесь пассивная. Когда поршень двигателя на такте впуска, в цилиндре создается разрежение. За счет разряжения в цилиндр поступает воздух. Последний проходит через фильтр, а также соответствующие жиклеры карбюратора. Далее в смесительной камере и диффузорах горючее, которое подается из распылителя, разбивается потоком воздуха на мелкие фракции. После этого оно смешивается с воздухом. Затем через впускной коллектор смесь подается в цилиндр.
Несмотря на то что карбюраторные двигатели считаются устаревшими, их еще очень активно используют. Некоторые энтузиасты дорабатывают или изобретают новые модели.
Двигатели развивались, вместе с ними совершенствовались и системы питания. Вместо карбюраторов инженеры изобрели системы одноточечного и многоточечного впрыска. Работа системы питания двигателя такого типа уже заметно сложней. Но не всегда они более надежны.
Это не совсем инжектор. Это скорее карбюратор с форсункой и несколькими датчиками. Разница в том, что горючее во впускной коллектор подается не за счет разрежения, а посредством впрыска посредством форсунки – она одна на всей системе. Процессом управляет электроника – она получает информацию от двух-трех датчиков и на основании этого дозирует количество бензина.
Система проста – и это главный аргумент против карбюраторных аналогов. В топливной системе давление низкое, а это позволяет применять обыкновенные электрические бензонасосы. Управление через ЭБУ дает возможность вести постоянный контроль за количеством бензина и сохранять стехиометрическую смесь.
Электроника работает с несколькими датчиками. Это механизм, контролирующий угол открытия дроссельной заслонки, датчик положения коленчатого вала, лямбда-зонд, регулятор давления. В некоторых моделях имеется и регулятор холостого хода.
Эта система питания бензинового двигателя по информации от датчиков посылает сигнал, который открывает форсунку. Несмотря на то, что моновпрыск управляет электроникой, а устройство его достаточно простое, с ними бывает масса сложностей. Часто владельцы автомобилей сталкиваются с перерасходом горючего, с рывками автомобиля, с провалами. Нередко из-за того, что большинство таких систем очень старые, трудно отыскать запчасти и ремкомплекты к ним. Поэтому часто владельцы вынуждены возвращаться технологически назад и устанавливать карбюраторы, где электроники нет.
Даже качественное обслуживание системы питания двигателя этого типа часто не приносит результата. Ввиду возраста, низкого качества бензина эти системы имеют слабую жизнеспособность.
Чтобы реализовать данную систему, инженерам пришлось отказаться от одной форсунки и использовать отдельную для каждого цилиндра. Чтобы топливо распылялось качественно и смешивалось с воздухом в правильной пропорции, давление в системе повысили. Форсунки устанавливаются в коллектор после дроссельной заслонки, а направлены они к впускным клапанам.
Даная система питания инжекторного двигателя работает под управлением электроники. Здесь наблюдается базовый набор датчиков, как и в моновпрыске. Но есть и другие. Например, датчик массового расхода воздуха, детонации и температуры в коллекторах. Нажимая на педаль газа, водитель подает в систему воздух. ЭБУ за счет информации от датчиков открывает форсунки. ЭБУ также определяет количество, интенсивность и число циклов, которые произойдут за один впрыск.
Принцип работы дизельных ДВС стоит объяснить отдельно. Здесь тоже имеются форсунки. А дизельное топливо распыляется в цилиндры. В камерах сгорания осуществляется процесс образования смеси, где она затем воспламенится. В отличие от бензинового двигателя, в дизельном смесь горит не от искры, а от сжатия и высоких температур. Это и есть главная особенность данных ДВС. Таким образом достигается высокий крутящий момент и топливная экономичность. Обычно такие двигателя имеют малый расход топлива, а также высокую степень компрессии (данный параметр достигает 20-25 единиц). Если данный показатель будет ниже, мотор просто не заведется. В то же время бензиновый мотор может завестись даже с малой компрессией в восемь и менее единиц. Система питания дизельного двигателя может быть представлена в нескольких видах. Это непосредственный впрыск, вихрекамерный, предкамерный.
