ДВС РОТОРНЫЙ EMDRIVE РАСКОКСОВКА HONDAВИДЫ

способ работы вакуумного двигателя и вакуумный двигатель. Вакуумные двигатели


способ работы вакуумного двигателя и вакуумный двигатель - патент РФ 2329383

Способ работы вакуумного двигателя и вакуумный двигатель относятся к энергомашиностроению. Способ реализуется за счет того, что создают разрежение в рабочих камерах путем сообщения их с вакуумной камерой для перемещения поршней к ВМТ и подачи в рабочие камеры воздуха для перемещения поршней к НМТ, на крышке блока для каждого цилиндра устанавливают пружинные клапаны со штоками, один конец каждого из которых обращают к поршню для давления на его шток при перемещении поршня к ВМТ и сообщают рабочие камеры с атмосферой при изменении положения штоков под давлением поршней для впуска воздуха и перемещения поршней к НМТ. Двигатель снабжен компрессором и распределительным валом с кулачками и толкателями, поршни соединены с коленчатым валом посредством шатунов, в крышке блока цилиндров для каждого цилиндра выполнены отверстия: одно - для сообщения рабочей камеры с вакуумной камерой посредством патрубка с краном, связанным с распределительным валом через толкатель, а второе - для подачи воздуха в рабочую камеру, каждый пружинный клапан имеет корпус и шток, снабженный упором и пружиной для взаимодействия с поршнем. Изобретение обеспечивает возможность регулирования мощности двигателя. 2 н.п. ф-лы, 3 ил. способ работы вакуумного двигателя и вакуумный двигатель, патент № 2329383

Рисунки к патенту РФ 2329383

способ работы вакуумного двигателя и вакуумный двигатель, патент № 2329383 способ работы вакуумного двигателя и вакуумный двигатель, патент № 2329383 способ работы вакуумного двигателя и вакуумный двигатель, патент № 2329383

Изобретение относится к двигателестроению, а именно к конструкции вакуумного двигателя и способу его работы.

Известен способ работы многотопливного двигателя, который заключается в следующем: разворачиваются коренные наружные и внутренние эксцентриковые вкладыши с зубчатыми венцами относительно коренных шеек коленчатого вала, тем самым поднимается или опускается коленчатый вал вместе с поршнями и обеспечивается регулировка объема камер в зависимости от вида топлива, а шатунные внутренние и наружные эксцентриковые вкладыши с зубчатыми венцами также разворачиваются относительно шатунных шеек коленчатого вала, и обеспечивается оптимальный объем камеры сгорания в зависимости от величины нагрузки на двигатель для конкретного вида топлива (патент РФ №2144992, 2001).

Многотопливный двигатель внутреннего сгорания содержит коренные внутренние и наружные эксцентриковые вкладыши с зубчатыми венцами, шатунные внутренние и наружные эксцентриковые вкладыши с зубчатыми венцами, поршни, камеру сгорания (патент РФ №2144992, 2001).

Преимущество указанного двигателя заключается в том, что повышается эффективность его работы.

Недостатками являются сложность конструкции и выделение большого количества отработанных газов в окружающую среду, что негативно влияет на экологическую обстановку.

Кроме того, при работе этого двигателя осуществляется тепловое воздействие на детали двигателя, что приводит к нарушению геометрии деталей, а в блоке и головке блока двигателя происходит кавитационное разрушение, из-за чего ресурс эксплуатации этого двигателя невысок.

Наиболее близким к предлагаемому изобретению является способ работы вакуумного двигателя, включающий создание разрежения в рабочей камере путем сообщения ее с вакуумной камерой для перемещения поршня к верхней мертвой точке и подачу в рабочую камеру газа для перемещения поршня к нижней мертвой точке.

Для воздействия на поршень в рабочую камеру подают аммиак. Для создания разрежения в рабочей камере в вакуумную камеру подают хлористый водород. Под влиянием реакции аммиака и хлористого водорода и образования твердого нашатыря, оседающего на стенках вакуумной камеры, в последней образуется пониженное давление. В результате этого поршень под давлением внешнего атмосферного давления поднимается к верхней мертвой точке (а.с. СССР №23033, кл. F01В 29/02, 1931).

Вакуумный двигатель для реализации указанного способа включает цилиндры с поршнями, образующие рабочую камеру, поршень соединен с коленчатым валом через шатун, в крышке цилиндра выполнены отверстия, одно - для сообщения рабочей камеры цилиндра с вакуумной камерой через вакуумный патрубок, снабженный краном, а второе - для подачи газа в рабочую камеру. Устройство имеет резервуар для хлористого водорода, который подают через патрубок в вакуумную камеру (а.с. СССР №23033, кл. F01В 29/02, 1931).

Недостатком данного способа и устройства для его осуществления является использование высокотоксичных газов - аммиака и хлористого водорода. Это предъявляет жесткие требования по обеспечению безопасности и ограничивает возможность использования данного решения в связи с возможностью утечки газов и загрязнения окружающей среды. Кроме того, в данном устройстве невозможно регулировать мощность, так как в замкнутом объеме вакуумной камеры сложно создавать высокое или низкое разрежение за счет образования твердого нашатыря в результате реакции аммиака и хлористого водорода.

Задачей изобретения является создание усовершенствованного способа работы вакуумного двигателя и устройство для его осуществления.

Технический результат - повышение безопасности работы за счет исключения использования токсичных компонентов и обеспечение регулирования мощности устройства - достигается тем, что в способе работы вакуумного двигателя, включающем создание разрежения в рабочей камере путем сообщения ее с вакуумной камерой для перемещения поршня к верхней мертвой точке и подачу в рабочую камеру газа для перемещения поршня к нижней мертвой точке, согласно изобретению, на крышке цилиндра устанавливают пружинный клапан со штоком, один конец которого обращают к поршню для оказания давления на шток при перемещении поршня к верхней мертвой точке и сообщают рабочую камеру с атмосферой через пружинный клапан при изменении положения штока под давлением поршня для запуска воздуха и перемещения поршня к нижней мертвой точке.

Вакуумный двигатель для реализации предлагаемого способа, включающий цилиндры с поршнями, образующие рабочие камеры, поршни соединены с коленчатым валом через шатуны, в крышке каждого цилиндра выполнены отверстия, одно - для сообщения рабочей камеры цилиндра с вакуумной камерой через вакуумный патрубок, снабженный краном, а второе - для подачи газа в рабочую камеру, согласно изобретению, снабжен компрессором, распределительным валом с кулачками и толкателями, каждый из цилиндров имеет пружинный клапан, расположенный со стороны отверстия для подачи газа, в корпусе пружинного клапана установлен с возможностью взаимодействия с поршнем и перемещения шток, снабженный упором и пружиной, в корпусе клапана выполнено отверстие для сообщения рабочей камеры с атмосферой, а кран на каждом вакуумном патрубке связан с распределительным валом через толкатель.

Установка на крышке цилиндра пружинного клапана со штоком обеспечивает возможность сообщения рабочей камеры с атмосферой и позволяет использовать атмосферный воздух в качестве рабочего тела для перемещения поршня к нижней мертвой точке.

Создание разрежения в рабочей камере двигателя с помощью компрессора исключает применение каких-либо токсичных газов и обеспечивает безопасность работы двигателя. При этом достигается возможность регулирования мощности и расширяется область использования двигателя, так как в связи с отсутствием ядовитых компонентов и токсичных выхлопов он может быть установлен в закрытых и непроветриваемых помещениях.

Изобретение поясняется чертежами, где на фиг.1 представлен общий вид вакуумного двигателя; на фиг.2 - пульт управления, общий вид; на фиг.3 - пружинный клапан, продольный разрез.

Вакуумный двигатель включает вакуумную камеру 1, соединенную с компрессором 2, вакуумный трубопровод 3, крышки цилиндров 4, между крышкой 4 и блоком цилиндров имеется уплотнительная прокладка 5. На вакуумном трубопроводе 3 установлен автоматический кран 6 для подачи вакуума из вакуумной камеры 1 в вакуумный трубопровод 3. Между вакуумной камерой 1 и компрессором 2 установлены краны 7 и 8. На вакуумном трубопроводе 3 установлен вакуумный патрубок 9 с краном 10.

Вакуумный двигатель включает цилиндры 30, 33, 36 и 38 с поршнями 29, 32, 35 и 39, образующие рабочие камеры. Поршни соединены с коленчатым валом (не показан) через шатуны 31, 34, 37 и 40. Цилиндры 30, 33, 36 и 38 размещены в блоке 41.

В крышке 4 каждого цилиндра выполнены отверстия, одно 13, 18, 22 и 26 - для сообщения рабочей камеры цилиндра с вакуумной камерой 1 через вакуумные патрубки 9, 14 и вакуумные шланги 12, 16, 19 и 23, а второе 51 - для подачи газа в рабочую камеру. Распределительный вал 27 выполнен с кулачки (не показаны). Каждый из цилиндров 30, 33, 36 и 38 имеет пружинный клапан, расположенный со стороны отверстия 51 для подачи газа. В корпусе 48 пружинного клапана установлен с возможностью взаимодействия с поршнем и перемещения шток 50, снабженный упором 52 и пружиной 49, в корпусе 48 клапана выполнено отверстие 51 для сообщения рабочей камеры с атмосферой. Упор 52 имеет изолирующую прокладку 53. Каждый из кранов 10, 15, 20 и 24 на вакуумных патрубках 9, 14 связан с распределительным валом 27 через толкатель 11, 17, 21 и 25 с пружиной. Вакуумные шланги 12, 16, 19 и 23 соединены с отверстиями 13, 18, 22 и 26 крышки 4 за счет специальных штуцеров (не показаны). Краны 7 и 8 смонтированы на вакуумном трубопроводе 28. Кроме того, на вакуумном трубопроводе 3 установлен стабилизатор вакуума 42, который служит для увеличения или уменьшения мощности вакуумного двигателя и который соединен с вакуумным шлангом 43 и вакуумметром 44, расположенным на приборном щитке 47, на котором также установлен тумблер 46, связанный проводами 45 с автоматическим краном 6.

