Традиционный кривошипно-шатунный механизм поршневых двигателей внутреннего сгорания при работе создает боковое усилие на стенку цилиндра. Чтобы предупредить связанный с этим повышенный износ поршней, приходится придавать им конусную форму, а их юбкам эллипсность. Кроме того, боковая нагрузка на стенку цилиндра увеличивает потери на трение, то есть приводит к уменьшению механического КПД двигателя. Исключить ее можно, применив такой механизм, в котором шатун двигался бы только возвратно-поступательно, не совершая угловых качаний относительно поршневого пальца.К реализации этой идеи приступил С. Баландин. Он предложил применить сначала для паровой машины, а затем поршневого авиационного двигателя «точное прямило» — механизм, давно известный в теории механизмов и машин. Каков же его принцип действия?
Рис. 1. Частный случай гипоциклоиды.при обкатке одной окружности внутри другой, имеющей вдвое больший радиус, точки А и В малой окружности перемещаются по взаимно перпендикулярным прямым.
Если катить без скольжения внутри большой окружности малую, то любая точка последней опишет за один цикл взаимных перемещений звездообразную криволинейную фигуру — гипоциклоиду. При соотношении диаметров окружностей 1 : 2 фигура превращается в две взаимно перпендикулярные прямые линии. Это явление было известно еще Копернику. Приложить созданный на его основе механизм к двигателю внутреннего сгорания пытались в 1908 году Бюрль во Франции и Бухерер в Германии, но неудачно.
Рис. 2. Принцип гипоциклического перемещения точек окружности в приложении к механизму, преобразующему возвратно - поступательное движение поршней во вращательное (обозначения точек те же, что на предыдущем рис.).
Рис. 3. Кинематическая схема бесшатунного двигателя.Баландин, всесторонне исследовав проблему, нашел свое решение. Оно базировалось на частном принципе гипоциклического движения. Схема взаимного перемещения элементов предложенного им механизма (кинематическая схема) была применена в бесшатунном двигателе.Инженерное воплощение эти изобретения получили в опытном двигателе ОМБ, где были использованы цилиндры, их головки и поршни от пятицилиндрового авиационного мотора М—НА. По сравнению с ним звездообразный четырехцилиндровый бесшатунный двигатель мощнее на 33% и на 84% меньше в площади поперечного сечения. Но самый главный результат — благодаря сокращению потерь на трение между поршнем и цилиндром механический КПД повысился с 0,86 до 0,95, вырос моторесурс. С применением бесшатунного механизма цилиндро-поршневая группа перестала лимитировать надежность и долговечность мотора.
Рис. 4. Принципиальное устройство бесшатунного двигателя:1 — поршневой шток2 - коленчатый вал3 — подшипник кривошипа4 - кривошип5 — вал отбора мощности6 - поршень7 — ползун штока8 - цилиндр
После завершения экспериментов с ОМБ был построен и испытан ряд других опытных двигателей, работавших по принципиально той же схеме. В них функции шатунов выполняют поршневые штоки 1, жестко (а не через поршневые пальцы) связанные с поршнями 6 и, подобно шатунам, охватывающие шейки коленчатого вала 2. На каждом штоке по обеим сторонам подшипника выполнены ползуны (для упрощения на рисунках не показаны), которые скользят по направляющим в картере, полностью разгружая поршень и цилиндр от боковых усилий. В результате поршень превращается просто в обойму для поршневых колец, которые герметизируют стык «поршень — цилиндр». Поэтому допуски на размеры поршня могут быть менее жесткими.На рисунке показана четырехцилиндровая секция бесшатунного двигателя, но возможны конструкций с восемью цилиндрами, двенадцатью, шестнадцатью и т. д. Угол между цилиндрами 8 из-за особенностей кинематической схемы допустим любой, кроме 0 и 180°, так как невозможно получить конструкции, где цилиндры расположены в один ряд или оппозитно. Во всяком случае, нет препятствий для создания низкого компактного мотора с крестообразным, Х-образным или V-образным расположением цилиндров.Коленчатый вал 2 бесшатунного двигателя вращается на подшипниках 3, смонтированных в кривошипах 4. Они через зубчатые венцы на их щеках передают крутящий момент на шестерни так называемого синхронизирующего вала 5, который может служить и для съема мощности.
Рис. 5. Компоновка бесшатунного двигателя одинарного действия1 — поршневой шток2 - коленчатый вал3 — подшипник кривошипа4 - кривошип5 — вал отбора мощности6 - поршень7 — ползун штока8 - цилиндр
Типичная компоновка четырехцилиндрового бесшатунного двигателя одинарного действия приведена на рис. Здесь можно видеть ползуны 7 штока, выполненные заодно со штоком. 1 поршни 6.
Рис. 6. Компоновка цилиндра бесшатунного двигателя двойного действия
Отсутствие угловых колебаний штока относительно поршня открывает возможность создания двигателя двойного действия. В этом случае рабочий процесс идет по обе стороны поршня, что позволяет снять почти вдвое большую мощность.
Рис. 7. Сравнение поперечного габарита двигателей двойного действия — обычного и бесшатунного (выделен красным), слева при одинаковых диаметре цилиндра и ходе поршня, справа — при одинаковой мощности.
Кстати, для того чтобы создать возможность для двустороннего рабочего процесса, в поршневых паровых машинах и судовых двигателях внутреннего сгорания применяют так называемый крейцкопфный кривошипно-шатунный механизм. Однако при такой конструкции резко увеличиваются габарит и масса двигателя. Сопоставление поперечного габарита V-образных поршневых двигателей внутреннего сгорания двойного действия крейцкопфного и бесшатунного типа показывает значительные преимущества последнего.Последний из опытных бесшатунных двигателей С. Баландина, восьмицилиндровый ОМ—127РН двойного действия развивал мощность 3500 л. с. (2576 кВт). Он имел систему впрыска топлива и турбонаддув.Удельные параметры ОМ—127РН: мощность — 146 л. с/л, расход топлива при максимальной мощности — 200 г/л.с. в час, масса — 0,6 кг/л. с.Суммируя достоинства бесшатунного двигателя, можно отметить, что по сравнению с рядом поршневых двигателей внутреннего сгорания и газовыми турбинами он компактнее, менее металлоемок. Для изготовления многих его деталей пригодны действующие технология и оборудование моторостроительных производств в автомобильной промышленности.Все эксперименты и исследования по бесшатунным двигателям велись в свое время специалистами авиамоторостроения. Серийно для нужд авиации он, однако, не выпускался, поскольку пригоден только для винтовых машин, время которых прошло. Развитие же идей С. Баландина применительно к автомобильным двигателям представляет интерес. Так, на одном из наших автомобильных заводов группой конструкторов под руководством Р. Розова был разработан проект бесшатунного двигателя с Х-обравным расположением цилиндров. Ближайшее будущее, видимо, покажет, насколько реальны перспективы применения бесшатунного двигателя на автомобиле в условиях массового производства.
С. Баландин работал в авиационной промышленности, спроектировал и построил несколько образцов авиамоторов по бесшатунной схеме, и эти работы были долгое время (до конца шестидесятых) засекречены. Информации об этих двигателях немного до сих пор. Некоторые сохранились до наших дней в качестве экспонатов музея авиационной техники, что в подмосковном городе Монино. В свое время эти разработки окружала завеса секретности, и с тех пор немалая часть техдокументации, отчетов об испытаниях, переписки либо уничтожена, либо канула в безвестность. Мало известно и о современных проектах. Впрочем, любые конструкторские бюро очень неохотно делятся информацией о своих экспериментальных разработках, не увидевших производства. Это естественно, и такой подход характерен для всех КБ во всем мире.Конструкторы ирбитского мотоциклетного завода занимались «бесшатунником». Опытный образец был построен, но до испытаний на стенде дело не дошло, — не удавалось провернуть рабочий вал двигателя.Баландин в своей книге «Бесшатунные поршневые двигатели внутреннего сгорания» (М., Машиностроение, 1972) приводит разрез бесшатунного автомобильного двигателя. Как удалось узнать, его спроектировала небольшая конструкторская группа одного из автомобильных заводов страны. Это был ее первый мотор, и он так и остался на бумаге. Изучение книги Баландина и разных публикаций, пропагандировавших идею «бесшатунника», наводило на мысль, что ранее подобная схема никем не применялась. Однако в сборнике «Новые конструкции автомобилей и их отдельных механизмов» (М., Гострансиздат, 1931), составленном А. Коростелиным, есть описание сходного по схеме двигателя. О нем говорилось, что разработан он автомобильным институтом в Англии и, самое удивительное, что первая партия этих двигателей только что поступила в опытную эксплуатацию. По-видимому, новое это и в самом деле хорошо забытое старое.
wiki.zr.ru
«Меня заинтересовала статья в журнале «Изобретатель и рационализатор» о двигателе С. Баландина, — пишет ленинградец К. Фролкин. — Прошу объяснить его принцип работы и устройство» Ответить на просьбу читателей, интересующихся этой темой, мы попросили инженера В. ТИШАКОВА, который работает над проектом бесшатунного двигателя на одном из наших автомобильных заводов.
Как известно, традиционный кривошипно-шатунный механизм поршневых двигателей внутреннего сгорания при работе создает боковое усилие на стенку цилиндра. Чтобы предупредить связанный с этим повышенный износ поршней, приходится придавать им конусную форму, а их юбкам эллипсность. Кроме того, боковая нагрузка на стенку цилиндра увеличивает потери на трение, то есть приводит к уменьшению механического КПД двигателя. Исключить ее можно, применив такой механизм, в котором шатун двигался бы только возвратно-поступательно, не совершая угловых качаний относительно поршневого пальца.
К реализации этой идеи приступил С. Баландин. Он предложил применить сначала для паровой машины, а затем поршневого авиационного двигателя «точное прямило» — механизм, давно известный в теории механизмов и машин. Каков же его принцип действия?
Если катить без скольжения внутри большой окружности малую, то любая точка последней опишет за один цикл взаимных перемещений звездообразную криволинейную фигуру — гипоциклоиду. При соотношении диаметров окружностей 1 к 2 фигура превращается в две взаимно перпендикулярные прямые линии (рис. 1). Это явление было известно еще Копернику. Приложить созданный на его основе механизм к двигателю внутреннего сгорания пытались в 1908 году Бюрль во Франции и Бухерер в Германии, но неудачно.