Вихрекамерные и предкамерные варианты подают горючее в специальную емкость в цилиндре, где она частично загорается. Затем порция топлива отправляется в основной цилиндр. В цилиндре горящий дизель смешивается с воздухом и догорает. Что касается непосредственного впрыска, то здесь топливо сразу же доставляется в цилиндр и затем смешивается с воздухом. Давление в топливной рампе может достигать двухсот и более бар. В это же время у бензиновых ДВС показатель - не более четырех.
В процессе эксплуатации автомобиля система подачи топлива работает под нагрузкой, которая может привести к нестабильному поведению машины или выходу из строя различных элементов топливной системы.
Это случается из-за некачественного горючего, длительного срока эксплуатации, воздействия среды. Все эти факторы ведут к загрязнениям в топливопроводе, в баках, в фильтрах. Также в случае с карбюраторами забиваются отверстия для подачи бензина. Нередко топливо не подается по причине поломки насоса. На машинах с моновпрыском могут быть сбои из-за электроники.
Для стабильной работы ДВС требуется регулярное техническое обслуживание системы питания двигателя. Оно подразумевает промывку форсунок, промывку моновпрыска или карбюратора. Необходимо периодически менять фильтры, а также ремкомплекты карбюратора.
Эта неисправность топливной системы связана с нарушением пропорций смеси, которая подается в камеры сгорания. В инжекторных машинах это случается по причине выхода из строя лямбда-зонда.
В карбюраторе может быть из-за неверно подобранных жиклеров. В результате двигатель работает на слишком богатой смеси.
Существуют и другие неисправности топливной системы. Но в большинстве случаев они связаны и с иными системами в автомобиле. При должном обслуживании и замене фильтров современный двигатель не доставит владельцу проблем, конечно, если это не старый моновпрыск.
fb.ru
Система питания двигателя современного типа представляет собой достаточно сложный узел. В связи с этим его ремонт доверяют лишь опытным мастерам, которые понимают, как правильно действовать и не вывести дорогостоящее оборудование из строя. Сегодня мы расскажем про устройство, состав и виды, которые имеет современная топливная система, и выясним, какая из них лучше и почему.
Современные механизмы и оборудование, которое представляет собой топливную систему ДВС, безусловно, сложны и напичканы большим числом электроники. Назначение этой электроники — контролировать степень открытия клапанов, регулировать давление и изменять обогащение топливной смеси кислородом.
Однако далеко не каждая топливная система ДВС столь сложно устроена, и не всегда на автомобиле имелось большое число электроники. Поэтому еще пару десятилетий назад на автомобили широко устанавливалось карбюраторное оборудование, которое имеет упрощенный состав и устройство. Тем не менее механизмы карбюраторов по-прежнему широко используются на автомобильной технике времени СССР и редко заменяются на более новые и современные.
Чем хорош карбюратор? Во-первых, его более простое и примитивное устройство гарантирует простоту любого обслуживания и ремонта. В большинстве случаев запасные части для карбюратора стоят недорого, а вмешательство в сам механизм редко чревато серьезными последствиями для машины и, в частности, самого двигателя.
Правда, без недостатков здесь также не обошлось. Достаточно примитивное устройство, к сожалению, привело к появлению значительного числа проблем. К примеру, оборудование и все механизмы нередко покрываются нагаром, и топливной системе требуется ежесезонная чистка и регулировка. Кроме того, карбюратор очень сложно заставить работать зимой, а завести в машину в мороз и вовсе целая наука. Кроме того, расход топлива у карбюратора достаточно высок, а потому назвать машину экономичной попросту не поворачивается язык.
Стоит сказать пару слов и об устройстве типичного карбюратора. Топливо в него поступает от бензонасоса под давлением через специальные клапаны, называемые жиклерами. Жиклеры входят в состав карбюратора любой модели и конфигурации.