Вакуумный двигатель работает следующим образом.

Включают тумблер 46 на приборном щитке 47, и вследствие чего по проводам 45 передаются импульсы на автоматический кран 6, который открывается, и вакуум из вакуумной камеры 1 распространяется по вакуумному трубопроводу 3, а оттуда по вакуумным патрубкам 9 и 14, причем, вакуумный патрубок 9 имеет меньший внутренний диаметр в сравнении с вакуумными патрубками 14. Этот фактор связан со стабилизацией давления в трубопроводе 3. Кроме того, вакуумный стабилизатор 42 выравнивает степень разрежения на всем участке вакуумного трубопровода 3.

Далее торцы толкателя 11 с пружиной, а также торец толкателя 21 с пружиной контактируют попеременно с выступами кулачков распределительного вала 27, причем другие торцы толкателей 17 и 25 со своими пружинами также контактируют с выступами кулачков распределительного вала 27. В результате чего торцы толкателей воздействуют на пробки одного или нескольких кранов, например 10 и 15 или 20 и 24, краны открываются и сообщают вакуумные шланги 12, 16, 19 и 23 с вакуумной камерой 1 и затем с рабочей камерой в цилиндрах 30, 33, 36 и 38 через отверстия 13, 18, 22 и 26 в крышках 4. В результате чего поршни 29, 32, 35 и 39 с шатунами 31, 34, 37 и 40 приходят в движение, так как разрежение над поршнями 29, 32, 35 и 39 и атмосферное давление на участке соединения поршней 29, 31, 32 и 34 с шатунами 31, 34, 37 и 40 предопределяют возвратно-поступательное движение поршней 29, 32, 35 и 39, и их шатуны 31, 34, 37 и 40 заставляют вращаться коленчатый вал (не показан). Таким образом осуществляется запуск вакуумного двигателя, при этом следует отметить, что поршень перемещается к верхней мертвой точке за счет разрежения, создаваемого вакуумной камерой, и притягивания к крышке 4 блока 41. Для того, чтобы снять разрежение в рабочей камере, необходимо осуществить запуск воздуха из атмосферы. Это реализуется за счет пружинных клапанов 48. При перемещении поршня к верхней мертвой точке он оказывает своим днищем давление на шток 50, один конец которого выступает на некоторую длину в пространство рабочей камеры между днищем поршня и головкой цилиндра, и тем самым под действием днища шток 50 перемещается в верхнее положение и сжимает упором 52 пружину 49. По окончании перемещения штоков 50 с упорами 52 и максимальном сжатии пружины 49 открывается доступ атмосферного воздуха через отверстия 51 в рабочие камеры двигателя. Поршни получают возможность возвратно-поступательно перемещаться. В дальнейшем после доступа воздуха в рабочую камеру штоки 50 со своими упорами 52 перемещаются в первоначальное положение под действием пружины 49. Упоры 52 штоков 50 перекрывают отверстия 51. Прокладки 53 обеспечивают герметичность системы, поэтому исключается доступ воздуха в пространство рабочей камеры. При этом вышеуказанные циклы работы пружинных клапанов при работе вакуумного двигателя повторяются вплоть до остановки работы вакуумного двигателя.

В дальнейшем при работе вакуумного двигателя в соответствии с вращением коленчатого вала с помощью шестерни включается в работу компрессор 2. С началом работы компрессора 2 автоматически открываются краны 7 и 8 на вакуумном трубопроводе 28, и в вакуумной камере 1 создается разрежение. Вакуум вновь распространяется при открытом автоматическом кране 6 в вакуумный трубопровод 3, в вакуумные патрубки 9 и 14, а затем попеременно при открытии кранов 10, 15, 20 и 24 с помощью того или иного толкателя 11, 17, 21 и 25 попеременно по вакуумным шлангам 12, 16, 19 и 20 попеременно в цилиндры 30, 33, 35 и 38 через отверстия 13, 18, 22 и 26 крышки 4, и в это время возвратно-поступательно перемешаются поршни 29, 32, 35 и 39 со своими шатунами 31, 34, 37 и 40, которые взаимодействуют с коленчатым валом, передавая ему крутящий момент. Вращение вала приводит механизм, например, автомобиля в движение. Увеличение или уменьшение мощности вакуумного двигателя осуществляется за счет стабилизатора вакуума 42 (например, по патенту РФ №2110698). Поворотом тумблера 46 вправо или влево, установленным на приборном щитке 47, производят включение устройства, в результате чего импульсы поступают по проводам 45 в автоматический кран 6 вакуумной камеры 1, в которой после поданных импульсов увеличивается или уменьшается степень разрежения. В зависимости от этого увеличивается или уменьшается величина вакуума в рабочих камерах цилиндров 30, 33, 36 и 38, что приводит к увеличению или уменьшению мощности вакуумного двигателя.

Кроме того, ресурс эксплуатации вакуумного двигателя значительно выше, чем у двигателя внутреннего сгорания из-за отсутствия у вакуумного двигателя таких негативных факторов, как тепловые воздействия, кавитационные разрушения и другие факторы, которые влияют на нарушение геометрических параметров деталей двигателей внутреннего сгорания.

По сравнению с прототипом заявленный двигатель характеризуется безопасностью работы за счет исключения использования токсичных компонентов и позволяет регулировать мощность устройства.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ работы вакуумного двигателя, включающего блок цилиндров с поршнями, заключающийся в создании разрежения в рабочих камерах цилиндров путем сообщения их с вакуумной камерой для перемещения поршней к верхним мертвым точкам и подачи в рабочие камеры воздуха для перемещения поршней к нижним мертвым точкам, отличающийся тем, что на крышке блока цилиндров для каждого цилиндра устанавливают пружинные клапаны со штоками, один конец каждого из которых обращают к соответствующему поршню для оказания давления на его шток при перемещении поршня к верхней мертвой точке и сообщают рабочие камеры с атмосферой посредством пружинных клапанов при изменении положения штоков под давлением поршней для впуска воздуха и перемещения поршней к нижним мертвым точкам.

2. Вакуумный двигатель, содержащий блок цилиндров с поршнями, образующими в цилиндрах рабочие камеры, вакуумную камеру и коленчатый вал, отличающийся тем, что он снабжен компрессором и распределительным валом с кулачками и толкателями, а каждый цилиндр снабжен пружинным клапаном, при этом поршни соединены с коленчатым валом посредством шатунов, в крышке блока цилиндров для каждого цилиндра выполнены отверстия: одно с возможностью сообщения его рабочей камеры с вакуумной камерой посредством соответствующего вакуумного патрубка с краном, связанным с распределительным валом через толкатель, а второе - с возможностью подачи воздуха в рабочую камеру, причем каждый пружинный клапан цилиндра расположен со стороны отверстия для подачи воздуха и имеет корпус и шток, снабженный упором и пружиной и установленный с возможностью перемещения и взаимодействия с поршнем, и в корпусе каждого пружинного клапана выполнено отверстие с возможностью сообщения рабочей камеры с атмосферой.

www.freepatent.ru

Вакуумный двигатель (турбина). Разновидности и особенности | I-Team

По внешнему виду и варианту прохода воздушного потока вакуумные двигатели разделяются на три основных типа:

- периферический - рабочий воздух выходит по всей окружности вентилятора;

периферический вакуумный двигатель

- тангенциальный – рабочий воздух выходит по касательной к окружности вентилятора через патрубок;

тангенциальный вакуумный двигатель

- прямоточный (проточный) – рабочий воздух проходит через весь корпус турбины, одновременно охлаждая ее электрическую часть.

прямоточный вакуумный двигатель

В небольших поломоечных машинах и пылесосах, когда внутреннее пространство аппарата ограничено его размерами, применяют небольшие турбины характерного внешнего вида.

Турбина имеет небольшой размера и форму напоминающую чашку или кубок, поэтому ее часто так и называют производителями - "cup".

CUP турбина периферическая, байпасного типа

CUP турбина периферическая, байпасного типа

Они так же бывают байпасными и прямоточными. Соответственно, устанавливаются в пылесосы, небольшие поломоечные машины или экстракторы.

Периферический и тангенциальный тип турбин относятся к байпасным. Турбины, где рабочий воздух идет в обход ("bypass" - обход) статора и выходит наружу сбоку мотора. Такие турбины чаще всего используют в поломоечных машинах, системах центрального пылесоса и в промышленном применении. В них рабочий воздух не охлаждает статор с ротором. Для охлаждения электрической части используется отдельная крыльчатка, находящаяся на одной оси с рабочим колесом турбины. Необходимым условием нормального функционирования байпасной турбины является наличие свободного доступа охлаждающего воздуха. Т.е. крыльчатка охлаждения не должна находиться в вакууме или при повышенном давлении.