Рис. 2. Принцип гипоциклического перемещения точек окружности в приложении к механизму, преобразующему возвратно — поступательное движение поршней во вращательное (обозначения точек те же, что на рис. 1).Баландин же, всесторонне исследовав проблему, нашел свое решение (рис. 2). Оно базировалось на частном принципе гипоциклического движения. Схема взаимного перемещения элементов предложенного им механизма (кинематическая схема) была применена в бесшатунном двигателе внутреннего сгорания (рис. 3).
Инженерное воплощение эти изобретения получили в опытном двигателе ОМБ, где были использованы цилиндры, их головки и поршни от пятицилиндрового авиационного мотора М-11А. По сравнению с ним звездообразный четырехцилиндровый бесшатунный двигатель мощнее на 33% и на 84% меньше в площади поперечного сечения. Но самый главный результат — благодаря сокращению потерь на трение между поршнем и цилиндром механический КПД повысился с 0,86 до 0,95, вырос моторесурс. С применением бесшатунного механизма цилиндро-поршневая группа перестала лимитировать надежность и долговечность мотора.
Рис. 3. Кинематическая схема бесшатунного двигателя.После завершения экспериментов с ОМБ был построен и испытан ряд других опытных двигателей, работавших по принципиально той же схеме (рис. 4 на вкладке). В них функции шатунов выполняют поршневые штоки 1, жестко (а не через поршневые пальцы) связанные с поршнями 6 и, подобно шатунам, охватывающие шейки коленчатого вала 2. На каждом штоке по обеим сторонам подшипника выполнены ползуны (на рис. 4 для упрощения не показаны), которые скользят по направляющим в картере, полностью разгружая поршень и цилиндр от боковых усилий. В результате поршень превращается просто в обойму для поршневых колец, которые герметизируют стык «поршень — цилиндр». Поэтому допуски на размеры поршня могут быть менее жесткими.
На рисунке показана четырехцилиндровая секция бесшатунного двигателя, но возможны конструкции с восемью цилиндрами, двенадцатью, шестнадцатью и т. д. Угол между цилиндрами 8 из-за особенностей кинематической схемы допустим любой, кроме 0 и 180°, так-как невозможно получить конструкции, где цилиндры расположены в один ряд или оппозитно. Во всяком случае, нет препятствий для создания низкого компактного мотора с крестообразным. Х-образным или V-образным расположением цилиндров.
Рис. 4. Принципиальное устройство бесшатунного двигателя: 1 — поршневой шток; 2 — коленчатый вал; 3 — подшипник кривошипа; 4 — кривошип; 5 — вал отбора мощности; 6 — поршень; 7 — ползун штока: 8 — цилиндр.Коленчатый вал 2 бесшатунного двигателя вращается на подшипниках 3. смонтированных в кривошипах 4. Они через зубчатые венцы на их щеках передают крутящий момент на шестерни так называемого синхронизирующего вала 5, который может служить и для съема мощности.
Типичная компоновка четырехцилиндрового бесшатунного двигателя одинарного действия приведена на рис. 5. Здесь можно видеть ползуны 7 штока, выполненные заодно со штоком 1 поршни 6.
Отсутствие угловых колебаний штока относительно поршня открывает возможность создания двигателя двойного действия (рис. 6). В этом случае рабочий процесс идет по обе стороны поршня, что позволяет снять почти вдвое большую мощность.
Рис. 5. Компоновка бесшатунного двигателя одинарного действия. Позиции те же, что на рис. 4.Кстати, для того чтобы создать возможность для двустороннего рабочего процесса, в поршневых паровых машинах и судовых двигателях внутреннего сгорания применяют так называемый крейцкопфный кривошипно-шатунный механизм. Однако при такой конструкции резко увеличиваются габарит и масса двигателя. Сопоставление поперечного габарита V-образных поршневых двигателей внутреннего сгорания двойного действия (рис. 7) крейцкопфного и бесшатунного типа показывает значительные преимущества последнего.
Рис. 6. Компоновка цилиндра у бесшатунного двигателя двойного действия.Экспериментальный бесшатунный авиационный двигатель МБ-4 одинарного действия при габарите, примерно таком же, как у двигателя ГАЗ-24 «Волга», имел близкую к нему массу и развивал в полтора раза более высокую мощность (140 л. с./103 кВт при 2200 об/мин). Удельная мощность двигателя МБ-4 составляла 20,4 л. с./л; удельная масса — 1,14 кг/л. с.; удельный расход топлива в эксплуатационном режиме — 220 г/л. с. в час.
Последний из опытных бесшатунных двигателей С. Баландина, восьмицилиндровый ОМ-127РН двойного действия развивал мощность 3500 л. с. (2576 кВт). Он имел систему впрыска топлива и турбонаддув.
Удельные параметры ОМ-127РН: мощность — 146 л. с./л, расход топлива при максимальной мощности — 200 г/л. с. в час, масса — 0,6 кг/л. с.
Суммируя достоинства бесшатунного двигателя, можно отметить, что по сравнению с рядом поршневых двигателей внутреннего сгорания и газовыми турбинами он компактнее, менее металлоемок. Для изготовления многих его деталей пригодны действующие технология и оборудование моторостроительных производств в автомобильной промышленности.
Рис. 7. Сравнение поперечного габарита двигателей двойного действия — обычного и бесшатунного (выделен красным цветом): слева — при одинаковых диаметре цилиндра и ходе поршня, справа — при одинаковой мощности.Все эксперименты и исследования по бесшатунным двигателям велись в свое время специалистами авиамоторостроения. Серийно для нужд авиации он, однако, не выпускался, поскольку пригоден только для винтовых машин, время которых прошло. Развитие же идей С. Баландина применительно к автомобильным двигателям представляет интерес. Так, некоторое время назад на одном из наших автомобильных заводов группой конструкторов под руководством Р. Розова был разработан проект бесшатунного двигателя с Х-образным расположением цилиндров. Ближайшее будущее, видимо, покажет, насколько реальны перспективы применения бесшатунного двигателя на автомобиле в условиях массового производства.
ЛитератураС. С. Баландин. Бесшатунные поршневые двигатели внутреннего сгорания. М., Машиностроение, 1968 (1972 г. — второе издание).
В. ТИШАКОВ, инженер («За Рулем», №4, 1982)
own.in.ua
Как известно, традиционный кривошипно-шатунный механизм поршневых двигателей внутреннего сгорания при работе создает боковое усилие на стенку цилиндра. Чтобы предупредить связанный с этим повышенный износ поршней, приходится придавать им конусную форму, а их юбкам эллипсность. Кроме того, боковая нагрузка на стенку цилиндра увеличивает потери на трение, то есть приводит к уменьшению механического КПД двигателя. Исключить ее можно, применив такой механизм, в котором шатун двигался бы только возвратно-поступательно, не совершая угловых качаний относительно поршневого пальца.
Рис. 1. Частный случай гипоциклоиды: при обкатке одной окружности внутри другой, имеющей вдвое больший радиус, точки А и В малой окружности перемещаются по взаимно перпендикулярным прямым.
К реализации этой идеи приступил С. Баландин. Он предложил применить сначала для паровой машины, а затем поршневого авиационного двигателя «точное прямило» — механизм, давно известный в теории механизмов и машин. Каков же его принцип действия?
Если катить без скольжения внутри большой окружности малую, то любая точка последней опишет за один цикл взаимных перемещений звездообразную криволинейную фигуру — гипоциклоиду. При соотношении диаметров окружностей 1 к 2 фигура превращается в две взаимно перпендикулярные прямые линии (рис. 1). Это явление было известно еще Копернику. Приложить созданный на его основе механизм к двигателю внутреннего сгорания пытались в 1908 году Бюрль во Франции и Бухерер в Германии, но неудачно.
Рис. 2. Принцип гипоциклического перемещения точек окружности в приложении к механизму, преобразующему возвратно — поступательное движение поршней во вращательное (обозначения точек те же, что на рис. 1).
Баландин же, всесторонне исследовав проблему, нашел свое решение (рис. 2). Оно базировалось на частном принципе гипоциклического движения. Схема взаимного перемещения элементов предложенного им механизма (кинематическая схема) была применена в бесшатунном двигателе внутреннего сгорания (рис. 3).
Инженерное воплощение эти изобретения получили в опытном двигателе ОМБ, где были использованы цилиндры, их головки и поршни от пятицилиндрового авиационного мотора М-11А. По сравнению с ним звездообразный четырехцилиндровый бесшатунный двигатель мощнее на 33% и на 84% меньше в площади поперечного сечения. Но самый главный результат — благодаря сокращению потерь на трение между поршнем и цилиндром механический КПД повысился с 0,86 до 0,95, вырос моторесурс. С применением бесшатунного механизма цилиндро-поршневая группа перестала лимитировать надежность и долговечность мотора.
Рис. 3. Кинематическая схема бесшатунного двигателя.
После завершения экспериментов с ОМБ был построен и испытан ряд других опытных двигателей, работавших по принципиально той же схеме (рис. 4 на вкладке). В них функции шатунов выполняют поршневые штоки 1, жестко (а не через поршневые пальцы) связанные с поршнями 6 и, подобно шатунам, охватывающие шейки коленчатого вала 2. На каждом штоке по обеим сторонам подшипника выполнены ползуны (на рис. 4 для упрощения не показаны), которые скользят по направляющим в картере, полностью разгружая поршень и цилиндр от боковых усилий. В результате поршень превращается просто в обойму для поршневых колец, которые герметизируют стык «поршень — цилиндр». Поэтому допуски на размеры поршня могут быть менее жесткими.
На рисунке показана четырехцилиндровая секция бесшатунного двигателя, но возможны конструкции с восемью цилиндрами, двенадцатью, шестнадцатью и т. д. Угол между цилиндрами 8 из-за особенностей кинематической схемы допустим любой, кроме 0 и 180°, так-как невозможно получить конструкции, где цилиндры расположены в один ряд или оппозитно. Во всяком случае, нет препятствий для создания низкого компактного мотора с крестообразным. Х-образным или V-образным расположением цилиндров.
Рис. 4. Принципиальное устройство бесшатунного двигателя: 1 — поршневой шток; 2 — коленчатый вал; 3 — подшипник кривошипа; 4 — кривошип; 5 — вал отбора мощности; 6 — поршень; 7 — ползун штока: 8 — цилиндр.