Каждый клапан регулировки давления выводит струю в камеру карбюратора, куда дозированно поступает воздух через предназначенный для этого фильтр. Интенсивность подачи топлива осуществляет устройство, которое называется дроссельной заслонкой. Дроссельная заслонка представляет собой клапан, который может регулировать давление и интенсивность подачи бензина в камеру. За счет этого могут изменяться обороты двигателя и расход топлива.
Как бы то ни было, морально устаревший механизм карбюратора уже давно ушел в прошлое. На смену ему приходят системы, которые полностью или частично лишены его недостатков, но взамен имеют более сложное для понимания устройство.
В первую очередь под такими устройствами со столь сложным составом подразумевают системы непосредственного впрыска. Нередко такие системы называют инжекторными, а потому в состав подобных устройств в обязательном порядке входит ЭБУ, который в автоматическом порядке способен производить регулировку качества смеси и постоянную его корректировку.
Основным функциональным элементом таких систем является клапан регулировки давления. Задача клапана подстройки давления — постоянный контроль над состоянием, в котором пребывает топливная система, и изменение ее характеристик таким образом, чтобы горение топлива в цилиндрах было наиболее эффективным и целесообразным.
Клапан регулировки давления ДВС связан с ЭБУ, о котором было сказано выше. ЭБУ способен давать клапану сигналы об изменении давления топлива как в большую, так и в меньшую сторону. Чем выше давление топлива, которое обеспечивает клапан, тем интенсивнее работает топливная система ДВС, и тем выше обороты двигателя в конечном счете.
Но стоит также подумать и о том, что влияет на работу системы питания и что способно изменять решения ЭБУ относительно режима ее работы. Для ответа на этот вопрос стоит выяснить, какие датчики системы питания присутствуют на современном автомобиле и на что они влияют.
Во-первых, на любом современном ДВС, оборудованном системой непосредственного впрыска, присутствует датчик температуры охлаждающей жидкости. О чем это позволяет судить? Очевидно, что чем выше такая температура, тем более прогрет двигатель и тем лучше способен выполнять свои функции. Холодный мотор, который находится в режиме прогрева, требует более обогащенной топливной смеси. Это позволяет ДВС быстрее прийти в состояние работоспособности и выдать весь свой потенциал.
Кроме того, присутствует датчик внешней температуры, который позволяет судить о том, каковы условия эксплуатации двигателя внутреннего сгорания. Если температура опустилась намного ниже нуля, то в систему следует подавать максимально богатую топливную смесь с целью дать мощный толчок поршням при запуске.
Это позволяет решить такую проблему карбюратора, как трудность запуска зимой, и прочие проблемы, которыми уже не обладает система непосредственного впрыска. Существует еще целый ряд датчиков, которые позволяют работать системе в оптимальном режиме. В конечном счете это привело к снижению расхода топлива и более высокому ресурсу ДВС, о котором раньше приходилось лишь мечтать.
Топливная система современного автомобиля — это достаточно совершенный узел, который лишен целого ряда недостатков своего предшественника. Это позволило продлить ресурс всем составным элементам двигателя, а также сделать управление автомобилем более простым и привычным делом, которое больше не вызывает у автовладельца опасений за внезапные поломки в пути.
portalmashin.ru
ВМТ – верхняя мертвая точкаГБЦ – головка блока цилиндровКШМ – кривошипно-шатунный механизмТНВД – топливный насос высокого давления
На современных автомобилях могут устанавливаться бензиновые и дизельные двигатели. Раньше дизельные двигатели в основном применялись на грузовиках большой грузоподъемности и на тракторах. При их работе можно было наблюдать клубы черного дыма, которые вырывались из выхлопной трубы. Двигатель издавал довольно громкий звук, сопровождающийся стуком. Повышенный шум и вибрации были основными недостатками дизелей. Поэтому такие моторы не устанавливали на легковые автомобили. Современные дизельные двигатели по многим показателям способны конкурировать с бензиновыми моторами. По некоторым характеристикам дизеля серьезно превосходят бензиновые двигатели.