Вариант вывода рабочего воздуха выбирается производителем исходя из геометрии воздуховодов оборудования, способа и места монтажа турбины. Так как рабочий воздух не попадает в электрическую часть турбины, то такой тип является надежным выбором для применения в технике, связанной со сбором воды: поломоечных машинах, водососах и др. видах техники.

Ступенчатость турбины.

Вакуумные турбины бывают одноступенчатые, двухступенчатые и трехступенчатые.

Ступени используются для того, чтобы создать повышение давления, если мотор используется в качестве воздуходувки, или для увеличения срока службы при использовании мотора в качестве вакуумной турбины.

Одноступенчатые обычно имеют самые высокие воздушные потоки и воздушную мощность, но при этом самые низкие уровни вакуумирования. Добавление ступеней вентилятора увеличивает вакуумную способность агрегата, но снижает расход воздуха. Это связано с повышением сопротивления воздушного потока через систему, причиной которого являются дополнительные вентиляторы (вращающиеся и стационарные), через которые воздух должен проходить.

трехступенчатые вакуумные турбины

Двигатели, в зависимости от оборудования, куда они устанавливаются, бывают различной мощности и разного напряжения питания.

Самые распространенные моторы переменного тока на 220 В, и постоянного тока на 12В, 24В, 36В, 48В.

По потребляемой мощности двигатели бывают от 300 Вт (турбины постоянного тока на поломойках) до 1600 Вт (моторы переменного тока на больших пылеводососах).

i-teamrus.ru

Способ работы вакуумного двигателя и вакуумный двигатель

Способ работы вакуумного двигателя и вакуумный двигатель относятся к энергомашиностроению. Способ реализуется за счет того, что создают разрежение в рабочих камерах путем сообщения их с вакуумной камерой для перемещения поршней к ВМТ и подачи в рабочие камеры воздуха для перемещения поршней к НМТ, на крышке блока для каждого цилиндра устанавливают пружинные клапаны со штоками, один конец каждого из которых обращают к поршню для давления на его шток при перемещении поршня к ВМТ и сообщают рабочие камеры с атмосферой при изменении положения штоков под давлением поршней для впуска воздуха и перемещения поршней к НМТ. Двигатель снабжен компрессором и распределительным валом с кулачками и толкателями, поршни соединены с коленчатым валом посредством шатунов, в крышке блока цилиндров для каждого цилиндра выполнены отверстия: одно - для сообщения рабочей камеры с вакуумной камерой посредством патрубка с краном, связанным с распределительным валом через толкатель, а второе - для подачи воздуха в рабочую камеру, каждый пружинный клапан имеет корпус и шток, снабженный упором и пружиной для взаимодействия с поршнем. Изобретение обеспечивает возможность регулирования мощности двигателя. 2 н.п. ф-лы, 3 ил.

Изобретение относится к двигателестроению, а именно к конструкции вакуумного двигателя и способу его работы.

Известен способ работы многотопливного двигателя, который заключается в следующем: разворачиваются коренные наружные и внутренние эксцентриковые вкладыши с зубчатыми венцами относительно коренных шеек коленчатого вала, тем самым поднимается или опускается коленчатый вал вместе с поршнями и обеспечивается регулировка объема камер в зависимости от вида топлива, а шатунные внутренние и наружные эксцентриковые вкладыши с зубчатыми венцами также разворачиваются относительно шатунных шеек коленчатого вала, и обеспечивается оптимальный объем камеры сгорания в зависимости от величины нагрузки на двигатель для конкретного вида топлива (патент РФ №2144992, 2001).

Многотопливный двигатель внутреннего сгорания содержит коренные внутренние и наружные эксцентриковые вкладыши с зубчатыми венцами, шатунные внутренние и наружные эксцентриковые вкладыши с зубчатыми венцами, поршни, камеру сгорания (патент РФ №2144992, 2001).

Преимущество указанного двигателя заключается в том, что повышается эффективность его работы.

Недостатками являются сложность конструкции и выделение большого количества отработанных газов в окружающую среду, что негативно влияет на экологическую обстановку.

Кроме того, при работе этого двигателя осуществляется тепловое воздействие на детали двигателя, что приводит к нарушению геометрии деталей, а в блоке и головке блока двигателя происходит кавитационное разрушение, из-за чего ресурс эксплуатации этого двигателя невысок.

Наиболее близким к предлагаемому изобретению является способ работы вакуумного двигателя, включающий создание разрежения в рабочей камере путем сообщения ее с вакуумной камерой для перемещения поршня к верхней мертвой точке и подачу в рабочую камеру газа для перемещения поршня к нижней мертвой точке.

Для воздействия на поршень в рабочую камеру подают аммиак. Для создания разрежения в рабочей камере в вакуумную камеру подают хлористый водород. Под влиянием реакции аммиака и хлористого водорода и образования твердого нашатыря, оседающего на стенках вакуумной камеры, в последней образуется пониженное давление. В результате этого поршень под давлением внешнего атмосферного давления поднимается к верхней мертвой точке (а.с. СССР №23033, кл. F01В 29/02, 1931).

Вакуумный двигатель для реализации указанного способа включает цилиндры с поршнями, образующие рабочую камеру, поршень соединен с коленчатым валом через шатун, в крышке цилиндра выполнены отверстия, одно - для сообщения рабочей камеры цилиндра с вакуумной камерой через вакуумный патрубок, снабженный краном, а второе - для подачи газа в рабочую камеру. Устройство имеет резервуар для хлористого водорода, который подают через патрубок в вакуумную камеру (а.с. СССР №23033, кл. F01В 29/02, 1931).

Недостатком данного способа и устройства для его осуществления является использование высокотоксичных газов - аммиака и хлористого водорода. Это предъявляет жесткие требования по обеспечению безопасности и ограничивает возможность использования данного решения в связи с возможностью утечки газов и загрязнения окружающей среды. Кроме того, в данном устройстве невозможно регулировать мощность, так как в замкнутом объеме вакуумной камеры сложно создавать высокое или низкое разрежение за счет образования твердого нашатыря в результате реакции аммиака и хлористого водорода.

Задачей изобретения является создание усовершенствованного способа работы вакуумного двигателя и устройство для его осуществления.

Технический результат - повышение безопасности работы за счет исключения использования токсичных компонентов и обеспечение регулирования мощности устройства - достигается тем, что в способе работы вакуумного двигателя, включающем создание разрежения в рабочей камере путем сообщения ее с вакуумной камерой для перемещения поршня к верхней мертвой точке и подачу в рабочую камеру газа для перемещения поршня к нижней мертвой точке, согласно изобретению, на крышке цилиндра устанавливают пружинный клапан со штоком, один конец которого обращают к поршню для оказания давления на шток при перемещении поршня к верхней мертвой точке и сообщают рабочую камеру с атмосферой через пружинный клапан при изменении положения штока под давлением поршня для запуска воздуха и перемещения поршня к нижней мертвой точке.

Вакуумный двигатель для реализации предлагаемого способа, включающий цилиндры с поршнями, образующие рабочие камеры, поршни соединены с коленчатым валом через шатуны, в крышке каждого цилиндра выполнены отверстия, одно - для сообщения рабочей камеры цилиндра с вакуумной камерой через вакуумный патрубок, снабженный краном, а второе - для подачи газа в рабочую камеру, согласно изобретению, снабжен компрессором, распределительным валом с кулачками и толкателями, каждый из цилиндров имеет пружинный клапан, расположенный со стороны отверстия для подачи газа, в корпусе пружинного клапана установлен с возможностью взаимодействия с поршнем и перемещения шток, снабженный упором и пружиной, в корпусе клапана выполнено отверстие для сообщения рабочей камеры с атмосферой, а кран на каждом вакуумном патрубке связан с распределительным валом через толкатель.

Установка на крышке цилиндра пружинного клапана со штоком обеспечивает возможность сообщения рабочей камеры с атмосферой и позволяет использовать атмосферный воздух в качестве рабочего тела для перемещения поршня к нижней мертвой точке.

Создание разрежения в рабочей камере двигателя с помощью компрессора исключает применение каких-либо токсичных газов и обеспечивает безопасность работы двигателя. При этом достигается возможность регулирования мощности и расширяется область использования двигателя, так как в связи с отсутствием ядовитых компонентов и токсичных выхлопов он может быть установлен в закрытых и непроветриваемых помещениях.

Изобретение поясняется чертежами, где на фиг.1 представлен общий вид вакуумного двигателя; на фиг.2 - пульт управления, общий вид; на фиг.3 - пружинный клапан, продольный разрез.

Вакуумный двигатель включает вакуумную камеру 1, соединенную с компрессором 2, вакуумный трубопровод 3, крышки цилиндров 4, между крышкой 4 и блоком цилиндров имеется уплотнительная прокладка 5. На вакуумном трубопроводе 3 установлен автоматический кран 6 для подачи вакуума из вакуумной камеры 1 в вакуумный трубопровод 3. Между вакуумной камерой 1 и компрессором 2 установлены краны 7 и 8. На вакуумном трубопроводе 3 установлен вакуумный патрубок 9 с краном 10.

Вакуумный двигатель включает цилиндры 30, 33, 36 и 38 с поршнями 29, 32, 35 и 39, образующие рабочие камеры. Поршни соединены с коленчатым валом (не показан) через шатуны 31, 34, 37 и 40. Цилиндры 30, 33, 36 и 38 размещены в блоке 41.