Коленчатый вал 2 бесшатунного двигателя вращается на подшипниках 3. смонтированных в кривошипах 4. Они через зубчатые венцы на их щеках передают крутящий момент на шестерни так называемого синхронизирующего вала 5, который может служить и для съема мощности.
Типичная компоновка четырехцилиндрового бесшатунного двигателя одинарного действия приведена на рис. 5. Здесь можно видеть ползуны 7 штока, выполненные заодно со штоком 1 поршни 6.
Отсутствие угловых колебаний штока относительно поршня открывает возможность создания двигателя двойного действия (рис. 6). В этом случае рабочий процесс идет по обе стороны поршня, что позволяет снять почти вдвое большую мощность.
Рис. 5. Компоновка бесшатунного двигателя одинарного действия. Позиции те же, что на рис. 4.
Кстати, для того чтобы создать возможность для двустороннего рабочего процесса, в поршневых паровых машинах и судовых двигателях внутреннего сгорания применяют так называемый крейцкопфный кривошипно-шатунный механизм. Однако при такой конструкции резко увеличиваются габарит и масса двигателя. Сопоставление поперечного габарита V-образных поршневых двигателей внутреннего сгорания двойного действия (рис. 7) крейцкопфного и бесшатунного типа показывает значительные преимущества последнего.
Рис. 6. Компоновка цилиндра у бесшатунного двигателя двойного действия.
Экспериментальный бесшатунный авиационный двигатель МБ-4 одинарного действия при габарите, примерно таком же, как у двигателя ГАЗ-24 «Волга», имел близкую к нему массу и развивал в полтора раза более высокую мощность (140 л. с./103 кВт при 2200 об/мин). Удельная мощность двигателя МБ-4 составляла 20,4 л. с./л; удельная масса — 1,14 кг/л. с.; удельный расход топлива в эксплуатационном режиме — 220 г/л. с. в час.
Последний из опытных бесшатунных двигателей С. Баландина, восьмицилиндровый ОМ-127РН двойного действия развивал мощность 3500 л. с. (2576 кВт). Он имел систему впрыска топлива и турбонаддув.
Удельные параметры ОМ-127РН: мощность — 146 л. с./л, расход топлива при максимальной мощности — 200 г/л. с. в час, масса — 0,6 кг/л. с.
Суммируя достоинства бесшатунного двигателя, можно отметить, что по сравнению с рядом поршневых двигателей внутреннего сгорания и газовыми турбинами он компактнее, менее металлоемок. Для изготовления многих его деталей пригодны действующие технология и оборудование моторостроительных производств в автомобильной промышленности.
Рис. 7. Сравнение поперечного габарита двигателей двойного действия — обычного и бесшатунного (выделен красным цветом): слева — при одинаковых диаметре цилиндра и ходе поршня, справа — при одинаковой мощности.
Все эксперименты и исследования по бесшатунным двигателям велись в свое время специалистами авиамоторостроения. Серийно для нужд авиации он, однако, не выпускался, поскольку пригоден только для винтовых машин, время которых прошло. Развитие же идей С. Баландина применительно к автомобильным двигателям представляет интерес. Так, некоторое время назад на одном из наших автомобильных заводов группой конструкторов под руководством Р. Розова был разработан проект бесшатунного двигателя с Х-образным расположением цилиндров. Ближайшее будущее, видимо, покажет, насколько реальны перспективы применения бесшатунного двигателя на автомобиле в условиях массового производства.
Литература
С. С. Баландин. Бесшатунные поршневые двигатели внутреннего сгорания. М., Машиностроение, 1968 (1972 г. — второе издание).
Внимание! Статья не претендует на оригинальность. Просто есть пожелание перенести сюда все ристалища по бесшатунникам.
aviator.guru
Представляю вашему вниманию ещё один, так сказать, двигатель будущего. Конструкция его не настолько революционна как у двигателя Кузнецова, но у него есть одно неоспоримое достоинство – такой мотор построен и работает.
С момента появления двигателя внутреннего сгорания специалисты всего мира непрерывно занимаются его совершенствованием. Каких только конструкций за прошедшее время не было придумано. Однако лишь малой части из них удалось стать серийными образцами. Остальные, несмотря на оригинальность заложенных идей, так и не вышли из стадии эксперимента. Впрочем, имеются силовые установки, которые, прежде чем завоевать «место под солнцем», проходят тернистый и долгий путь. Одной из них является бесшатунный двигатель.
ИСТОКИ
Известно, что в кривошипно-шатунных механизмах двигателей внутреннего сгорания почти четвертая часть полезной мощности уходит на трение. Другая отрицательная сторона таких моторов — увеличение сил инерции, количества вспышек с повышением числа оборотов, а следовательно, и рост тепловой напряженности цилиндра. Действительно, преобразование прямолинейного перемещения поршня во вращательное движение коленчатого вала с помощью шатуна вызывает появление бокового усилия на стенку цилиндра. Чтобы избежать связанного с этим повышенного износа поршней, им придают конусную форму, а их юбки делают эллипсными. Однако это не решает проблемы в корне. Неизбежная боковая нагрузка на стенку цилиндра увеличивает потери на трение, отрицательно отражающиеся на величине механического КПД двигателя. Бороться с этим явлением можно с помощью конструкции, в которой шатун бы двигался только возвратно-поступательно, не совершая угловых качаний относительно поршневого пальца.
1 — Поршень
2 — Шток
3 — Направляющие крейцкопфа
4 — Коленчатый вал
5 — Камеры сгорания
6 — Шестирёнчатый вал, синхронизирующий вращение кривошипа
7 — Кривошип
8 — Крейцкопф
За практическое воплощение такой идеи еще в 1940 году взялся выдающийся отечественный инженер С. С. Баландин. На базе 5-цилиндрового звездообразного авиационного мотора М-11 он создал версию с четырьмя цилиндрами, названную ОМБ — особый мотор Баландина. Испытания этого образца и его модификации, построенной в 1944 году, дали потрясающие результаты. Бесшатунный двигатель оказался на 33% мощнее и на 84% меньше в площади поперечного сечения, вдвое уменьшились размеры радиаторов систем охлаждения и смазки. Но самое главное—за счет резкого сокращения потерь на трение между поршнем и цилиндром механический КПД увеличился с 0,86 до 0,94, а моторесурс вырос в 18 раз! Снизился и удельный расход топлива.
В ОКБ-2 Наркомата авиапромышленности, возглавляемом С. С. Баландиным, по той же схеме было изготовлено и испытано несколько других опытных двигателей. В любом из них две противоположные пары поршней связаны между собой жестким штоком, который в середине имеет подшипник, охватывающий шейку коленчатого вала. На каждом штоке по обеим сторонам подшипника выполнены ползуны, которые скользят по направляющим в картере, полностью разгружая поршень и цилиндр от боковых усилий. Неудивительно, что в данном случае поршень превращается в своеобразный держатель для поршневых колец, которые герметизируют стык поршень—цилиндр. Поэтому допуски на размеры поршня устанавливаются менее жесткими. Сам по себе коленчатый вал не простой — он разрезан на три части. Средняя часть похожа на обычный коленчатый вал, а крайние являются кривошипами, в которых на подшипниках вращается средняя часть. Благодаря этому штоки с поршнями ходят взад-вперед, а коленчатый вал вращается. Для синхронизации вращения кривошипов, а также для съема мощности служит специальный вал: крутящий момент на его шестерни передают зубчатые венцы, расположенные на кривошипах.
1 — Поршень
2 — Кривошип
3 — Коленчатый вал
4 — Шатунный подшипник
5 — Подшипник кривошипа
6 — Шток
Нельзя не отметить, что если в обычном поршневом двигателе сила давления газов передается через относительно маленький подшипник верхней головки шатуна, а затем через подшипник его нижней головки (он уже больше, но и нагрузки здесь возрастают: добавляются силы инерции от вращения), то в схеме Баландина подшипник всего один, да и размер его гораздо солиднее, чем у подшипника нижней головки обычного шатуна. Силы инерции у «бесшатунника» также меньше, а сама нижняя головка является неразъемной. Пары поршней перемещаются возвратно-поступательно по двум взаимоперпендикулярным направлениям. Когда один из них приближается к головке цилиндра, осуществляя сжатие топливновоздушной смеси, другой, жестко связанный с ним штоком, удаляется от головки противоположного цилиндра, движимый энергией уже подожженной смеси. При этом механизм функционирует с частотой 2000 двойных ходов в минуту или почти 70 — в секунду.
Естественно, при отсутствии угловых колебаний штока относительно поршня появляется возможность создания двигателя двойного действия. В итоге рабочий процесс идет по обе стороны поршня, что позволяет получить почти вдвое большую мощность. Помимо 4-цилиндровой схемы бесшатунного двигателя возможны конструкции с восемью, двенадцатью, шестнадцатью цилиндрами и т. д. Правда, в тот период считалось, что угол между цилиндрами из-за особенностей кинематической схемы допустим любой, кроме 0° и 180°, поскольку, по мнению специалистов, невозможно было получить конструкцию, в которой цилиндры расположены в один ряд или оппозитно. Зато препятствий для создания низкого компактного мотора с крестообразным, Х-образным или V-образным расположением цилиндров не существовало.
Общий вид двигателя со стороны маховика.
Уже во время Великой Отечественной войны стало ясно, сколь заманчивые перспективы таит в себе бесшатунный двигатель. Понятно, почему в работе над ОМБ оказались задействованы три ОКБ и пять серийных заводов Наркомата авиапромышленности, не считая Академии им. Н.В. Жуковского и трех НИИ. Да и сам С. С. Баландин старался не отставать. Экспериментальный авиадвигатель МБ-4 одинарного действия при габарите, сопоставимом с двигателем «Волги», имел близкую к нему массу и развивал в полтора раза более высокую мощность (140 л. с. при 2200 мин-1). Удельная мощность двигателя составляла 20,4 л. с./л, удельная масса — 1,14 кг/л. с., удельный расход топлива в эксплуатационном режиме — 220 г/л.с. в час. Последний из опытных моторов — 8-цилиндровый ОМ-127РН двойного действия, оснащавшийся системой впрыска топлива и турбонаддувом, развивал мощность 3500 л.с. Более того, работы над столь многообещающим двигателем привели к началу постройки авиационного мотора мощностью 10000 л. с. и массой З,5 т, что в 200 раз легче стационарного дизеля той же мощности. Наконец, в ОКБ-2 приступили к проектированию бесшатунного авиадизеля мощностью 20000 л.с. И всего при 24 цилиндрах! Для сравнения: разработанный американской фирмой Laicoming авиационный поршневой мотор ХР-7755 мощностью 5000 л. с. имел 36 цилиндров при несравнимо худших характеристиках.