По конструкции бензиновые и дизельные двигатели почти одинаковы. Основное отличие дизеля от бензинового мотора – это использование более прочных материалов при изготовлении его деталей. Это необходимо потому, что дизельный двигатель во время работы испытывает более сильные нагрузки в отличие от своего бензинового собрата. Для повышения прочности некоторые детали изготавливают более массивными, что увеличивает вес мотора.
На дизельном двигателе степень сжатия несколько выше, чем на бензиновом. Поэтому блок цилиндров на дизеле выше, чем на аналогичном бензиновом моторе. С увеличением высоты блока цилиндров увеличивается высота кривошипа коленчатого вала и длина шатунов, что так же сказывается на утяжелении двигателя. Самым главным конструктивным отличием является система питания. На дизеле она кардинально отличается от системы питания бензинового мотора.
На бензиновом моторе топливовоздушная смесь готовится посредством смешивания паров бензина и воздуха. После этого смесь сжимается поршнем в цилиндре при его движении вверх, в ВМТ на свечу зажигания подается электрический ток, искра воспламеняет топливовоздушную смесь, и происходит рабочий ход. Во время работы бензинового двигателя для регулирования мощности нужно изменять количество топлива и количество воздуха, которые подаются для приготовления топливовоздушной смеси. При этом их пропорции должны строго соблюдаться. При недостатке или переизбытке одного из компонентов невозможна нормальная работа двигателя.
Для регулирования подачи воздуха в бензиновом двигателе во впускном воздушном тракте устанавливается дроссельная заслонка (на некоторых моторах подача регулируется другим способом). Подача топлива на современных бензиновых двигателях регулируется электронным блоком управления посредством увеличения или уменьшения времени открытия топливных форсунок. В результате чего изменяется количество топлива, которое впрыскивается за это время.
В дизельный двигатель топливо и воздух подаются раздельно. В воздушном тракте дроссельной заслонки нет (но иногда используется для аварийного отключения подачи воздуха). Чем больше подать воздуха в цилиндр, тем лучше и полнее произойдет сгорание дизтоплива. Топливо в дизельный двигатель подается через форсунки. Смешивания воздуха и топлива как такового не происходит. Воздух необходим для поддержания горения дизтоплива. Как же происходит воспламенение в дизеле? А вот тут самое интересное.
По каким-то причинам во многих источниках этот вопрос затрагивается поверхностно или раскрывается не достаточно точно, а в некоторых случаях не совсем верно. Простому обывателю не так просто понять, что же происходит в процессе воспламенения топлива в дизеле. Некоторые люди пишут, что топливо в дизеле воспламеняется от его сжатия. Если налить на поршень дизтоплива и вращать дизель стартером, в цилиндре воздух в такте сжатия начнет сжиматься и давить на эту «лужицу», но топливо никогда не загорится в цилиндре, хоть весь день крутите. Некоторые люди пишут, что топливо воспламеняется от сжатия воздуха в цилиндре. Пример выше… При таких условиях дизтопливо никогда не воспламенится.
В дизельном двигателе во время такта сжатия воздух в цилиндре разогревается до высокой температуры. Это происходит во время его работы или при запуске в идеальных условиях при плюсовой температуре окружающего воздуха. Некоторые ссылаются именно на высокую температуру сжатого воздуха в цилиндре. Что именно из-за высокой температуры сжатого воздуха дизтопливо самовоспламеняется. В этом есть доля правды, но процесс не раскрыт полностью. Попробуем разобраться в этом более подробно.
Дизтопливо, распыленное форсункой на мелкие частички в дизельном двигателе, воспламеняется в результате его нагрева от трения об сжатый воздух. Чем мельче частички топлива при его распылении, тем больше точек трения и, соответственно, легче воспламенение. Если же в цилиндр под большим давлением подать струю дизтоплива, воспламенения не произойдет, ибо точек трения очень мало. Разогретый воздух в цилиндре способствует лучшему воспламенению дизтоплива за счет более быстрого разогрева частичек топлива от трения. Но нужно понимать, что воспламенение происходит именно от трения. Для примера вспомните спичку и как её поджигают. Оказывается, все просто, достаточно вспомнить физические процессы, которые известны из школьного курса физики.