В крышке 4 каждого цилиндра выполнены отверстия, одно 13, 18, 22 и 26 - для сообщения рабочей камеры цилиндра с вакуумной камерой 1 через вакуумные патрубки 9, 14 и вакуумные шланги 12, 16, 19 и 23, а второе 51 - для подачи газа в рабочую камеру. Распределительный вал 27 выполнен с кулачки (не показаны). Каждый из цилиндров 30, 33, 36 и 38 имеет пружинный клапан, расположенный со стороны отверстия 51 для подачи газа. В корпусе 48 пружинного клапана установлен с возможностью взаимодействия с поршнем и перемещения шток 50, снабженный упором 52 и пружиной 49, в корпусе 48 клапана выполнено отверстие 51 для сообщения рабочей камеры с атмосферой. Упор 52 имеет изолирующую прокладку 53. Каждый из кранов 10, 15, 20 и 24 на вакуумных патрубках 9, 14 связан с распределительным валом 27 через толкатель 11, 17, 21 и 25 с пружиной. Вакуумные шланги 12, 16, 19 и 23 соединены с отверстиями 13, 18, 22 и 26 крышки 4 за счет специальных штуцеров (не показаны). Краны 7 и 8 смонтированы на вакуумном трубопроводе 28. Кроме того, на вакуумном трубопроводе 3 установлен стабилизатор вакуума 42, который служит для увеличения или уменьшения мощности вакуумного двигателя и который соединен с вакуумным шлангом 43 и вакуумметром 44, расположенным на приборном щитке 47, на котором также установлен тумблер 46, связанный проводами 45 с автоматическим краном 6.

Вакуумный двигатель работает следующим образом.

Включают тумблер 46 на приборном щитке 47, и вследствие чего по проводам 45 передаются импульсы на автоматический кран 6, который открывается, и вакуум из вакуумной камеры 1 распространяется по вакуумному трубопроводу 3, а оттуда по вакуумным патрубкам 9 и 14, причем, вакуумный патрубок 9 имеет меньший внутренний диаметр в сравнении с вакуумными патрубками 14. Этот фактор связан со стабилизацией давления в трубопроводе 3. Кроме того, вакуумный стабилизатор 42 выравнивает степень разрежения на всем участке вакуумного трубопровода 3.

Далее торцы толкателя 11 с пружиной, а также торец толкателя 21 с пружиной контактируют попеременно с выступами кулачков распределительного вала 27, причем другие торцы толкателей 17 и 25 со своими пружинами также контактируют с выступами кулачков распределительного вала 27. В результате чего торцы толкателей воздействуют на пробки одного или нескольких кранов, например 10 и 15 или 20 и 24, краны открываются и сообщают вакуумные шланги 12, 16, 19 и 23 с вакуумной камерой 1 и затем с рабочей камерой в цилиндрах 30, 33, 36 и 38 через отверстия 13, 18, 22 и 26 в крышках 4. В результате чего поршни 29, 32, 35 и 39 с шатунами 31, 34, 37 и 40 приходят в движение, так как разрежение над поршнями 29, 32, 35 и 39 и атмосферное давление на участке соединения поршней 29, 31, 32 и 34 с шатунами 31, 34, 37 и 40 предопределяют возвратно-поступательное движение поршней 29, 32, 35 и 39, и их шатуны 31, 34, 37 и 40 заставляют вращаться коленчатый вал (не показан). Таким образом осуществляется запуск вакуумного двигателя, при этом следует отметить, что поршень перемещается к верхней мертвой точке за счет разрежения, создаваемого вакуумной камерой, и притягивания к крышке 4 блока 41. Для того, чтобы снять разрежение в рабочей камере, необходимо осуществить запуск воздуха из атмосферы. Это реализуется за счет пружинных клапанов 48. При перемещении поршня к верхней мертвой точке он оказывает своим днищем давление на шток 50, один конец которого выступает на некоторую длину в пространство рабочей камеры между днищем поршня и головкой цилиндра, и тем самым под действием днища шток 50 перемещается в верхнее положение и сжимает упором 52 пружину 49. По окончании перемещения штоков 50 с упорами 52 и максимальном сжатии пружины 49 открывается доступ атмосферного воздуха через отверстия 51 в рабочие камеры двигателя. Поршни получают возможность возвратно-поступательно перемещаться. В дальнейшем после доступа воздуха в рабочую камеру штоки 50 со своими упорами 52 перемещаются в первоначальное положение под действием пружины 49. Упоры 52 штоков 50 перекрывают отверстия 51. Прокладки 53 обеспечивают герметичность системы, поэтому исключается доступ воздуха в пространство рабочей камеры. При этом вышеуказанные циклы работы пружинных клапанов при работе вакуумного двигателя повторяются вплоть до остановки работы вакуумного двигателя.

В дальнейшем при работе вакуумного двигателя в соответствии с вращением коленчатого вала с помощью шестерни включается в работу компрессор 2. С началом работы компрессора 2 автоматически открываются краны 7 и 8 на вакуумном трубопроводе 28, и в вакуумной камере 1 создается разрежение. Вакуум вновь распространяется при открытом автоматическом кране 6 в вакуумный трубопровод 3, в вакуумные патрубки 9 и 14, а затем попеременно при открытии кранов 10, 15, 20 и 24 с помощью того или иного толкателя 11, 17, 21 и 25 попеременно по вакуумным шлангам 12, 16, 19 и 20 попеременно в цилиндры 30, 33, 35 и 38 через отверстия 13, 18, 22 и 26 крышки 4, и в это время возвратно-поступательно перемешаются поршни 29, 32, 35 и 39 со своими шатунами 31, 34, 37 и 40, которые взаимодействуют с коленчатым валом, передавая ему крутящий момент. Вращение вала приводит механизм, например, автомобиля в движение. Увеличение или уменьшение мощности вакуумного двигателя осуществляется за счет стабилизатора вакуума 42 (например, по патенту РФ №2110698). Поворотом тумблера 46 вправо или влево, установленным на приборном щитке 47, производят включение устройства, в результате чего импульсы поступают по проводам 45 в автоматический кран 6 вакуумной камеры 1, в которой после поданных импульсов увеличивается или уменьшается степень разрежения. В зависимости от этого увеличивается или уменьшается величина вакуума в рабочих камерах цилиндров 30, 33, 36 и 38, что приводит к увеличению или уменьшению мощности вакуумного двигателя.

Кроме того, ресурс эксплуатации вакуумного двигателя значительно выше, чем у двигателя внутреннего сгорания из-за отсутствия у вакуумного двигателя таких негативных факторов, как тепловые воздействия, кавитационные разрушения и другие факторы, которые влияют на нарушение геометрических параметров деталей двигателей внутреннего сгорания.

По сравнению с прототипом заявленный двигатель характеризуется безопасностью работы за счет исключения использования токсичных компонентов и позволяет регулировать мощность устройства.

Формула изобретения

1. Способ работы вакуумного двигателя, включающего блок цилиндров с поршнями, заключающийся в создании разрежения в рабочих камерах цилиндров путем сообщения их с вакуумной камерой для перемещения поршней к верхним мертвым точкам и подачи в рабочие камеры воздуха для перемещения поршней к нижним мертвым точкам, отличающийся тем, что на крышке блока цилиндров для каждого цилиндра устанавливают пружинные клапаны со штоками, один конец каждого из которых обращают к соответствующему поршню для оказания давления на его шток при перемещении поршня к верхней мертвой точке и сообщают рабочие камеры с атмосферой посредством пружинных клапанов при изменении положения штоков под давлением поршней для впуска воздуха и перемещения поршней к нижним мертвым точкам.

2. Вакуумный двигатель, содержащий блок цилиндров с поршнями, образующими в цилиндрах рабочие камеры, вакуумную камеру и коленчатый вал, отличающийся тем, что он снабжен компрессором и распределительным валом с кулачками и толкателями, а каждый цилиндр снабжен пружинным клапаном, при этом поршни соединены с коленчатым валом посредством шатунов, в крышке блока цилиндров для каждого цилиндра выполнены отверстия: одно с возможностью сообщения его рабочей камеры с вакуумной камерой посредством соответствующего вакуумного патрубка с краном, связанным с распределительным валом через толкатель, а второе - с возможностью подачи воздуха в рабочую камеру, причем каждый пружинный клапан цилиндра расположен со стороны отверстия для подачи воздуха и имеет корпус и шток, снабженный упором и пружиной и установленный с возможностью перемещения и взаимодействия с поршнем, и в корпусе каждого пружинного клапана выполнено отверстие с возможностью сообщения рабочей камеры с атмосферой.

bankpatentov.ru

Вакуумный двигатель

Двигатель предназначен для использования в машиностроении в качестве вакуумного парового двигателя. Двигатель содержит цилиндр с поршнем, связанным с валом отбора мощности, нагреватель, радиатор системы охлаждения, газораспределительную систему и средство создания вакуума в рабочих полостях цилиндра, выполненное в виде вакуумной камеры с предварительно откачанным из нее воздухом, соединенной с рабочими полостями цилиндра посредством газораспределительной системы и снабженной емкостью для сбора сконденсировавшегося в ней рабочего тела, причем рабочие полости цилиндра сообщены с парогенератором, а упомянутая емкость через насос для перекачивания рабочего тела и теплообменник предварительного подогрева рабочего тела соединена с парогенератором с возможностью создания герметичного контура циркуляции рабочего тела. Изобретение обеспечивает повышение технико-экономических характеристик, упрощение конструкции, возможность использования любого вида источников энергии для работы двигателя, увеличение коэффициента полезного действия, минимизацию выбросов вредных веществ в окружающую среду. 3 ил.