Бесспорность перехода авиации на реактивную тягу привела в начале 50-х годов прошлого века к сворачиванию деятельности ОКБ Баландина, хотя уже тогда удалось разработать поршневые моторы, равные по мощности, габаритам и массе турбовинтовым двигателям, к тому же более экономичные. В 1957 году С. С. Баландин, уже после прекращения работ, получил закрытое для публикации авторское свидетельство на «Двигатель внутреннего сгорания с бесшатунным механизмом». После снятия запрета вышла книга «Бесшатунные двигатели внутреннего сгорания» (первое издание — в 1968 году, второе — в 1972-м).
ДЕНЬ НЫНЕШНИЙ И ДЕНЬ ГРЯДУЩИЙ
Попытки создать «бесшатунник» для установки на различные мобильные системы, в том числе на бронетанковую и автомобильную технику в нашей стране предпринимались неоднократно. Проектировщики оценили достоинства двигателя Баландина, который, по сравнению с рядом поршневых двигателей внутреннего сгорания и газовыми турбинами, был компактнее и менее металлоемок. Для изготовления многих его деталей пригодны действующие технологии и оборудование моторостроительных производств автомобильной промышленности. Кроме того, в пользу «бесшатунника» говорили: высокая удельная мощность, минимальное число деталей, идеальная уравновешенность (амплитуды вибраций самых мощных образцов являлись неправдоподобно малыми — порядка несколько микрометров). К тому же по технологичности мотор Баландина заметно превосходил тот же двигатель Ванкеля.
Блок цилиндров.
На Брянском автозаводе разработали проект бесшатунного двигателя с X-образным расположением цилиндров. Зиловские инженеры в конце 80-х годов прошлого века построили опытный образец дизельного «Баландина», который успешно прошел стендовые испытания. По сравнению с серийным дизелем ЯМЗ-238, на каждые два цилиндра которого приходятся 28 деталей, разработали бесшатунный компрессор для питания пневмосистемы грузовиков. Аналогичные работы проводили молодые конструкторы инициативной группы «Трек» Московского авиационного института.
И все-таки двигатель Баландина так и не получил широкого распространения. Почему? Главный изъян мотора — появление так называемых избыточных кинематических связей. Дело в том, что шток, связывающий между собой поршни, имеет три опоры. Дополнительная опора в этом случае играет роль избыточной связи. Чтобы такой механизм надежно функционировал, необходима либо высокая податливость опор, либо безупречная точность изготовления деталей. А поскольку опоры коленчатого вала или сам вал сделать податливыми нельзя, остается уповать на технологию высочайшего уровня, доступную эксклюзивным производствам. Но даже при выполнении этого условия естественный износ деталей во время работы может свести все усилия по получению высокой точности на нет. Однако остается еще один способ выбраться из тупика — изменить кинематическую схему. Как раз этим и воспользовался инженер А. Вуль из Харькова, предложивший собственный способ решения проблемы. Вообще, вопросами бесшатунного двигателя украинский последователь С. С. Баландина вместе со своими единомышленниками занимается с 1994 года. За это время специалисты организованной для этой цели лаборатории создали несколько образцов. Первые два из них представляют автомобильные V-образные 4-цилиндровые дизели объемом 2,0 и 2,8 л и расчетной мощностью 68 и 136 л. с. соответственно.
Конечно, собрать в условиях не заводского производства необычный двигатель, а тем более дизель, без всякого преувеличения, является сверхзадачей. Но на стороне А. Вуля оказались упорство, невероятная работоспособность и огромный опыт ремонта современных зарубежных дизелей. В течение нескольких лет в лаборатории были созданы серьезный станочный парк и современный испытательный стенд с нагрузочным электродвигателем двустороннего действия.
В двигателе А. Вуля одностороннего действия два штока, находящихся рядом на коленчатом вале, развернуты друг относительно друга на угол 90°. Сам вал совершает двойное вращение: вокруг собственной оси и вокруг оси кривошипа. Именно такая кинематика механизма позволяет передавать мощность от поступательно движущихся штоков на вращающийся по определенной траектории коленчатый вал и далее на кривошипы.
При материализации своего замысла А. Вуль наиболее сложные элементы заимствовал от импортного дизеля. Речь идет об индивидуальных головках цилиндров (диаметром 100мм) и форсунках, а камеру сгорания и ее относительное расположение пришлось попросту скопировать. При этом, по сравнению с базовым мотором, несколько увеличено давление впрыска топлива, сокращена его продолжительность, изменен угол опережения впрыска. Сочетание готовых и оригинальных узлов привело к рождению 4-цилиндрового V-образного дизеля с углом развала 90°, работающего по четырехтактному циклу. При этом из-за особенностей схемы вспышки в камерах сгорания дизеля чередуются неравномерно: 0°, 90°, затем пауза 270° и снова 0° и 90°. Такой процесс работы потребовал использовать топливный насос распределительного типа зарубежного производства со встречно движущимися плунжерами, изначально предназначенный для 8-цилиндрового двигателя, и еще направлять топливо на слив из четырех дополнительных штуцеров. Дополнив «бесшатунник» генератором, стартером и вкладышами от различных марок грузовых и легковых автомобилей, а также снабдив силовую установку изрядным количеством деталей собственного изготовления, А. Вуль получил вполне работоспособную конструкцию.
Компоновка оппозитного 4-х цилиндрового дизеля конструкции Вуля.
Не останавливаясь на достигнутом, группа А. Вуля пошла дальше: был построен 4-цилиндровый дизель с оппозитным расположением цилиндров, что прежде в бесшатуной схеме реализовать не удавалось. Двигатель оборудован непосредственным впрыском и двойным наддувом, включающим турбокомпрессор и механический наддув. Рабочий объем двигателя составляет 2 л, мощность — 150 л.с. Подобные характеристики позволяют устанавливать мотор на многие виды автотранспортной техники.
Вместе с тем было проведено эскизное проектирование и прочностное моделирование наиболее нагруженных элементов оппозитного дизеля на основе классического кривошипно-шатунного механизма, имеющего ту же размерность, аналогичный рабочий процесс и примерно те же габаритные размеры, что и у дизеля на основе бесшатунной схемы. Такой подход связан, в первую очередь, с тем, чтобы более критично оценить ожидаемые преимущества бесшатунного двигателя. Наличие трехопорного коленчатого вала в спроектированном оппозитном двигателе с кривошипно-шатунным механизмом, конечно, не является идеальным решением, но многолетняя зарубежная практика эксплуатации оппозитных бензиновых моторов с экстремальным форсированием (Subaru, Porsсhe, Ferrari, Volkswagen) позволяет предположить, что проблема усталостной прочности коленчатого вала является разрешимой.
Выводы, сделанные при сравнении двигателей обоих проектов, не во всем совпали с ожиданиями разработчиков. Например, при организации подпоршневого наддува в бесшатунном двигателе его преимущество нивелируется, а масса «бесшатунника» с подпоршневым наддувом несколько превышает массу аналога с кривошипно-шатунным механизмом, не имеющего подпоршневого наддува.
Повышенный механический КПД бесшатунного двигателя обеспечивается переносом трения юбки поршня о гильзу из «горячей» зоны с ухудшенными условиями смазки внутрь механизма, где используются линейные подшипники скольжения с эффективной жидкостной смазкой. Помимо всего прочего это приводит к заметному увеличению ресурса цилиндропоршневой группы. Увеличенный тепловой КПД стал возможен благодаря иному закону движения поршня. Расчетное уменьшение расхода топлива в этом случае достигает 5–7%. При прочих равных условиях поршень в таком двигателе находится дольше возле верхней мертвой точки, что увеличивает объем топлива, сгоревшего при постоянном объеме.
Поскольку закон движения поршня точно соответствует синусоидальному, силы инерции первого порядка уравновешиваются противовесами, присоединенными к силовым элементам механизма, а силы инерции второго и высших порядков в такой конструкции вообще практически не возникают.
В качестве материала для изготовления всех корпусных и некоторых силовых элементов использовались алюминиевые сплавы и композитные материалы. В итоге масса двигателя была снижена до 130 кг с возможностью дальнейшего улучшения этого показателя.
Применение прямого гидростатического привода клапанов газораспределительного механизма дало возможность упростить конструкцию дизеля с раздельными головками цилиндров, сделать ее более компактной, а также повысить надежность агрегата в целом.Одной из главных задач при проектировании нового дизеля стало снижение токсичности выхлопа. Известно, что в результате сгорания масла, находящегося на стенках цилиндров двигателя, в его выхлопе содержится высокотоксичное вещество бензопирен, которое является сильным канцерогеном. Замысел состоит в том, чтобы вовсе отказаться от смазки стенок цилиндра за счет масла и достичь нулевого уровня расхода масла на угар благодаря применению несмазываемой пары поршень–гильза.
Считается, что при правильной работе бесшатунного механизма поршень не касается стенок цилиндра, поэтому его изготовили из легированной стали. Поршневые кольца выполнены из углеродной композиции, а гильза цилиндра — из алюминиевого сплава, покрытого слоем оксида алюминия. Работа такого узла напоминает функционирование щеточного узла коллекторного электродвигателя. Для обеспечения достаточной теплопередачи поршневые кольца выполнены массивными и поджаты изнутри к стенкам цилиндров пружинными экспандерами наподобие тех, что применяются в обычных маслосъемных кольцах. Охлаждение стального поршня обеспечивается воздухом подпоршневого компрессора.