Плотность воздуха в цилиндре так же влияет на процесс воспламенения. Чем плотнее среда, которая образуется в такте сжатия, тем сильнее происходит трение. Если впрыснуть дозу дизтоплива в объем воздуха с атмосферным давлением, и, соответственно, с недостаточной плотностью, воспламенения не произойдет. И не произойдет воспламенения, если впрыснуть дизтопливо в бензиновый мотор. Степень сжатия в бензиновом моторе ниже, чем в дизеле. Существует некий порог, ниже которого дизтопливо не способно воспламеняться. Поэтому в дизелях степень сжатия выше по отношению к бензиновым моторам.
Система питания дизельного двигателя включает в себя систему подачи воздуха и систему подачи топлива в двигатель. В зависимости от способа подачи воздуха в двигатель различают атмосферные дизеля и турбодизеля. В атмосферных моторах воздух поступает в цилиндры посредством всасывания во время такта впуска, то есть за счет естественного разряжения. В турбодизелях используется нагнетатель воздуха, в основном это турбокомпрессор, работающий от выхлопных газов.
На одном валу находится две крыльчатки. За счет выхода выхлопных газов одна из крыльчаток раскручивается и через общий вал вращение передаётся на вторую крыльчатку, которая создает поток воздуха и нагнетает его во впускной тракт двигателя. Так как во время прохождения горячих выхлопных газов через турбину нагнетаемый воздух может нагреваться, между турбиной и впускным коллектором иногда устанавливают интеркулер. Это теплообменник, который позволяет охладить нагнетаемый в двигатель воздух, что еще больше увеличивает его объем. Перед использованием воздух на любом двигателе очищается системой очистки. Это фильтры разных видов и конструкций.
Турбодизеля обладают большей мощностью в отличие от атмосферных моторов. За счет большего объема воздуха, который нагнетается в цилиндры, происходит более полное и быстрое сгорание топлива. Это способствует снижению расхода топлива и повышению мощности мотора. Так же снижается токсичность выхлопных газов. Так как скорость сгорания топлива в турбированном моторе выше, это позволяет увеличить максимальные обороты вращения двигателя, что положительно сказывается на его характеристиках.
Есть и несколько минусов при использовании турбин на дизелях. Сам турбокомпрессор подвергается воздействию высоких температур от выхлопных газов. Что требует использовать дорогостоящие термостойкие материалы при изготовлении турбины. На некоторых моделях дизелей турбина охлаждается жидкостью из основной системы охлаждения двигателя. Во время работы вал турбины раскручивается до нескольких десятков тысяч оборотов в минуту. Для увеличения срока службы пары трения используют износостойкие материалы, способные выдерживать огромные скорости вращения. Узлы вращения вала турбины обычно смазывают моторным маслом из общей системы смазки двигателя, что предъявляет серьезные требования к качеству моторных масел.
При использовании турбокомпрессора на двигателе его ресурс несколько сокращается по отношению к атмосферному двигателю. Это происходит из-за повышения нагрузок на основные механизмы двигателя. Так же повышается стоимость двигателя в целом. Этому способствует высокая стоимость самого турбокомпрессора, конструктивное усложнение систем охлаждения и смазки двигателя и увеличению воздушных трубопроводов. Несмотря на свои недостатки из-за большей экономичности и мощности турбодизеля все чаще устанавливаются на автомобили.
В зависимости от вида камеры сгорания различают камеры раздельного типа и камеры нераздельного типа. Раздельная камера сгорания представляет собой дополнительную камеру небольшого объема, которая соединяется каналом с верхней частью цилиндра. Эта камера обычно находится в полости ГБЦ. Топливо через форсунку впрыскивается именно в эту, так называемую, предкамеру. В момент воспламенения топлива продукты горения распространяются по соединительному каналу в цилиндр и давят на поршень.