 

Изобретение относится к двигателестроению и касается усовершенствования паровых и вакуумных двигателей.

Наиболее близким к изобретению по технической сущности является двигатель, содержащий цилиндр с поршнем, связанным с валом отбора мощности, нагреватель, радиатор системы охлаждения, газораспределительную систему и средство создания вакуума в рабочих полостях цилиндра (RU 2032833 С1, опубл. 10.04.1995).

Однако указанный двигатель имеет недостатки - недостаточно высокие технико-экономические характеристики, что связано со сложностью конструкции и невозможностью использования различных источников энергии.

Задача изобретения - повышение технико-экономических характеристик, упрощение конструкции, возможность использования различных источников энергии, увеличение коэффициента полезного действия, минимизация выбросов вредных веществ в окружающую среду.

Решение указанной задачи обеспечивается тем, что в двигателе, содержащем цилиндр с поршнем, связанным с валом отбора мощности, нагреватель, радиатор системы охлаждения, газораспределительную систему и средство создания вакуума в рабочих полостях цилиндра, упомянутое средство выполнено в виде вакуумной камеры с предварительно откачанным из нее воздухом, соединенной с рабочими полостями цилиндра посредством газораспределительной системы и снабженной емкостью для сбора сконденсировавшегося в ней рабочего тела, причем рабочие полости цилиндра сообщены с парогенератором, а упомянутая емкость через насос для перекачивания рабочего тела и теплообменник предварительного подогрева рабочего тела соединена с парогенератором с возможностью создания герметичного контура циркуляции рабочего тела.

Изобретение поясняется чертежами:

Фиг.1 - общая схема двигателя.

Фиг.2 - впускной клапан.

Фиг.3 - выпускной клапан.

Вакуумный двигатель содержит цилиндр 5 с поршнем 7, связанным с валом отбора мощности посредством шатуна или штока (условно не показаны), нагреватель (условно не показан), радиатор 11 системы охлаждения, газораспределительную систему и средство создания вакуума в рабочих полостях 6 (надпоршневой) и 8 (подпоршневой) цилиндра 5. Упомянутое средство выполнено в виде прочной емкости - вакуумной камеры 15 с предварительно откачанным из нее воздухом, соединенной с рабочими полостями 6 и 8 цилиндра 5 посредством газораспределительной системы и снабженной емкостью 17 для сбора сконденсировавшегося в ней рабочего тела. Газораспределительная система включает паропроводы 2 и 13 и трубопровод 12. Оппозитно расположенные рабочие полости 6 и 8 цилиндра 5 соединены посредством паропроводов 2 через впускные клапаны 3 и 9 с парогенератором 1, а упомянутая емкость 17 через насос 14 для перекачивания рабочего тела, теплообменник 16 предварительного подогрева рабочего тела и трубопровод 12 соединена с парогенератором 1 с возможностью создания герметичного контура циркуляции рабочего тела. Возможная утечка вакуума в камере 15 компенсируется вакуумным насосом 18 (фиг.1).

Рабочие полости 6 и 8 цилиндра 5 через выпускные клапаны 4 и 10, теплообменник 16, радиатор 11 системы охлаждения пара посредством паропроводов 13 связаны со средством создания вакуума - вакуумной камерой 15.

Вакуумный двигатель работает следующим образом.

Подготовка двигателя к работе включает следующее:

1. Заправку парогенератора рабочим телом.

2. Создание вакуума, то есть удаление воздуха из вакуумной камеры, парогенератора и рабочих полостей цилиндра.

Двигатель запускается с началом парообразования в парогенераторе.

Парогенератор 1, используя энергию горения топлива, генерирует пар, который по паропроводу 2 и через открытый впускной клапан 3 верхней крышки цилиндра 5 поступает в надпоршневую рабочую полость 6.

Одновременно с открытием впускного клапана 3 открывается выпускной клапан 10 нижней крышки цилиндра 5. Находящийся в подпоршневой рабочей полости 8 пар через открытый выпускной клапан 10, паропровод 13, теплообменник 16 и радиатор 11 устремляется в вакуумную камеру 15, где, резко расширяясь, конденсируется и накапливается в емкости 17. В подпоршневой рабочей полости 8 давление выравнивается с давлением внутри вакуумной камеры 15, то есть создается вакуум. Под воздействием образовавшегося в подпоршневой рабочей полости 8 вакуума поршень 7 перемещается в нижнюю мертвую точку, совершая полезную работу.

В увеличивающийся объем надпоршневой рабочей полости 6 продолжает поступать пар из парогенератора 1.

В момент подхода поршня 7 к нижней мертвой точке закрывается впускной клапан 3 и одновременно закрывается выпускной клапан 10.

Синхронно с закрытием клапанов 3 и 10 открываются впускной клапан 9 подпоршневой рабочей полости 8 и выпускной клапан 4 надпоршневой рабочей полости 6 цилиндра 5.

В подпоршневую рабочую полость 8 через открытый впускной клапан 9 начинает поступать пар из парогенератора 1. Одновременно через открытый выпускной клапан 4 из надпоршневой рабочей полости 6 пар по паропроводам 13 через теплообменник 16 и радиатор 11 системы охлаждения пара устремляется в вакуумную камеру 15, где, резко расширяясь, конденсируется и скапливается в камере 17.

В надпоршневой рабочей полости 6 давление выравнивается с давлением внутри вакуумной камеры 15, то есть создается вакуум. Под воздействием вакуума поршень 7 перемешается в верхнюю мертвую точку, совершая полезную работу.

В момент подхода поршня 7 к верхней мертвой точке выпускной клапан 4 верхней крышки цилиндра 5 и впускной клапан 9 нижней крышки цилиндра 5 закрываются. Одновременно открываются впускной клапан 3 верхней крышки цилиндра 5 и выпускной клапан 10 нижней крышки цилиндра 5. Далее рабочий цикл повторяется в вышеописанной последовательности.

Скопившееся в емкости 17 сконденсировавшееся рабочее тело с помощью насоса 14 перекачивается по трубопроводу 12 через теплообменник 16 обратно в парогенератор 1, образуя замкнутый контур циркуляции рабочего тела.

В теплообменнике 16 рабочее тело предварительно подогревается, забирая часть тепловой энергии отработанного пара.

Механизм привода клапанов может быть электромагнитным или механическим.

Двигатель обеспечивает многоступенчатое преобразование энергии рабочего тела и вакуума в полезную работу.

Технико-экономические преимущества изобретения заключаются в следующем:

- простой и эффективный способ создания вакуума в рабочих полостях цилиндра;

- повышение коэффициента полезного действия;

- возможность использования практически любого источника энергии для производства пара;

- экологическая безопасность системы.

Двигатель, содержащий цилиндр с поршнем, связанным с валом отбора мощности, нагреватель, радиатор системы охлаждения, газораспределительную систему и средство создания вакуума в рабочих полостях цилиндра, отличающийся тем, что средство создания вакуума в рабочих полостях цилиндра выполнено в виде вакуумной камеры с предварительно откачанным из нее воздухом, соединенной с рабочими полостями цилиндра посредством газораспределительной системы и снабженной емкостью для сбора сконденсировавшегося в ней рабочего тела, причем рабочие полости цилиндра сообщены с парогенератором, а упомянутая емкость через насос для перекачивания рабочего тела и теплообменник предварительного подогрева рабочего тела соединена с парогенератором с возможностью создания герметичного контура циркуляции рабочего тела.

www.findpatent.ru

Вакуумный двигатель | Банк патентов

Полезная модель относится к устройствам, предназначенным для преобразования энергии давления атмосферной среды, например на вакуум, в механическую энергию.

Предлагаемой полезной моделью решается задача увеличения мощности двигателя и сокращения затрат на ее получение.

Для достижения указанного технического результата вакуумный двигатель содержит ограниченное пространство определенной конфигурации. Отличительными признаками предлагаемого двигателя от указанного выше является то, что пространство определенной конфигурации представляет собой, например систему противостоящих, соединенных попарно, диафрагм, находящихся на едином коленчатом валу и опирающихся на жесткую раму. В системе диафрагм создан постоянный вакуум. Вакуум или разряжение близкое к нему создается в диафрагмах заранее при сборке и подготовке двигателя в рабочее состояние. На диафрагмы, в которых создан постоянный вакуум, действует давление окружающей среды через распределительную систему, которая включает в себя шатуны, систему шестерен, валы, тяги, стойки, стопоры. Диафрагмы имеют, например, форму двух шарнирно и герметично соединенных между собой по большому основанию тарелок. Шарнирное соединение покрыто эластичным материалом, что обеспечивает герметичность и подвижность диафрагм. Жесткая рама является опорой для систем диафрагм, коленчатого вала и распределительной системы. Двигатель может иметь несколько "пар систем диафрагм на едином коленчатом валу, находящихся на разных угловых моментах их единовременного положения. Система шестерен обеспечивает движение распределительной системы через определенное количество градусов от 0° до 72°.

Полезная модель относится к устройствам, предназначенным для преобразования энергии давления атмосферной среды, например на вакуум, в механическую энергию.

Известно устройство (з. №2002100010, опубл. 2003.08.20), содержащее ограниченное пространство определенной конфигурации, заполненное газообразной средой с давлением, отличающимся от давления окружающей среды, на которую действует разность сил во встречном или противоположных направлениях.