В двигателе с обычным кривошипно-шатунным механизмом такая схема уплотнения имела бы худшую работоспособность, поскольку там кольца имеют значительную подвижность в радиальном направлении относительно поршня, совершающего перекладки между стенками цилиндра в районе верхней и нижней мертвой точки, а также опрокидывающее движение относительно оси пальца. У «бесшатунника» величина перекладок поршня в 5–10 раз меньше, опрокидывание отсутствует, поэтому требования к механической прочности уплотнений цилиндров значительно снижаются. Массивность колец необходима для обеспечения жесткости, а также для обеспечения необходимой площади контакта, которая отводит тепло в стенки цилиндров. Газы, прорвавшиеся через поршневые уплотнения, также не контактируют с маслом и направляются подпоршневым нагнетателем непосредственно в систему впуска двигателя для дожигания, что обеспечивает их полную рециркуляцию.
Развитие описанной конструкции открывает путь к появлению автомобильных двигателей со значительно увеличенными межсервисными пробегами. Становится реальной замена масла через 100 тыс. км, а в перспективе и через 200. Задача-максимум группы А. Вуля состоит в том, чтобы создать двигатель, который вообще не нуждается в замене масла в течение всего срока эксплуатации, аналогично тому, как это реализовано, например, в механических коробках передач многих современных автомобилей. Минимальный удельный расход топлива при испытаниях бесшатунного дизеля А. Вуля составил 165–170 г/кВт.ч, ресурс — 5000 ч, что соответствует приблизительно 350 тыс. км пробега.
Универсализация проекта, по мнению авторов, почти не является дополнительным ограничением и компромиссом между всеми возможными потребителями. Критически нагруженные узлы в любом случае могут рассчитываться, исходя из требований минимальной массы при максимальной несущей способности деталей, что при серийном производстве напрямую снижает их себестоимость. Запас же прочности, определяемый отношением максимально расчетной нагрузки к максимально действующей нагрузке и влияющий на ресурс изделия, выбирается исходя из назначения двигателя, после чего определяется конструкция и необходимое число его секций. Поскольку снятие мощности в оппозитном дизеле производится не с кривошипных валов (водил), а с вала отбора мощности, который может иметь различное (произвольное в определенных границах) передаточное отношение по отношению к кривошипным валам, возможно получение широкого диапазона чисел оборотов и крутящих моментов на выходном вале двигателя. Это делает возможной упрощенную адаптацию мотора для различных потребителей, которым необходимы различные максимальные числа оборотов выходного вала. Редуктор оказывается интегрированным в конструкцию двигателя и может перенастраиваться относительно несложным способом.
На первом этапе реализации проекта А. Вуль и его коллеги считают целесообразным проектирование и подготовку производства двигателя автомобильного типа для оснащения им в том числе легких грузовиков или микроавтобусов. К сказанному следует добавить, что основные технические решения по примененной версии кривошипно-ползунного механизма двигателя защищены международными заявками (стадия выдачи патентов США, Англии, Германии, России и Украины). Изобретения касаются преодоления важнейшей проблемы бесшатунных механизмов — склонности к образованию избыточных кинематических связей, т. е. к конфликтам траекторий движения ползуна и поршня, ползуна и ползунной шейки коленчатого вала.
Ближайшее будущее покажет, насколько реальны перспективы применения бесшатунного двигателя на автомобильном транспорте в условиях серийного и массового производства.
Внешний вид V-образного 4-х цилиндрового дизеля Вуля.
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ОППОЗИТНОГО БЕСШАТУННОГО ДИЗЕЛЯ ПРОЕКТА А. ВУЛЯ | |
Максимальная мощность при 4000 мин-1, л. с. | 150 |
Максимальная частота вращения выходного вала (маховика) дизеля, мин-1 | 5600 |
Число цилиндров | 4 |
Диаметр цилиндров, мм | 85 |
Ход поршня, мм | 88 |
Рабочий объем, л | 2,0 |
Минимальный удельный расход топлива, г/кВт.ч | 165–170 |
Моторесурс, час | 5 000 |
Масса, кг | 130 |
Габаритные размеры, мм: длина ширина высота | 427 734 538 |
PS. Кстати, подумалось, что фамилия автора, очень хорошо подходит для будущего имени нарицательного, для моторов, сделанных по этому принципу. Сейчас есть дизель, в будущем будет – вуль.
Источник - http://www.mbm.by/raznoe/dvigateli-besshatunnoe-serdtse-avtomobilya.html
Я думаю, всем нравится иметь на своём телефоне оригинальную и эксклюзивную заставку. Такие Картинки на телефон вы найдёте на сайте, ссылка на который выложена выше. В последнее время ноутбуки стали продаваться как горячие пирожки возле вокзала. В этой тенденции много причин, но основная – цена. Теперь, когда люди решают обзавестись компьютером или поменять его, они уже не смотрят на старые машины, а покупают ноутбук. Убедиться в правоте моих слов вы сможете по этой ссылке, оценив цену и возможности ноутбуков lenovo thinkpad. Лучшее сочетание в соотношении цена-качество.
alternathistory.livejournal.com
ИР 1-1974ВЫ МАЛО ЗНАЕТЕ О ПОРШНЕВЫХ ДВИГАТЕЛЯХ.
click for enlarge 1193 X 842 248.3 Kb picture
Каждый, кто познакомится с книгой Баландина, естественно, захочет узнать, почему так долго не публиковалась эта ценнейшая работа. В 1957 г. Комитет по делам изобретений и открытий оформил за две недели авторское свидетельство, но без права публикации. Поэтому Сергей Степанович издал свою книгу только в 1972 году, дальше видимо, откладывать было нельзя, хотя важнейшее изобретение не было запатентовано за границей.
Главный конструктор бесшатунных двигателей Сергей Степанович Баландин.Модель бесшатунного 12-цилиндрового авиадвигателя, собранного из трех базовых 4-цилиндровых блоков. Двигатель хорошо вписывается в малый мидель скоростного транспортного средства.
Были не только модели. Строились бесшатунные авиационные двигатели огромной мощности - до 14000 л. с.В печати появились первые сообщения о двигателях С. С. Баландина.Кто возьмется проектировать такие двигатели? С.С. Баландин: 'Первые образцы могут быть разработаны за два года!'
Самолеты должны быть реактивными. Эта истина, перед войной теоретическая, примерно в середине войны превратилась в практическую, актуальную задачу. И через несколько лет почти вся истребительная авиация в сильнейших армиях мира была переведена на реактивную тягу, оснащена турбореактивными двигателями. И только 'прожорливость' первых ТРД и их недолговечность некоторое время еще мешали оснастить ими тяжелые дальние самолеты. Выход нашелся: для тяжелых машин был создан промежуточный тип двигателей, турбовинтовые (ТВД).
Для нашей авиации выход нашелся бы и без ТВД. В те годы специальным конструкторским бюро во главе с Сергеем Степановичем Баландиным были разработаны поршневые моторы, равные турбовинтовым по мощности, габаритам и весу, к тому же более экономичные. И только бесспорность предстоящего перехода всей авиации на реактивную тягу заставила тогда свернуть работы СКБ С. С. Баландина.
Но такие двигатели могли и могут найти применение не только в авиации! И приходится сожалеть, что нам, инженерам, пришлось так долго ждать книгу их главного конструктора 'Бесшатунные двигатели внутреннего сгорания' (Машиностроение, 1972), в которой сконцентрировано все наиболее важное об этих необыкновенных моторах.
Приводимые в книге цифры кажутся невероятными. Но за ними стоят реальные образцы бесшатунных двигателей разной мощности, придирчиво испытанные государственными комиссиями.
В 1968 г. (ИР No.4) в статье под скромным заголовком 'Существенно новый двигатель' мы рассказали о 'бесшатунном механизме для преобразования возвратно-поступательного движения во вращательное' (а. с. No.164756). Его автор - севастопольский изобретатель Е. И. Лев. А через полгода стало известно о существовании авторского свидетельства No.118471, выданного в 1957 г. Сергею Степановичу Баландину на 'Двигатель внутреннего сгорания с бесшатунным механизмом'. Но до поры до времени сущность этого изобретения была скрыта фразой 'без публикации'.
В обеих формулировках употреблено слово 'бесшатунный'. Что за ним скрыто? Тоже 'существенно новый двигатель'?
Без тщательных экспериментов никто этого сказать не мог. Двигатель, который сконструировал Е. Лев, пока не построен. Зато работы С. Баландина позволяют сказать, что за ключевым словом 'бесшатунный' притаилась, видимо, вся будущая история поршневого моторостроения.
Не будем здесь останавливаться на устройстве бесшатунного механизма, разработанного С. С. Баландиным, - об этом можно прочитать в книге. Скажем лишь, что в моторах Баландина (МБ) оригинальные системы разгрузки, смазки и охлаждения поршней приводят к тому, что поршни практически не изнашиваются. Износ шеек коленчатого вала также снижается в 3--4 раза, потому что на них передается всего лишь разность сил от противолежащих цилиндров, в то время как в обычных двигателях внутреннего сгорания вся сила давления газов на поршни.
Пониженные нагрузки на скользящие детали приводят к 3-4-кратному снижению потерь на трение. Механический к.п.д. моторов Баландина равен 94% (против 75-85% у обычных двигателей внутреннего сгорания). Снижаются габариты моторов А литровая мощность первых же МБ в 1,5 раза превзошла рубеж, до сих пор остающийся заветным для 'обычного' двигателестроения - 100 л.с./л.
Возможности моторов Баландина очень велики. Пока только в них удалось конструктивно просто реализовать двухсторонний рабочий процесс в цилиндрах и таким путем почти в два раза повысить мощность двигателя без существенного увеличения его габаритов (они лишь немного увеличиваются из-за удлинения штоков). Только на этих двигателях при большом мощности применимо золотниковое газораспределение, что ранее удавалось осу ществлять только на маленьких двигателях, например для гоночных мотоциклов. В результате могут быть упорядочены фазы газораспределения, нарушавшиеся в больших двигателях из-за огромных нагрузи на клапанные механизмы. Только в этих моторах может быть достигнута средняя скорость поршня - 80 м/сек, в то время как у лучших образцов шатунных двигателей она не превышает 30 м/сек (при большей скорости поршня эффективная мощность двигателя устремлялась к нулю из-за опережающего роста потерь, в основном на преодоление растущих сил трения). Бесшатунный механизм практически не реагирует на рост средней скорости поршня; эффективная мощность таких моторов в 5-6 раз (а при двойном действии в 10 раз) выше мощности шатунных двигателей тех же габаритов и веса. Об этом свидетельствует график, приведенный в книге. Он ограничен диапазоном до 100 м/сек, но кривые как бы стремятся вырваться за этот предел. Никому в мире - хотя за дело брались крупнейшие фирмы - не удалось еще создать обычный поршневой авиационный мотор мощностью более 6000 л. с. Табу накладывал все тот же кривошипно-шатунный механизм. Под руководством С.С. Баландина строился авиационный мотор мощностью 10000 л. с, весом менее 3,5 т, был разработан бесшатунный авиадизель мощностью 14000 л. с. А в принципе можно построить мотор на все двадцать тысяч л. с. И всего при 24 цилиндрах. Для сравнения: спроектированный фирмой 'Лайкоминг' (США) авиационный поршневой мотор XR-7755 мощностью 5000 л. с. имел 36 цилиндров и гораздо худшие характеристики. Но рост средней скорости - это рост оборотов, рост инерционных нагрузок, вибраций.