Основным плюсом таких моторов является мягкость работы. То есть во время работы такого двигателя почти не слышен характерный «дизельный стук». Это обусловлено тем, что взрывная волна при воспламенении топлива образуется внутри предкамеры и не воздействует непосредственно на поршень. На таких моторах в распылителях форсунок было, как правило, одно отверстие, что упрощало и удешевляло их изготовление. Но были и минусы в такой конструкции. Это сложность изготовления самой предкамеры и её рубашки охлаждения.
Моторы с раздельными камерами сгорания обладали довольно высоким расходом топлива.Двигатели с нераздельными камерами сгорания получили большее распространение. Такие моторы чаще называют двигатели с непосредственным впрыском. То есть на них топливо впрыскивается непосредственно в цилиндр в надпоршневое пространство. Камера сгорания может быть выполнена в днище поршня, в полости ГБЦ или частично там и там. По геометрической форме камеры сгорания могут быть разные. В некоторой степени это зависит от формы факела распыла топлива форсункой. Некоторые формы камеры сгорания способствуют образованию завихрений внутри цилиндра, что улучшает сгорание топлива.
Двигатели с непосредственным впрыском обладают рядом преимуществ по отношению к моторам с раздельными камерами сгорания. Самый главный показатель – это экономичность. Нераздельная камера сгорания имеет компактную форму, поэтому обладает малыми тепловыми потерями при работе двигателя. Это позволяет мотору быстрее выходить на рабочий тепловой режим и соответственно меньше тратить топлива. При нераздельной камере сгорания уменьшается высота ГБЦ и сложность её изготовления. Одним из минусов таких моторов является высокие ударные нагрузки, которые действуют на КШМ.
При использовании в форсунках распылителей с несколькими отверстиями малого диаметра удалось обеспечить более плавное горение топлива. Что послужило снижению ударных нагрузок, действующих на КШМ. Но производство таких форсунок довольно трудоемко и предъявляет к себе высокую точность изготовления, что сказывается на их стоимости. Тем не менее, именно моторы с непосредственным впрыском получили большое распространение в современном автомобилестроении. Такие моторы постоянно модернизируются и получают новые технологии, в частности по повышению прочности материалов КШМ.
На дорогах всего мира можно встретить автомобили с различными по конструкции системами подачи топлива. Некоторые из них устарели морально и физически. Эти системы не отвечают экологическим нормам по содержанию вредных выбросов в выхлопных газах. Тем не менее, такие автомобили выполняют свои функции. Существует несколько видов систем подачи топлива в дизельный двигатель.
Топливо из бака подается к ТНВД подкачивающим насосом. В подающем топливопроводе устанавливаются фильтры очистки топлива. Как правило, это двухступенчатая система очистки. На первом этапе топливо очищается от крупных примесей в виде мелких камешков, металлических обломков и так далее. Второй этап – это фильтр тонкой очистки, который улавливает все остальное, в том числе и воду. От ТНВД топливо подается к форсункам через трубки, которые способны выдерживать высокое давление.
ТНВД могут быть рядными и распределительными. Иногда встречаются V- образные, они схожи по конструкции с рядными насосами. Так же существуют так называемые магистральные насосы, о них чуть ниже… Рядные ТНВД могут иметь несколько плунжеров, которые создают давление топлива для индивидуальной форсунки. Насосы работают от вращения, имеют привод от двигателя, и вращение строго синхронизировано с положением поршней в ВМТ. Во время работы каждый плунжер обеспечивает повышение давления в подающей магистрали в нужный момент для каждого цилиндра двигателя. Форсунка имеет запорную иглу в распылителе, которая открывается от возросшего давления топлива. После открытия и впрыска топлива, давление в магистрали падает, и игла запирает отверстия распылителя. Все довольно просто устроено и работает механически.
Для увеличения подачи топлива в плунжере увеличивается давление, что увеличивает время впрыска топлива, а в итоге и его количество. Чтобы увеличить давление в плунжере насоса имеется специальная зубчатая рейка, которая при линейном перемещении поворачивает специальные втулки плунжеров относительно вертикальной оси. Тем самым отсечка происходит позже, в итоге повышается давление в топливной магистрали. Рейка соединяется с педалью газа механически или электроприводом. Такие ТНВД также имеют механический регулятор холостых оборотов и регулятор опережения момента впрыска топлива, который необходим при увеличении оборотов двигателя.