Использование для полезной работы известного устройства, газообразной среды внутри ограниченного пространства определенной конфигурации, требует постоянной подпитки указанной среды, что приводит к дополнительным затратам и снижает коэффициент полезного действия устройства.

Предлагаемой полезной моделью решается задача увеличения мощности двигателя и сокращения затрат на ее получение.

Для достижения указанного технического результата вакуумный двигатель содержит ограниченное пространство определенной конфигурации. Отличительными признаками предлагаемого двигателя от указанного выше является то, что пространство определенной конфигурации представляет собой, например систему противостоящих, соединенных попарно, диафрагм, находящихся на едином коленчатом валу и опирающихся на жесткую раму. В системе диафрагм создан постоянный вакуум. Вакуум или разряжение близкое к нему создается в диафрагмах заранее при сборке и подготовке двигателя в рабочее состояние. На диафрагмы, в которых создан постоянный вакуум, действует давление окружающей среды через распределительную систему, которая включает в себя шатуны, систему шестерен, валы, тяги, стойки, стопоры. Диафрагмы имеют, например, форму двух шарнирно и герметично соединенных между собой по большому основанию тарелок. Шарнирное соединение покрыто эластичным материалом, что обеспечивает герметичность и подвижность диафрагм. Жесткая рама является опорой для систем диафрагм, коленчатого вала и распределительной системы. Двигатель может иметь несколько пар систем диафрагм на едином коленчатом валу, находящихся на разных угловых моментах их единовременного положения. Система шестерен обеспечивает движение распределительной системы через определенное количество градусов от 0° до 72°.

Полезная модель поясняется чертежами, где

на фиг.1 - изображен вакуумный двигатель;

На фиг.2 - работа системы диафрагм.

На фиг.3 - вид А фиг.1

На фиг.4 - разрез Б-Б фиг.3

Вакуумный двигатель состоит из диафрагм 1, жесткой рамы 2, коленчатого вала 3, из распределительной системы, включающей шатуны 4, соединенные с коренной шейкой 5, коленчатого вала 3, распределительную шестерню 6, маховик 7, распределительные шестерни 8, 9, 10, 11, распределительные валы 12, 13, 14, 15, коническую шестерню 18, распределительную планку 19, шестерню 20, тягу 21, полую жесткую стойку 22, стопор 23, ось 24, опоры 25. На фиг.2 буквами «а», «б», «в», «г», «д», «е», «ж», «з» обозначены объемы диафрагм 1 верхней системы диафрагм, а буквами «и», «к», «л», «м», «н», «о», «п», «р» - объемы диафрагмы 1 нижней системы диафрагм.

Работа вакуумного двигателя заключается в следующем. Верхняя система, состоящая из восьми диафрагм, с объемами «а», «б», «в», «г», «д», «е», «ж», «з» натягивает первую диафрагму из нижней системы с объемом «и», остальные диафрагмы с объемами «к», «л», «м», «н», «о», «п», «р» застопорены. Натяжение осуществляется шатуном 4, на расстояние, которое позволяет верхняя мертвая точка (ВМТ) коленчатого вала 3. Затем срабатывает распределительная система, приводимая в движение распределительной шестерней б, маховиком 7. Движение передается распределительными шестернями 8, 9, 10, 11, которые в свою очередь, приводят в движение распределительные валы 12, 13, 14, 15. Распределительные валы через коническую шестерню 16, приводят в движение систему шестерен 17 и 18, так называемый «мальтийский крест», которые в свою очередь двигают распределительную планку 19 через каждые 180° оборота коленчатого вала 3. Распределительная планка 19 двигает шестерню 20 с тягой 21. Тяга 21 двигает полную жесткую стойку 22 со стопором 23. Когда коленчатый вал 3 дойдет до ВМТ, стопор 23 верхней системы диафрагм («и», «к», «л», «м», «н», «о», «п», «р») а стопор 23 верхней системы диафрагм («а», «б», «в», «г», «д», «е», «ж», «з») закрывается. Затем рабочий цикл происходит в обратном порядке.

Таким образом, непрерывно создается полезный крутящийся момент коленчатого вала 3, путем стопорения или растопорения поочередно верхней или нижней системы диафрагм. После растопорения одна из диафрагм имеет как бы больший объем, но происходит мгновенное самовыравнивание объемов диафрагм всей системы и она самопроизвольно, без дополнительных усилий, занимает исходное рабочее состояние.

На фиг.1 показан вакуумный двигатель, состоящий из пяти пар систем диафрагм, по восьми диафрагм в каждой системе, на едином коленчатом валу 3, коренные шейки 5 которого, находятся на разных угловых моментах их единовременного положения через 72°.

Полезная механическая энергия получается путем создания распределительной системы разности объемов, испытывающих атмосферное давление, противостоящих друг другу систем диафрагм. По достижению коренной шейки коленчатого вала ВМТ, пропорциональность противостоящих сил на системах диафрагм испытывающих атмосферное

давление, диаметрально меняется, чем создается полезный крутящий момент на коленчатом валу.

Вакуумный двигатель может быть использован при движении, вырабатывающем механическую энергию, стационарно, например при получении электрической энергии. Кроме того, вакуумный двигатель может быть использован в подводных аппаратах. Предлагаемый вакуумный двигатель экологически чистый, относительно дешевый в изготовлении и, кроме того, значительно мощнее существующих двигателей аналогичного назначения.

Формула полезной модели

1. Вакуумный двигатель, содержащий ограниченное пространство определенной конфигурации, заполненное газообразной средой с давлением, работающее за счет разности сил, действующих на него, отличающийся тем, что в пространстве определенной конфигурации, например, в системе противостоящих, соединенных попарно диафрагм, находящихся на едином коленчатом валу и опирающихся на жесткую раму, создан постоянный вакуум, на который действует давление окружающей среды через распределительную систему, включающие шатуны, систему шестерен, валы, тяги, стойки, стопоры.

2. Двигатель по п.1, отличающийся тем, что диафрагма имеет, например, форму двух шарнирно и герметично соединенных эластичным материалом по большому основанию тарелок.

3. Двигатель п.1, отличающийся тем, что жесткая рама является опорой для системы диафрагм, коленчатого вала и распределительной системы.

4. Двигатель п.1, отличающийся тем, что он может иметь несколько пар систем диафрагм на едином коленчатом валу, находящихся на разных угловых моментах их единовременного положения.

5. Двигатель п.1, отличающийся тем, что система шестерен обеспечивает движение распределительной системе через определенное количество градусов от 0° до 72°.

ФАКСИМИЛЬНОЕ ИЗОБРАЖЕНИЕ

Реферат:

Описание:

Рисунки:

MM1K - Досрочное прекращение действия патента (свидетельства) Российской Федерации на полезную модель из-за неуплаты в установленный срок пошлины за поддержание патента (свидетельства) в силе

Дата прекращения действия патента: 20.04.2006

Извещение опубликовано: 27.07.2007        БИ: 21/2007

bankpatentov.ru

Вакуумный двигатель • ru.knowledgr.com

Вакуумный двигатель получает свою силу из давления воздуха против одной стороны поршня, у которого есть частичный вакуум с другой стороны его. В начале outstroke клапан в верхней части цилиндра открывает и допускает обвинение горящего газа и воздуха, который пойман в ловушку закрытием клапана и расширяется. К концу удара обвинение входит в контакт с водой - или охлаждаемая часть цилиндра и охлаждено, заставляя внезапное понижение давления, достаточного сосать поршень - который открыт к заводной рукоятке - назад на обратном ходу. Клапан открывается снова как раз к поршню, чтобы удалить сожженные газы прежде, чем следующий outstroke начнется.

История

Некоторые ранние газовые двигатели работали над "вакуумом" или "атмосферным" принципом похожим способом к паровому двигателю Newcomen. Смесь газа и воздуха была вовлечена в цилиндр и зажжена; смесь расширилась, и часть ее убежала через выпускной клапан; клапан тогда закрылся, смесь, в которой охлажденное и законтрактованное, и атмосферное давление выдвинуло поршень. Такие двигатели были очень неэффективны и были заменены двигателями, работающими над циклом Отто.

Вакуумный двигатель

В вакуумном двигателе частичный вакуум создан внешним насосом. Эти двигатели обычно использовались, чтобы привести железнодорожные поворотные столы в действие в Великобритании, используя вакуум, созданный вакуумным эжектором тормоза паровоза. Операционный принцип идентичен паровому двигателю - в обоих случаях, власть извлечена из различия в давлении. Маленькие вакуумные двигатели также использовались, чтобы управлять дворниками ветрового стекла в автомобилях. В этом случае двигатели были приведены в действие разнообразным вакуумом. Эта договоренность не была очень удовлетворительной, потому что, если бы дроссель был широко открыт, дворники замедлились бы. Современные автомобили используют электрически приведенных в действие дворников.