И здесь, оказывается, моторы Баландина вне конкуренции. Осциллограммы вибраций самых мощных образцов, снятые в трех осях, кажутся неправдоподобными. Амплитуды - всего 0,05-0,1 мм. Даже наиспокойнейшие турбины зачастую обладают менее уравновешенным характером.
Идеальная уравновешенность моторов Баландина сохраняется при любом числе цилиндров. Из базовых блоков по четыре цилиндра (хотя возможны одно- и двухцилиндровые двигатели) можно, как из кубиков, складывать любые композиции, не сомневаясь в их превосходном поведении. Какой мотор может похвастаться такой пластичностью?
Да еще прибавьте сюда экономичность. Удельный расход топлива у моторов Баландина в среднем на 10% ниже, чем у шатунных. Отключая подачу топлива в один или несколько рядов цилиндров, можно заставить двигатель работать с высокой и практически постоянной экономичностью на режимах от 0,25 до номинальной мощности. Режиму работы на частичных нагрузках - а это основной и, как ни странно, наименее изученный режим подавляющего большинства двигателей - в последнее время уделяется большое внимание. Ведь обычный двигатель хорош лишь в узком диапазоне мощностей и чисел оборотов. Немного в сторону - и все его характеристики ухудшаются. Кроме того, экспериментально установлено, что удельный расход топлива в моторах Баландина можно снизить еще минимум на 10% применением так называемого цикла с удлиненным расширением, т. е. с более длинным рабочим ходом поршня. Цикл этот не выгоден в обычных двигателях, так как приходится резко раздувать их габариты. В бесшатунных же двигателях требуемое увеличение габаритов ровно вдвое меньше, а с учетом их изначальной малогабаритности такой 'подарок' грех не принять.
И последнее. Производство опытных образцов моторов Баландина было в среднем в 1,6 раза дешевле производства равных по мощности обычных поршневых двигателей, причем серийных. То же самое, очевидно, будет иметь место и в новых разработках.Каждый, кто познакомится с книгой Баландина, естественно, захочет узнать, почему так долго не публиковалась эта ценнейшая работа.
В 1957 г. Баландин получил 'добро' на публикацию материалов. Но и после этого Комитет по делам изобретений и открытий, оформив за две недели соответствующее авторское свидетельство, снабдил его грифом 'без публикации'. И только один из иностранных журналов туманно сообщил, что в СССР созданы какие-то уникальные поршневые двигатели. Прошло еще десятилетие, прежде чем Сергей Степанович издал свою книгу. Дальше, видимо, откладывать было нельзя, хотя важнейшее изобретение не было запатентовано за границей. За авторским свидетельством Баландина стоят не только поршневые двигатели ближайшего будущего, но и поршневые насосы, компрессоры без смазки, пневмо- и комбинированные двигатели.Использование двигателей Баландина сулит большие выгоды народному хозяйству. Для их разработки нужна, видимо, специальная конструкторская организация. Вопрос этот как межотраслевой должен решить Государственный комитет СМ СССР по науке и технике.По мнению С.С. Баландина, первые двигатели могут быть разработаны и построены уже через два-три года после создания такой организации.
К. ЧИРИКОВ, инженер
www.newtheory.ru
Книга о авторской разработке поршневых авиационных двигателях большой мощности у нас после ВМВ. Реактивный двигатель убил у него будущее в воздухе, а на земле, в 70-80е было несколько попыток внедрить его на автотранспорте. Попытки были пресечены сверху. Заодно помещается рецензия на книжку из журнала "изобретатель-рационализатор". с имеющимися там иллюстрациями.
"Бесшатунные Двигатели Внутреннего Сгорания" Баландин C.C.файл balandin.djvu(2.83MB).
http://www.zshare.net/download/4982889afea182/
ИР 1-1974ВЫ МАЛО ЗНАЕТЕ О ПОРШНЕВЫХ ДВИГАТЕЛЯХ.
Каждый, кто познакомится с книгой Баландина, естественно, захочет узнать, почему так долго не публиковалась эта ценнейшая работа. В 1957 г. Комитет по делам изобретений и открытий оформил за две недели авторское свидетельство, но без права публикации. Поэтому Сергей Степанович издал свою книгу только в 1972 году, дальше видимо, откладывать было нельзя, хотя важнейшее изобретение не было запатентовано за границей.
Главный конструктор бесшатунных двигателей Сергей Степанович Баландин.Модель бесшатунного 12-цилиндрового авиадвигателя, собранного из трех базовых 4-цилиндровых блоков. Двигатель хорошо вписывается в малый мидель скоростного транспортного средства.
Были не только модели. Строились бесшатунные авиационные двигатели огромной мощности - до 14000 л. с.В печати появились первые сообщения о двигателях С. С. Баландина.Кто возьмется проектировать такие двигатели? С.С. Баландин: 'Первые образцы могут быть разработаны за два года!'
Самолеты должны быть реактивными. Эта истина, перед войной теоретическая, примерно в середине войны превратилась в практическую, актуальную задачу. И через несколько лет почти вся истребительная авиация в сильнейших армиях мира была переведена на реактивную тягу, оснащена турбореактивными двигателями. И только 'прожорливость' первых ТРД и их недолговечность некоторое время еще мешали оснастить ими тяжелые дальние самолеты. Выход нашелся: для тяжелых машин был создан промежуточный тип двигателей, турбовинтовые (ТВД).
Для нашей авиации выход нашелся бы и без ТВД. В те годы специальным конструкторским бюро во главе с Сергеем Степановичем Баландиным были разработаны поршневые моторы, равные турбовинтовым по мощности, габаритам и весу, к тому же более экономичные. И только бесспорность предстоящего перехода всей авиации на реактивную тягу заставила тогда свернуть работы СКБ С. С. Баландина.
Но такие двигатели могли и могут найти применение не только в авиации! И приходится сожалеть, что нам, инженерам, пришлось так долго ждать книгу их главного конструктора 'Бесшатунные двигатели внутреннего сгорания' (Машиностроение, 1972), в которой сконцентрировано все наиболее важное об этих необыкновенных моторах.
Приводимые в книге цифры кажутся невероятными. Но за ними стоят реальные образцы бесшатунных двигателей разной мощности, придирчиво испытанные государственными комиссиями.
В 1968 г. (ИР No.4) в статье под скромным заголовком 'Существенно новый двигатель' мы рассказали о 'бесшатунном механизме для преобразования возвратно-поступательного движения во вращательное' (а. с. No.164756). Его автор - севастопольский изобретатель Е. И. Лев. А через полгода стало известно о существовании авторского свидетельства No.118471, выданного в 1957 г. Сергею Степановичу Баландину на 'Двигатель внутреннего сгорания с бесшатунным механизмом'. Но до поры до времени сущность этого изобретения была скрыта фразой 'без публикации'.
В обеих формулировках употреблено слово 'бесшатунный'. Что за ним скрыто? Тоже 'существенно новый двигатель'?
Без тщательных экспериментов никто этого сказать не мог. Двигатель, который сконструировал Е. Лев, пока не построен. Зато работы С. Баландина позволяют сказать, что за ключевым словом 'бесшатунный' притаилась, видимо, вся будущая история поршневого моторостроения.
Не будем здесь останавливаться на устройстве бесшатунного механизма, разработанного С. С. Баландиным, - об этом можно прочитать в книге. Скажем лишь, что в моторах Баландина (МБ) оригинальные системы разгрузки, смазки и охлаждения поршней приводят к тому, что поршни практически не изнашиваются. Износ шеек коленчатого вала также снижается в 3--4 раза, потому что на них передается всего лишь разность сил от противолежащих цилиндров, в то время как в обычных двигателях внутреннего сгорания вся сила давления газов на поршни.
Пониженные нагрузки на скользящие детали приводят к 3-4-кратному снижению потерь на трение. Механический к.п.д. моторов Баландина равен 94% (против 75-85% у обычных двигателей внутреннего сгорания). Снижаются габариты моторов А литровая мощность первых же МБ в 1,5 раза превзошла рубеж, до сих пор остающийся заветным для 'обычного' двигателестроения - 100 л.с./л.
Возможности моторов Баландина очень велики. Пока только в них удалось конструктивно просто реализовать двухсторонний рабочий процесс в цилиндрах и таким путем почти в два раза повысить мощность двигателя без существенного увеличения его габаритов (они лишь немного увеличиваются из-за удлинения штоков). Только на этих двигателях при большом мощности применимо золотниковое газораспределение, что ранее удавалось осу ществлять только на маленьких двигателях, например для гоночных мотоциклов. В результате могут быть упорядочены фазы газораспределения, нарушавшиеся в больших двигателях из-за огромных нагрузи на клапанные механизмы. Только в этих моторах может быть достигнута средняя скорость поршня - 80 м/сек, в то время как у лучших образцов шатунных двигателей она не превышает 30 м/сек (при большей скорости поршня эффективная мощность двигателя устремлялась к нулю из-за опережающего роста потерь, в основном на преодоление растущих сил трения). Бесшатунный механизм практически не реагирует на рост средней скорости поршня; эффективная мощность таких моторов в 5-6 раз (а при двойном действии в 10 раз) выше мощности шатунных двигателей тех же габаритов и веса. Об этом свидетельствует график, приведенный в книге. Он ограничен диапазоном до 100 м/сек, но кривые как бы стремятся вырваться за этот предел. Никому в мире - хотя за дело брались крупнейшие фирмы - не удалось еще создать обычный поршневой авиационный мотор мощностью более 6000 л. с. Табу накладывал все тот же кривошипно-шатунный механизм. Под руководством С.С. Баландина строился авиационный мотор мощностью 10000 л. с, весом менее 3,5 т, был разработан бесшатунный авиадизель мощностью 14000 л. с. А в принципе можно построить мотор на все двадцать тысяч л. с. И всего при 24 цилиндрах. Для сравнения: спроектированный фирмой 'Лайкоминг' (США) авиационный поршневой мотор XR-7755 мощностью 5000 л. с. имел 36 цилиндров и гораздо худшие характеристики. Но рост средней скорости - это рост оборотов, рост инерционных нагрузок, вибраций.