Насосы такого типа смазываются моторным маслом из общей системы смазки двигателя, поэтому могут работать на топливе низкого качества.
Системы питания топливом такого типа очень надежны. Они хорошо зарекомендовали себя за многолетнее применение и до сих пор могут применяться на дизелях. Но такие системы не обладают потенциалом в дальнейшем развитии. Для более мягкой работы дизеля и повышения экономичности следует повысить давление впрыска топлива. На таких системах повышать давление неограниченно нет возможности. Во время работы в определенный момент происходит резонанс в трубопроводах высокого давления. Поэтому увеличение давления может привести к разрушению трубок. Так же есть зависимость производительности насоса от оборотов работы двигателя, что негативно сказывается на тонкости распыления топлива в этом режиме.
Распределительный насос отличается от рядного насоса количеством плунжерных секций. Такие насосы могут иметь одну или несколько плунжеров, но их количество может не соответствовать количеству цилиндров двигателя, на которые они устанавливаются. Подача топлива распределяется специальным механизмом. В нужный момент топливо под высоким давлением подается на нужную форсунку в соответствии с тактом работы двигателя. Форсунки при этом могут использоваться такой же конструкции, которая описана выше. Насосы такого типа компактнее рядных насосов, поэтому чаще применяются на легковых дизелях. Механизм распределения подачи топлива довольно точно работает, что увеличивает мягкость работы двигателя. В отличие от рядных насосов производительность распределительных почти не зависит от оборотов двигателя.
Но есть в таких насосах и недостаток. Все детали внутри насоса смазываются дизтопливом, которое он подает к форсункам. Точность изготовления прецизионных пар довольно высока. Поэтому качество топлива влияет на долговечность работы насосов такого типа. При недостаточной смазке ускоряется износ деталей, а присутствие влаги в топливе достаточно серьезно уменьшает его ресурс.
Существуют системы, в которых насос высокого давления и форсунка объединены в один элемент. Что исключает применение трубопроводов высокого давления. Подкачивающий насос подает топливо сразу на насос-форсунку. На каждый цилиндр устанавливается индивидуальная насос-форсунка. В таких системах давление впрыска топлива может достигать нескольких сотен МПа, что увеличивает экономичность и уменьшает содержание вредных выбросов в выхлопных газах. Насос-форсунка приводится в работу от кулачков распределительного вала, что упрощает конструкцию двигателя в целом. Современные топливные системы такого типа, а существуют они довольно давно, имеют ряд новшеств.
Например, на некоторых двигателях с такой системой впрыск топлива разделен на несколько фаз. То есть топливо впрыскивается не одной порцией, а несколькими. Каждая из порций может отличаться по объему, что позволяет контролировать процесс сгорания топлива. В результате воспламенение происходит более мягко, снижая ударные нагрузки на КШМ, а токсичность выхлопных газов снижается за счет более полного сгорания топлива в цилиндрах. Минусом же являются высокая стоимость насос-форсунки и необходимость использовать топливо высокого качества.
Еще одна система питания топливом на дизельном моторе – это система Common Rail. В переводе с английского означает общая магистраль. На легковых двигателях разные бренды называют эту систему по-своему, но принцип работы у них схож. В роли общей магистрали выступает топливная рампа, в которой накапливается энергия давления. Из топливной рампы топливо подается на форсунки, открывающиеся электрическим импульсом. Чем-то напоминает топливную рампу бензинового мотора, но в дизеле давление в рампе составляет несколько сотен МПа. Такое давление создает магистральный насос высокого давления. Электрический импульс подается в нужный момент из блока управления двигателем.