См. также

Внешние ссылки

ru.knowledgr.com

Реактивный вакуумно-компрессионный двигатель

Изобретение относится к машиностроению и может быть применено на наземном транспорте и летательных аппаратах. Техническим результатом изобретения является возможность создания экологически чистого реактивного двигателя, имеющего возможность работы на всех видах топлива. Согласно изобретению двигатель содержит корпус, поршни, движущиеся возвратно-поступательно, механизм газораспределения, системы подачи топлива, смазки, охлаждения и запуска двигателя. В корпусе расположен вращающий цилиндр с двумя поршнями двухстороннего действия, образующими с торцевыми головками три рабочие полости. Из одной крайней полости поршень поочередно нагнетает воздух в две автономные камеры сгорания, работающие по четырехтактному циклу. Выходящий из камер сгорания поток газов вращает турбину и вращающий цилиндр, на котором она установлена. На средней части поршней выполнены синусоидные сферические кулисы, в которые входят закрепленные во вращающем цилиндре шаровые пальцы, приводящие поршни в возвратно-поступательное движение. В другую крайнюю полость вращающего цилиндра поршень всасывает воздух, затем сжимает его, и сжатый воздух с критической скоростью вырывается наружу, создавая импульс реактивной силы тяги. В полости между поршнями, при удалении их друг от друга, создается вакуум, который по вакуумным каналам передается к сферической чаше, выполненной снаружи корпуса двигателя, в результате чего возникает импульс реактивной силы тяги, а полость между поршнями заполняется воздухом. При движении поршней навстречу друг другу воздух в полости между ними сжимается, в конце сжатия открываются окна во вращающем цилиндре, и сжатый воздух с критической скоростью устремляется в расширительные каналы и сопла, создавая импульс реактивной силы тяги. 6 з.п. ф-лы, 2 ил.

 

Изобретение относится к машиностроению и может быть применено на наземном транспорте и летательных аппаратах.

Известны двигатели, в которых применены схемы с кривошипно-шатунным механизмом и продувкой цилиндров воздухом через продувочные окна в цилиндре и выпускные клапаны (Устройство и эксплуатация автомобилей, 1987, Высшая школа, Москва). Такие двигатели состоят из блока цилиндров, гильз цилиндров, поршней с шатунами, коленчатого вала с маховиком, головки блока, механизма газораспределения, систем питания топливом и воздухом, смазки, охлаждения. В основе этих двигателей лежит кривошипно-шатунный механизм (КШМ). Несмотря на существенные усовершенствования в последнее время различных приборов и систем двигателей, предназначенных для управления и подачи топлива и воздуха в цилиндры двигателя полного сгорания и экологически чистого выброса отработавших газов в атмосферу пока не достигнуто. В известных двигателях не используются возможности получения дополнительной тепловой энергии за счет детонационного сгорания и более глубокого расщепления молекул применяемых топлив. Основной причиной являются сложности создания в двигателе с КШМ условий сгорания топлива и воздуха, которое происходило бы при постоянном объеме цилиндра и не зависело бы от положения поршня в цилиндре.

Техническим результатом изобретения является возможность создания экологически чистого двигателя, имеющего возможность работы на всех видах топлива.

Согласно изобретению реактивный вакуумно-компрессионный двигатель содержит корпус, поршни, движущиеся возвратно-поступательно, механизм газораспределения, системы подачи топлива, смазки, охлаждения и запуска двигателя. В корпусе на торцевых опорах и шариковых подшипниках расположен вращающий цилиндр с двумя поршнями двухстороннего действия, образующими с торцевыми головками три рабочие полости. Вращающий цилиндр состоит из двух гильз, напрессованных одна на другую, при этом на нем установлен фазовый диск и турбина. Из одной крайней полости поршень поочередно нагнетает воздух в две автономные камеры сгорания, работающие по четырехтактному циклу. Выходящий из камер сгорания поток газов вращает турбину и вращающий цилиндр, на котором она установлена. Поршни от проворачивания фиксируются скользящими шлицевыми консолями, закрепленными в корпусе и входящими в шлицевые отверстия крайних днищ поршней. На средней части поршней выполнены синусоидные сферические кулисы, в которые входят закрепленные во вращающем цилиндре шаровые пальцы, приводящие поршни в возвратно-поступательное движение. С торцов камер сгорания расположены плоские золотники с уплотнительными кольцами, сопряженные с торцевой поверхностью фазового диска и плоскостью, выполненной на торце турбины. В другую крайнюю полость вращающего цилиндра поршень всасывает воздух через шаровой золотник и сжимает его, затем уплотнительная обойма открывает отверстие канала, и сжатый воздух с критической скоростью вырывается наружу, создавая импульс реактивной силы тяги. В полости между поршнями при удалении их друг от друга создается вакуум. В конце хода поршней днище одного из поршня открывает окна во вращающем цилиндре и воздух снаружи по вакуумным каналам, выполненным в стенке вращающего цилиндра, с критической скоростью врывается в полость между поршнями. При этом снаружи возле входящих вакуумных каналов установлена сферическая чаша, в зоне которой создается вакуум, в результате чего возникает импульс реактивной силы тяги. При движении поршней навстречу друг другу воздух в полости между ними сжимается. В конце сжатия уплотнительная обойма открывает окна во вращающем цилиндре, и сжатый воздух с критической скоростью устремляется в расширительные каналы и сопла, создавая импульс реактивной силы тяги. Двигатель работает на всех видах топлива, в том числе и без антидетонационных присадок. В случае работы двигателя на обедненных смесях сгорание происходит при постоянном объеме камер сгорания, а в случае работы на обогащенных смесях происходит догорание топлива при продувке камер сгорания воздухом. Двигатель также может работать в детонационном режиме. Следует отметить, что благодаря особенностям работы двигателя рабочие процессы, происходящие в камерах сгорания, не зависят от положения поршней во вращающем цилиндре, кроме такта продувки и сжатия. Продувка камер сгорания воздухом происходит через два плоских золотника. Для охлаждения двигателя на периметре фазового диска установлен вентилятор.

В предлагаемом реактивном вакуумно-компрессионном двигателе импульсного типа приводной турбинный двигатель приводит в движение вакуумно-компрессионный движитель, т.е. механическая энергия турбины преобразуется в энергию разреженного и сжатого воздуха, который с критическими скоростями вылетает из поршневых полостей наружу и создает импульсы реактивной силы тяги. В приводном турбинном двигателе применены две автономные камеры сгорания, в которые крайним днищем одного из поршней поочередно нагнетается воздух. Две автономные камеры сгорания работают по четырехтактному циклу, при этом физико-химическая подготовка топлива и воздуха происходит за три хода поршня при постоянном объеме камер сгорания или в 8-10 раз дольше, чем в обычном ДВС. Процесс сгорания топлива не зависит от положения поршней в цилиндре, а также от октанового числа применяемого топлива и наличия в нем антидетонационных присадок, причем детонационное сгорание является предпочтительным. Двигатель, выполненный согласно изобретению, будет экологически чистым и безопасным в эксплуатации.

Изобретение поясняется фиг.1 и фиг.2.

Фиг.1 - устройство реактивного вакуумно-компрессионного двигателя.

Фиг.2 - схема фаз газораспределения приводного двигателя.

Реактивный вакуумно-компрессионный двигатель состоит из корпуса 1, вращающего цилиндра 2, двух поршней 3 двухстороннего действия, двух камер сгорания 4 и 5, плоских золотников 6, 7, 8 и 9, турбины 10, систем питания, зажигания, смазки, охлаждения и запуска двигателя. Вращающий цилиндр 2 состоит из двух гильз 11 и 12, напрессованных одна на другую, между которыми проходят воздушные и вакуумные каналы "а", в которых выполнены выпускные окна "в" и "м", и на которых установлены шаровые пальцы 13 и уплотнительная обойма 14 вакуумно-компрессионной полости "Н". Вращающий цилиндр 2 расположен на торцевых опорах 15 и шариковых подшипниках 16, установленных на шлицевых консолях 17, закрепленных в корпусе 1. Каждый поршень 3 состоит из днищ "Д" и "Д1". В днище "Д1" выполнено шлицевое отверстие, которым поршень 3 насажен и скользит вдоль шлицев консоли 17. На средней части поршня 3 выполнена синусоидная сферическая кулиса "К1". Поршни 3 выполняют функции нагнетателя воздуха. С торцов каждой камеры сгорания 4 и 5 полукруглого сечения расположены золотники 6, 7, 8 и 9 с уплотнительными кольцами 18, впускные "е" и выпускные "г" каналы, снаружи установлена форсунка 19 и свеча зажигания 20. Золотники 6, 7, 8 и 9 торцами скользят по плоскости фазового диска 21 и плоскости турбины 10. Турбина 10, на периметре которой размещены лопатки 22, расположена в кожухе 23 и установлена на вращающем цилиндре 2. В турбине 10 имеются газовые каналы "г1". Уплотнительная обойма 14 с двумя сферическими уплотнительными кольцами 24 закреплена на вращающем цилиндре 2 и сопряжена со сферической кольцевой поверхностью 25, выполненной в корпусе 1 и соединенной с расширительными каналами "р" и соплами 26. Днище "Д1" поршня 3 левой стороны и головка 27 образуют полость "Л" приводного двигателя, в которую через золотник 28 всасывается воздух, нагнетаемый поочередно через каналы “е” то в камеру сгорания 4, то в камеру сгорания 5. Днище "Д1" правого поршня 3 и головка 27 образуют полость "П", выполняющую функции реактивного компрессионного движителя. Поршень 3 всасывает в полость "П" воздух через уплотнительную обойму 29 с отверстием золотника 30 и сжимает воздух. Затем уплотнительная обойма 29 открывает отверстие 31 канала, и сжатый воздух с критической скоростью вылетает через сопло 32, создавая импульс реактивной силы тяги. Днища "Д" поршней 3, образующие большую полость "Н", выполняют функции реактивного вакуумно-компрессионного движителя. При удалении поршней 3 друг от друга полость Н увеличивается и в ней создается глубокий вакуум. Затем днище "Д" левого поршня 3 открывает вакуумные окна "ж" и воздух снаружи по вакуумным каналам "а" с критической скоростью врывается в полость "Н", переходя в состояние равновесия с вакуумом. Снаружи возле каналов "а" в зоне сферической чаши 33 создается вакуум, который вызывает импульс реактивной силы тяги. Топливный 34 и масляный 35 насосы приводятся в действие кулисой "К2", установленной на вращающем цилиндре 2. Вентилятор 36, установленный на фазовом диске 21, охлаждает двигатель, кроме того, при образовании вакуума в полости "Н" температура также понижается. Для запуска двигателя служит шестерня 37, установленная на турбине 10.