И здесь, оказывается, моторы Баландина вне конкуренции. Осциллограммы вибраций самых мощных образцов, снятые в трех осях, кажутся неправдоподобными. Амплитуды - всего 0,05-0,1 мм. Даже наиспокойнейшие турбины зачастую обладают менее уравновешенным характером.
Идеальная уравновешенность моторов Баландина сохраняется при любом числе цилиндров. Из базовых блоков по четыре цилиндра (хотя возможны одно- и двухцилиндровые двигатели) можно, как из кубиков, складывать любые композиции, не сомневаясь в их превосходном поведении. Какой мотор может похвастаться такой пластичностью?
Да еще прибавьте сюда экономичность. Удельный расход топлива у моторов Баландина в среднем на 10% ниже, чем у шатунных. Отключая подачу топлива в один или несколько рядов цилиндров, можно заставить двигатель работать с высокой и практически постоянной экономичностью на режимах от 0,25 до номинальной мощности. Режиму работы на частичных нагрузках - а это основной и, как ни странно, наименее изученный режим подавляющего большинства двигателей - в последнее время уделяется большое внимание. Ведь обычный двигатель хорош лишь в узком диапазоне мощностей и чисел оборотов. Немного в сторону - и все его характеристики ухудшаются. Кроме того, экспериментально установлено, что удельный расход топлива в моторах Баландина можно снизить еще минимум на 10% применением так называемого цикла с удлиненным расширением, т. е. с более длинным рабочим ходом поршня. Цикл этот не выгоден в обычных двигателях, так как приходится резко раздувать их габариты. В бесшатунных же двигателях требуемое увеличение габаритов ровно вдвое меньше, а с учетом их изначальной малогабаритности такой 'подарок' грех не принять.
И последнее. Производство опытных образцов моторов Баландина было в среднем в 1,6 раза дешевле производства равных по мощности обычных поршневых двигателей, причем серийных. То же самое, очевидно, будет иметь место и в новых разработках.Каждый, кто познакомится с книгой Баландина, естественно, захочет узнать, почему так долго не публиковалась эта ценнейшая работа.
В 1957 г. Баландин получил 'добро' на публикацию материалов. Но и после этого Комитет по делам изобретений и открытий, оформив за две недели соответствующее авторское свидетельство, снабдил его грифом 'без публикации'. И только один из иностранных журналов туманно сообщил, что в СССР созданы какие-то уникальные поршневые двигатели. Прошло еще десятилетие, прежде чем Сергей Степанович издал свою книгу. Дальше, видимо, откладывать было нельзя, хотя важнейшее изобретение не было запатентовано за границей. За авторским свидетельством Баландина стоят не только поршневые двигатели ближайшего будущего, но и поршневые насосы, компрессоры без смазки, пневмо- и комбинированные двигатели.Использование двигателей Баландина сулит большие выгоды народному хозяйству. Для их разработки нужна, видимо, специальная конструкторская организация. Вопрос этот как межотраслевой должен решить Государственный комитет СМ СССР по науке и технике.По мнению С.С. Баландина, первые двигатели могут быть разработаны и построены уже через два-три года после создания такой организации.
К. ЧИРИКОВ, инженер
guns.allzip.org
Изобретение относится к поршневым машинам с бесшатунным механизмом преобразования движения и может быть использовано в их конструкциях. Техническим результатом является повышение надежности работы машины. Сущность изобретения заключается в том, что двигатель содержит корпус со звездообразно установленными на нем как минимум шестью цилиндрами, в который помещен и закреплен в нем взаимодействующий поверхностями своих элементов со штоками поршней узел направляющих, а в последний установлен коленчатый вал, имеющий равномерно расположенные по окружности с центром в оси его крайних шеек кривошипы по числу пар цилиндров. Коленчатый вал имеет осевое вращение крайних шеек и орбитальное вращение по радиусу четверти хода поршней и обеспечивает посредством кривошипов перемещение поршневых систем и связывающих их штоков. Крайние шейки коленчатого вала на радиусе одной четверти хода поршней шарнирно соединены с рычагами рабочего вала, выполненного из двух частей. Причем синхронизация частей рабочего вала осуществляется посредством равномерного распределения нагрузок от действия газовых сил на шейки кривошипов коленчатого вала по обе стороны от его середины, а части рабочего вала являются валами отбора мощности, равномерно распределенной между ними. 3 н. и 5 з.п.ф-лы, 3 ил.
Изобретение относится к поршневым машинам с бесшатунным механизмом преобразования движения и может быть использовано в их конструкциях.
Известен кривошипно-ползунный четырехзвенный прямолинейно направляющий механизм Скот-Рассела, в котором имеется равенство звеньев. При вращении одного из звеньев вокруг неподвижной оси конечная точка другого звена описывает прямолинейную траекторию [1]. Ниже рассматриваемые механизмы построены на его основе.
Известен бесшатунный механизм для преобразования возвратно- поступательного движения во вращательное, содержащий корпус, сдвоенные оппозитно расположенные поршни с общим штоком и ведущую шестерню, отличающийся тем, что он содержит вторую пару оппозитно расположенных поршней с общим штоком, пересекающуюся с первой парой, а ведущая шестерня выполнена цилиндрической и снабжена двумя цапфами, расположенными диаметрально противоположно на противоположных плоскостях диска шестерни и соединенными каждая со средней частью соответствующего штока, а также содержит планетарную передачу, выполненную в виде расположенной внутри корпуса на подшипниках солнечной шестерни с внутренним венцом, входящим в зацепление с ведущей цилиндрической шестерней и внешним венцом, входящим в зацепление с ведомым элементом [2].
Известен двигатель внутреннего сгорания с бесшатунным механизмом преобразования возвратно-поступательного движения поршней во вращательное движение рабочего вала со звездообразно расположенными цилиндрами, поршни которых жестко связаны между собой штоками, сочлененными через подшипники со средними шейками коленчатого вала, имеющего вращение крайних шеек с перемещением поршневых систем и связывающих их штоков по оси противолежащих цилиндров, отличающийся тем, что рабочий вал двигателя выполнен из двух частей с кривошипами, несущими подшипники для закрепления на них на радиусе одной четверти хода поршней крайних шеек коленчатого вала и снабжен соединительным валом, фиксирующим с помощью шестерен положение кривошипов обеих частей рабочего вала относительно друг друга [3], прототип.
Известна книга, С.С.Баландин, "Бесшатунные двигатели внутреннего сгорания" [4].
Автор, будучи руководителем проекта, построил и испытал двигатели внутреннего сгорания с использованием механизмов, описанных в источниках [2] и [3]. Он отмечал, что основным условием бесперебойной работы двигателей с бесшатунным силовым механизмом является обеспечение гарантированных зазоров между трущимися поверхностями, заполненных несущей масляной пленкой, предохраняющей поверхности от износа и заклинивания. Способом достижения данного условия является технологическое повышение точности исполнения номинальных размеров и требований по соосности и концентричности элементов бесшатунного механизма.
Известна статья, И.П.Седунов, "Конструктивный анализ бесшатунных двигателей Баландина и пути их совершенствования" [5]. Автор исследует влияние движущихся масс, в частности комплекта поршней на преобразование и накопление энергии. Прямолинейное возвратно-поступательное движение одного комплекта поршней преобразуется в возвратно-поступательное движение другого комплекта поршней. Поршни представляют собой маховичные накопители энергии, их период разгона от нуля до максимальной линейной скорости достигается в течение четверти оборота коленчатого вала. Накопленная энергия непрерывно циркулирует, переходя из потенциальной в кинетическую и наоборот, что в предложенных им схемах позволяет максимально эффективно использовать силы инерции поступательно движущихся масс. Он, правда, не исследует влияние кинетической энергии коленчатого вала, вращающегося вокруг оси крайних шеек, который может быть дополнительно оснащен маховиком.
Известна статья, И.М.Кошелев и др., "Бесшатунный карбюраторный двигатель" [6].
Известны другие успешные, а также неудачные разработки и отзывы о них в Интернете на Сайте "Ассоциация Экспериментальной Авиации" в разделе "Альтернативные двигатели и рабочие процессы" [7].
Опыт, оценки и отзывы специалистов и практиков по данной теме использованы в предлагаемой заявке на изобретение.
Общий недостаток всех разработанных и построенных двигателей с бесшатунным механизмом преобразования движения - сложность обеспечения высоких технологических требований в комплектующих его деталях. Температурные деформации корпуса и деформации от рабочего процесса также влияют на показатели качества работы таких двигателей, особенно, на переходных режимах. Сборка серийно изготовленных деталей в узлы преобразования движения не обеспечивает их работоспособности без индивидуальной подгонки сопрягаемых деталей, прежде всего поверхностей штоков поршней и их направляющих элементов, именно на которых происходит интенсивный износ и задиры, приводящие иногда к заклиниванию механизма.
Задачей изобретения является преодоление препятствий, приводящих к нестабильной работе бесшатунного двигателя, в частности к износу его деталей и заклиниванию механизма, а также повышение его удельной мощности.
Технический результат достигается тем, что бесшатунный двигатель, содержащий корпус со звездообразно установленными на нем как минимум шестью цилиндрами, в который помещен и закреплен в нем взаимодействующий поверхностями своих элементов со штоками поршней узел направляющих, а в последний установлен коленчатый вал, имеющий равномерно расположенные по окружности с центром в оси его крайних шеек кривошипы, по числу пар цилиндров, которые шарнирно соединены со штоками поршней противолежащих цилиндров, причем, коленчатый вал имеет осевое вращение крайних шеек и орбитальное вращение по радиусу четверти хода поршней и обеспечивает посредством кривошипов перемещение поршневых систем и связывающих их штоков, а крайние шейки коленчатого вала на радиусе одной четверти хода поршней шарнирно соединены с рычагами, выполненного из двух частей рабочего вала, помещенного в ось орбиты коленчатого вала, отличающийся тем, что синхронизация частей рабочего вала осуществляется посредством равномерного распределения нагрузок от действия газовых сил на шейки кривошипов коленчатого вала по обе стороны от его середины, шарнирно сопряженные с парными штоками поршней, взаимодействующих с поверхностями элементов узла направляющих, а части рабочего вала являются валами отбора мощности, равномерно распределенной между ними.