Во время запуска двигателя магистральный насос начинает качать топливо и создается высокое давление в топливной рампе. На рампе расположен датчик давления, который измеряет давление топлива в ней. Блок управления считывает показания с этого датчика, и только при достижении определенного давления он подает импульс на открытие форсунок. Происходит запуск дизеля и дальнейшая его работа. Во время работы двигателя насос постоянно поддерживает высокое давление в топливной рампе, поэтому обороты двигателя не влияют на давление впрыска топлива, рампа выступает в роли накопителя. Электронный блок управления позволяет контролировать угол опережения впрыска и поддерживает обороты холостого хода мотора, что упрощает конструкцию насоса в отличие от ТНВД рядного типа.
Высокое давление впрыска позволяет добиться наилучшего распыления топлива и уменьшить его расход до феноменально малых показателей, сохраняя при этом высокую мощность двигателя. Легковой дизель объемом в 3 литра может потреблять топлива в городском режиме всего около 8-10 литров на 100 километров пробега. Крутящий момент дизельных двигателей выше, чем на аналогичных бензиновых моторах, он приближается к расчетным максимальным показателям почти с холостых оборотов. Бензиновые же достигают этого момента на максимально допустимых оборотах вращения коленвала.
В настоящее время легковые автомобили с системой впрыска Common Rail способны конкурировать по динамике разгона с бензиновыми моторами. Но потреблять при этом намного меньше топлива. Всю картину портит качество дизтоплива в нашей стране. В итоге выходят из строя насосы высокого давления и форсунки. Стоимость этих деталей довольно высока, поэтому экономия на расходе топлива сходит на нет при наступлении очередного ремонта топливной аппаратуры. Возможно, в скором будущем наши нефтеперерабатывающие заводы повысят качество выпускаемого дизтоплива. И каждый потенциальный клиент сможет выбрать для себя автомобиль именно с экономичным дизельным двигателем…
Автор: Александр Назаров
polnyi-privod.ru
Система питания карбюраторного бензинового двигателя с искровым зажиганием служит для хранения топлива, его очистки от механических примесей, приготовления горючей смеси, а также для подачи горючей смеси в цилиндры двигателя и отвода из них отработавших газов. Кроме того, в функции системы питания входит очистка воздуха, используемого для приготовления горючей смеси.
Горючая смесь состоит из топлива и воздуха, соединенных в определенной пропорции и тщательно перемешанных друг с другом. При сгорании горючей смеси в цилиндрах двигателя выделяется тепловая энергия, преобразуемая затем в механическую энергию.
Система питания карбюраторного двигателя (Рис. 1) состоит из топливного бака 6, топливного насоса 7, воздушного фильтра 1, карбюратора 4, топливопроводов 5, впускного 2 и выпускного 3 трубопроводов, приемной трубы 8 глушителей и собственно глушителей 9 и 10.
Основным топливом, используемым для работы карбюраторных двигателей с принудительным воспламенением, является бензин – жидкий продукт переработки нефти, горючая смесь лёгких углеводородов.
***
Топливо (бензин) из бака подается насосом 7 по топливопроводам 5 в карбюратор 4. Через воздушный фильтр 1 в карбюратор поступает воздух. Приготовленная в карбюраторе из топлива и воздуха горючая смесь подается в цилиндры двигателя по впускному трубопроводу 2. Отработавшие газы отводятся из цилиндров двигателя в окружающую среду через выпускной трубопровод 3, приемную трубу 8 глушителей, основной 10 и дополнительный 9 глушители.
В системе питания бензиновых двигателей автомобилей обязательными элементами являются фильтры очистки топлива (у двигателей грузовых автомобилей - фильтры грубой и тонкой очистки), а также воздушный фильтр.
Топливо из бака через фильтры насосом подается к карбюратору, где смешивается в определенной пропорции с воздухом, поступающим через воздухоочиститель. Полученная горючая смесь из-за разрежения в цилиндрах двигателя с большой скоростью перемещается по впускному трубопроводу, при этом дополнительно перемешиваясь, и попадает в цилиндры двигателя, где и сгорает посредством искрового воспламенения от электрической свечи.
За счет давления образовавшихся при сгорании горючей смеси газов, воздействующих на детали и узлы кривошипно-шатунного механизма, осуществляется работа двигателя.
***
Автомобильный бензин
k-a-t.ru