Реактивный вакуумно-компрессионный двигатель согласно изобретению работает следующим образом.

В двигателе днище "Д1" поршня 3 полости "Л", каналы "е", "г", камеры сгорания 4 и 5, турбина 10 выполняют функции приводного турбинного двигателя внутреннего сгорания. Днища "Д" поршней 3, полость "Н", фазовая уплотнительная обойма 14, расширительные каналы "р", сопла 26, вакуумные каналы "а", окна "ж", сферическая чаша 33 выполняют функции вакуумно-компрессионного движителя. Днище "Д1" поршня 3, полость "П" с уплотнительной обоймой 29, золотником 30, отверстием 31, соплом 32 выполняют функции реактивного компрессионного движителя.

1-й ход поршней 3. Поршни 3 движутся от головок 27 к центру полости "Н". В полости "Л" через золотник 28 происходит всасывание воздуха. В полости "П" отверстие 28 закрывается, и происходит процесс всасывания воздуха через золотник 30. В полости "Н" окна "ж" закрываются, происходит процесс сжатия воздуха со степенью сжатия 10 единиц. В камере сгорания 4 продолжается физико-химическая подготовка топлива, а в камеру сгорания 5 подается электрическая искра, и происходит процесс сгорания смеси и расширения газов. Затем открывается золотник 9, и газы со скоростью выше критической вылетают через каналы "г" и "г1" к лопаткам 22 турбины 10. При подходе поршней 3 к центру полости "Н" уплотнительная обойма 14 открывает выпускные окна "м", и сжатый воздух с критической скоростью по каналам "р" через сопла 26 вылетает наружу, создавая импульс реактивной силы тяги.

2-й ход поршней 3. Поршни 3 движутся от центра полости "Н". Обойма 8 закрывает окна "м", окна "ж" перекрываются одним из поршней 3, происходит процесс создания вакуума. В полости "Л" происходит процесс сжатия воздуха и нагнетание его в камеру сгорания 5, золотники 7 и 9 приоткрыты, происходит продувка воздухом камеры сгорания 5 от остатков сгоревшей смеси. Затем золотник 9 закрывается, продолжается сжатие воздуха в камере сгорания 5. В камере сгорания 4 продолжается физико-химическая подготовка топлива. В полости "П" обойма 29 открывает отверстие 31, и сжатый воздух с критической скоростью вылетает через сопло 32 наружу, создавая импульс реактивной силы тяги. В полости "Н" образовался глубокий вакуум, в это время левый поршень 3 кромкой днища "Д" открывает окна "ж", воздух снаружи через каналы "а" с критической скоростью врывается в полость "Н", где происходит процесс перехода в равновесие вакуума и атмосферного давления. В зоне сферической чаши 33 создается вакуум, который вызывает импульс реактивной силы тяги, векторы всех трех реактивных сил тяги совпадают по направлению.

3-й ход поршней. Поршни 3 движутся от головок 27 к центру полости "Н", в которой происходит процесс сжатия воздуха. В камеру сгорания 4 подается электрическая искра, происходит сгорание смеси, давление газов максимальное, открывается золотник 8 и газы со скоростью выше критической устремляются к лопаткам 22 турбины 10 и вращают ее.

Золотники 7 и 9 закрыты, в камере сгорания 5 протекает физико-химическая подготовка топлива. В полостях "Л" и "П" происходит процесс всасывания воздуха. При подходе поршней 3 к центру полости "Н" открываются выпускные окна "м", и сжатый воздух с критической скоростью через сопла 26 вылетает наружу, создавая импульс реактивной силы тяги.

4-й ход поршней 3. Поршни 3 движутся от центра полости "Н" к головкам 27. В полости "Л" воздух сжимается и нагнетается в камеру сгорания 4, золотники 6 и 8 приоткрыты, происходит продувка камеры сгорания 4 воздухом. Затем золотник 8 закрывается, продолжается процесс сжатия воздуха. В полости "П" отверстие 31 закрыто уплотнительной обоймой 29, и происходит сжатие воздуха. Полость "Н" увеличивается, окна "м" и "ж" закрыты, в результате в полости "Н" происходит процесс образования глубокого вакуума. При подходе поршней к головкам 27 закрывается золотник 6, и в камеру сгорания 4 впрыскивается топливо, начинается процесс физико-химической подготовки топлива и воздуха к сгоранию. В полости "П" открывается отверстие 31, и сжатый воздух через сопло 32 выбрасывается наружу, образуя импульс реактивной силы тяги. В полости "Н" создается вакуум и процесс повторяется.

В приводном реактивном двигателе рабочим телом является воздух и газы сгоревшей смеси, в полостях "Н" и "П" рабочим телом является воздух. В камерах сгорания 4 и 5 степень сжатия равна 10 единицам. Процесс физико-химической подготовки топлива и воздуха в камерах сгорания 4 и 5 происходит в течение трех ходов поршней 3. Двигатель работает на бензине, керосине, дизельном топливе, нефти, без антидетонационных присадок. Сгорание смеси в камерах сгорания 4 и 5 происходит при постоянном объеме и не зависит от положения поршней 3 в цилиндре 2, кроме такта продувки и сжатия. Двигатель работает на обедненных смесях, экологически чистый, в случае работы на обогащенных смесях догорание топлива происходит при продувке камер сгорания 4 и 5 воздухом. Несколько модулей двигателя могут быть объединены в кассету с целью создания более мощного двигателя. Двигатель может быть применен на автомобилях в качестве реактивной тяги и при их торможении.

1. Реактивный вакуумно-компрессионный двигатель, содержащий корпус, поршни, движущиеся возвратно-поступательно, механизм газораспределения, системы подачи топлива, смазки, охлаждения и запуска двигателя, отличающийся тем, что в корпусе на торцевых опорах и шариковых подшипниках расположен вращающий цилиндр с двумя поршнями двухстороннего действия, образующими с торцевыми головками три рабочие полости, из одной крайней полости поршень поочередно нагнетает воздух в две автономные камеры сгорания, работающие по четырехтактному циклу, выходящий из камер сгорания поток газов вращает турбину и вращающий цилиндр, на котором она установлена, поршни от проворачивания фиксируются скользящими шлицевыми консолями, закрепленными в корпусе и входящими в шлицевые отверстия крайних днищ поршней, на средней части поршней выполнены синусоидные сферические кулисы, в которые входят закрепленные во вращающем цилиндре шаровые пальцы, приводящие поршни в возвратно-поступательное движение, с торцов камер сгорания расположены плоские золотники с уплотнительными кольцами, сопряженные с торцевой поверхностью фазового диска и плоскостью, выполненной на торце турбины, в другую крайнюю полость вращающего цилиндра поршень всасывает воздух через шаровой золотник и сжимает его, затем уплотнительная обойма открывает отверстие канала и сжатый воздух с критической скоростью вырывается наружу, создавая импульс реактивной силы тяги, в полости между поршнями при удалении их друг от друга создается вакуум, днище поршня открывает окна во вращающем цилиндре и воздух снаружи по вакуумным каналам, выполненным в стенке вращающего цилиндра, с критической скоростью врывается в полость между поршнями, снаружи возле входящих вакуумных каналов установлена сферическая чаша, в зоне которой создается вакуум, в результате чего возникает импульс реактивной силы тяги, при движении поршней навстречу друг другу воздух в полости между ними сжимается, в конце сжатия уплотнительная обойма открывает окна во вращающем цилиндре и сжатый воздух с критической скоростью устремляется в расширительные каналы и сопла, создавая импульс реактивной силы тяги, двигатель работает на всех видах топлива, в том числе и без антидетонационных присадок, в случае работы двигателя на обедненных смесях сгорание происходит при постоянном объеме камер сгорания, а в случае работы на обогащенных смесях происходит догорание топлива при продувке камер сгорания воздухом.

2. Двигатель по п.1, отличающийся тем, что вращающий цилиндр состоит из двух гильз, напрессованных одна на другую.

3. Двигатель по п.1, отличающийся тем, что фазовый диск установлен на вращающем цилиндре.

4. Двигатель по п.1, отличающийся тем, что рабочие процессы, происходящие в камерах сгорания, не зависят от положения поршней во вращающем цилиндре, кроме такта продувки и сжатия.

5. Двигатель по п.1, отличающийся тем, что продувка камер сгорания воздухом происходит через два плоских золотника.

6. Двигатель по п.1, отличающийся тем, что он может работать в детонационном режиме.

7. Двигатель по п.1, отличающийся тем, что для охлаждения двигателя на периметре фазового диска установлен вентилятор.

www.findpatent.ru


Смотрите также