На фиг.1 показан общий вид бесшатунного двигателя.
На фиг.2 показан узел направляющих.
На фиг.3 показан коленчатый вал с одним из установленных на него маховиков и штоки поршней в сборе, сопряженные с его кривошипами.
На фигурах для наглядности некоторые элементы показаны в разрезе, не все одноименные элементы показаны, элементы крепления показаны частично, подшипники, уплотнения не показаны. Не показаны также элементы систем двигателя, не относящиеся к предмету данного изобретения.
Бесшатунный двигатель (см. фиг.1-3) состоит из корпуса 1, на котором установлены цилиндры 2, в которые помещены поршни 3, имеющие посредством серег 4 шарнирную связь со штоками 5-1…5-n, взаимодействующих с направляющими элементами 6-n одноименного узла 6, изображенного на фиг.2, установленного в корпус 1 и скрепленного с ним сопряжением элементов 6-1 и 6-2, в котором элементы 6-1…6-n скреплены винтами 7 и зафиксированы втулками 8. Внутрь узла направляющих 6 помещен коленчатый вал 9, кривошипы которого сопряжены со штоками 5-1…5-n, один из которых, 5-1 в данной схеме с числом цилиндров восемь, выполнен двойной ширины, а штоки 5-n - двойные, т.е. одному поршню принадлежит два штока. На крайних шейках коленчатого вала 9 установлены маховики 10. Крышки 11 с установленными в них частями выходного вала 12, на которые установлены шкивы 13, закреплены на элементах 6-1 и 6-2 узла направляющих 6. Ремни 14 находятся в сопряжении со шкивами 13.
Работа бесшатунного двигателя заключается в преобразовании возвратно-поступательного движения поршней, помещенных в цилиндры и получающих энергию от теплового расширения газов во вращательное движение выходного вала, и происходит на условии, обратном условию работы механизма Скот-Рассела [1], а именно: при прямолинейном возвратно-поступательном движении конечной точки механизма, в котором имеется равенство звеньев, конечная точка другого звена описывает окружность и аналогична работе известного двигателя [3], с той разницей, что синхронизация частей выходного вала в нем осуществляется посредством равномерного распределения нагрузок от действия газовых сил на шейки кривошипов коленчатого вала по обе стороны от его середины, шарнирно сопряженные с парными штоками поршней, взаимодействующих с поверхностями элементов узла направляющих.
Бесшатунный двигатель работает следующим образом.
В установленных в корпус 1 цилиндрах 2 поршни 3, имеющие возможность перемещения и получающие энергию от теплового расширения газов, посредством серег 4, штоков 5, находящихся в контакте с направляющими 6, передают движение на коленчатый вал 9, воздействуя на кривошипы, равномерно расположенные на окружности с центром в оси его крайних шеек, заставляя его вращаться в этой оси и выполнять орбитальное вращение по радиусу четверти хода поршней, которое передается на выходной вал 12, состоящий из двух частей, помещенный в ось орбиты коленчатого вала 9 и имеющий рычаги на радиусе четверти хода поршней, шарнирно сопряженные с его крайними шейками. Вращение частей выходного вала 12 посредством механической передачи (на фиг.1 изображена передача с использованием шкивов 13 и зубчатых ремней 14) с определенным передаточным отношением передается на вал потребителя механической энергии.
Узел направляющих 6 (см. фиг.2) состоит из элементов 6-1…6-n, определяющих угловые и осевые положения штоков 5. Поверхности его элементов, взаимодействующие со штоками 5, имеющими антифрикционные накладки (не показаны), упрочнены, к ним по каналам под давлением подается гидравлическая смазка для заполнения зазора пары элемент направляющей - накладка штока несущей масляной пленкой.
Маховики 10 установлены на крайних шейках коленчатого вала 9. Вращаясь вместе с ним в оси его крайних шеек, они обеспечивают равномерность его вращения и уменьшают амплитуду циклических нагрузок от воздействий поршневых систем на него.
Части рабочего вала 12, сопряженные с крайними шейками коленчатого вала 9, исполнены с балансировочными противовесами как одно целое, которые полностью или частично уравновешивают вращающийся в оси своих крайних шеек и выполняющий орбитальное вращение по радиусу четверти хода поршней коленчатый вал 9, а также устраняют дисбаланс, возникающий в механизме от перемещения поршневых систем. Для полной балансировки бесшатунного двигателя балансировочными противовесами могут быть оснащены диски маховиков, принадлежащие шкивам 13, установленные на наружных частях рабочего вала, которые обеспечивают как равномерность осевого вращения его частей, так и равномерность орбитального вращения коленчатого вала 9, шарнирно в оси крайних шеек с ним связанного, уменьшая амплитуду циклических нагрузок от воздействий поршневых систем на него.
Для устранения влияния на работу бесшатунного двигателя тепловых деформаций и деформаций от рабочего процесса, возникающих в корпусе 1, предусмотрено, что в цилиндрах 2 поршни 3 имеют возможность самоустанавливаться благодаря тому, что они сопряжены со штоками 5 посредством серег 4.
Сборка бесшатунного двигателя производится поэтапно. Вначале элементы его кинематической схемы предварительно собраны на стенде в единый силовой блок с учетом их фактических размеров, в сопрягаемых поверхностях установлены требуемые зазоры, элементы 6-1…6-n узла направляющих 6 ориентированы по углу и положению и скреплены винтами 7. Потом силовой блок разобран, и по подготовленным поверхностям элементы 6-1…6-n узла направляющих 6 зафиксированы от смещения втулками 8. При окончательной сборке узел направляющих 6 помещен в корпус 1 и закреплен в нем, а элементы кинематической схемы бесшатунного двигателя восстановлены в тех позициях, в которых предварительно были собраны в силовой блок на стенде.
Предложенная конструкция бесшатунного двигателя позволяет исключить из его кинематической схемы синхронизирующие шестерни и связывающий их вал, что снижает его габаритные и весовые характеристики. Способ устранения заклинивания его механизма определяет его устройство и позволяет получить стабильные характеристики его работы.
Источники информации
1. И.И. Артоболевский, "Механизмы в современной технике" в 7 томах, том 2, Москва, "Наука", 1979, стр.471, механизм 1466.
2. Описание изобретения к авторскому свидетельству №164756 - Бесшатунный механизм для преобразования возвратно-поступательного движения во вращательное, опубл. 19.07.1964.
3. Описание изобретения к авторскому свидетельству №118471 - Двигатель внутреннего сгорания с бесшатунным механизмом, опубл. 10.12.1973.
4. С.С.Баландин, "Бесшатунные двигатели внутреннего сгорания", Москва, "Машиностроение", 1972, стр.11.
5. И.П.Седунов, "Конструктивный анализ бесшатунных двигателей Баландина и пути их совершенствования", Санкт-Петербург, Двигателестроение (журнал), №1, 2000.
6. И.М.Кошелев и др., "Бесшатунный карбюраторный двигатель", Санкт-Петербург, Двигателестроение (журнал), №2, 1982.
7. (адрес в Интернете).
1. Бесшатунный двигатель, содержащий корпус со звездообразно установленными на нем как минимум шестью цилиндрами, в который помещен и закреплен в нем взаимодействующий поверхностями своих элементов со штоками поршней узел направляющих, а в последний установлен коленчатый вал, имеющий равномерно расположенные по окружности с центром в оси его крайних шеек кривошипы, по числу пар цилиндров, которые шарнирно соединены со штоками поршней противолежащих цилиндров, причем коленчатый вал имеет осевое вращение крайних шеек и орбитальное вращение по радиусу четверти хода поршней и обеспечивает посредством кривошипов перемещение поршневых систем и связывающих их штоков, а крайние шейки коленчатого вала на радиусе одной четверти хода поршней шарнирно соединены с рычагами выполненного из двух частей рабочего вала, помещенного в ось орбиты коленчатого вала, отличающийся тем, что синхронизация частей рабочего вала осуществляется посредством равномерного распределения нагрузок от действия газовых сил на шейки кривошипов коленчатого вала по обе стороны от его середины, шарнирно сопряженные с парными штоками поршней, взаимодействующих с поверхностями элементов узла направляющих, а части рабочего вала являются валами отбора мощности, равномерно распределенной между ними.
2. Бесшатунный двигатель по п.1, отличающийся тем, что узел направляющих состоит из элементов, скрепленных вместе.
3. Бесшатунный двигатель по п.1, отличающийся тем, что на крайних шейках коленчатого вала установлены маховики.
4. Бесшатунный двигатель по п.1, отличающийся тем, что части рабочего вала, сопряженные с крайними шейками коленчатого вала, исполнены с балансировочными противовесами.
5. Бесшатунный двигатель по п.2, отличающийся тем, что в крайних элементах узла направляющих выполнены поверхности для сопряжения и скрепления его как с корпусом двигателя, так и с боковыми крышками с установленными в них частями рабочего вала.
6. Бесшатунный двигатель по п.4, отличающийся тем, что на наружных частях рабочего вала установлены диски маховиков и балансировочные противовесы.
7. Способ устранения заклинивания механизма бесшатунного двигателя по п.1, отличающийся тем, что штоки поршней снабжены серьгами, шарнирно сопряженными с их концами и поршнями, позволяя последним самоустанавливаться в цилиндрах.
8. Способ устранения заклинивания механизма бесшатунного двигателя по п.2 или 5 отличающийся тем, что все элементы его кинематической схемы предварительно собраны на стенде в единый силовой блок с учетом их фактических размеров, в сопрягаемых поверхностях установлены требуемые зазоры, элементы узла направляющих ориентированы по углу и положению и скреплены, механизм разобран, и по подготовленным поверхностям элементы узла направляющих зафиксированы от смещения.
www.findpatent.ru